Dynamic Radiative Cooling: Mechanisms, Strategies, and Applications for Smart Thermal Management
Corresponding Author: Fuqiang Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 146
Abstract
As an emerging thermal management strategy, dynamic radiative cooling (DRC) technology enables dynamic modulation of spectral radiation properties under varying environmental conditions through the directional design of material spectral characteristics. However, a comprehensive review of the basic physical mechanisms of radiative heat transfer in DRC materials and various design principles involved in dynamic radiative thermal regulation is still lacking. This review systematically summarizes recent advances in this field, spanning from fundamental physical principles to intrinsic molecular and electronic mechanisms, and further to representative material systems and multi-band regulation strategies, highlighting the interdisciplinary research achievements and technological innovations. This work outlines the core mechanisms governing the regulation of different spectral bands during radiative heat transfer processes. Then, the main categories of DRC materials are systematically reviewed, including actively responsive structures, passively responsive structures, and multi-stimuli-responsive materials. Furthermore, the challenges faced by current DRC technology and future development trends are summarized and discussed, providing valuable reference and guidance for further research in this field. Although DRC technologies still face significant challenges in material stability, manufacturing processes, and system integration, the continuous advances in related areas and multifunctional materials are expected to broaden the application prospects of DRC in the future.
Highlights:
1 This review systematically summarizes recent advances in dynamic radiative cooling (DRC), spanning from fundamental physical principles to intrinsic molecular and electronic mechanisms, and further to representative material systems.
2 This study deeply explored the innovative design of DRC technology in active response materials, passive response materials, and multi-stimuli response materials.
3 The current challenges and development trends of DRC technology are comprehensively analyzed, providing reference and guidance for further research in this field.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Xie, X. Wang, Y. Bai, X. Zou, X. Liu, Fast-developing dynamic radiative thermal management: full-scale fundamentals, switching methods, applications, and challenges. Nano-Micro Lett. 17(1), 146 (2025). https://doi.org/10.1007/s40820-025-01676-6
- J. Xu, P. Wang, Z. Bai, H. Cheng, R. Wang et al., Sustainable moisture energy. Nat. Rev. Mater. 9(10), 722–737 (2024). https://doi.org/10.1038/s41578-023-00643-0
- C. Wang, H. Chen, F. Wang, Passive daytime radiative cooling materials toward real-world applications. Prog. Mater. Sci. 144, 101276 (2024). https://doi.org/10.1016/j.pmatsci.2024.101276
- Z. Yan, H. Zhai, D. Fan, Q. Li, Biological optics, photonics and bioinspired radiative cooling. Prog. Mater. Sci. 144, 101291 (2024). https://doi.org/10.1016/j.pmatsci.2024.101291
- Q. Xu, X. Liu, Q. Luo, H. Yao, Y. Tian et al., Bioinspired spectrally selective phase-change composites for enhanced solar thermal energy storage. Adv. Funct. Mater. 35(1), 2412066 (2025). https://doi.org/10.1002/adfm.202412066
- IEA, Energy Efficiency (IEA, Paris, 2024)
- E. Rephaeli, A. Raman, S. Fan, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13(4), 1457–1461 (2013). https://doi.org/10.1021/nl4004283
- M.M. Hossain, B. Jia, M. Gu, A metamaterial emitter for highly efficient radiative cooling. Adv. Opt. Mater. 3(8), 1047–1051 (2015). https://doi.org/10.1002/adom.201500119
- Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
- J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
- T. Li, Y. Zhai, S. He, W. Gan, Z. Wei et al., A radiative cooling structural material. Science 364(6442), 760–763 (2019). https://doi.org/10.1126/science.aau9101
- K. Tang, K. Dong, J. Li, M.P. Gordon, F.G. Reichertz et al., Temperature-adaptive radiative coating for all-season household thermal regulation. Science 374(6574), 1504–1509 (2021). https://doi.org/10.1126/science.abf7136
- S. Wang, T. Jiang, Y. Meng, R. Yang, G. Tan et al., Scalable thermochromic smart windows with passive radiative cooling regulation. Science 374(6574), 1501–1504 (2021). https://doi.org/10.1126/science.abg0291
- S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555), 692–696 (2021). https://doi.org/10.1126/science.abi5484
- Y. Peng, J.-C. Lai, X. Xiao, W. Jin, J. Zhou et al., Colorful low-emissivity paints for space heating and cooling energy savings. Proc. Natl. Acad. Sci. U. S. A. 120(34), e2300856120 (2023). https://doi.org/10.1073/pnas.2300856120
- Y. Peng, W. Li, B. Liu, W. Jin, J. Schaadt et al., Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat. Commun. 12(1), 6122 (2021). https://doi.org/10.1038/s41467-021-26384-8
- S. Dang, H.H. Almahfoudh, A.M. Alajlan, H. Qasem, J. Wang et al., Sky cooling for LED streetlights. Light. Sci. Appl. 14, 100 (2025). https://doi.org/10.1038/s41377-024-01724-7
- G. Huang, A.R. Yengannagari, K. Matsumori, P. Patel, A. Datla et al., Radiative cooling and indoor light management enabled by a transparent and self-cleaning polymer-based metamaterial. Nat. Commun. 15(1), 3798 (2024). https://doi.org/10.1038/s41467-024-48150-2
- J. Xu, X. Wu, Y. Li, S. Zhao, F. Lan et al., High-performance radiative cooling sunscreen. Nano Lett. 24(47), 15178–15185 (2024). https://doi.org/10.1021/acs.nanolett.4c04969
- A.-Q. Xie, H. Qiu, W. Jiang, Y. Wang, S. Niu et al., Recent advances in spectrally selective daytime radiative cooling materials. Nano-Micro Lett. 17(1), 264 (2025). https://doi.org/10.1007/s40820-025-01771-8
- N.N. Shi, C.-C. Tsai, F. Camino, G.D. Bernard, N. Yu et al., Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349(6245), 298–301 (2015). https://doi.org/10.1126/science.aab3564
- M. Pandolfi, Annuaire du bureau des longitudes pour 1900. Il Nuovo Cimento 11(1), 71–71 (1900). https://doi.org/10.1007/BF02720442
- T.S. Eriksson, C.G. Granqvist, Radiative cooling computed for model atmospheres. Appl. Opt. 21(23), 4381 (1982). https://doi.org/10.1364/ao.21.004381
- X.S. Ge, X.L. Sun, Radiation cooling and the effect of spectral selective characteristics of the radiator on cooling power. Acta Energiae Solaris Sinica 3, 128–136 (1982). https://doi.org/10.19912/j.0254-0096.1982.02.002
- N. Wang, Y. Lv, D. Zhao, W. Zhao, J. Xu et al., Performance evaluation of radiative cooling for commercial-scale warehouse. Mater. Today Energy 24, 100927 (2022). https://doi.org/10.1016/j.mtener.2021.100927
- D. Miao, N. Cheng, X. Wang, J. Yu, B. Ding, Integration of Janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling. Nano Lett. 22(2), 680–687 (2022). https://doi.org/10.1021/acs.nanolett.1c03801
- L. Yuan, S. Jia, S. Shao, H.M. Asfahan, X. Li, A self-cleaning Janus textile for highly efficient heating and cooling management. Nano Lett. 25(19), 8019–8026 (2025). https://doi.org/10.1021/acs.nanolett.5c01738
- H. Zou, C. Wang, J. Yu, D. Huang, R. Yang et al., Eliminating greenhouse heat stress with transparent radiative cooling film. Cell Rep. Phys. Sci. 4(8), 101539 (2023). https://doi.org/10.1016/j.xcrp.2023.101539
- X. Li, W. Xie, C. Sui, P.-C. Hsu, Multispectral thermal management designs for net-zero energy buildings. ACS Mater. Lett. 2(12), 1624–1643 (2020). https://doi.org/10.1021/acsmaterialslett.0c00322
- J. Wei, H. Chen, J. Liu, F. Wang, C. Wang, Radiative cooling technologies toward enhanced energy efficiency of solar cells: materials, systems, and perspectives. Nano Energy 136, 110680 (2025). https://doi.org/10.1016/j.nanoen.2025.110680
- K. Dong, D. Tseng, J. Li, S. Warkander, J. Yao et al., Reducing temperature swing of space objects with temperature-adaptive solar or radiative coating. Cell Rep. Phys. Sci. 3(10), 101066 (2022). https://doi.org/10.1016/j.xcrp.2022.101066
- J. Li, Y. Liang, W. Li, N. Xu, B. Zhu et al., Protecting ice from melting under sunlight via radiative cooling. Sci. Adv. 8(6), eabj9756 (2022). https://doi.org/10.1126/sciadv.abj9756
- S. Liu, C. Sui, M. Harbinson, M. Pudlo, H. Perera et al., A scalable microstructure photonic coating fabricated by roll-to-roll “defects” for daytime subambient passive radiative cooling. Nano Lett. 23(17), 7767–7774 (2023). https://doi.org/10.1021/acs.nanolett.3c00111
- C. Cheng, J. Liu, F. Wang, C. Wang, Photonic structures in multispectral camouflage: from static to dynamic technologies. Mater. Today 85, 253–281 (2025). https://doi.org/10.1016/j.mattod.2025.02.016
- Y. Yang, G. Zhang, L. Rong, Impact of cloud and total column water vapor on annual performance of passive daytime radiative cooler. Energy Convers. Manag. 273, 116420 (2022). https://doi.org/10.1016/j.enconman.2022.116420
- Y. Cui, Y. Ke, C. Liu, Z. Chen, N. Wang et al., Thermochromic VO2 for energy-efficient smart windows. Joule 2(9), 1707–1746 (2018). https://doi.org/10.1016/j.joule.2018.06.018
- M. Chen, J. Deng, H. Zhang, X. Zhang, D. Yan et al., Advanced dual-band smart windows: inorganic all-solid-state electrochromic devices for selective visible and near-infrared modulation. Adv. Funct. Mater. 35(3), 2413659 (2025). https://doi.org/10.1002/adfm.202413659
- G. Li, X. Jiang, H. Asfahan, S. Jia, S. Shao et al., Humidity-controlled smart window with synchronous solar and thermal radiation regulation. Adv. Sci. 12(33), e06980 (2025). https://doi.org/10.1002/advs.202506980
- Y. An, Y. Fu, J.-G. Dai, X. Yin, D. Lei, Switchable radiative cooling technologies for smart thermal management. Cell Rep. Phys. Sci. 3(10), 101098 (2022). https://doi.org/10.1016/j.xcrp.2022.101098
- G. Li, J. Wang, X. Zhao, Y. Su, D. Zhao, Simultaneous modulation of solar and longwave infrared radiation for smart window applications. Mater. Today Phys. 38, 101284 (2023). https://doi.org/10.1016/j.mtphys.2023.101284
- K. Lin, J. Chen, A. Pan, H. Li, Y. Fu et al., Beyond the static: dynamic radiative cooling materials and applications. Mater. Today Energy 44, 101647 (2024). https://doi.org/10.1016/j.mtener.2024.101647
- X. Zhao, J. Li, K. Dong, J. Wu, Switchable and tunable radiative cooling: mechanisms, applications, and perspectives. ACS Nano 18(28), 18118–18128 (2024). https://doi.org/10.1021/acsnano.4c05929
- S. Fan, W. Li, Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16(3), 182–190 (2022). https://doi.org/10.1038/s41566-021-00921-9
- D. Han, J. Fei, J. Mandal, Z. Liu, H. Li et al., Sub-ambient radiative cooling under tropical climate using highly reflective polymeric coating. Sol. Energy Mater. Sol. Cells 240, 111723 (2022). https://doi.org/10.1016/j.solmat.2022.111723
- Y. Yin, M. Zhang, Z. Wang, Colored designs for radiative cooling: progress and perspectives. Adv. Mater. Technol. 10(11), 2402112 (2025). https://doi.org/10.1002/admt.202402112
- Z. Cheng, B. Lin, X. Shi, F. Wang, H. Liang et al., Influences of atmospheric water vapor on spectral effective emissivity of a single-layer radiative cooling coating. AIMS Energy 9(1), 96–116 (2021). https://doi.org/10.3934/energy.2021006
- L. Liu, J. Wang, Q. Li, Passive daytime radiative cooling polymeric materials: structure design, fabrication, and applications. Appl. Mater. Today 39, 102331 (2024). https://doi.org/10.1016/j.apmt.2024.102331
- W. Li, S. Buddhiraju, S. Fan, Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space. Light Sci. Appl. 9, 68 (2020). https://doi.org/10.1038/s41377-020-0296-x
- J. Li, X. Wang, D. Liang, N. Xu, B. Zhu et al., A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Sci. Adv. 8(32), eabq0411 (2022). https://doi.org/10.1126/sciadv.abq0411
- K.-T. Lin, J. Han, K. Li, C. Guo, H. Lin et al., Radiative cooling: fundamental physics, atmospheric influences, materials and structural engineering, applications and beyond. Nano Energy 80, 105517 (2021). https://doi.org/10.1016/j.nanoen.2020.105517
- B. Xie, W. Zhang, J. Zhao, C. Zheng, L. Liu, Design of VO2-based spacecraft smart radiator with low solar absorptance. Appl. Therm. Eng. 236, 121751 (2024). https://doi.org/10.1016/j.applthermaleng.2023.121751
- J. Li, Y. Tao, S. Rao, W. Ma, M. Li et al., Core–shell rGO-BN heterostructures endowing polybutadiene composites with high thermal conductivity and efficient microwave absorption. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202508494
- J. Yang, X. Zhang, X. Zhang, L. Wang, W. Feng et al., Beyond the visible: bioinspired infrared adaptive materials. Adv. Mater. 33(14), 2004754 (2021). https://doi.org/10.1002/adma.202004754
- H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu et al., Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 12(1), 1805 (2021). https://doi.org/10.1038/s41467-021-22051-0
- C. Li, C. Cao, H. Luo, P. Jin, X. Cao, Temperature-adaptive radiative modulator for multi-domain safety applications. Device 2(8), 100407 (2024). https://doi.org/10.1016/j.device.2024.100407
- Y. Tao, J. Li, Y. Qian, S. Gang, H. He et al., GO-HNT framework-based hydrogels with efficient water evaporation-driven cooling and superior electromagnetic wave absorption. Mater. Horiz. 12(17), 7000–7011 (2025). https://doi.org/10.1039/D5MH00932D
- Y. Ke, C. Zhou, Y. Zhou, S. Wang, S.H. Chan et al., Emerging thermal-responsive materials and integrated techniques targeting the energy-efficient smart window application. Adv. Funct. Mater. 28(22), 1800113 (2018). https://doi.org/10.1002/adfm.201800113
- X. Zhang, X. Li, F. Wang, W. Yuan, Z. Cheng et al., Low-cost and large-scale producible biomimetic radiative cooling glass with multiband radiative regulation performance. Adv. Opt. Mater. 10(23), 2270093 (2022). https://doi.org/10.1002/adom.202270093
- Y. Li, X. Chen, L. Yu, D. Pang, H. Yan et al., Janus interface engineering boosting visibly transparent radiative cooling for energy saving. ACS Appl. Mater. Interfaces 15(3), 4122–4131 (2023). https://doi.org/10.1021/acsami.2c20462
- H. Zhai, D. Fan, Q. Li, Dynamic radiation regulations for thermal comfort. Nano Energy 100, 107435 (2022). https://doi.org/10.1016/j.nanoen.2022.107435
- Y. Dong, X. Zhang, L. Chen, W. Meng, C. Wang et al., Progress in passive daytime radiative cooling: a review from optical mechanism, performance test, and application. Renew. Sustain. Energy Rev. 188, 113801 (2023). https://doi.org/10.1016/j.rser.2023.113801
- H. Zhang, K.C.S. Ly, X. Liu, Z. Chen, M. Yan et al., Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. U. S. A. 117(26), 14657–14666 (2020). https://doi.org/10.1073/pnas.2001802117
- X. Yu, J. Chan, C. Chen, Review of radiative cooling materials: performance evaluation and design approaches. Nano Energy 88, 106259 (2021). https://doi.org/10.1016/j.nanoen.2021.106259
- Y. Dong, H. Han, F. Wang, Y. Zhang, Z. Cheng et al., A low-cost sustainable coating: improving passive daytime radiative cooling performance using the spectral band complementarity method. Renew. Energy 192, 606–616 (2022). https://doi.org/10.1016/j.renene.2022.04.093
- X. Li, J. Peoples, P. Yao, X. Ruan, Ultrawhite BaSO4 paints and films for remarkable daytime subambient radiative cooling. ACS Appl. Mater. Interfaces 13(18), 21733–21739 (2021). https://doi.org/10.1021/acsami.1c02368
- Z. Cheng, F. Wang, D. Gong, H. Liang, Y. Shuai, Low-cost radiative cooling blade coating with ultrahigh visible light transmittance and emission within an “atmospheric window.” Sol. Energy Mater. Sol. Cells 213, 110563 (2020). https://doi.org/10.1016/j.solmat.2020.110563
- X. Liu, C. Xiao, P. Wang, M. Yan, H. Wang et al., Biomimetic photonic multiform composite for high-performance radiative cooling. Adv. Opt. Mater. 9(22), 2101151 (2021). https://doi.org/10.1002/adom.202101151
- Y. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.-C. Hsu et al., Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1(2), 105–112 (2018). https://doi.org/10.1038/s41893-018-0023-2
- R. Liu, S. Wang, Z. Zhou, K. Zhang, G. Wang et al., Materials in radiative cooling technologies. Adv. Mater. 37(2), 2401577 (2025). https://doi.org/10.1002/adma.202401577
- Y. Dong, Y. Zou, X. Li, F. Wang, Z. Cheng et al., Introducing masking layer for daytime radiative cooling coating to realize high optical performance, thin thickness, and excellent durability in long-term outdoor application. Appl. Energy 344, 121273 (2023). https://doi.org/10.1016/j.apenergy.2023.121273
- H. Liang, F. Wang, D. Zhang, Z. Cheng, C. Zhang et al., Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system. Energy 194, 116913 (2020). https://doi.org/10.1016/j.energy.2020.116913
- H.H. Kim, E. Im, S. Lee, Colloidal photonic assemblies for colorful radiative cooling. Langmuir 36(23), 6589–6596 (2020). https://doi.org/10.1021/acs.langmuir.0c00051
- B. Zhao, C. Xu, C. Jin, K. Lu, K. Chen et al., Superhydrophobic bilayer coating for passive daytime radiative cooling. Nanophotonics 13(5), 583–591 (2023). https://doi.org/10.1515/nanoph-2023-0511
- P. Li, A. Wang, J. Fan, Q. Kang, P. Jiang et al., Thermo-optically designed scalable photonic films with high thermal conductivity for subambient and above-ambient radiative cooling. Adv. Funct. Mater. 32(5), 2109542 (2022). https://doi.org/10.1002/adfm.202109542
- N.M. Ravindra, P. Ganapathy, J. Choi, Energy gap–refractive index relations in semiconductors–an overview. Infrared Phys. Technol. 50(1), 21–29 (2007). https://doi.org/10.1016/j.infrared.2006.04.001
- T.S. Moss, Relations between the refractive index and energy gap of semiconductors. Phys. Status Solidi B 131(2), 415–427 (1985). https://doi.org/10.1002/pssb.2221310202
- Refractive index darebase. https://refractiveindex.info/ (2025).
- T. Du, J. Niu, L. Wang, J. Bai, S. Wang et al., Daytime radiative cooling coating based on the Y2O3/TiO2 microp-embedded PDMS polymer on energy-saving buildings. ACS Appl. Mater. Interfaces 14(45), 51351–51360 (2022). https://doi.org/10.1021/acsami.2c15854
- C. Lin, Y. Li, C. Chi, Y.S. Kwon, J. Huang et al., A solution-processed inorganic emitter with high spectral selectivity for efficient subambient radiative cooling in hot humid climates. Adv. Mater. 34(12), 2109350 (2022). https://doi.org/10.1002/adma.202109350
- Z. Tong, J. Peoples, X. Li, X. Yang, H. Bao et al., Electronic and phononic origins of BaSO4 as an ultra-efficient radiative cooling paint pigment. Mater. Today Phys. 24, 100658 (2022). https://doi.org/10.1016/j.mtphys.2022.100658
- R. Zhang, M. Yin, P. Shao, Q. Huang, G.A. Niklasson et al., Polaron hopping induced dual-band absorption in all amorphous cathodic electrochromic oxides. Appl. Phys. Rev. 12, 011404 (2025). https://doi.org/10.1063/5.0244549
- H. Li, X. Song, H. Gong, L. Tong, X. Zhou et al., Prediction of optical properties in particulate media using double optimization of dependent scattering and p distribution. Nano Lett. 24(1), 287–294 (2024). https://doi.org/10.1021/acs.nanolett.3c03914
- P. Li, Y. Liu, X. Liu, A. Wang, W. Liu et al., Reversed yolk–shell dielectric scatterers for advanced radiative cooling. Adv. Funct. Mater. 34(23), 2315658 (2024). https://doi.org/10.1002/adfm.202315658
- A. Zhang, F. Wang, H. Zou, J. Song, Z. Cheng et al., Effect of statistical positional correlation on the radiative property investigation of dispersed particulate medium. Int. Commun. Heat Mass Transf. 160, 108396 (2025). https://doi.org/10.1016/j.icheatmasstransfer.2024.108396
- Y. Meng, X. Li, S. Wang, C. Lau, H. Hu et al., Flexible smart photovoltaic foil for energy generation and conservation in buildings. Nano Energy 91, 106632 (2022). https://doi.org/10.1016/j.nanoen.2021.106632
- Y. Wang, X. Zhang, S. Liu, Y. Liu, Q. Zhou et al., Thermal-rectified gradient porous polymeric film for solar-thermal regulatory cooling. Adv. Mater. 36(26), e2400102 (2024). https://doi.org/10.1002/adma.202400102
- S.-J. Park, S.-B. Seo, J. Shim, S.J. Hong, G. Kang et al., Three-dimensionally printable hollow silica nanops for subambient passive cooling. Nanophotonics 13(5), 611–620 (2024). https://doi.org/10.1515/nanoph-2023-0603
- D. Xie, Z. Yang, X. Liu, S. Cui, H. Zhou et al., Broadband omnidirectional light reflection and radiative heat dissipation in white beetles Goliathus goliatus. Soft Matter 15(21), 4294–4300 (2019). https://doi.org/10.1039/c9sm00566h
- K. Feng, Y. Wu, X. Pei, F. Zhou, Passive daytime radiative cooling: from mechanism to materials and applications. Mater. Today Energy 43, 101575 (2024). https://doi.org/10.1016/j.mtener.2024.101575
- C. Cai, Z. Wei, C. Ding, B. Sun, W. Chen et al., Dynamically tunable all-weather daytime cellulose aerogel radiative supercooler for energy-saving building. Nano Lett. 22(10), 4106–4114 (2022). https://doi.org/10.1021/acs.nanolett.2c00844
- S. Popova, T. Tolstykh, V. Vorobev, Optical characteristics of amorphous quartz in the 1400–200cm-1 region. Opt. Spectrosc. 33, 444–445 (1972)
- M.J. Yoo, K.R. Pyun, Y. Jung, M. Lee, J. Lee et al., Switchable radiative cooling and solar heating for sustainable thermal management. Nanophotonics 13(5), 543–561 (2023). https://doi.org/10.1515/nanoph-2023-0627
- L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou et al., A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2(8), 718–724 (2019). https://doi.org/10.1038/s41893-019-0348-5
- Z. Cheng, H. Han, F. Wang, Y. Yan, X. Shi et al., Efficient radiative cooling coating with biomimetic human skin wrinkle structure. Nano Energy 89, 106377 (2021). https://doi.org/10.1016/j.nanoen.2021.106377
- B. Zhao, K. Lu, M. Hu, K. Wang, D. Gao et al., Sub-ambient daytime radiative cooling based on continuous sunlight blocking. Sol. Energy Mater. Sol. Cells 245, 111854 (2022). https://doi.org/10.1016/j.solmat.2022.111854
- A. Aili, Z.Y. Wei, Y.Z. Chen, D.L. Zhao, R.G. Yang et al., Selection of polymers with functional groups for daytime radiative cooling. Mater. Today Phys. 10, 100127 (2019). https://doi.org/10.1016/j.mtphys.2019.100127
- B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, New York, 2004). https://doi.org/10.1002/0470011149
- K. Zhang, B. Wu, Microscopic mechanism and applications of radiative cooling materials: a comprehensive review. Mater. Today Phys. 51, 101643 (2025). https://doi.org/10.1016/j.mtphys.2024.101643
- W. Cai, L. Qi, T. Cui, B. Lin, M.Z. Rahman et al., Chameleon-inspired, dipole moment-increasing, fire-retardant strategies toward promoting the practical application of radiative cooling materials. Adv. Funct. Mater. 35(2), 2412902 (2025). https://doi.org/10.1002/adfm.202412902
- H. Zhang, X. Zhang, W. Sun, M. Chen, Y. Xiao et al., All-solid-state transparent variable infrared emissivity devices for multi-mode smart windows. Adv. Funct. Mater. 34(16), 2307356 (2024). https://doi.org/10.1002/adfm.202307356
- H. Liang, F. Wang, L. Yang, Z. Cheng, Y. Shuai et al., Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system. Renew. Sustain. Energy Rev. 141, 110785 (2021). https://doi.org/10.1016/j.rser.2021.110785
- B. Wang, L. Li, H. Liu, T. Wang, K. Zhang et al., Switchable daytime radiative cooling and nighttime radiative warming by VO2. Sol. Energy Mater. Sol. Cells 280, 113291 (2025). https://doi.org/10.1016/j.solmat.2024.113291
- J. Zhao, Y. Zhong, L. Zhang, L. Sui, G. Wu et al., Relaxation channels of two types of hot carriers in gold nanostructures. Nano Lett. 24(48), 15340–15347 (2024). https://doi.org/10.1021/acs.nanolett.4c04431
- Y. Liu, S. Lee, Y. Yin, M. Li, M. Cotlet et al., Near-band-edge enhancement in perovskite solar cells via tunable surface plasmons. Adv. Opt. Mater. 10(22), 2201116 (2022). https://doi.org/10.1002/adom.202201116
- Z. Zhang, B. Cao, Thermal smart materials with tunable thermal conductivity: mechanisms, materials, and applications. Sci. China Phys. Mech. Astron. 65(11), 117003 (2022). https://doi.org/10.1007/s11433-022-1925-2
- H. Cai, Z. Zhong, Q. Nong, P. Gao, J. He, Design and optimization of SiOx/AZO transparent passivating contacts for high-efficiency crystalline silicon solar cells. Adv. Funct. Mater. 34(52), 2411207 (2024). https://doi.org/10.1002/adfm.202411207
- H. Shao, K. Yin, N. Xu, Y. Zhang, Z. Shi et al., Adaptive surfaces with stimuli-responsive wettability: from tailoring to applications. ACS Nano 19(7), 6729–6747 (2025). https://doi.org/10.1021/acsnano.4c17475
- D. Carne, J. Peoples, F. Arentz, X. Ruan, True benefits of multiple nanop sizes in radiative cooling paints identified with machine learning. Int. J. Heat Mass Transf. 222, 125209 (2024). https://doi.org/10.1016/j.ijheatmasstransfer.2024.125209
- M. Chen, D. Pang, J. Mandal, X. Chen, H. Yan et al., Designing mesoporous photonic structures for high-performance passive daytime radiative cooling. Nano Lett. 21(3), 1412–1418 (2021). https://doi.org/10.1021/acs.nanolett.0c04241
- M.T. Strand, T.S. Hernandez, M.G. Danner, A.L. Yeang, N. Jarvey et al., Polymer inhibitors enable >900 cm2 dynamic windows based on reversible metal electrodeposition with high solar modulation. Nat. Energy 6(5), 546–554 (2021). https://doi.org/10.1038/s41560-021-00816-7
- X. Tao, D. Liu, T. Liu, Z. Meng, J. Yu et al., A bistable variable infrared emissivity device based on reversible silver electrodeposition. Adv. Funct. Mater. 32(32), 2202661 (2022). https://doi.org/10.1002/adfm.202202661
- D. Banerjee, T. Hallberg, S. Chen, C. Kuang, M. Liao et al., Electrical tuning of radiative cooling at ambient conditions. Cell Rep. Phys. Sci. 4(2), 101274 (2023). https://doi.org/10.1016/j.xcrp.2023.101274
- B. Wang, G. Xu, S. Song, Z. Ren, D. Liu et al., Flexible, infrared adjustable, thermal radiation control device based on electro-emissive PANI/Ce4+ thin films inspired by chameleon. Chem. Eng. J. 445, 136819 (2022). https://doi.org/10.1016/j.cej.2022.136819
- M.S. Ergoktas, G. Bakan, E. Kovalska, L.W. Le Fevre, R.P. Fields et al., Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nat. Photonics 15(7), 493–498 (2021). https://doi.org/10.1038/s41566-021-00791-1
- Z. Wang, M. Zhu, S. Gou, Z. Pang, Y. Wang et al., Pairing of luminescent switch with electrochromism for quasi-solid-state dual-function smart windows. ACS Appl. Mater. Interfaces 10(37), 31697–31703 (2018). https://doi.org/10.1021/acsami.8b10790
- M. Li, D. Liu, H. Cheng, L. Peng, M. Zu, Manipulating metals for adaptive thermal camouflage. Sci. Adv. 6(22), eaba3494 (2020). https://doi.org/10.1126/sciadv.aba3494
- C. Sui, J. Pu, T.-H. Chen, J. Liang, Y.-T. Lai et al., Dynamic electrochromism for all-season radiative thermoregulation. Nat. Sustain. 6(4), 428–437 (2023). https://doi.org/10.1038/s41893-022-01023-2
- X. Zhao, A. Aili, D. Zhao, D. Xu, X. Yin et al., Dynamic glazing with switchable solar reflectance for radiative cooling and solar heating. Cell Rep. Phys. Sci. 3(4), 100853 (2022). https://doi.org/10.1016/j.xcrp.2022.100853
- Y. Rao, J. Dai, C. Sui, Y.-T. Lai, Z. Li et al., Ultra-wideband transparent conductive electrode for electrochromic synergistic solar and radiative heat management. ACS Energy Lett. 6(11), 3906–3915 (2021). https://doi.org/10.1021/acsenergylett.1c01486
- Y. Jia, D. Liu, D. Chen, Y. Jin, C. Chen et al., Transparent dynamic infrared emissivity regulators. Nat. Commun. 14, 5087 (2023). https://doi.org/10.1038/s41467-023-40902-w
- T.-H. Chen, Y. Hong, C.-T. Fu, A. Nandi, W. Xie et al., A kirigami-enabled electrochromic wearable variable-emittance device for energy-efficient adaptive personal thermoregulation. PNAS Nexus 2(6), pgad165 (2023). https://doi.org/10.1093/pnasnexus/pgad165
- J. Mandal, S. Du, M. Dontigny, K. Zaghib, N. Yu et al., Li4Ti5O12: a visible-to-infrared broadband electrochromic material for optical and thermal management. Adv. Funct. Mater. 28(36), 1802180 (2018). https://doi.org/10.1002/adfm.201802180
- J. Li, Y. Tao, Z. Zhang, Y. Luo, X. Li et al., Resilient thermal interface materials with low thermal contact resistance and high modulus via hybrid cross-linking strategy. ACS Mater. Lett. 7(6), 2133–2141 (2025). https://doi.org/10.1021/acsmaterialslett.5c00510
- Y. Yang, Y. Liu, Y. Chen, L. Wang, W. Feng, Bioinspired stretchable polymers for dynamic optical and thermal regulation. Adv. Energy Sustain. Res. 5(5), 2300289 (2024). https://doi.org/10.1002/aesr.202300289
- H. Zhao, B. Li, Y. Wang, X. Zhou, J. Cui, Anisotropic mechano-adaptive cavitation in elastomers for unclonable covert–overt anti-counterfeiting. J. Mater. Chem. C 10(10), 3677–3684 (2022). https://doi.org/10.1039/d1tc06136d
- S.-U. Kim, Y.-J. Lee, J. Liu, D.S. Kim, H. Wang et al., Broadband and pixelated camouflage in inflating chiral nematic liquid crystalline elastomers. Nat. Mater. 21(1), 41–46 (2022). https://doi.org/10.1038/s41563-021-01075-3
- Y. Wang, Y. Liu, Z. Wang, D.H. Nguyen, C. Zhang et al., Polymerization-driven self-wrinkling on a frozen hydrogel surface toward ultra-stretchable polypyrrole-based supercapacitors. ACS Appl. Mater. Interfaces 14(40), 45910–45920 (2022). https://doi.org/10.1021/acsami.2c13829
- Y. Liu, R. Bi, X. Zhang, Y. Chen, C. Valenzuela et al., Cephalopod-inspired MXene-integrated mechanochromic cholesteric liquid crystal elastomers for visible-infrared-radar multispectral camouflage. Angew. Chem. Int. Ed. 64(12), e202422636 (2025). https://doi.org/10.1002/anie.202422636
- J. Ma, Y. Yang, C. Valenzuela, X. Zhang, L. Wang et al., Mechanochromic, shape-programmable and self-healable cholesteric liquid crystal elastomers enabled by dynamic covalent boronic ester bonds. Angew. Chem. Int. Ed. 61(9), e202116219 (2022). https://doi.org/10.1002/anie.202116219
- S. Nam, D. Wang, C. Kwon, S.H. Han, S.S. Choi, Biomimetic multicolor-separating photonic skin using electrically stretchable chiral photonic elastomers. Adv. Mater. 35(31), e2302456 (2023). https://doi.org/10.1002/adma.202302456
- B. Jiang, L. Liu, Z. Gao, W. Wang, A general and robust strategy for fabricating mechanoresponsive surface wrinkles with dynamic switchable transmittance. Adv. Opt. Mater. 6(13), 1800195 (2018). https://doi.org/10.1002/adom.201800195
- Y. Deng, Y. Yang, Y. Xiao, H.-L. Xie, R. Lan et al., Ultrafast switchable passive radiative cooling smart windows with synergistic optical modulation. Adv. Funct. Mater. 33(35), 2301319 (2023). https://doi.org/10.1002/adfm.202301319
- J. Teyssier, S.V. Saenko, D. van der Marel, M.C. Milinkovitch, Photonic crystals cause active colour change in chameleons. Nat. Commun. 6, 6368 (2015). https://doi.org/10.1038/ncomms7368
- N. Guo, C. Shi, B.W. Sheldon, H. Yan, M. Chen, A mechanical–optical coupling design on solar and thermal radiation modulation for thermoregulation. J. Mater. Chem. A 12(28), 17520–17528 (2024). https://doi.org/10.1039/d4ta03388d
- E.M. Leung, M. Colorado Escobar, G.T. Stiubianu, S.R. Jim, A.L. Vyatskikh et al., A dynamic thermoregulatory material inspired by squid skin. Nat. Commun. 10, 1947 (2019). https://doi.org/10.1038/s41467-019-09589-w
- Y. Peng, H.K. Lee, D.S. Wu, Y. Cui, Bifunctional asymmetric fabric with tailored thermal conduction and radiation for personal cooling and warming. Engineering 10, 167–173 (2022). https://doi.org/10.1016/j.eng.2021.04.016
- M. Yang, Y. Zeng, Q. Du, H. Sun, Y. Yin et al., Enhanced radiative cooling with Janus optical properties for low-temperature space cooling. Nanophotonics 13(5), 629–637 (2024). https://doi.org/10.1515/nanoph-2023-0641
- B. Dai, X. Li, T. Xu, X. Zhang, Radiative cooling and solar heating Janus films for personal thermal management. ACS Appl. Mater. Interfaces 14(16), 18877–18883 (2022). https://doi.org/10.1021/acsami.2c01370
- W. Yang, P. Xiao, S. Li, F. Deng, F. Ni et al., Engineering structural Janus MXene-nanofibrils aerogels for season-adaptive radiative thermal regulation. Small 19(30), e2302509 (2023). https://doi.org/10.1002/smll.202302509
- Z.-W. Zeng, B. Tang, F.-R. Zeng, H. Chen, S.-Q. Chen et al., An intelligent, recyclable, biomass film for adaptive day-night and year-round energy savings. Adv. Funct. Mater. 34(39), 2403061 (2024). https://doi.org/10.1002/adfm.202403061
- S. Tao, J. Han, Y. Xu, Z. Fang, Y. Ni et al., Mechanically switchable multifunctional device for regulating passive radiative cooling and solar heating. ACS Appl. Mater. Interfaces 15(13), 17123–17133 (2023). https://doi.org/10.1021/acsami.2c21961
- Z. Xia, Z. Fang, Z. Zhang, K. Shi, Z. Meng, Easy way to achieve self-adaptive cooling of passive radiative materials. ACS Appl. Mater. Interfaces 12(24), 27241–27248 (2020). https://doi.org/10.1021/acsami.0c05803
- Z. Yang, Y. Jia, J. Zhang, Hierarchical-morphology metal/polymer heterostructure for scalable multimodal thermal management. ACS Appl. Mater. Interfaces 14(21), 24755–24765 (2022). https://doi.org/10.1021/acsami.2c03513
- C. Xiao, B. Liao, E.W. Hawkes, Passively adaptive radiative switch for thermoregulation in buildings. Device 2(1), 100186 (2024). https://doi.org/10.1016/j.device.2023.100186
- P.-C. Hsu, C. Liu, A.Y. Song, Z. Zhang, Y. Peng et al., A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 3(11), e1700895 (2017). https://doi.org/10.1126/sciadv.1700895
- M. Shi, Z. Song, J. Ni, X. Du, Y. Cao et al., Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 17(3), 2029–2038 (2023). https://doi.org/10.1021/acsnano.2c07293
- X. Li, B. Sun, C. Sui, A. Nandi, H. Fang et al., Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings. Nat. Commun. 11(1), 6101 (2020). https://doi.org/10.1038/s41467-020-19790-x
- N. Guo, C. Shi, N. Warren, E.A. Sprague-Klein, B.W. Sheldon et al., Challenges and opportunities for passive thermoregulation. Adv. Energy Mater. 14(34), 2401776 (2024). https://doi.org/10.1002/aenm.202401776
- J. Li, G. Li, X. Lu, S. Wang, M. Leng et al., Magnetically responsive optical modulation: from anisotropic nanostructures to emerging applications. Adv. Funct. Mater. 34(3), 2308293 (2024). https://doi.org/10.1002/adfm.202308293
- J. Li, X. Lu, Y. Zhang, F. Cheng, Y. Li et al., Transmittance tunable smart window based on magnetically responsive 1D nanochains. ACS Appl. Mater. Interfaces 12(28), 31637–31644 (2020). https://doi.org/10.1021/acsami.0c08402
- W. Luo, Q. Cui, K. Fang, K. Chen, H. Ma et al., Responsive hydrogel-based photonic nanochains for microenvironment sensing and imaging in real time and high resolution. Nano Lett. 20(2), 803–811 (2020). https://doi.org/10.1021/acs.nanolett.7b04218
- B.P.V. Heiz, Z. Pan, L. Su, S.T. Le, L. Wondraczek, A large-area smart window with tunable shading and solar-thermal harvesting ability based on remote switching of a magneto-active liquid. Adv. Sustain. Syst. 2(1), 1700140 (2018). https://doi.org/10.1002/adsu.201700140
- R. Zhang, Z. Song, W. Cao, G. Gao, L. Yang et al., Multispectral smart window: dynamic light modulation and electromagnetic microwave shielding. Light Sci. Appl. 13(1), 223 (2024). https://doi.org/10.1038/s41377-024-01541-y
- Y. Li, Y. Chen, J. Zhang, Y. Wang, H. Li et al., Dual electric/magnetic field-modulated nematic liquid crystal smart window based on the supramolecular doping effect of halloysite nanotube directors. ACS Appl. Nano Mater. 6(6), 4532–4543 (2023). https://doi.org/10.1021/acsanm.3c00016
- M. Wang, L. He, S. Zorba, Y. Yin, Magnetically actuated liquid crystals. Nano Lett. 14(7), 3966–3971 (2014). https://doi.org/10.1021/nl501302s
- Z. Huang, T. Lan, L. Dai, X. Zhao, Z. Wang et al., 2D functional minerals as sustainable materials for magneto-optics. Adv. Mater. 34(16), 2110464 (2022). https://doi.org/10.1002/adma.202110464
- P. Lei, J. Wang, Y. Gao, C. Hu, S. Zhang et al., An electrochromic nickel phosphate film for large-area smart window with ultra-large optical modulation. Nano-Micro Lett. 15(1), 34 (2023). https://doi.org/10.1007/s40820-022-01002-4
- Y. Zhao, D. Fan, Q. Li, Deformable manganite perovskite-based resonator with adaptively modulating infrared radiation. Appl. Mater. Today 21, 100808 (2020). https://doi.org/10.1016/j.apmt.2020.100808
- X. Si, H. Zhu, Z. Yang, H. Wei, B. Chen et al., Adaptive radiative cooling via spectral decoupling in bilayered polymer/VO2 NP nanocomposites. ACS Appl. Mater. Interfaces 17(8), 12117–12124 (2025). https://doi.org/10.1021/acsami.4c20168
- X.P. Zhao, S.A. Mofid, T. Gao, G. Tan, B.P. Jelle et al., Durability-enhanced vanadium dioxide thermochromic film for smart windows. Mater. Today Phys. 13, 100205 (2020). https://doi.org/10.1016/j.mtphys.2020.100205
- C. Jiang, L. He, Q. Xuan, Y. Liao, J.-G. Dai et al., Phase-change VO2-based thermochromic smart windows. Light Sci. Appl. 13(1), 255 (2024). https://doi.org/10.1038/s41377-024-01560-9
- S. Bhupathi, S. Wang, G. Wang, Y. Long, Porous vanadium dioxide thin film-based Fabry-Perot cavity system for radiative cooling regulating thermochromic windows: experimental and simulation studies. Nanophotonics 13(5), 711–723 (2024). https://doi.org/10.1515/nanoph-2023-0716
- X. Ao, B. Li, B. Zhao, M. Hu, H. Ren et al., Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the Sun and outer space. Proc. Natl. Acad. Sci. U. S. A. 119(17), e2120557119 (2022). https://doi.org/10.1073/pnas.2120557119
- S. Taylor, Y. Yang, L. Wang, Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications. J. Quant. Spectrosc. Radiat. Transf. 197, 76–83 (2017). https://doi.org/10.1016/j.jqsrt.2017.01.014
- A.S. Barker, H.W. Verleur, H.J. Guggenheim, Infrared optical properties of vanadium dioxide above and below the transition temperature. Phys. Rev. Lett. 17(26), 1286–1289 (1966). https://doi.org/10.1103/physrevlett.17.1286
- J. Li, K. Dong, T. Zhang, D. Tseng, C. Fang et al., Printable, emissivity-adaptive and albedo-optimized covering for year-round energy saving. Joule 7(11), 2552–2567 (2023). https://doi.org/10.1016/j.joule.2023.09.011
- Z. Wang, J. Liang, D. Lei, C. Jiang, Z. Yang et al., Temperature-adaptive smart windows with passive transmittance and radiative cooling regulation. Appl. Energy 369, 123619 (2024). https://doi.org/10.1016/j.apenergy.2024.123619
- Y.M. Xie, X.P. Zhao, S.A. Mofid, J.Y. Tan, B.P. Jelle et al., Influence of shell materials on the optical performance of VO2 core–shell nanop–based thermochromic films. Mater. Today Nano 13, 100102 (2021). https://doi.org/10.1016/j.mtnano.2020.100102
- X. Wu, L. Yuan, X. Weng, L. Qi, B. Wei et al., Passive smart thermal control coatings incorporating CaF(2)/VO(2) core-shell microsphere structures. Nano Lett. 21(9), 3908–3914 (2021). https://doi.org/10.1021/acs.nanolett.1c00454
- L. Yao, Z. Qu, Z. Pang, J. Li, S. Tang et al., Three-layered hollow nanospheres based coatings with ultrahigh-performance of energy-saving, antireflection, and self-cleaning for smart windows. Small 14(34), 1801661 (2018). https://doi.org/10.1002/smll.201801661
- Y. Peng, L. Fan, W. Jin, Y. Ye, Z. Huang et al., Coloured low-emissivity films for building envelopes for year-round energy savings. Nat. Sustain. 5(4), 339–347 (2022). https://doi.org/10.1038/s41893-021-00836-x
- B. Xie, Y. Liu, W. Xi, R. Hu, Colored radiative cooling: progress and prospects. Mater. Today Energy 34, 101302 (2023). https://doi.org/10.1016/j.mtener.2023.101302
- B.-Y. Liu, J. Wu, C.-H. Xue, Y. Zeng, J. Liang et al., Bioinspired superhydrophobic all-In-one coating for adaptive thermoregulation. Adv. Mater. 36(31), e2400745 (2024). https://doi.org/10.1002/adma.202400745
- J. Wang, M. Xie, Y. An, Y. Tao, J. Sun et al., All-season thermal regulation with thermochromic temperature-adaptive radiative cooling coatings. Sol. Energy Mater. Sol. Cells 246, 111883 (2022). https://doi.org/10.1016/j.solmat.2022.111883
- Y. Chen, J. Mandal, W. Li, A. Smith-Washington, C.-C. Tsai et al., Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci. Adv. 6(17), eaaz5413 (2020). https://doi.org/10.1126/sciadv.aaz5413
- T. Wang, Y. Liu, Y. Dong, X. Yin, D. Lei et al., Colored radiative cooling: from photonic approaches to fluorescent colors and beyond. Adv. Mater. 37(15), 2414300 (2025). https://doi.org/10.1002/adma.202414300
- Y. Dong, W. Meng, F. Wang, H. Han, H. Liang et al., “Warm in winter and cool in summer”: scalable biochameleon inspired temperature-adaptive coating with easy preparation and construction. Nano Lett. 23(19), 9034–9041 (2023). https://doi.org/10.1021/acs.nanolett.3c02733
- T. Wang, Y. Zhang, M. Chen, M. Gu, L. Wu, Scalable and waterborne titanium-dioxide-free thermochromic coatings for self-adaptive passive radiative cooling and heating. Cell Rep. Phys. Sci. 3(3), 100782 (2022). https://doi.org/10.1016/j.xcrp.2022.100782
- Y. Yin, P. Sun, Y. Zeng, M. Yang, S. Gao et al., A colored temperature-adaptive cloak for year-round building energy saving. Adv. Energy Mater. 14(37), 2402202 (2024). https://doi.org/10.1002/aenm.202402202
- S. Son, D. Chae, H. Lim, J. Ha, J. Park et al., Temperature-sensitive colored radiative cooling materials with efficient cooling performance. Adv. Eng. Mater. 25(6), 2201254 (2023). https://doi.org/10.1002/adem.202201254
- S. Yu, Q. Zhang, L. Liu, R. Ma, Thermochromic conductive fibers with modifiable solar absorption for personal thermal management and temperature visualization. ACS Nano 17(20), 20299–20307 (2023). https://doi.org/10.1021/acsnano.3c06289
- Y. Zhou, S. Wang, J. Peng, Y. Tan, C. Li et al., Liquid thermo-responsive smart window derived from hydrogel. Joule 4(11), 2458–2474 (2020). https://doi.org/10.1016/j.joule.2020.09.001
- X. Mei, T. Wang, M. Chen, L. Wu, A self-adaptive film for passive radiative cooling and solar heating regulation. J. Mater. Chem. A 10(20), 11092–11100 (2022). https://doi.org/10.1039/d2ta01291j
- B. Zhao, K. Lu, W. Zhang, C. Jin, Q. Xuan et al., Thermo-responsive hydrogel-based building envelopes for building energy-saving. Sol. Energy 288, 113306 (2025). https://doi.org/10.1016/j.solener.2025.113306
- Z. Fang, L. Ding, L. Li, K. Shuai, B. Cao et al., Thermal homeostasis enabled by dynamically regulating the passive radiative cooling and solar heating based on a thermochromic hydrogel. ACS Photonics 8(9), 2781–2790 (2021). https://doi.org/10.1021/acsphotonics.1c00967
- S. Wang, Y. Zhou, T. Jiang, R. Yang, G. Tan et al., Thermochromic smart windows with highly regulated radiative cooling and solar transmission. Nano Energy 89, 106440 (2021). https://doi.org/10.1016/j.nanoen.2021.106440
- W. Su, R. Kang, P. Cai, M. Hu, G. Kokogiannakis et al., Development of spectrally self-switchable cover with phase change material for dynamic radiative cooling. Sol. Energy Mater. Sol. Cells 251, 112125 (2023). https://doi.org/10.1016/j.solmat.2022.112125
- A. Leroy, B. Bhatia, C.C. Kelsall, A. Castillejo-Cuberos, M. Di Capua H et al., High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 5(10), eaat9480 (2019). https://doi.org/10.1126/sciadv.aat9480
- M. Lian, S. Liu, W. Ding, Y. Wang, T. Zhu et al., A mechanically robust and optically transparent nanofiber-aerogel-reinforcing polymeric nanocomposite for passive cooling window. Chem. Eng. J. 498, 154973 (2024). https://doi.org/10.1016/j.cej.2024.154973
- F. Wang, G. Zhang, X. Shi, Y. Dong, Y. Xun et al., Biomimetically calabash-inspired phase change material capsule: experimental and numerical analysis on thermal performance and flow characteristics. J. Energy Storage 52, 104859 (2022). https://doi.org/10.1016/j.est.2022.104859
- S. Wang, M. Wu, H. Han, R. Du, Z. Zhao et al., Regulating cold energy from the universe by bifunctional phase change materials for sustainable cooling. Adv. Energy Mater. 14(45), 2402667 (2024). https://doi.org/10.1002/aenm.202402667
- S. Tao, Q. Wan, Y. Xu, D. Gao, Z. Fang et al., Incorporation form-stable phase change material with passive radiative cooling emitter for thermal regulation. Energy Build. 288, 113031 (2023). https://doi.org/10.1016/j.enbuild.2023.113031
- J. Wang, X. Shan, P. Hu, C. Zhang, D. Yuan et al., Bioinspired multilayer structures for energy-free passive heating and thermal regulation in cold environments. ACS Appl. Mater. Interfaces 14(41), 46569–46580 (2022). https://doi.org/10.1021/acsami.2c12610
- P. Li, Y. Wang, X. He, Y. Cui, J. Ouyang et al., Wearable and interactive multicolored photochromic fiber display. Light Sci. Appl. 13(1), 48 (2024). https://doi.org/10.1038/s41377-024-01383-8
- J. Li, Y. Jiang, J. Liu, L. Wu, N. Xu et al., A photosynthetically active radiative cooling film. Nat. Sustain. 7(6), 786–795 (2024). https://doi.org/10.1038/s41893-024-01350-6
- Q. Hao, W. Li, H. Xu, J. Wang, Y. Yin et al., VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications. Adv. Mater. 30(10), 1705421 (2018). https://doi.org/10.1002/adma.201705421
- R. Liu, J. Li, J. Duan, B. Yu, W. Xie et al., High-efficiency solar heat storage enabled by adaptive radiation management. Cell Rep. Phys. Sci. 2(8), 100533 (2021). https://doi.org/10.1016/j.xcrp.2021.100533
- L. Shen, R. Lou, Y. Park, Y. Guo, E.J. Stallknecht et al., Increasing greenhouse production by spectral-shifting and unidirectional light-extracting photonics. Nat. Food 2(6), 434–441 (2021). https://doi.org/10.1038/s43016-021-00307-8
- J. Xu, R. Wan, W. Xu, Z. Ma, X. Cheng et al., Colored radiative cooling coatings using phosphor dyes. Mater. Today Nano 19, 100239 (2022). https://doi.org/10.1016/j.mtnano.2022.100239
- X. Xue, M. Qiu, Y. Li, Q.M. Zhang, S. Li et al., Creating an eco-friendly building coating with smart subambient radiative cooling. Adv. Mater. 32(42), e1906751 (2020). https://doi.org/10.1002/adma.201906751
- X. Wang, Q. Zhang, S. Wang, C. Jin, B. Zhu et al., Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence. Sci. Bull. 67(18), 1874–1881 (2022). https://doi.org/10.1016/j.scib.2022.08.028
- J.-W. Ma, F.-R. Zeng, X.-C. Lin, Y.-Q. Wang, Y.-H. Ma et al., A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling. Science 385(6704), 68–74 (2024). https://doi.org/10.1126/science.adn5694
- T. Wang, X. Wu, Q. Zhu, Y. Chen, S. Zhang et al., A scalable and durable polydimethylsiloxane-coated nanoporous polyethylene textile for daytime radiative cooling. Nanophotonics 13(5), 601–609 (2023). https://doi.org/10.1515/nanoph-2023-0596
- X. Zhang, Z. Cheng, D. Yang, Y. Dong, X. Shi et al., Scalable bio-skin-inspired radiative cooling metafabric for breaking trade-off between optical properties and application requirements. ACS Photonics 10(5), 1624–1632 (2023). https://doi.org/10.1021/acsphotonics.3c00241
- X. Zhang, J. Du, F. Wang, Z. Xu, X. Li et al., Hierarchical pore structure with a confined resonant mode for improving the solar energy utilizing efficiency of ultra-thin perovskite solar cells. Opt. Express 32(10), 17197–17210 (2024). https://doi.org/10.1364/OE.523065
- Z. Huang, X. Ruan, Nanop embedded double-layer coating for daytime radiative cooling. Int. J. Heat Mass Transf. 104, 890–896 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.009
- R.H. Galib, Y. Tian, Y. Lei, S. Dang, X. Li et al., Atmospheric-moisture-induced polyacrylate hydrogels for hybrid passive cooling. Nat. Commun. 14(1), 6707 (2023). https://doi.org/10.1038/s41467-023-42548-0
- D. Hong, Y.J. Lee, O.S. Jeon, I.-S. Lee, S.H. Lee et al., Humidity-tolerant porous polymer coating for passive daytime radiative cooling. Nat. Commun. 15(1), 4457 (2024). https://doi.org/10.1038/s41467-024-48621-6
- C. Zhang, J. Yang, Y. Li, J. Song, J. Guo et al., Vapor–liquid transition-based broadband light modulation for self-adaptive thermal management. Adv. Funct. Mater. 32(48), 2208144 (2022). https://doi.org/10.1002/adfm.202208144
- J. Fei, D. Han, J. Ge, X. Wang, S.W. Koh et al., Switchable surface coating for bifunctional passive radiative cooling and solar heating. Adv. Funct. Mater. 32(27), 2203582 (2022). https://doi.org/10.1002/adfm.202203582
- J. Mandal, M. Jia, A. Overvig, Y. Fu, E. Che et al., Porous polymers with switchable optical transmittance for optical and thermal regulation. Joule 3(12), 3088–3099 (2019). https://doi.org/10.1016/j.joule.2019.09.016
- S. Shi, P. Lv, C. Valenzuela, B. Li, Y. Liu et al., Scalable bacterial cellulose-based radiative cooling materials with switchable transparency for thermal management and enhanced solar energy harvesting. Small 19(39), 2301957 (2023). https://doi.org/10.1002/smll.202301957
- N. Guo, L. Yu, C. Shi, H. Yan, M. Chen, A facile and effective design for dynamic thermal management based on synchronous solar and thermal radiation regulation. Nano Lett. 24(4), 1447–1453 (2024). https://doi.org/10.1021/acs.nanolett.3c04996
- N. Guo, Z. Zhao, H. Yan, M. Chen, Dynamic thermal radiation regulation for thermal management. Next Energy 1(4), 100072 (2023). https://doi.org/10.1016/j.nxener.2023.100072
- X. Li, M. Liu, K. Chen, L. Li, G. Pei et al., Adaptive fabric with emissivity regulation for thermal management of humans. Nanophotonics 13(17), 3067–3075 (2024). https://doi.org/10.1515/nanoph-2023-0930
- H. Zhang, J. Huang, D. Fan, Switchable radiative cooling from temperature-responsive thermal resistance modulation. ACS Appl. Energy Mater. 5(5), 6003–6010 (2022). https://doi.org/10.1021/acsaem.2c00421
- M.G. Abebe, G. Rosolen, E. Khousakoun, J. Odent, J.-M. Raquez et al., Dynamic thermal-regulating textiles with metallic fibers based on a switchable transmittance. Phys. Rev. Appl. 14(4), 044030 (2020). https://doi.org/10.1103/physrevapplied.14.044030
- X. Jiang, X. Li, H. Zhang, Z. Hu, S. Jia et al., Sweat-sensitive adaptive warm clothing. Sci. Adv. 11(33), eadu3472 (2025). https://doi.org/10.1126/sciadv.adu3472
- X. Jiang, Z. Wang, S. Jia, G. Li, Y. Xu et al., Super stable moisture-responsive actuator via covalent crosslinking for efficient personal thermal management. Adv. Mater. (2025). https://doi.org/10.1002/adma.202507267
- Y. Zhong, F. Zhang, M. Wang, C.J. Gardner, G. Kim et al., Reversible humidity sensitive clothing for personal thermoregulation. Sci. Rep. 7, 44208 (2017). https://doi.org/10.1038/srep44208
- X. Li, B. Ma, J. Dai, C. Sui, D. Pande et al., Metalized polyamide heterostructure as a moisture-responsive actuator for multimodal adaptive personal heat management. Sci. Adv. 7(51), eabj7906 (2021). https://doi.org/10.1126/sciadv.abj7906
- H. Zhao, X. Qi, Y. Ma, X. Sun, X. Liu et al., Wearable sunlight-triggered bimorph textile actuators. Nano Lett. 21(19), 8126–8134 (2021). https://doi.org/10.1021/acs.nanolett.1c02578
- X.A. Zhang, S. Yu, B. Xu, M. Li, Z. Peng et al., Dynamic gating of infrared radiation in a textile. Science 363(6427), 619–623 (2019). https://doi.org/10.1126/science.aau1217
- K. Fu, Z. Yang, Y. Pei, Y. Wang, B. Xu et al., Designing textile architectures for high energy-efficiency human body sweat- and cooling-management. Adv. Fiber Mater. 1(1), 61–70 (2019). https://doi.org/10.1007/s42765-019-0003-y
- Y. Du, Y. Chen, X. Yang, J. Liu, Y. Liang et al., Hybrid passive cooling: towards the next breakthrough of radiative sky cooling technology. J. Mater. Chem. A 12(33), 21490–21514 (2024). https://doi.org/10.1039/d4ta03122a
- R. Zhang, N. Sun, Z. Zhao, S. Wang, M. Zhang et al., Bionic dual-scale structured films for efficient passive radiative cooling accompanied by robust durability. Nanoscale Horiz. 9(8), 1354–1363 (2024). https://doi.org/10.1039/d4nh00136b
- Y. Jiao, Z. Li, C. Li, C. Cao, A. Huang et al., Flexible tri-state-regulated thermochromic smart window based on WxV1-xO2/paraffin/PVA composite film. Chem. Eng. J. 497, 154578 (2024). https://doi.org/10.1016/j.cej.2024.154578
- H. Liang, X. Zhang, F. Wang, C. Li, W. Yuan et al., Bio-inspired micropatterned thermochromic hydrogel for concurrent smart solar transmission and rapid visible-light stealth at all-working temperatures. Light Sci. Appl. 13(1), 202 (2024). https://doi.org/10.1038/s41377-024-01525-y
- C. Lin, J. Hur, C.Y.H. Chao, G. Liu, S. Yao et al., All-weather thermochromic windows for synchronous solar and thermal radiation regulation. Sci. Adv. 8(17), eabn7359 (2022). https://doi.org/10.1126/sciadv.abn7359
- Y. Ding, C. Zhong, F. Yang, Z. Kang, B. Li et al., Low energy consumption thermochromic smart windows with flexibly regulated photothermal gain and radiation cooling. Appl. Energy 348, 121598 (2023). https://doi.org/10.1016/j.apenergy.2023.121598
- Y. Ke, Y. Li, L. Wu, S. Wang, R. Yang et al., On-demand solar and thermal radiation management based on switchable interwoven surfaces. ACS Energy Lett. 7(5), 1758–1763 (2022). https://doi.org/10.1021/acsenergylett.2c00419
- S. Wang, Y. Dong, Y. Li, K. Ryu, Z. Dong et al., A solar/radiative cooling dual-regulation smart window based on shape-morphing kirigami structures. Mater. Horiz. 10(10), 4243–4250 (2023). https://doi.org/10.1039/d3mh00671a
- W. Wang, Z. Zhao, Q. Zou, B. Hong, W. Zhang et al., Self-adaptive radiative cooling and solar heating based on a compound metasurface. J. Mater. Chem. C 8(9), 3192–3199 (2020). https://doi.org/10.1039/c9tc05634c
- Q. Zhang, Y. Lv, Y. Wang, S. Yu, C. Li et al., Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nat. Commun. 13(1), 4874 (2022). https://doi.org/10.1038/s41467-022-32528-1
- Q. Zhang, Y. Wang, Y. Lv, S. Yu, R. Ma, Bioinspired zero-energy thermal-management device based on visible and infrared thermochromism for all-season energy saving. Proc. Natl. Acad. Sci. U. S. A. 119(38), e2207353119 (2022). https://doi.org/10.1073/pnas.2207353119
- Z. Shao, A. Huang, C. Cao, X. Ji, W. Hu et al., Tri-band electrochromic smart window for energy savings in buildings. Nat. Sustain. 7(6), 796–803 (2024). https://doi.org/10.1038/s41893-024-01349-z
- Z. Zhang, M. Yu, C. Ma, L. He, X. He et al., A Janus smart window for temperature-adaptive radiative cooling and adjustable solar transmittance. Nano-Micro Lett. 17(1), 233 (2025). https://doi.org/10.1007/s40820-025-01740-1
- Y. Jiang, Y. Wang, D. Kong, Z. Chen, Z. Yang et al., A highly visible-transparent thermochromic smart window with broadband infrared modulation for all-season energy savings. Natl. Sci. Rev. 12(2), nwae408 (2024). https://doi.org/10.1093/nsr/nwae408
- Y. Wang, S. Liu, X. Zhang, Y. Liu, T. Zhu et al., Thermal-rectified gradient porous nanocomposite film enabling multiscenario adaptive radiative cooling. ACS Nano 19(20), 19328–19339 (2025). https://doi.org/10.1021/acsnano.5c02609
- C. Xiao, M. Liu, K. Yao, Y. Zhang, M. Zhang et al., Ultrabroadband and band-selective thermal meta-emitters by machine learning. Nature 643(8070), 80–88 (2025). https://doi.org/10.1038/s41586-025-09102-y
- X. Zhao, T. Li, H. Xie, H. Liu, L. Wang et al., A solution-processed radiative cooling glass. Science 382(6671), 684–691 (2023). https://doi.org/10.1126/science.adi2224
- C. Lin, K. Li, M. Li, B. Dopphoopha, J. Zheng et al., Pushing radiative cooling technology to real applications. Adv. Mater. 37(23), 2409738 (2025). https://doi.org/10.1002/adma.202409738
- S. Jia, M. Huang, X. Jiang, C. Shen, S. Chen et al., Tandem daytime radiative cooling and solar power generation. Cell Rep. Phys. Sci. 6(1), 102343 (2025). https://doi.org/10.1016/j.xcrp.2024.102343
- S. Chen, K. Lin, S. Liu, C.T. Kwok, L. Liang et al., Bioinspired metafilms for all-weather energy harvesting: adaptive thermal regulation and raindrop electricity generation. Sci. Adv. 11(21), eadu2895 (2025). https://doi.org/10.1126/sciadv.adu2895
- K. Yang, X. Wu, L. Zhou, P. Wu, I. Gereige et al., Towards practical applications of radiative cooling. Nat. Rev. Clean Technol. 1(4), 235–254 (2025). https://doi.org/10.1038/s44359-025-00041-5
- J. Song, Q. Shen, H. Shao, X. Deng, Anti-environmental aging passive daytime radiative cooling. Adv. Sci. 11(10), 2305664 (2024). https://doi.org/10.1002/advs.202305664
References
L. Xie, X. Wang, Y. Bai, X. Zou, X. Liu, Fast-developing dynamic radiative thermal management: full-scale fundamentals, switching methods, applications, and challenges. Nano-Micro Lett. 17(1), 146 (2025). https://doi.org/10.1007/s40820-025-01676-6
J. Xu, P. Wang, Z. Bai, H. Cheng, R. Wang et al., Sustainable moisture energy. Nat. Rev. Mater. 9(10), 722–737 (2024). https://doi.org/10.1038/s41578-023-00643-0
C. Wang, H. Chen, F. Wang, Passive daytime radiative cooling materials toward real-world applications. Prog. Mater. Sci. 144, 101276 (2024). https://doi.org/10.1016/j.pmatsci.2024.101276
Z. Yan, H. Zhai, D. Fan, Q. Li, Biological optics, photonics and bioinspired radiative cooling. Prog. Mater. Sci. 144, 101291 (2024). https://doi.org/10.1016/j.pmatsci.2024.101291
Q. Xu, X. Liu, Q. Luo, H. Yao, Y. Tian et al., Bioinspired spectrally selective phase-change composites for enhanced solar thermal energy storage. Adv. Funct. Mater. 35(1), 2412066 (2025). https://doi.org/10.1002/adfm.202412066
IEA, Energy Efficiency (IEA, Paris, 2024)
E. Rephaeli, A. Raman, S. Fan, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13(4), 1457–1461 (2013). https://doi.org/10.1021/nl4004283
M.M. Hossain, B. Jia, M. Gu, A metamaterial emitter for highly efficient radiative cooling. Adv. Opt. Mater. 3(8), 1047–1051 (2015). https://doi.org/10.1002/adom.201500119
Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei et al., A radiative cooling structural material. Science 364(6442), 760–763 (2019). https://doi.org/10.1126/science.aau9101
K. Tang, K. Dong, J. Li, M.P. Gordon, F.G. Reichertz et al., Temperature-adaptive radiative coating for all-season household thermal regulation. Science 374(6574), 1504–1509 (2021). https://doi.org/10.1126/science.abf7136
S. Wang, T. Jiang, Y. Meng, R. Yang, G. Tan et al., Scalable thermochromic smart windows with passive radiative cooling regulation. Science 374(6574), 1501–1504 (2021). https://doi.org/10.1126/science.abg0291
S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555), 692–696 (2021). https://doi.org/10.1126/science.abi5484
Y. Peng, J.-C. Lai, X. Xiao, W. Jin, J. Zhou et al., Colorful low-emissivity paints for space heating and cooling energy savings. Proc. Natl. Acad. Sci. U. S. A. 120(34), e2300856120 (2023). https://doi.org/10.1073/pnas.2300856120
Y. Peng, W. Li, B. Liu, W. Jin, J. Schaadt et al., Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat. Commun. 12(1), 6122 (2021). https://doi.org/10.1038/s41467-021-26384-8
S. Dang, H.H. Almahfoudh, A.M. Alajlan, H. Qasem, J. Wang et al., Sky cooling for LED streetlights. Light. Sci. Appl. 14, 100 (2025). https://doi.org/10.1038/s41377-024-01724-7
G. Huang, A.R. Yengannagari, K. Matsumori, P. Patel, A. Datla et al., Radiative cooling and indoor light management enabled by a transparent and self-cleaning polymer-based metamaterial. Nat. Commun. 15(1), 3798 (2024). https://doi.org/10.1038/s41467-024-48150-2
J. Xu, X. Wu, Y. Li, S. Zhao, F. Lan et al., High-performance radiative cooling sunscreen. Nano Lett. 24(47), 15178–15185 (2024). https://doi.org/10.1021/acs.nanolett.4c04969
A.-Q. Xie, H. Qiu, W. Jiang, Y. Wang, S. Niu et al., Recent advances in spectrally selective daytime radiative cooling materials. Nano-Micro Lett. 17(1), 264 (2025). https://doi.org/10.1007/s40820-025-01771-8
N.N. Shi, C.-C. Tsai, F. Camino, G.D. Bernard, N. Yu et al., Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349(6245), 298–301 (2015). https://doi.org/10.1126/science.aab3564
M. Pandolfi, Annuaire du bureau des longitudes pour 1900. Il Nuovo Cimento 11(1), 71–71 (1900). https://doi.org/10.1007/BF02720442
T.S. Eriksson, C.G. Granqvist, Radiative cooling computed for model atmospheres. Appl. Opt. 21(23), 4381 (1982). https://doi.org/10.1364/ao.21.004381
X.S. Ge, X.L. Sun, Radiation cooling and the effect of spectral selective characteristics of the radiator on cooling power. Acta Energiae Solaris Sinica 3, 128–136 (1982). https://doi.org/10.19912/j.0254-0096.1982.02.002
N. Wang, Y. Lv, D. Zhao, W. Zhao, J. Xu et al., Performance evaluation of radiative cooling for commercial-scale warehouse. Mater. Today Energy 24, 100927 (2022). https://doi.org/10.1016/j.mtener.2021.100927
D. Miao, N. Cheng, X. Wang, J. Yu, B. Ding, Integration of Janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling. Nano Lett. 22(2), 680–687 (2022). https://doi.org/10.1021/acs.nanolett.1c03801
L. Yuan, S. Jia, S. Shao, H.M. Asfahan, X. Li, A self-cleaning Janus textile for highly efficient heating and cooling management. Nano Lett. 25(19), 8019–8026 (2025). https://doi.org/10.1021/acs.nanolett.5c01738
H. Zou, C. Wang, J. Yu, D. Huang, R. Yang et al., Eliminating greenhouse heat stress with transparent radiative cooling film. Cell Rep. Phys. Sci. 4(8), 101539 (2023). https://doi.org/10.1016/j.xcrp.2023.101539
X. Li, W. Xie, C. Sui, P.-C. Hsu, Multispectral thermal management designs for net-zero energy buildings. ACS Mater. Lett. 2(12), 1624–1643 (2020). https://doi.org/10.1021/acsmaterialslett.0c00322
J. Wei, H. Chen, J. Liu, F. Wang, C. Wang, Radiative cooling technologies toward enhanced energy efficiency of solar cells: materials, systems, and perspectives. Nano Energy 136, 110680 (2025). https://doi.org/10.1016/j.nanoen.2025.110680
K. Dong, D. Tseng, J. Li, S. Warkander, J. Yao et al., Reducing temperature swing of space objects with temperature-adaptive solar or radiative coating. Cell Rep. Phys. Sci. 3(10), 101066 (2022). https://doi.org/10.1016/j.xcrp.2022.101066
J. Li, Y. Liang, W. Li, N. Xu, B. Zhu et al., Protecting ice from melting under sunlight via radiative cooling. Sci. Adv. 8(6), eabj9756 (2022). https://doi.org/10.1126/sciadv.abj9756
S. Liu, C. Sui, M. Harbinson, M. Pudlo, H. Perera et al., A scalable microstructure photonic coating fabricated by roll-to-roll “defects” for daytime subambient passive radiative cooling. Nano Lett. 23(17), 7767–7774 (2023). https://doi.org/10.1021/acs.nanolett.3c00111
C. Cheng, J. Liu, F. Wang, C. Wang, Photonic structures in multispectral camouflage: from static to dynamic technologies. Mater. Today 85, 253–281 (2025). https://doi.org/10.1016/j.mattod.2025.02.016
Y. Yang, G. Zhang, L. Rong, Impact of cloud and total column water vapor on annual performance of passive daytime radiative cooler. Energy Convers. Manag. 273, 116420 (2022). https://doi.org/10.1016/j.enconman.2022.116420
Y. Cui, Y. Ke, C. Liu, Z. Chen, N. Wang et al., Thermochromic VO2 for energy-efficient smart windows. Joule 2(9), 1707–1746 (2018). https://doi.org/10.1016/j.joule.2018.06.018
M. Chen, J. Deng, H. Zhang, X. Zhang, D. Yan et al., Advanced dual-band smart windows: inorganic all-solid-state electrochromic devices for selective visible and near-infrared modulation. Adv. Funct. Mater. 35(3), 2413659 (2025). https://doi.org/10.1002/adfm.202413659
G. Li, X. Jiang, H. Asfahan, S. Jia, S. Shao et al., Humidity-controlled smart window with synchronous solar and thermal radiation regulation. Adv. Sci. 12(33), e06980 (2025). https://doi.org/10.1002/advs.202506980
Y. An, Y. Fu, J.-G. Dai, X. Yin, D. Lei, Switchable radiative cooling technologies for smart thermal management. Cell Rep. Phys. Sci. 3(10), 101098 (2022). https://doi.org/10.1016/j.xcrp.2022.101098
G. Li, J. Wang, X. Zhao, Y. Su, D. Zhao, Simultaneous modulation of solar and longwave infrared radiation for smart window applications. Mater. Today Phys. 38, 101284 (2023). https://doi.org/10.1016/j.mtphys.2023.101284
K. Lin, J. Chen, A. Pan, H. Li, Y. Fu et al., Beyond the static: dynamic radiative cooling materials and applications. Mater. Today Energy 44, 101647 (2024). https://doi.org/10.1016/j.mtener.2024.101647
X. Zhao, J. Li, K. Dong, J. Wu, Switchable and tunable radiative cooling: mechanisms, applications, and perspectives. ACS Nano 18(28), 18118–18128 (2024). https://doi.org/10.1021/acsnano.4c05929
S. Fan, W. Li, Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16(3), 182–190 (2022). https://doi.org/10.1038/s41566-021-00921-9
D. Han, J. Fei, J. Mandal, Z. Liu, H. Li et al., Sub-ambient radiative cooling under tropical climate using highly reflective polymeric coating. Sol. Energy Mater. Sol. Cells 240, 111723 (2022). https://doi.org/10.1016/j.solmat.2022.111723
Y. Yin, M. Zhang, Z. Wang, Colored designs for radiative cooling: progress and perspectives. Adv. Mater. Technol. 10(11), 2402112 (2025). https://doi.org/10.1002/admt.202402112
Z. Cheng, B. Lin, X. Shi, F. Wang, H. Liang et al., Influences of atmospheric water vapor on spectral effective emissivity of a single-layer radiative cooling coating. AIMS Energy 9(1), 96–116 (2021). https://doi.org/10.3934/energy.2021006
L. Liu, J. Wang, Q. Li, Passive daytime radiative cooling polymeric materials: structure design, fabrication, and applications. Appl. Mater. Today 39, 102331 (2024). https://doi.org/10.1016/j.apmt.2024.102331
W. Li, S. Buddhiraju, S. Fan, Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space. Light Sci. Appl. 9, 68 (2020). https://doi.org/10.1038/s41377-020-0296-x
J. Li, X. Wang, D. Liang, N. Xu, B. Zhu et al., A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Sci. Adv. 8(32), eabq0411 (2022). https://doi.org/10.1126/sciadv.abq0411
K.-T. Lin, J. Han, K. Li, C. Guo, H. Lin et al., Radiative cooling: fundamental physics, atmospheric influences, materials and structural engineering, applications and beyond. Nano Energy 80, 105517 (2021). https://doi.org/10.1016/j.nanoen.2020.105517
B. Xie, W. Zhang, J. Zhao, C. Zheng, L. Liu, Design of VO2-based spacecraft smart radiator with low solar absorptance. Appl. Therm. Eng. 236, 121751 (2024). https://doi.org/10.1016/j.applthermaleng.2023.121751
J. Li, Y. Tao, S. Rao, W. Ma, M. Li et al., Core–shell rGO-BN heterostructures endowing polybutadiene composites with high thermal conductivity and efficient microwave absorption. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202508494
J. Yang, X. Zhang, X. Zhang, L. Wang, W. Feng et al., Beyond the visible: bioinspired infrared adaptive materials. Adv. Mater. 33(14), 2004754 (2021). https://doi.org/10.1002/adma.202004754
H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu et al., Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 12(1), 1805 (2021). https://doi.org/10.1038/s41467-021-22051-0
C. Li, C. Cao, H. Luo, P. Jin, X. Cao, Temperature-adaptive radiative modulator for multi-domain safety applications. Device 2(8), 100407 (2024). https://doi.org/10.1016/j.device.2024.100407
Y. Tao, J. Li, Y. Qian, S. Gang, H. He et al., GO-HNT framework-based hydrogels with efficient water evaporation-driven cooling and superior electromagnetic wave absorption. Mater. Horiz. 12(17), 7000–7011 (2025). https://doi.org/10.1039/D5MH00932D
Y. Ke, C. Zhou, Y. Zhou, S. Wang, S.H. Chan et al., Emerging thermal-responsive materials and integrated techniques targeting the energy-efficient smart window application. Adv. Funct. Mater. 28(22), 1800113 (2018). https://doi.org/10.1002/adfm.201800113
X. Zhang, X. Li, F. Wang, W. Yuan, Z. Cheng et al., Low-cost and large-scale producible biomimetic radiative cooling glass with multiband radiative regulation performance. Adv. Opt. Mater. 10(23), 2270093 (2022). https://doi.org/10.1002/adom.202270093
Y. Li, X. Chen, L. Yu, D. Pang, H. Yan et al., Janus interface engineering boosting visibly transparent radiative cooling for energy saving. ACS Appl. Mater. Interfaces 15(3), 4122–4131 (2023). https://doi.org/10.1021/acsami.2c20462
H. Zhai, D. Fan, Q. Li, Dynamic radiation regulations for thermal comfort. Nano Energy 100, 107435 (2022). https://doi.org/10.1016/j.nanoen.2022.107435
Y. Dong, X. Zhang, L. Chen, W. Meng, C. Wang et al., Progress in passive daytime radiative cooling: a review from optical mechanism, performance test, and application. Renew. Sustain. Energy Rev. 188, 113801 (2023). https://doi.org/10.1016/j.rser.2023.113801
H. Zhang, K.C.S. Ly, X. Liu, Z. Chen, M. Yan et al., Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. U. S. A. 117(26), 14657–14666 (2020). https://doi.org/10.1073/pnas.2001802117
X. Yu, J. Chan, C. Chen, Review of radiative cooling materials: performance evaluation and design approaches. Nano Energy 88, 106259 (2021). https://doi.org/10.1016/j.nanoen.2021.106259
Y. Dong, H. Han, F. Wang, Y. Zhang, Z. Cheng et al., A low-cost sustainable coating: improving passive daytime radiative cooling performance using the spectral band complementarity method. Renew. Energy 192, 606–616 (2022). https://doi.org/10.1016/j.renene.2022.04.093
X. Li, J. Peoples, P. Yao, X. Ruan, Ultrawhite BaSO4 paints and films for remarkable daytime subambient radiative cooling. ACS Appl. Mater. Interfaces 13(18), 21733–21739 (2021). https://doi.org/10.1021/acsami.1c02368
Z. Cheng, F. Wang, D. Gong, H. Liang, Y. Shuai, Low-cost radiative cooling blade coating with ultrahigh visible light transmittance and emission within an “atmospheric window.” Sol. Energy Mater. Sol. Cells 213, 110563 (2020). https://doi.org/10.1016/j.solmat.2020.110563
X. Liu, C. Xiao, P. Wang, M. Yan, H. Wang et al., Biomimetic photonic multiform composite for high-performance radiative cooling. Adv. Opt. Mater. 9(22), 2101151 (2021). https://doi.org/10.1002/adom.202101151
Y. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.-C. Hsu et al., Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1(2), 105–112 (2018). https://doi.org/10.1038/s41893-018-0023-2
R. Liu, S. Wang, Z. Zhou, K. Zhang, G. Wang et al., Materials in radiative cooling technologies. Adv. Mater. 37(2), 2401577 (2025). https://doi.org/10.1002/adma.202401577
Y. Dong, Y. Zou, X. Li, F. Wang, Z. Cheng et al., Introducing masking layer for daytime radiative cooling coating to realize high optical performance, thin thickness, and excellent durability in long-term outdoor application. Appl. Energy 344, 121273 (2023). https://doi.org/10.1016/j.apenergy.2023.121273
H. Liang, F. Wang, D. Zhang, Z. Cheng, C. Zhang et al., Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system. Energy 194, 116913 (2020). https://doi.org/10.1016/j.energy.2020.116913
H.H. Kim, E. Im, S. Lee, Colloidal photonic assemblies for colorful radiative cooling. Langmuir 36(23), 6589–6596 (2020). https://doi.org/10.1021/acs.langmuir.0c00051
B. Zhao, C. Xu, C. Jin, K. Lu, K. Chen et al., Superhydrophobic bilayer coating for passive daytime radiative cooling. Nanophotonics 13(5), 583–591 (2023). https://doi.org/10.1515/nanoph-2023-0511
P. Li, A. Wang, J. Fan, Q. Kang, P. Jiang et al., Thermo-optically designed scalable photonic films with high thermal conductivity for subambient and above-ambient radiative cooling. Adv. Funct. Mater. 32(5), 2109542 (2022). https://doi.org/10.1002/adfm.202109542
N.M. Ravindra, P. Ganapathy, J. Choi, Energy gap–refractive index relations in semiconductors–an overview. Infrared Phys. Technol. 50(1), 21–29 (2007). https://doi.org/10.1016/j.infrared.2006.04.001
T.S. Moss, Relations between the refractive index and energy gap of semiconductors. Phys. Status Solidi B 131(2), 415–427 (1985). https://doi.org/10.1002/pssb.2221310202
Refractive index darebase. https://refractiveindex.info/ (2025).
T. Du, J. Niu, L. Wang, J. Bai, S. Wang et al., Daytime radiative cooling coating based on the Y2O3/TiO2 microp-embedded PDMS polymer on energy-saving buildings. ACS Appl. Mater. Interfaces 14(45), 51351–51360 (2022). https://doi.org/10.1021/acsami.2c15854
C. Lin, Y. Li, C. Chi, Y.S. Kwon, J. Huang et al., A solution-processed inorganic emitter with high spectral selectivity for efficient subambient radiative cooling in hot humid climates. Adv. Mater. 34(12), 2109350 (2022). https://doi.org/10.1002/adma.202109350
Z. Tong, J. Peoples, X. Li, X. Yang, H. Bao et al., Electronic and phononic origins of BaSO4 as an ultra-efficient radiative cooling paint pigment. Mater. Today Phys. 24, 100658 (2022). https://doi.org/10.1016/j.mtphys.2022.100658
R. Zhang, M. Yin, P. Shao, Q. Huang, G.A. Niklasson et al., Polaron hopping induced dual-band absorption in all amorphous cathodic electrochromic oxides. Appl. Phys. Rev. 12, 011404 (2025). https://doi.org/10.1063/5.0244549
H. Li, X. Song, H. Gong, L. Tong, X. Zhou et al., Prediction of optical properties in particulate media using double optimization of dependent scattering and p distribution. Nano Lett. 24(1), 287–294 (2024). https://doi.org/10.1021/acs.nanolett.3c03914
P. Li, Y. Liu, X. Liu, A. Wang, W. Liu et al., Reversed yolk–shell dielectric scatterers for advanced radiative cooling. Adv. Funct. Mater. 34(23), 2315658 (2024). https://doi.org/10.1002/adfm.202315658
A. Zhang, F. Wang, H. Zou, J. Song, Z. Cheng et al., Effect of statistical positional correlation on the radiative property investigation of dispersed particulate medium. Int. Commun. Heat Mass Transf. 160, 108396 (2025). https://doi.org/10.1016/j.icheatmasstransfer.2024.108396
Y. Meng, X. Li, S. Wang, C. Lau, H. Hu et al., Flexible smart photovoltaic foil for energy generation and conservation in buildings. Nano Energy 91, 106632 (2022). https://doi.org/10.1016/j.nanoen.2021.106632
Y. Wang, X. Zhang, S. Liu, Y. Liu, Q. Zhou et al., Thermal-rectified gradient porous polymeric film for solar-thermal regulatory cooling. Adv. Mater. 36(26), e2400102 (2024). https://doi.org/10.1002/adma.202400102
S.-J. Park, S.-B. Seo, J. Shim, S.J. Hong, G. Kang et al., Three-dimensionally printable hollow silica nanops for subambient passive cooling. Nanophotonics 13(5), 611–620 (2024). https://doi.org/10.1515/nanoph-2023-0603
D. Xie, Z. Yang, X. Liu, S. Cui, H. Zhou et al., Broadband omnidirectional light reflection and radiative heat dissipation in white beetles Goliathus goliatus. Soft Matter 15(21), 4294–4300 (2019). https://doi.org/10.1039/c9sm00566h
K. Feng, Y. Wu, X. Pei, F. Zhou, Passive daytime radiative cooling: from mechanism to materials and applications. Mater. Today Energy 43, 101575 (2024). https://doi.org/10.1016/j.mtener.2024.101575
C. Cai, Z. Wei, C. Ding, B. Sun, W. Chen et al., Dynamically tunable all-weather daytime cellulose aerogel radiative supercooler for energy-saving building. Nano Lett. 22(10), 4106–4114 (2022). https://doi.org/10.1021/acs.nanolett.2c00844
S. Popova, T. Tolstykh, V. Vorobev, Optical characteristics of amorphous quartz in the 1400–200cm-1 region. Opt. Spectrosc. 33, 444–445 (1972)
M.J. Yoo, K.R. Pyun, Y. Jung, M. Lee, J. Lee et al., Switchable radiative cooling and solar heating for sustainable thermal management. Nanophotonics 13(5), 543–561 (2023). https://doi.org/10.1515/nanoph-2023-0627
L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou et al., A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2(8), 718–724 (2019). https://doi.org/10.1038/s41893-019-0348-5
Z. Cheng, H. Han, F. Wang, Y. Yan, X. Shi et al., Efficient radiative cooling coating with biomimetic human skin wrinkle structure. Nano Energy 89, 106377 (2021). https://doi.org/10.1016/j.nanoen.2021.106377
B. Zhao, K. Lu, M. Hu, K. Wang, D. Gao et al., Sub-ambient daytime radiative cooling based on continuous sunlight blocking. Sol. Energy Mater. Sol. Cells 245, 111854 (2022). https://doi.org/10.1016/j.solmat.2022.111854
A. Aili, Z.Y. Wei, Y.Z. Chen, D.L. Zhao, R.G. Yang et al., Selection of polymers with functional groups for daytime radiative cooling. Mater. Today Phys. 10, 100127 (2019). https://doi.org/10.1016/j.mtphys.2019.100127
B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, New York, 2004). https://doi.org/10.1002/0470011149
K. Zhang, B. Wu, Microscopic mechanism and applications of radiative cooling materials: a comprehensive review. Mater. Today Phys. 51, 101643 (2025). https://doi.org/10.1016/j.mtphys.2024.101643
W. Cai, L. Qi, T. Cui, B. Lin, M.Z. Rahman et al., Chameleon-inspired, dipole moment-increasing, fire-retardant strategies toward promoting the practical application of radiative cooling materials. Adv. Funct. Mater. 35(2), 2412902 (2025). https://doi.org/10.1002/adfm.202412902
H. Zhang, X. Zhang, W. Sun, M. Chen, Y. Xiao et al., All-solid-state transparent variable infrared emissivity devices for multi-mode smart windows. Adv. Funct. Mater. 34(16), 2307356 (2024). https://doi.org/10.1002/adfm.202307356
H. Liang, F. Wang, L. Yang, Z. Cheng, Y. Shuai et al., Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system. Renew. Sustain. Energy Rev. 141, 110785 (2021). https://doi.org/10.1016/j.rser.2021.110785
B. Wang, L. Li, H. Liu, T. Wang, K. Zhang et al., Switchable daytime radiative cooling and nighttime radiative warming by VO2. Sol. Energy Mater. Sol. Cells 280, 113291 (2025). https://doi.org/10.1016/j.solmat.2024.113291
J. Zhao, Y. Zhong, L. Zhang, L. Sui, G. Wu et al., Relaxation channels of two types of hot carriers in gold nanostructures. Nano Lett. 24(48), 15340–15347 (2024). https://doi.org/10.1021/acs.nanolett.4c04431
Y. Liu, S. Lee, Y. Yin, M. Li, M. Cotlet et al., Near-band-edge enhancement in perovskite solar cells via tunable surface plasmons. Adv. Opt. Mater. 10(22), 2201116 (2022). https://doi.org/10.1002/adom.202201116
Z. Zhang, B. Cao, Thermal smart materials with tunable thermal conductivity: mechanisms, materials, and applications. Sci. China Phys. Mech. Astron. 65(11), 117003 (2022). https://doi.org/10.1007/s11433-022-1925-2
H. Cai, Z. Zhong, Q. Nong, P. Gao, J. He, Design and optimization of SiOx/AZO transparent passivating contacts for high-efficiency crystalline silicon solar cells. Adv. Funct. Mater. 34(52), 2411207 (2024). https://doi.org/10.1002/adfm.202411207
H. Shao, K. Yin, N. Xu, Y. Zhang, Z. Shi et al., Adaptive surfaces with stimuli-responsive wettability: from tailoring to applications. ACS Nano 19(7), 6729–6747 (2025). https://doi.org/10.1021/acsnano.4c17475
D. Carne, J. Peoples, F. Arentz, X. Ruan, True benefits of multiple nanop sizes in radiative cooling paints identified with machine learning. Int. J. Heat Mass Transf. 222, 125209 (2024). https://doi.org/10.1016/j.ijheatmasstransfer.2024.125209
M. Chen, D. Pang, J. Mandal, X. Chen, H. Yan et al., Designing mesoporous photonic structures for high-performance passive daytime radiative cooling. Nano Lett. 21(3), 1412–1418 (2021). https://doi.org/10.1021/acs.nanolett.0c04241
M.T. Strand, T.S. Hernandez, M.G. Danner, A.L. Yeang, N. Jarvey et al., Polymer inhibitors enable >900 cm2 dynamic windows based on reversible metal electrodeposition with high solar modulation. Nat. Energy 6(5), 546–554 (2021). https://doi.org/10.1038/s41560-021-00816-7
X. Tao, D. Liu, T. Liu, Z. Meng, J. Yu et al., A bistable variable infrared emissivity device based on reversible silver electrodeposition. Adv. Funct. Mater. 32(32), 2202661 (2022). https://doi.org/10.1002/adfm.202202661
D. Banerjee, T. Hallberg, S. Chen, C. Kuang, M. Liao et al., Electrical tuning of radiative cooling at ambient conditions. Cell Rep. Phys. Sci. 4(2), 101274 (2023). https://doi.org/10.1016/j.xcrp.2023.101274
B. Wang, G. Xu, S. Song, Z. Ren, D. Liu et al., Flexible, infrared adjustable, thermal radiation control device based on electro-emissive PANI/Ce4+ thin films inspired by chameleon. Chem. Eng. J. 445, 136819 (2022). https://doi.org/10.1016/j.cej.2022.136819
M.S. Ergoktas, G. Bakan, E. Kovalska, L.W. Le Fevre, R.P. Fields et al., Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nat. Photonics 15(7), 493–498 (2021). https://doi.org/10.1038/s41566-021-00791-1
Z. Wang, M. Zhu, S. Gou, Z. Pang, Y. Wang et al., Pairing of luminescent switch with electrochromism for quasi-solid-state dual-function smart windows. ACS Appl. Mater. Interfaces 10(37), 31697–31703 (2018). https://doi.org/10.1021/acsami.8b10790
M. Li, D. Liu, H. Cheng, L. Peng, M. Zu, Manipulating metals for adaptive thermal camouflage. Sci. Adv. 6(22), eaba3494 (2020). https://doi.org/10.1126/sciadv.aba3494
C. Sui, J. Pu, T.-H. Chen, J. Liang, Y.-T. Lai et al., Dynamic electrochromism for all-season radiative thermoregulation. Nat. Sustain. 6(4), 428–437 (2023). https://doi.org/10.1038/s41893-022-01023-2
X. Zhao, A. Aili, D. Zhao, D. Xu, X. Yin et al., Dynamic glazing with switchable solar reflectance for radiative cooling and solar heating. Cell Rep. Phys. Sci. 3(4), 100853 (2022). https://doi.org/10.1016/j.xcrp.2022.100853
Y. Rao, J. Dai, C. Sui, Y.-T. Lai, Z. Li et al., Ultra-wideband transparent conductive electrode for electrochromic synergistic solar and radiative heat management. ACS Energy Lett. 6(11), 3906–3915 (2021). https://doi.org/10.1021/acsenergylett.1c01486
Y. Jia, D. Liu, D. Chen, Y. Jin, C. Chen et al., Transparent dynamic infrared emissivity regulators. Nat. Commun. 14, 5087 (2023). https://doi.org/10.1038/s41467-023-40902-w
T.-H. Chen, Y. Hong, C.-T. Fu, A. Nandi, W. Xie et al., A kirigami-enabled electrochromic wearable variable-emittance device for energy-efficient adaptive personal thermoregulation. PNAS Nexus 2(6), pgad165 (2023). https://doi.org/10.1093/pnasnexus/pgad165
J. Mandal, S. Du, M. Dontigny, K. Zaghib, N. Yu et al., Li4Ti5O12: a visible-to-infrared broadband electrochromic material for optical and thermal management. Adv. Funct. Mater. 28(36), 1802180 (2018). https://doi.org/10.1002/adfm.201802180
J. Li, Y. Tao, Z. Zhang, Y. Luo, X. Li et al., Resilient thermal interface materials with low thermal contact resistance and high modulus via hybrid cross-linking strategy. ACS Mater. Lett. 7(6), 2133–2141 (2025). https://doi.org/10.1021/acsmaterialslett.5c00510
Y. Yang, Y. Liu, Y. Chen, L. Wang, W. Feng, Bioinspired stretchable polymers for dynamic optical and thermal regulation. Adv. Energy Sustain. Res. 5(5), 2300289 (2024). https://doi.org/10.1002/aesr.202300289
H. Zhao, B. Li, Y. Wang, X. Zhou, J. Cui, Anisotropic mechano-adaptive cavitation in elastomers for unclonable covert–overt anti-counterfeiting. J. Mater. Chem. C 10(10), 3677–3684 (2022). https://doi.org/10.1039/d1tc06136d
S.-U. Kim, Y.-J. Lee, J. Liu, D.S. Kim, H. Wang et al., Broadband and pixelated camouflage in inflating chiral nematic liquid crystalline elastomers. Nat. Mater. 21(1), 41–46 (2022). https://doi.org/10.1038/s41563-021-01075-3
Y. Wang, Y. Liu, Z. Wang, D.H. Nguyen, C. Zhang et al., Polymerization-driven self-wrinkling on a frozen hydrogel surface toward ultra-stretchable polypyrrole-based supercapacitors. ACS Appl. Mater. Interfaces 14(40), 45910–45920 (2022). https://doi.org/10.1021/acsami.2c13829
Y. Liu, R. Bi, X. Zhang, Y. Chen, C. Valenzuela et al., Cephalopod-inspired MXene-integrated mechanochromic cholesteric liquid crystal elastomers for visible-infrared-radar multispectral camouflage. Angew. Chem. Int. Ed. 64(12), e202422636 (2025). https://doi.org/10.1002/anie.202422636
J. Ma, Y. Yang, C. Valenzuela, X. Zhang, L. Wang et al., Mechanochromic, shape-programmable and self-healable cholesteric liquid crystal elastomers enabled by dynamic covalent boronic ester bonds. Angew. Chem. Int. Ed. 61(9), e202116219 (2022). https://doi.org/10.1002/anie.202116219
S. Nam, D. Wang, C. Kwon, S.H. Han, S.S. Choi, Biomimetic multicolor-separating photonic skin using electrically stretchable chiral photonic elastomers. Adv. Mater. 35(31), e2302456 (2023). https://doi.org/10.1002/adma.202302456
B. Jiang, L. Liu, Z. Gao, W. Wang, A general and robust strategy for fabricating mechanoresponsive surface wrinkles with dynamic switchable transmittance. Adv. Opt. Mater. 6(13), 1800195 (2018). https://doi.org/10.1002/adom.201800195
Y. Deng, Y. Yang, Y. Xiao, H.-L. Xie, R. Lan et al., Ultrafast switchable passive radiative cooling smart windows with synergistic optical modulation. Adv. Funct. Mater. 33(35), 2301319 (2023). https://doi.org/10.1002/adfm.202301319
J. Teyssier, S.V. Saenko, D. van der Marel, M.C. Milinkovitch, Photonic crystals cause active colour change in chameleons. Nat. Commun. 6, 6368 (2015). https://doi.org/10.1038/ncomms7368
N. Guo, C. Shi, B.W. Sheldon, H. Yan, M. Chen, A mechanical–optical coupling design on solar and thermal radiation modulation for thermoregulation. J. Mater. Chem. A 12(28), 17520–17528 (2024). https://doi.org/10.1039/d4ta03388d
E.M. Leung, M. Colorado Escobar, G.T. Stiubianu, S.R. Jim, A.L. Vyatskikh et al., A dynamic thermoregulatory material inspired by squid skin. Nat. Commun. 10, 1947 (2019). https://doi.org/10.1038/s41467-019-09589-w
Y. Peng, H.K. Lee, D.S. Wu, Y. Cui, Bifunctional asymmetric fabric with tailored thermal conduction and radiation for personal cooling and warming. Engineering 10, 167–173 (2022). https://doi.org/10.1016/j.eng.2021.04.016
M. Yang, Y. Zeng, Q. Du, H. Sun, Y. Yin et al., Enhanced radiative cooling with Janus optical properties for low-temperature space cooling. Nanophotonics 13(5), 629–637 (2024). https://doi.org/10.1515/nanoph-2023-0641
B. Dai, X. Li, T. Xu, X. Zhang, Radiative cooling and solar heating Janus films for personal thermal management. ACS Appl. Mater. Interfaces 14(16), 18877–18883 (2022). https://doi.org/10.1021/acsami.2c01370
W. Yang, P. Xiao, S. Li, F. Deng, F. Ni et al., Engineering structural Janus MXene-nanofibrils aerogels for season-adaptive radiative thermal regulation. Small 19(30), e2302509 (2023). https://doi.org/10.1002/smll.202302509
Z.-W. Zeng, B. Tang, F.-R. Zeng, H. Chen, S.-Q. Chen et al., An intelligent, recyclable, biomass film for adaptive day-night and year-round energy savings. Adv. Funct. Mater. 34(39), 2403061 (2024). https://doi.org/10.1002/adfm.202403061
S. Tao, J. Han, Y. Xu, Z. Fang, Y. Ni et al., Mechanically switchable multifunctional device for regulating passive radiative cooling and solar heating. ACS Appl. Mater. Interfaces 15(13), 17123–17133 (2023). https://doi.org/10.1021/acsami.2c21961
Z. Xia, Z. Fang, Z. Zhang, K. Shi, Z. Meng, Easy way to achieve self-adaptive cooling of passive radiative materials. ACS Appl. Mater. Interfaces 12(24), 27241–27248 (2020). https://doi.org/10.1021/acsami.0c05803
Z. Yang, Y. Jia, J. Zhang, Hierarchical-morphology metal/polymer heterostructure for scalable multimodal thermal management. ACS Appl. Mater. Interfaces 14(21), 24755–24765 (2022). https://doi.org/10.1021/acsami.2c03513
C. Xiao, B. Liao, E.W. Hawkes, Passively adaptive radiative switch for thermoregulation in buildings. Device 2(1), 100186 (2024). https://doi.org/10.1016/j.device.2023.100186
P.-C. Hsu, C. Liu, A.Y. Song, Z. Zhang, Y. Peng et al., A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 3(11), e1700895 (2017). https://doi.org/10.1126/sciadv.1700895
M. Shi, Z. Song, J. Ni, X. Du, Y. Cao et al., Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 17(3), 2029–2038 (2023). https://doi.org/10.1021/acsnano.2c07293
X. Li, B. Sun, C. Sui, A. Nandi, H. Fang et al., Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings. Nat. Commun. 11(1), 6101 (2020). https://doi.org/10.1038/s41467-020-19790-x
N. Guo, C. Shi, N. Warren, E.A. Sprague-Klein, B.W. Sheldon et al., Challenges and opportunities for passive thermoregulation. Adv. Energy Mater. 14(34), 2401776 (2024). https://doi.org/10.1002/aenm.202401776
J. Li, G. Li, X. Lu, S. Wang, M. Leng et al., Magnetically responsive optical modulation: from anisotropic nanostructures to emerging applications. Adv. Funct. Mater. 34(3), 2308293 (2024). https://doi.org/10.1002/adfm.202308293
J. Li, X. Lu, Y. Zhang, F. Cheng, Y. Li et al., Transmittance tunable smart window based on magnetically responsive 1D nanochains. ACS Appl. Mater. Interfaces 12(28), 31637–31644 (2020). https://doi.org/10.1021/acsami.0c08402
W. Luo, Q. Cui, K. Fang, K. Chen, H. Ma et al., Responsive hydrogel-based photonic nanochains for microenvironment sensing and imaging in real time and high resolution. Nano Lett. 20(2), 803–811 (2020). https://doi.org/10.1021/acs.nanolett.7b04218
B.P.V. Heiz, Z. Pan, L. Su, S.T. Le, L. Wondraczek, A large-area smart window with tunable shading and solar-thermal harvesting ability based on remote switching of a magneto-active liquid. Adv. Sustain. Syst. 2(1), 1700140 (2018). https://doi.org/10.1002/adsu.201700140
R. Zhang, Z. Song, W. Cao, G. Gao, L. Yang et al., Multispectral smart window: dynamic light modulation and electromagnetic microwave shielding. Light Sci. Appl. 13(1), 223 (2024). https://doi.org/10.1038/s41377-024-01541-y
Y. Li, Y. Chen, J. Zhang, Y. Wang, H. Li et al., Dual electric/magnetic field-modulated nematic liquid crystal smart window based on the supramolecular doping effect of halloysite nanotube directors. ACS Appl. Nano Mater. 6(6), 4532–4543 (2023). https://doi.org/10.1021/acsanm.3c00016
M. Wang, L. He, S. Zorba, Y. Yin, Magnetically actuated liquid crystals. Nano Lett. 14(7), 3966–3971 (2014). https://doi.org/10.1021/nl501302s
Z. Huang, T. Lan, L. Dai, X. Zhao, Z. Wang et al., 2D functional minerals as sustainable materials for magneto-optics. Adv. Mater. 34(16), 2110464 (2022). https://doi.org/10.1002/adma.202110464
P. Lei, J. Wang, Y. Gao, C. Hu, S. Zhang et al., An electrochromic nickel phosphate film for large-area smart window with ultra-large optical modulation. Nano-Micro Lett. 15(1), 34 (2023). https://doi.org/10.1007/s40820-022-01002-4
Y. Zhao, D. Fan, Q. Li, Deformable manganite perovskite-based resonator with adaptively modulating infrared radiation. Appl. Mater. Today 21, 100808 (2020). https://doi.org/10.1016/j.apmt.2020.100808
X. Si, H. Zhu, Z. Yang, H. Wei, B. Chen et al., Adaptive radiative cooling via spectral decoupling in bilayered polymer/VO2 NP nanocomposites. ACS Appl. Mater. Interfaces 17(8), 12117–12124 (2025). https://doi.org/10.1021/acsami.4c20168
X.P. Zhao, S.A. Mofid, T. Gao, G. Tan, B.P. Jelle et al., Durability-enhanced vanadium dioxide thermochromic film for smart windows. Mater. Today Phys. 13, 100205 (2020). https://doi.org/10.1016/j.mtphys.2020.100205
C. Jiang, L. He, Q. Xuan, Y. Liao, J.-G. Dai et al., Phase-change VO2-based thermochromic smart windows. Light Sci. Appl. 13(1), 255 (2024). https://doi.org/10.1038/s41377-024-01560-9
S. Bhupathi, S. Wang, G. Wang, Y. Long, Porous vanadium dioxide thin film-based Fabry-Perot cavity system for radiative cooling regulating thermochromic windows: experimental and simulation studies. Nanophotonics 13(5), 711–723 (2024). https://doi.org/10.1515/nanoph-2023-0716
X. Ao, B. Li, B. Zhao, M. Hu, H. Ren et al., Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the Sun and outer space. Proc. Natl. Acad. Sci. U. S. A. 119(17), e2120557119 (2022). https://doi.org/10.1073/pnas.2120557119
S. Taylor, Y. Yang, L. Wang, Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications. J. Quant. Spectrosc. Radiat. Transf. 197, 76–83 (2017). https://doi.org/10.1016/j.jqsrt.2017.01.014
A.S. Barker, H.W. Verleur, H.J. Guggenheim, Infrared optical properties of vanadium dioxide above and below the transition temperature. Phys. Rev. Lett. 17(26), 1286–1289 (1966). https://doi.org/10.1103/physrevlett.17.1286
J. Li, K. Dong, T. Zhang, D. Tseng, C. Fang et al., Printable, emissivity-adaptive and albedo-optimized covering for year-round energy saving. Joule 7(11), 2552–2567 (2023). https://doi.org/10.1016/j.joule.2023.09.011
Z. Wang, J. Liang, D. Lei, C. Jiang, Z. Yang et al., Temperature-adaptive smart windows with passive transmittance and radiative cooling regulation. Appl. Energy 369, 123619 (2024). https://doi.org/10.1016/j.apenergy.2024.123619
Y.M. Xie, X.P. Zhao, S.A. Mofid, J.Y. Tan, B.P. Jelle et al., Influence of shell materials on the optical performance of VO2 core–shell nanop–based thermochromic films. Mater. Today Nano 13, 100102 (2021). https://doi.org/10.1016/j.mtnano.2020.100102
X. Wu, L. Yuan, X. Weng, L. Qi, B. Wei et al., Passive smart thermal control coatings incorporating CaF(2)/VO(2) core-shell microsphere structures. Nano Lett. 21(9), 3908–3914 (2021). https://doi.org/10.1021/acs.nanolett.1c00454
L. Yao, Z. Qu, Z. Pang, J. Li, S. Tang et al., Three-layered hollow nanospheres based coatings with ultrahigh-performance of energy-saving, antireflection, and self-cleaning for smart windows. Small 14(34), 1801661 (2018). https://doi.org/10.1002/smll.201801661
Y. Peng, L. Fan, W. Jin, Y. Ye, Z. Huang et al., Coloured low-emissivity films for building envelopes for year-round energy savings. Nat. Sustain. 5(4), 339–347 (2022). https://doi.org/10.1038/s41893-021-00836-x
B. Xie, Y. Liu, W. Xi, R. Hu, Colored radiative cooling: progress and prospects. Mater. Today Energy 34, 101302 (2023). https://doi.org/10.1016/j.mtener.2023.101302
B.-Y. Liu, J. Wu, C.-H. Xue, Y. Zeng, J. Liang et al., Bioinspired superhydrophobic all-In-one coating for adaptive thermoregulation. Adv. Mater. 36(31), e2400745 (2024). https://doi.org/10.1002/adma.202400745
J. Wang, M. Xie, Y. An, Y. Tao, J. Sun et al., All-season thermal regulation with thermochromic temperature-adaptive radiative cooling coatings. Sol. Energy Mater. Sol. Cells 246, 111883 (2022). https://doi.org/10.1016/j.solmat.2022.111883
Y. Chen, J. Mandal, W. Li, A. Smith-Washington, C.-C. Tsai et al., Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci. Adv. 6(17), eaaz5413 (2020). https://doi.org/10.1126/sciadv.aaz5413
T. Wang, Y. Liu, Y. Dong, X. Yin, D. Lei et al., Colored radiative cooling: from photonic approaches to fluorescent colors and beyond. Adv. Mater. 37(15), 2414300 (2025). https://doi.org/10.1002/adma.202414300
Y. Dong, W. Meng, F. Wang, H. Han, H. Liang et al., “Warm in winter and cool in summer”: scalable biochameleon inspired temperature-adaptive coating with easy preparation and construction. Nano Lett. 23(19), 9034–9041 (2023). https://doi.org/10.1021/acs.nanolett.3c02733
T. Wang, Y. Zhang, M. Chen, M. Gu, L. Wu, Scalable and waterborne titanium-dioxide-free thermochromic coatings for self-adaptive passive radiative cooling and heating. Cell Rep. Phys. Sci. 3(3), 100782 (2022). https://doi.org/10.1016/j.xcrp.2022.100782
Y. Yin, P. Sun, Y. Zeng, M. Yang, S. Gao et al., A colored temperature-adaptive cloak for year-round building energy saving. Adv. Energy Mater. 14(37), 2402202 (2024). https://doi.org/10.1002/aenm.202402202
S. Son, D. Chae, H. Lim, J. Ha, J. Park et al., Temperature-sensitive colored radiative cooling materials with efficient cooling performance. Adv. Eng. Mater. 25(6), 2201254 (2023). https://doi.org/10.1002/adem.202201254
S. Yu, Q. Zhang, L. Liu, R. Ma, Thermochromic conductive fibers with modifiable solar absorption for personal thermal management and temperature visualization. ACS Nano 17(20), 20299–20307 (2023). https://doi.org/10.1021/acsnano.3c06289
Y. Zhou, S. Wang, J. Peng, Y. Tan, C. Li et al., Liquid thermo-responsive smart window derived from hydrogel. Joule 4(11), 2458–2474 (2020). https://doi.org/10.1016/j.joule.2020.09.001
X. Mei, T. Wang, M. Chen, L. Wu, A self-adaptive film for passive radiative cooling and solar heating regulation. J. Mater. Chem. A 10(20), 11092–11100 (2022). https://doi.org/10.1039/d2ta01291j
B. Zhao, K. Lu, W. Zhang, C. Jin, Q. Xuan et al., Thermo-responsive hydrogel-based building envelopes for building energy-saving. Sol. Energy 288, 113306 (2025). https://doi.org/10.1016/j.solener.2025.113306
Z. Fang, L. Ding, L. Li, K. Shuai, B. Cao et al., Thermal homeostasis enabled by dynamically regulating the passive radiative cooling and solar heating based on a thermochromic hydrogel. ACS Photonics 8(9), 2781–2790 (2021). https://doi.org/10.1021/acsphotonics.1c00967
S. Wang, Y. Zhou, T. Jiang, R. Yang, G. Tan et al., Thermochromic smart windows with highly regulated radiative cooling and solar transmission. Nano Energy 89, 106440 (2021). https://doi.org/10.1016/j.nanoen.2021.106440
W. Su, R. Kang, P. Cai, M. Hu, G. Kokogiannakis et al., Development of spectrally self-switchable cover with phase change material for dynamic radiative cooling. Sol. Energy Mater. Sol. Cells 251, 112125 (2023). https://doi.org/10.1016/j.solmat.2022.112125
A. Leroy, B. Bhatia, C.C. Kelsall, A. Castillejo-Cuberos, M. Di Capua H et al., High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 5(10), eaat9480 (2019). https://doi.org/10.1126/sciadv.aat9480
M. Lian, S. Liu, W. Ding, Y. Wang, T. Zhu et al., A mechanically robust and optically transparent nanofiber-aerogel-reinforcing polymeric nanocomposite for passive cooling window. Chem. Eng. J. 498, 154973 (2024). https://doi.org/10.1016/j.cej.2024.154973
F. Wang, G. Zhang, X. Shi, Y. Dong, Y. Xun et al., Biomimetically calabash-inspired phase change material capsule: experimental and numerical analysis on thermal performance and flow characteristics. J. Energy Storage 52, 104859 (2022). https://doi.org/10.1016/j.est.2022.104859
S. Wang, M. Wu, H. Han, R. Du, Z. Zhao et al., Regulating cold energy from the universe by bifunctional phase change materials for sustainable cooling. Adv. Energy Mater. 14(45), 2402667 (2024). https://doi.org/10.1002/aenm.202402667
S. Tao, Q. Wan, Y. Xu, D. Gao, Z. Fang et al., Incorporation form-stable phase change material with passive radiative cooling emitter for thermal regulation. Energy Build. 288, 113031 (2023). https://doi.org/10.1016/j.enbuild.2023.113031
J. Wang, X. Shan, P. Hu, C. Zhang, D. Yuan et al., Bioinspired multilayer structures for energy-free passive heating and thermal regulation in cold environments. ACS Appl. Mater. Interfaces 14(41), 46569–46580 (2022). https://doi.org/10.1021/acsami.2c12610
P. Li, Y. Wang, X. He, Y. Cui, J. Ouyang et al., Wearable and interactive multicolored photochromic fiber display. Light Sci. Appl. 13(1), 48 (2024). https://doi.org/10.1038/s41377-024-01383-8
J. Li, Y. Jiang, J. Liu, L. Wu, N. Xu et al., A photosynthetically active radiative cooling film. Nat. Sustain. 7(6), 786–795 (2024). https://doi.org/10.1038/s41893-024-01350-6
Q. Hao, W. Li, H. Xu, J. Wang, Y. Yin et al., VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications. Adv. Mater. 30(10), 1705421 (2018). https://doi.org/10.1002/adma.201705421
R. Liu, J. Li, J. Duan, B. Yu, W. Xie et al., High-efficiency solar heat storage enabled by adaptive radiation management. Cell Rep. Phys. Sci. 2(8), 100533 (2021). https://doi.org/10.1016/j.xcrp.2021.100533
L. Shen, R. Lou, Y. Park, Y. Guo, E.J. Stallknecht et al., Increasing greenhouse production by spectral-shifting and unidirectional light-extracting photonics. Nat. Food 2(6), 434–441 (2021). https://doi.org/10.1038/s43016-021-00307-8
J. Xu, R. Wan, W. Xu, Z. Ma, X. Cheng et al., Colored radiative cooling coatings using phosphor dyes. Mater. Today Nano 19, 100239 (2022). https://doi.org/10.1016/j.mtnano.2022.100239
X. Xue, M. Qiu, Y. Li, Q.M. Zhang, S. Li et al., Creating an eco-friendly building coating with smart subambient radiative cooling. Adv. Mater. 32(42), e1906751 (2020). https://doi.org/10.1002/adma.201906751
X. Wang, Q. Zhang, S. Wang, C. Jin, B. Zhu et al., Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence. Sci. Bull. 67(18), 1874–1881 (2022). https://doi.org/10.1016/j.scib.2022.08.028
J.-W. Ma, F.-R. Zeng, X.-C. Lin, Y.-Q. Wang, Y.-H. Ma et al., A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling. Science 385(6704), 68–74 (2024). https://doi.org/10.1126/science.adn5694
T. Wang, X. Wu, Q. Zhu, Y. Chen, S. Zhang et al., A scalable and durable polydimethylsiloxane-coated nanoporous polyethylene textile for daytime radiative cooling. Nanophotonics 13(5), 601–609 (2023). https://doi.org/10.1515/nanoph-2023-0596
X. Zhang, Z. Cheng, D. Yang, Y. Dong, X. Shi et al., Scalable bio-skin-inspired radiative cooling metafabric for breaking trade-off between optical properties and application requirements. ACS Photonics 10(5), 1624–1632 (2023). https://doi.org/10.1021/acsphotonics.3c00241
X. Zhang, J. Du, F. Wang, Z. Xu, X. Li et al., Hierarchical pore structure with a confined resonant mode for improving the solar energy utilizing efficiency of ultra-thin perovskite solar cells. Opt. Express 32(10), 17197–17210 (2024). https://doi.org/10.1364/OE.523065
Z. Huang, X. Ruan, Nanop embedded double-layer coating for daytime radiative cooling. Int. J. Heat Mass Transf. 104, 890–896 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.009
R.H. Galib, Y. Tian, Y. Lei, S. Dang, X. Li et al., Atmospheric-moisture-induced polyacrylate hydrogels for hybrid passive cooling. Nat. Commun. 14(1), 6707 (2023). https://doi.org/10.1038/s41467-023-42548-0
D. Hong, Y.J. Lee, O.S. Jeon, I.-S. Lee, S.H. Lee et al., Humidity-tolerant porous polymer coating for passive daytime radiative cooling. Nat. Commun. 15(1), 4457 (2024). https://doi.org/10.1038/s41467-024-48621-6
C. Zhang, J. Yang, Y. Li, J. Song, J. Guo et al., Vapor–liquid transition-based broadband light modulation for self-adaptive thermal management. Adv. Funct. Mater. 32(48), 2208144 (2022). https://doi.org/10.1002/adfm.202208144
J. Fei, D. Han, J. Ge, X. Wang, S.W. Koh et al., Switchable surface coating for bifunctional passive radiative cooling and solar heating. Adv. Funct. Mater. 32(27), 2203582 (2022). https://doi.org/10.1002/adfm.202203582
J. Mandal, M. Jia, A. Overvig, Y. Fu, E. Che et al., Porous polymers with switchable optical transmittance for optical and thermal regulation. Joule 3(12), 3088–3099 (2019). https://doi.org/10.1016/j.joule.2019.09.016
S. Shi, P. Lv, C. Valenzuela, B. Li, Y. Liu et al., Scalable bacterial cellulose-based radiative cooling materials with switchable transparency for thermal management and enhanced solar energy harvesting. Small 19(39), 2301957 (2023). https://doi.org/10.1002/smll.202301957
N. Guo, L. Yu, C. Shi, H. Yan, M. Chen, A facile and effective design for dynamic thermal management based on synchronous solar and thermal radiation regulation. Nano Lett. 24(4), 1447–1453 (2024). https://doi.org/10.1021/acs.nanolett.3c04996
N. Guo, Z. Zhao, H. Yan, M. Chen, Dynamic thermal radiation regulation for thermal management. Next Energy 1(4), 100072 (2023). https://doi.org/10.1016/j.nxener.2023.100072
X. Li, M. Liu, K. Chen, L. Li, G. Pei et al., Adaptive fabric with emissivity regulation for thermal management of humans. Nanophotonics 13(17), 3067–3075 (2024). https://doi.org/10.1515/nanoph-2023-0930
H. Zhang, J. Huang, D. Fan, Switchable radiative cooling from temperature-responsive thermal resistance modulation. ACS Appl. Energy Mater. 5(5), 6003–6010 (2022). https://doi.org/10.1021/acsaem.2c00421
M.G. Abebe, G. Rosolen, E. Khousakoun, J. Odent, J.-M. Raquez et al., Dynamic thermal-regulating textiles with metallic fibers based on a switchable transmittance. Phys. Rev. Appl. 14(4), 044030 (2020). https://doi.org/10.1103/physrevapplied.14.044030
X. Jiang, X. Li, H. Zhang, Z. Hu, S. Jia et al., Sweat-sensitive adaptive warm clothing. Sci. Adv. 11(33), eadu3472 (2025). https://doi.org/10.1126/sciadv.adu3472
X. Jiang, Z. Wang, S. Jia, G. Li, Y. Xu et al., Super stable moisture-responsive actuator via covalent crosslinking for efficient personal thermal management. Adv. Mater. (2025). https://doi.org/10.1002/adma.202507267
Y. Zhong, F. Zhang, M. Wang, C.J. Gardner, G. Kim et al., Reversible humidity sensitive clothing for personal thermoregulation. Sci. Rep. 7, 44208 (2017). https://doi.org/10.1038/srep44208
X. Li, B. Ma, J. Dai, C. Sui, D. Pande et al., Metalized polyamide heterostructure as a moisture-responsive actuator for multimodal adaptive personal heat management. Sci. Adv. 7(51), eabj7906 (2021). https://doi.org/10.1126/sciadv.abj7906
H. Zhao, X. Qi, Y. Ma, X. Sun, X. Liu et al., Wearable sunlight-triggered bimorph textile actuators. Nano Lett. 21(19), 8126–8134 (2021). https://doi.org/10.1021/acs.nanolett.1c02578
X.A. Zhang, S. Yu, B. Xu, M. Li, Z. Peng et al., Dynamic gating of infrared radiation in a textile. Science 363(6427), 619–623 (2019). https://doi.org/10.1126/science.aau1217
K. Fu, Z. Yang, Y. Pei, Y. Wang, B. Xu et al., Designing textile architectures for high energy-efficiency human body sweat- and cooling-management. Adv. Fiber Mater. 1(1), 61–70 (2019). https://doi.org/10.1007/s42765-019-0003-y
Y. Du, Y. Chen, X. Yang, J. Liu, Y. Liang et al., Hybrid passive cooling: towards the next breakthrough of radiative sky cooling technology. J. Mater. Chem. A 12(33), 21490–21514 (2024). https://doi.org/10.1039/d4ta03122a
R. Zhang, N. Sun, Z. Zhao, S. Wang, M. Zhang et al., Bionic dual-scale structured films for efficient passive radiative cooling accompanied by robust durability. Nanoscale Horiz. 9(8), 1354–1363 (2024). https://doi.org/10.1039/d4nh00136b
Y. Jiao, Z. Li, C. Li, C. Cao, A. Huang et al., Flexible tri-state-regulated thermochromic smart window based on WxV1-xO2/paraffin/PVA composite film. Chem. Eng. J. 497, 154578 (2024). https://doi.org/10.1016/j.cej.2024.154578
H. Liang, X. Zhang, F. Wang, C. Li, W. Yuan et al., Bio-inspired micropatterned thermochromic hydrogel for concurrent smart solar transmission and rapid visible-light stealth at all-working temperatures. Light Sci. Appl. 13(1), 202 (2024). https://doi.org/10.1038/s41377-024-01525-y
C. Lin, J. Hur, C.Y.H. Chao, G. Liu, S. Yao et al., All-weather thermochromic windows for synchronous solar and thermal radiation regulation. Sci. Adv. 8(17), eabn7359 (2022). https://doi.org/10.1126/sciadv.abn7359
Y. Ding, C. Zhong, F. Yang, Z. Kang, B. Li et al., Low energy consumption thermochromic smart windows with flexibly regulated photothermal gain and radiation cooling. Appl. Energy 348, 121598 (2023). https://doi.org/10.1016/j.apenergy.2023.121598
Y. Ke, Y. Li, L. Wu, S. Wang, R. Yang et al., On-demand solar and thermal radiation management based on switchable interwoven surfaces. ACS Energy Lett. 7(5), 1758–1763 (2022). https://doi.org/10.1021/acsenergylett.2c00419
S. Wang, Y. Dong, Y. Li, K. Ryu, Z. Dong et al., A solar/radiative cooling dual-regulation smart window based on shape-morphing kirigami structures. Mater. Horiz. 10(10), 4243–4250 (2023). https://doi.org/10.1039/d3mh00671a
W. Wang, Z. Zhao, Q. Zou, B. Hong, W. Zhang et al., Self-adaptive radiative cooling and solar heating based on a compound metasurface. J. Mater. Chem. C 8(9), 3192–3199 (2020). https://doi.org/10.1039/c9tc05634c
Q. Zhang, Y. Lv, Y. Wang, S. Yu, C. Li et al., Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nat. Commun. 13(1), 4874 (2022). https://doi.org/10.1038/s41467-022-32528-1
Q. Zhang, Y. Wang, Y. Lv, S. Yu, R. Ma, Bioinspired zero-energy thermal-management device based on visible and infrared thermochromism for all-season energy saving. Proc. Natl. Acad. Sci. U. S. A. 119(38), e2207353119 (2022). https://doi.org/10.1073/pnas.2207353119
Z. Shao, A. Huang, C. Cao, X. Ji, W. Hu et al., Tri-band electrochromic smart window for energy savings in buildings. Nat. Sustain. 7(6), 796–803 (2024). https://doi.org/10.1038/s41893-024-01349-z
Z. Zhang, M. Yu, C. Ma, L. He, X. He et al., A Janus smart window for temperature-adaptive radiative cooling and adjustable solar transmittance. Nano-Micro Lett. 17(1), 233 (2025). https://doi.org/10.1007/s40820-025-01740-1
Y. Jiang, Y. Wang, D. Kong, Z. Chen, Z. Yang et al., A highly visible-transparent thermochromic smart window with broadband infrared modulation for all-season energy savings. Natl. Sci. Rev. 12(2), nwae408 (2024). https://doi.org/10.1093/nsr/nwae408
Y. Wang, S. Liu, X. Zhang, Y. Liu, T. Zhu et al., Thermal-rectified gradient porous nanocomposite film enabling multiscenario adaptive radiative cooling. ACS Nano 19(20), 19328–19339 (2025). https://doi.org/10.1021/acsnano.5c02609
C. Xiao, M. Liu, K. Yao, Y. Zhang, M. Zhang et al., Ultrabroadband and band-selective thermal meta-emitters by machine learning. Nature 643(8070), 80–88 (2025). https://doi.org/10.1038/s41586-025-09102-y
X. Zhao, T. Li, H. Xie, H. Liu, L. Wang et al., A solution-processed radiative cooling glass. Science 382(6671), 684–691 (2023). https://doi.org/10.1126/science.adi2224
C. Lin, K. Li, M. Li, B. Dopphoopha, J. Zheng et al., Pushing radiative cooling technology to real applications. Adv. Mater. 37(23), 2409738 (2025). https://doi.org/10.1002/adma.202409738
S. Jia, M. Huang, X. Jiang, C. Shen, S. Chen et al., Tandem daytime radiative cooling and solar power generation. Cell Rep. Phys. Sci. 6(1), 102343 (2025). https://doi.org/10.1016/j.xcrp.2024.102343
S. Chen, K. Lin, S. Liu, C.T. Kwok, L. Liang et al., Bioinspired metafilms for all-weather energy harvesting: adaptive thermal regulation and raindrop electricity generation. Sci. Adv. 11(21), eadu2895 (2025). https://doi.org/10.1126/sciadv.adu2895
K. Yang, X. Wu, L. Zhou, P. Wu, I. Gereige et al., Towards practical applications of radiative cooling. Nat. Rev. Clean Technol. 1(4), 235–254 (2025). https://doi.org/10.1038/s44359-025-00041-5
J. Song, Q. Shen, H. Shao, X. Deng, Anti-environmental aging passive daytime radiative cooling. Adv. Sci. 11(10), 2305664 (2024). https://doi.org/10.1002/advs.202305664