Organic Phototransistor Photonic Synapses for Artificial Vision
Corresponding Author: Lizhen Huang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 203
Abstract
The von Neumann architecture faces significant limitations, including low transmission efficiency and high energy consumption, when handling large-scale data and unstructured problems. Benefiting from the inherent merits of optical signals including high bandwidth, near-zero Joule heating, fast transmission speed, and immunity to electromagnetic interference, photonics provides a powerful pathway for high-speed neuromorphic computing. Together with the mechanical flexibility and largearea manufacturability of organic semiconductors, organic phototransistor (OPT)-based photonic synapses have therefore attracted extensive attention in recent years. This review provides a comprehensive overview of recent advances in OPT-based photonic synapses, covering operational principles, active materials, advances in bidirectional photoresponse process, as well as cutting-edge applications. Finally, the current challenges and opportunities in this field are highlighted. Distinct from previous reviews, this review emphasizes an in-depth exploration of bidirectional photoresponse mechanisms, a systematic dissection of material–structure–function correlations enabling integrated sensing-memory technology, and emerging.
Highlights:
1 The latest progress in neuromorphic artificial synapses based on organic phototransistors is reviewed from three aspects: functional semiconductor materials, operating behaviors, and frontier applications/advancements.
2 The negative photoconductance behavior of novel phototransistors is discussed, along with their fascinating information-erasing capabilities demonstrated in organic photonic synapses.
3 Frontier applications and advancements in neuromorphic vision driven by organic photonic synapses, such as human visual adaptation, polarization-sensitive detection, high-dimensional reservoir computing, and multimodal neuromorphic encryption, are demonstrated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. von Neumann, The principles of large-scale computing machines. IEEE Ann. Hist. Comput. 10(4), 243–256 (1988). https://doi.org/10.1109/MAHC.1988.10045
- P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, A.S. Cassidy, J. Sawada et al., Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014). https://doi.org/10.1126/science.1254642
- K. Sun, J. Chen, X. Yan, The future of memristors: materials engineering and neural networks. Adv. Funct. Mater. 31(8), 2006773 (2021). https://doi.org/10.1002/adfm.202006773
- Y. Xiao, B. Jiang, Z. Zhang, S. Ke, Y. Jin et al., A review of memristor: material and structure design, device performance, applications and prospects. Sci. Technol. Adv. Mater. 24(1), 2162323 (2023). https://doi.org/10.1080/14686996.2022.2162323
- D. Attwell, S.B. Laughlin, An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21(10), 1133–1145 (2001). https://doi.org/10.1097/00004647-200110000-00001
- D.A. Drachman, Do we have brain to spare? Neurology 64(12), 2004–2005 (2005). https://doi.org/10.1212/01.wnl.0000166914.38327.bb
- G. Indiveri, S.-C. Liu, Memory and information processing in neuromorphic systems. Proc. IEEE 103(8), 1379–1397 (2015). https://doi.org/10.1109/JPROC.2015.2444094
- M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev et al., Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61–64 (2015). https://doi.org/10.1038/nature14441
- Y. Li, Z. Wang, R. Midya, Q. Xia, J.J. Yang, Review of memristor devices in neuromorphic computing: materials sciences and device challenges. J. Phys. D Appl. Phys. 51(50), 503002 (2018). https://doi.org/10.1088/1361-6463/aade3f
- S.K. Esser, P.A. Merolla, J.V. Arthur, A.S. Cassidy, R. Appuswamy et al., Convolutional networks for fast, energy-efficient neuromorphic computing. Proc. Natl. Acad. Sci. U. S. A. 113(41), 11441–11446 (2016). https://doi.org/10.1073/pnas.1604850113
- Z. Cheng, C. Ríos, W.H.P. Pernice, C.D. Wright, H. Bhaskaran, On-chip photonic synapse. Sci. Adv. 3(9), e1700160 (2017). https://doi.org/10.1126/sciadv.1700160
- P. Gkoupidenis, D.A. Koutsouras, G.G. Malliaras, Neuromorphic device architectures with global connectivity through electrolyte gating. Nat. Commun. 8, 15448 (2017). https://doi.org/10.1038/ncomms15448
- G. Wang, R. Wang, W. Kong, J. Zhang, Simulation of retinal ganglion cell response using fast independent component analysis. Cogn. Neurodyn. 12(6), 615–624 (2018). https://doi.org/10.1007/s11571-018-9490-4
- C.S. Yang, D.S. Shang, N. Liu, G. Shi, X. Shen et al., A synaptic transistor based on quasi-2D molybdenum oxide. Adv. Mater. 29(27), 1700906 (2017). https://doi.org/10.1002/adma.201700906
- Q. Zhang, T. Jin, X. Ye, D. Geng, W. Chen et al., Organic field effect transistor-based photonic synapses: materials, devices, and applications. Adv. Funct. Mater. 31(49), 2106151 (2021). https://doi.org/10.1002/adfm.202106151
- S. Dai, Y. Zhao, Y. Wang, J. Zhang, L. Fang et al., Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 29(42), 1903700 (2019). https://doi.org/10.1002/adfm.201903700
- S. Lan, Y. Ke, H. Chen, Photonic synaptic transistor based on P-type organic semiconductor blending with N-type organic semiconductor. IEEE Electron Device Lett. 42(8), 1180–1183 (2021). https://doi.org/10.1109/LED.2021.3090906
- G. Lee, Y.E. Kim, H. Kim, H.-K. Lee, J.Y. Park et al., Organic synaptic transistors and printed circuit board defect inspection with photonic stimulation: a novel approach using oblique angle deposition. Small 21(25), 2501997 (2025). https://doi.org/10.1002/smll.202501997
- C. Xiang, D. Xue, H. Liu, Q. Wang, X. Jiang et al., Organic photonic synapses with UV–vis–NIR broadband perception based on organic electrochemical transistors. ACS Appl. Mater. Interfaces 17(24), 35822–35832 (2025). https://doi.org/10.1021/acsami.5c07976
- D. Dutta, S. Mukherjee, M. Uzhansky, E. Koren, Cross-field optoelectronic modulation via inter-coupled ferroelectricity in 2D In2Se3. NPJ 2D Mater. Appl. 5, 81 (2021). https://doi.org/10.1038/s41699-021-00261-w
- L. Fang, S. Dai, Y. Zhao, D. Liu, J. Huang, Light-stimulated artificial synapses based on 2D organic field-effect transistors. Adv. Electron. Mater. 6(1), 1901217 (2020). https://doi.org/10.1002/aelm.201901217
- W. Wang, S. Gao, Y. Li, W. Yue, H. Kan et al., Artificial optoelectronic synapses based on TiNxO2–x/MoS2 heterojunction for neuromorphic computing and visual system. Adv. Funct. Mater. 31(34), 2101201 (2021). https://doi.org/10.1002/adfm.202101201
- B. Pradhan, S. Das, J. Li, F. Chowdhury, J. Cherusseri et al., Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. Sci. Adv. 6(7), eaay5225 (2020). https://doi.org/10.1126/sciadv.aay5225
- B. Gholipour, P. Bastock, C. Craig, K. Khan, D. Hewak et al., Amorphous metal-sulphide microfibers enable photonic synapses for brain-like computing. Adv. Opt. Mater. 3(5), 635–641 (2015). https://doi.org/10.1002/adom.201400472
- J.-Y. Wu, Y.T. Chun, S. Li, T. Zhang, J. Wang et al., Broadband MoS2 field-effect phototransistors: ultrasensitive visible-light photoresponse and negative infrared photoresponse. Adv. Mater. 30(7), 1705880 (2018). https://doi.org/10.1002/adma.201705880
- Q. Wu, J. Wang, J. Cao, C. Lu, G. Yang et al., Photoelectric plasticity in oxide thin film transistors with tunable synaptic functions. Adv. Electron. Mater. 4(12), 1800556 (2018). https://doi.org/10.1002/aelm.201800556
- R. Karimi Azari, L.P. Camargo, J.R.H. Garza, L. Collins, W. Yu Tsai et al., Emulation of synaptic plasticity in WO3-based ion-gated transistors. Adv. Electron. Mater. 11(8), 2400807 (2025). https://doi.org/10.1002/aelm.202400807
- Y. Lee, T.-W. Lee, Organic synapses for neuromorphic electronics: from brain-inspired computing to sensorimotor nervetronics. Acc. Chem. Res. 52(4), 964–974 (2019). https://doi.org/10.1021/acs.accounts.8b00553
- H. Dong, H. Zhu, Q. Meng, X. Gong, W. Hu, Organic photoresponse materials and devices. Chem. Soc. Rev. 41(5), 1754–1808 (2012). https://doi.org/10.1039/c1cs15205j
- H. Chen, Y. Cai, Y. Han, H. Huang, Towards artificial visual sensory system: organic optoelectronic synaptic materials and devices. Angew. Chem. Int. Ed. 63(1), e202313634 (2024). https://doi.org/10.1002/anie.202313634
- J. Stollberg, Synapse elimination, the size principle, and Hebbian synapses. J. Neurobiol. 26(2), 273–282 (1995). https://doi.org/10.1002/neu.480260211
- L. Wang, R.S.T. Lee, Excitatory and inhibitory neuronal synapse unit: a novel recurrent cell for time series prediction. Neurocomputing 594, 127858 (2024). https://doi.org/10.1016/j.neucom.2024.127858
- Y. Bai, T. Suzuki, Activity-dependent synaptic plasticity in Drosophila melanogaster. Front. Physiol. 11, 161 (2020). https://doi.org/10.3389/fphys.2020.00161
- M. DiNuzzo, F. Giove, Activity-dependent energy budget for neocortical signaling: effect of short-term synaptic plasticity on the energy expended by spiking and synaptic activity. J. Neurosci. Res. 90(11), 2094–2102 (2012). https://doi.org/10.1002/jnr.23098
- F. Gobbo, A. Cattaneo, Neuronal activity at synapse resolution: reporters and effectors for synaptic neuroscience. Front. Mol. Neurosci. 13, 572312 (2020). https://doi.org/10.3389/fnmol.2020.572312
- C. Wu, T. Ruan, Y. Yuan, C. Xu, L. Du et al., Alterations in synaptic connectivity and synaptic transmission in Alzheimer’s disease with high physical activity. J. Alzheimers Dis. 99(3), 1005–1022 (2024). https://doi.org/10.3233/JAD-240123
- Y. Ozaki, A. Soya, J. Nakamura, T. Matsumoto, Y. Ueta, Potentiation by angiotensin II of spontaneous excitatory postsynaptic currents in rat supraoptic magnocellular neurones. J. Neuroendocrinol. 16(11), 871–879 (2004). https://doi.org/10.1111/j.1365-2826.2004.01244.x
- J.-J. Zhang, X.-D. Liu, L.-C. Yu, Influences of morphine on the spontaneous and evoked excitatory postsynaptic currents in lateral amygdala of rats. Physiol. Res. 65(1), 165–169 (2016). https://doi.org/10.33549/physiolres.933027
- A. Dvorzhak, O. Myakhar, A. Kamkin, K. Kirmse, S. Kirischuk, Postsynaptically different inhibitory postsynaptic currents in Cajal-Retzius cells in the developing neocortex. NeuroReport 19(12), 1213–1216 (2008). https://doi.org/10.1097/WNR.0b013e328308daa0
- B. Szabo, L. Dörner, C. Pfreundtner, W. Nörenberg, K. Starke, Inhibition of GABAergic inhibitory postsynaptic currents by cannabinoids in rat corpus striatum. Neuroscience 85(2), 395–403 (1998). https://doi.org/10.1016/S0306-4522(97)00597-6
- K.C. Bittner, A.D. Milstein, C. Grienberger, S. Romani, J.C. Magee, Behavioral time scale synaptic plasticity underlies CA1 place fields. Science 357(6355), 1033–1036 (2017). https://doi.org/10.1126/science.aan3846
- J.C. Magee, C. Grienberger, Synaptic plasticity forms and functions. Annu. Rev. Neurosci. 43, 95–117 (2020). https://doi.org/10.1146/annurev-neuro-090919-022842
- S.L. Jackman, W.G. Regehr, The mechanisms and functions of synaptic facilitation. Neuron 94(3), 447–464 (2017). https://doi.org/10.1016/j.neuron.2017.02.047
- L.Q. Zhu, C.J. Wan, L.Q. Guo, Y. Shi, Q. Wan, Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5, 3158 (2014). https://doi.org/10.1038/ncomms4158
- D.M. Bannerman, R. Sprengel, D.J. Sanderson, S.B. McHugh, J.N.P. Rawlins et al., Hippocampal synaptic plasticity, spatial memory and anxiety. Nat. Rev. Neurosci. 15(3), 181–192 (2014). https://doi.org/10.1038/nrn3677
- S. Grover, W. Wen, V. Viswanathan, C.T. Gill, R.M.G. Reinhart, Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nat. Neurosci. 25(9), 1237–1246 (2022). https://doi.org/10.1038/s41593-022-01132-3
- M.-K. Kim, J.-S. Lee, Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano 12(2), 1680–1687 (2018). https://doi.org/10.1021/acsnano.7b08331
- S. Gao, G. Liu, H. Yang, C. Hu, Q. Chen et al., An oxide Schottky junction artificial optoelectronic synapse. ACS Nano 13(2), 2634–2642 (2019). https://doi.org/10.1021/acsnano.9b00340
- C. Lu, J. Meng, J. Song, T. Wang, H. Zhu et al., Self-rectifying all-optical modulated optoelectronic multistates memristor crossbar array for neuromorphic computing. Nano Lett. 24(5), 1667–1672 (2024). https://doi.org/10.1021/acs.nanolett.3c04358
- N. Li, C. He, Q. Wang, J. Tang, Q. Zhang et al., Gate-tunable large-scale flexible monolayer MoS2 devices for photodetectors and optoelectronic synapses. Nano Res. 15(6), 5418–5424 (2022). https://doi.org/10.1007/s12274-022-4122-z
- J. Zhu, Y. Yang, R. Jia, Z. Liang, W. Zhu et al., Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 30(21), 1800195 (2018). https://doi.org/10.1002/adma.201800195
- R.S. Zucker, W.G. Regehr, Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002). https://doi.org/10.1146/annurev.physiol.64.092501.114547
- C. Tian, J. Ma, C. Zhang, P. Zhan, A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network. Energies 11(12), 3493 (2018). https://doi.org/10.3390/en11123493
- H. Zhou, Y. Zhang, L. Yang, Q. Liu, K. Yan et al., Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism. IEEE Access 7, 78063–78074 (2019). https://doi.org/10.21227/9hje-dz22
- H.-K. He, R. Yang, W. Zhou, H.-M. Huang, J. Xiong et al., Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2. Small 14(15), 1800079 (2018). https://doi.org/10.1002/smll.201800079
- K. Pilarczyk, A. Podborska, M. Lis, M. Kawa, D. Migdal et al., Synaptic behavior in an optoelectronic device based on semiconductor-nanotube hybrid. Adv. Electron. Mater. 2(6), 1500471 (2016). https://doi.org/10.1002/aelm.201500471
- C.-S. Yang, D.-S. Shang, Y.-S. Chai, L.-Q. Yan, B.-G. Shen et al., Electrochemical-reaction-induced synaptic plasticity in MoOx-based solid state electrochemical cells. Phys. Chem. Chem. Phys. 19(6), 4190–4198 (2017). https://doi.org/10.1039/c6cp06004h
- S.W. Cho, S.M. Kwon, M. Lee, J.-W. Jo, J.S. Heo et al., Multi-spectral gate-triggered heterogeneous photonic neuro-transistors for power-efficient brain-inspired neuromorphic computing. Nano Energy 66, 104097 (2019). https://doi.org/10.1016/j.nanoen.2019.104097
- Y.B. Guo, L.Q. Zhu, W.T. Gao, Z.Y. Ren, H. Xiao et al., Low-voltage protonic/photonic synergic coupled oxide phototransistor. Org. Electron. 71, 31–35 (2019). https://doi.org/10.1016/j.orgel.2019.04.038
- M.L. Schneider, C.A. Donnelly, S.E. Russek, B. Baek, M.R. Pufall et al., Ultralow power artificial synapses using nanotextured magnetic Josephson junctions. Sci. Adv. 4(1), e1701329 (2018). https://doi.org/10.1126/sciadv.1701329
- G. Indiveri, E. Chicca, R. Douglas, A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 17(1), 211–221 (2006). https://doi.org/10.1109/TNN.2005.860850
- Y. van de Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria et al., A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16(4), 414–418 (2017). https://doi.org/10.1038/nmat4856
- F. Teng, K. Hu, W. Ouyang, X. Fang, Photoelectric detectors based on inorganic p-type semiconductor materials. Adv. Mater. 30(35), e1706262 (2018). https://doi.org/10.1002/adma.201706262
- W. Ouyang, F. Teng, J.-H. He, X. Fang, Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering. Adv. Funct. Mater. 29(9), 1807672 (2019). https://doi.org/10.1002/adfm.201807672
- S. Li, L. Zhan, C. Sun, H. Zhu, G. Zhou et al., Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets. J. Am. Chem. Soc. 141(7), 3073–3082 (2019). https://doi.org/10.1021/jacs.8b12126
- C. Sun, S. Qin, R. Wang, S. Chen, F. Pan et al., High efficiency polymer solar cells with efficient hole transfer at zero highest occupied molecular orbital offset between methylated polymer donor and brominated acceptor. J. Am. Chem. Soc. 142(3), 1465–1474 (2020). https://doi.org/10.1021/jacs.9b09939
- Y. Yuan, G. Giri, A.L. Ayzner, A.P. Zoombelt, S.C.B. Mannsfeld et al., Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 5, 3005 (2014). https://doi.org/10.1038/ncomms4005
- P.E. Shaw, A. Ruseckas, I.D.W. Samuel, Exciton diffusion measurements in poly(3-hexylthiophene). Adv. Mater. 20(18), 3516–3520 (2008). https://doi.org/10.1002/adma.200800982
- K.-J. Baeg, M. Binda, D. Natali, M. Caironi, Y.-Y. Noh, Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25(31), 4267–4295 (2013). https://doi.org/10.1002/adma.201204979
- M.A. Brady, G.M. Su, M.L. Chabinyc, Recent progress in the morphology of bulk heterojunction photovoltaics. Soft Matter 7(23), 11065 (2011). https://doi.org/10.1039/c1sm06147j
- M.A. Ruderer, P. Müller-Buschbaum, Morphology of polymer-based bulk heterojunction films for organic photovoltaics. Soft Matter 7(12), 5482 (2011). https://doi.org/10.1039/c0sm01502d
- T. Sun, B. Feng, J. Huo, Y. Xiao, W. Wang et al., Artificial intelligence meets flexible sensors: emerging smart flexible sensing systems driven by machine learning and artificial synapses. Nano-Micro Lett. 16(1), 14 (2023). https://doi.org/10.1007/s40820-023-01235-x
- X. Bai, X. Zhang, Artificial intelligence-powered materials science. Nano-Micro Lett. 17(1), 135 (2025). https://doi.org/10.1007/s40820-024-01634-8
- K. He, C. Wang, Y. He, J. Su, X. Chen, Artificial neuron devices. Chem. Rev. 123(23), 13796–13865 (2023). https://doi.org/10.1021/acs.chemrev.3c00527
- S. Wang, X. Shi, J. Gong, W. Liu, C. Jin et al., Artificial retina based on organic heterojunction transistors for mobile recognition. Nano Lett. 24(10), 3204–3212 (2024). https://doi.org/10.1021/acs.nanolett.4c00087
- B. Mu, L. Guo, J. Liao, P. Xie, G. Ding et al., Near-infrared artificial synapses for artificial sensory neuron system. Small 17(38), e2103837 (2021). https://doi.org/10.1002/smll.202103837
- S. Kang, S. Sohn, H. Kim, H.J. Yun, B.C. Jang et al., Imitating synapse behavior: exploiting off-current in TPBi-doped small molecule phototransistors for broadband wavelength recognition. ACS Appl. Mater. Interfaces 16(9), 11758–11766 (2024). https://doi.org/10.1021/acsami.3c17855
- J. Anderson, B. Anderson, The myth of persistence of vision revisited. J. Film Video 45(1), 3–12 (1993)
- Y. Gu, Z. Guo, W. Yuan, M. Kong, Y. Liu et al., High-sensitivity imaging of time-domain near-infrared light transducer. Nat. Photonics 13(8), 525–531 (2019). https://doi.org/10.1038/s41566-019-0437-z
- L. Jiang, T. Chen, E. Song, Y. Fan, D. Min et al., High-performance near-infrared fluorescence probe for fast and specific visualization of harmful sulfite in food, living cells, and zebrafish. Chem. Eng. J. 427, 131563 (2022). https://doi.org/10.1016/j.cej.2021.131563
- Y. Yang, Y. Xie, F. Zhang, Second near-infrared window fluorescence nanoprobes for deep-tissue in vivo multiplexed bioimaging. Adv. Drug Deliv. Rev. 193, 114697 (2023). https://doi.org/10.1016/j.addr.2023.114697
- X. Zhao, C. Li, H. Qi, J. Huang, Y. Xu et al., Integrated near-infrared fiber-optic photoacoustic sensing demodulator for ultra-high sensitivity gas detection. Photoacoustics 33, 100560 (2023). https://doi.org/10.1016/j.pacs.2023.100560
- Z. Lv, Y. Wang, J. Chen, J. Wang, Y. Zhou et al., Semiconductor quantum dots for memories and neuromorphic computing systems. Chem. Rev. 120(9), 3941–4006 (2020). https://doi.org/10.1021/acs.chemrev.9b00730
- N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews et al., 25th anniversary : semiconductor nanowires: synthesis, characterization, and applications. Adv. Mater. 26(14), 2137–2184 (2014). https://doi.org/10.1002/adma.201305929
- H. Zhang, Ö. Gül, S. Conesa-Boj, M.P. Nowak, M. Wimmer et al., Ballistic superconductivity in semiconductor nanowires. Nat. Commun. 8, 16025 (2017). https://doi.org/10.1038/ncomms16025
- Y. Tong, B.J. Bohn, E. Bladt, K. Wang, P. Müller-Buschbaum et al., From precursor powders to CsPbX3 perovskite nanowires: one-pot synthesis, growth mechanism, and oriented self-assembly. Angew. Chem. Int. Ed. 56(44), 13887–13892 (2017). https://doi.org/10.1002/anie.201707224
- G. Zhou, L. Xu, G. Hu, L. Mai, Y. Cui, Nanowires for electrochemical energy storage. Chem. Rev. 119(20), 11042–11109 (2019). https://doi.org/10.1021/acs.chemrev.9b00326
- Y.-J. Kim, C.-H. Cho, K. Paek, M. Jo, M.-K. Park et al., Precise control of quantum dot location within the P3HT-b-P2VP/QD nanowires formed by crystallization-driven 1D growth of hybrid dimeric seeds. J. Am. Chem. Soc. 136(7), 2767–2774 (2014). https://doi.org/10.1021/ja410165f
- S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith et al., Inorganic–organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano Lett. 11(9), 3998–4002 (2011). https://doi.org/10.1021/nl202435t
- Z. Zhang, S. Wang, Z. Wang, L. Ding, T. Pei et al., Almost perfectly symmetric SWCNT-based CMOS devices and scaling. ACS Nano 3(11), 3781–3787 (2009). https://doi.org/10.1021/nn901079p
- Q. Cao, H.-S. Kim, N. Pimparkar, J.P. Kulkarni, C. Wang et al., Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454(7203), 495–500 (2008). https://doi.org/10.1038/nature07110
- S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393(6680), 49–52 (1998). https://doi.org/10.1038/29954
- Z. Zhang, S. Wang, L. Ding, X. Liang, T. Pei et al., Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Lett. 8(11), 3696–3701 (2008). https://doi.org/10.1021/nl8018802
- X. Li, S. Chen, P.-F. Liu, Y. Zhang, Y. Chen et al., Evidence for ferroelectricity of all-inorganic perovskite CsPbBr3 quantum dots. J. Am. Chem. Soc. 142(7), 3316–3320 (2020). https://doi.org/10.1021/jacs.9b12254
- Y. Chen, Y. Chu, X. Wu, W. Ou-Yang, J. Huang, High-performance inorganic perovskite quantum dot-organic semiconductor hybrid phototransistors. Adv. Mater. 29(44), 1704062 (2017). https://doi.org/10.1002/adma.201704062
- K. Wang, S. Dai, Y. Zhao, Y. Wang, C. Liu et al., Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small 15(11), 1900010 (2019). https://doi.org/10.1002/smll.201900010
- D. Hao, J. Zhang, S. Dai, J. Zhang, J. Huang, Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl. Mater. Interfaces 12(35), 39487–39495 (2020). https://doi.org/10.1021/acsami.0c10851
- D. Hao, J. Zou, J. Huang, Recent developments in flexible photodetectors based on metal halide perovskite. InfoMat 2(1), 139–169 (2020). https://doi.org/10.1002/inf2.12053
- Q. Shi, D. Liu, D. Hao, J. Zhang, L. Tian et al., Printable, ultralow-power ternary synaptic transistors for multifunctional information processing system. Nano Energy 87, 106197 (2021). https://doi.org/10.1016/j.nanoen.2021.106197
- J. Kuang, K. Liu, M. Liu, M. Shao, M. Zhu et al., Interface defects tuning in polymer-perovskite phototransistors for visual synapse and adaptation functions. Adv. Funct. Mater. 33(5), 2209502 (2023). https://doi.org/10.1002/adfm.202209502
- Z. Zhao, Z. Hu, M. Deng, E. Hong, P. Wang et al., Bias-switchable photodetection and photosynapse dual-functional devices based on 2D perovskite/organic heterojunction for imaging-to-recognition conversion. Adv. Mater. 37(5), 2416033 (2025). https://doi.org/10.1002/adma.202416033
- S. Feng, J. Li, L. Feng, Z. Liu, J. Wang et al., Dual-mode conversion of photodetector and neuromorphic vision sensor via bias voltage regulation on a single device. Adv. Mater. 35(49), e2308090 (2023). https://doi.org/10.1002/adma.202308090
- C. Fu, J. Yang, J. Wang, S. Luo, L. Luo et al., Dual-mode semiconductor device enabling optoelectronic detection and neuromorphic processing with extended spectral responsivity. Adv. Mater. 36(49), e2409406 (2024). https://doi.org/10.1002/adma.202409406
- E. Ercan, Y.-C. Lin, W.-C. Yang, W.-C. Chen, Self-assembled nanostructures of quantum dot/conjugated polymer hybrids for photonic synaptic transistors with ultralow energy consumption and zero-gate bias. Adv. Funct. Mater. 32(6), 2107925 (2022). https://doi.org/10.1002/adfm.202107925
- X. Luo, W. Deng, F. Sheng, X. Ren, Z. Zhao et al., Bionic scotopic adaptation transistors for nighttime low illumination imaging. ACS Nano 18(21), 13726–13737 (2024). https://doi.org/10.1021/acsnano.4c01663
- Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou et al., Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30(38), 1802883 (2018). https://doi.org/10.1002/adma.201802883
- D. Uddin, B.G. Jeffrey, O. Flynn, W. Wong, H. Wiley et al., Repeatability of scotopic sensitivity and dark adaptation using a medmont dark-adapted chromatic perimeter in age-related macular degeneration. Transl. Vis. Sci. Technol. 9(7), 31 (2020). https://doi.org/10.1167/tvst.9.7.31
- G.R. Jackson, C. Owsley, E. Price Cordle, C.D. Finley, Aging and scotopic sensitivity. Vis. Res. 38(22), 3655–3662 (1998). https://doi.org/10.1016/S0042-6989(98)00044-3
- S. Hong, S.H. Choi, J. Park, H. Yoo, J.Y. Oh et al., Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1–xIx)3 perovskite and MoS2 hybrid structure. ACS Nano 14(8), 9796–9806 (2020). https://doi.org/10.1021/acsnano.0c01689
- C. Jin, W. Liu, Y. Xu, Y. Huang, Y. Nie et al., Artificial vision adaption mimicked by an optoelectrical In2O3 transistor array. Nano Lett. 22(8), 3372–3379 (2022). https://doi.org/10.1021/acs.nanolett.2c00599
- X. Sha, Y. Cao, L. Meng, Z. Yao, Y. Gao et al., Near-infrared photonic artificial synapses based on organic heterojunction phototransistors. Appl. Phys. Lett. 120(15), 151103 (2022). https://doi.org/10.1063/5.0083925
- N. Sui, Y. Ji, M. Li, F. Zheng, S. Shao et al., Photoprogrammed multifunctional optoelectronic synaptic transistor arrays based on photosensitive polymer-sorted semiconducting single-walled carbon nanotubes for image recognition. Adv. Sci. 11(29), 2401794 (2024). https://doi.org/10.1002/advs.202401794
- Y.-B. Leng, Z. Lv, S. Huang, P. Xie, H.-X. Li et al., A near-infrared retinomorphic device with high dimensionality reservoir expression. Adv. Mater. 36(48), 2411225 (2024). https://doi.org/10.1002/adma.202411225
- X. Luo, C. Chen, Z. He, M. Wang, K. Pan et al., A bionic self-driven retinomorphic eye with ionogel photosynaptic retina. Nat. Commun. 15(1), 3086 (2024). https://doi.org/10.1038/s41467-024-47374-6
- C. Gallicchio, A. Micheli, Echo state property of deep reservoir computing networks. Cogn. Comput. 9(3), 337–350 (2017). https://doi.org/10.1007/s12559-017-9461-9
- L. Chen, X. Wang, C. Yang, Z. Chen, J. Zhang et al., Full-analog reservoir computing circuit based on memristor with a hybrid wide-deep architecture. IEEE Trans. Circuits Syst. I Regul. Pap. 71(2), 501–514 (2024). https://doi.org/10.1109/TCSI.2023.3334267
- L. Pedrelli, X. Hinaut, Hierarchical-task reservoir for online semantic analysis from continuous speech. IEEE Trans. Neural Netw. Learn. Syst. 33(6), 2654–2663 (2022). https://doi.org/10.1109/TNNLS.2021.3095140
- E.A. Antonelo, B. Schrauwen, On learning navigation behaviors for small mobile robots with reservoir computing architectures. IEEE Trans. Neural Netw. Learn. Syst. 26(4), 763–780 (2015). https://doi.org/10.1109/TNNLS.2014.2323247
- C. Gao, D. Liu, C. Xu, W. Xie, X. Zhang et al., Toward grouped-reservoir computing: organic neuromorphic vertical transistor with distributed reservoir states for efficient recognition and prediction. Nat. Commun. 15(1), 740 (2024). https://doi.org/10.1038/s41467-024-44942-8
- N. Kumar, M. Patel, T.T. Nguyen, P. Bhatnagar, J. Kim, All-oxide-based and metallic electrode-free artificial synapses for transparent neuromorphic computing. Mater. Today Chem. 23, 100681 (2022). https://doi.org/10.1016/j.mtchem.2021.100681
- C. Jiang, J. Liu, Y. Ni, S. Qu, L. Liu et al., Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement. Nat. Commun. 14(1), 1344 (2023). https://doi.org/10.1038/s41467-023-36935-w
- K. Yang, J.J. Yang, R. Huang, Y. Yang, Nonlinearity in memristors for neuromorphic dynamic systems. Small Sci. 2(1), 2100049 (2021). https://doi.org/10.1002/smsc.202100049
- J. Chen, Z. Zhou, B.J. Kim, Y. Zhou, Z. Wang et al., Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat. Nanotechnol. 18(8), 882–888 (2023). https://doi.org/10.1038/s41565-023-01379-2
- S. Liu, J. Zeng, Z. Wu, H. Hu, A. Xu et al., An ultrasmall organic synapse for neuromorphic computing. Nat. Commun. 14(1), 7655 (2023). https://doi.org/10.1038/s41467-023-43542-2
- T. Yan, Z. Li, F. Cao, J. Chen, L. Wu et al., An all-organic self-powered photodetector with ultraflexible dual-polarity output for biosignal detection. Adv. Mater. 34(30), 2201303 (2022). https://doi.org/10.1002/adma.202201303
- J. Lao, M. Yan, B. Tian, C. Jiang, C. Luo et al., Ultralow-power machine vision with self-powered sensor reservoir. Adv. Sci. 9(15), 2106092 (2022). https://doi.org/10.1002/advs.202106092
- L. Gu, S. Poddar, Y. Lin, Z. Long, D. Zhang et al., A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581(7808), 278–282 (2020). https://doi.org/10.1038/s41586-020-2285-x
- T.Q. Trung, A. Bag, L.T.N. Huyen, M. Meeseepong, N.-E. Lee, Bio-inspired artificial retinas based on a fibrous inorganic–organic heterostructure for neuromorphic vision. Adv. Funct. Mater. 34(11), 2309378 (2024). https://doi.org/10.1002/adfm.202309378
- C. Gao, D. Liu, C. Xu, J. Bai, E. Li et al., Feedforward photoadaptive organic neuromorphic transistor with mixed-weight plasticity for augmenting perception. Adv. Funct. Mater. 34(18), 2313217 (2024). https://doi.org/10.1002/adfm.202313217
- J.S. Heo, J. Eom, Y.-H. Kim, S.K. Park, Recent progress of textile-based wearable electronics: a comprehensive review of materials, devices, and applications. Small 14(3), 1703034 (2018). https://doi.org/10.1002/smll.201703034
- W. Weng, J. Yang, Y. Zhang, Y. Li, S. Yang et al., A route toward smart system integration: from fiber design to device construction. Adv. Mater. 32(5), 1902301 (2020). https://doi.org/10.1002/adma.201902301
- Y. Zhang, H. Wang, H. Lu, S. Li, Y. Zhang, Electronic fibers and textiles: recent progress and perspective. iScience 24(7), 102716 (2021). https://doi.org/10.1016/j.isci.2021.102716
- S. Chen, Z. Lou, D. Chen, G. Shen, An artificial flexible visual memory system based on an UV-motivated memristor. Adv. Mater. 30(7), 1705400 (2018). https://doi.org/10.1002/adma.201705400
- S. Seo, S.-H. Jo, S. Kim, J. Shim, S. Oh et al., Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9(1), 5106 (2018). https://doi.org/10.1038/s41467-018-07572-5
- H. Wang, Q. Zhao, Z. Ni, Q. Li, H. Liu et al., A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv. Mater. 30(46), e1803961 (2018). https://doi.org/10.1002/adma.201803961
- S.M. Kwon, S.W. Cho, M. Kim, J.S. Heo, Y.-H. Kim et al., Environment-adaptable artificial visual perception behaviors using a light-adjustable optoelectronic neuromorphic device array. Adv. Mater. 31(52), 1906433 (2019). https://doi.org/10.1002/adma.201906433
- S.E. Ng, Y.B. Tay, T.Y.K. Ho, N.M. Ankit, Inorganic electrochromic transistors as environmentally adaptable photodetectors. Nano Energy 97, 107142 (2022). https://doi.org/10.1016/j.nanoen.2022.107142
- D. Xie, L. Wei, M. Xie, L. Jiang, J. Yang et al., Photoelectric visual adaptation based on 0D-CsPbBr3-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor. Adv. Funct. Mater. 31(14), 2010655 (2021). https://doi.org/10.1002/adfm.202010655
- T.-J. Lee, K.-R. Yun, S.-K. Kim, J.-H. Kim, J. Jin et al., Realization of an artificial visual nervous system using an integrated optoelectronic device array. Adv. Mater. 33(51), 2105485 (2021). https://doi.org/10.1002/adma.202105485
- H. Shen, Z. He, W. Jin, L. Xiang, W. Zhao et al., Mimicking sensory adaptation with dielectric engineered organic transistors. Adv. Mater. 31(48), e1905018 (2019). https://doi.org/10.1002/adma.201905018
- V.A. Pieribone, O. Shupliakov, L. Brodin, S. Hilfiker-Rothenfluh, A.J. Czernik et al., Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375(6531), 493–497 (1995). https://doi.org/10.1038/375493a0
- A. Panatier, D.T. Theodosis, J.-P. Mothet, B. Touquet, L. Pollegioni et al., Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 125(4), 775–784 (2006). https://doi.org/10.1016/j.cell.2006.02.051
- S.G. Sarwat, B. Kersting, T. Moraitis, V.P. Jonnalagadda, A. Sebastian, Phase-change memtransistive synapses for mixed-plasticity neural computations. Nat. Nanotechnol. 17(5), 507–513 (2022). https://doi.org/10.1038/s41565-022-01095-3
- Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360(6392), 998–1003 (2018). https://doi.org/10.1126/science.aao0098
- L. Tang, J. Shang, X. Jiang, Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci. Adv. 7(3), eabe3778 (2021). https://doi.org/10.1126/sciadv.abe3778
- M. Li, X. Ma, Y. Mu, G. Xie, H. Wan et al., A facile covalent strategy for ultrafast negative photoconductance hybrid graphene/porphyrin-based photodetector. Nanotechnology 34(8), 085201 (2022). https://doi.org/10.1088/1361-6528/aca598
- C. Biswas, F. Güneş, D.D. Loc, S.C. Lim, M.S. Jeong et al., Negative and positive persistent photoconductance in graphene. Nano Lett. 11(11), 4682–4687 (2011). https://doi.org/10.1021/nl202266h
- G. Zhou, B. Sun, X. Hu, L. Sun, Z. Zou et al., Negative photoconductance effect: an extension function of the TiOx-based memristor. Adv. Sci. 8(13), 2003765 (2021). https://doi.org/10.1002/advs.202003765
- E. Baek, T. Rim, J. Schütt, C.-K. Baek, K. Kim et al., Negative photoconductance in heavily doped Si nanowire field-effect transistors. Nano Lett. 17(11), 6727–6734 (2017). https://doi.org/10.1021/acs.nanolett.7b02788
- M.A. Haque, J.-L. Li, A.L. Abdelhady, M.I. Saidaminov, D. Baran et al., Transition from positive to negative photoconductance in doped hybrid perovskite semiconductors. Adv. Opt. Mater. 7(22), 1900865 (2019). https://doi.org/10.1002/adom.201900865
- D. Li, N. An, K. Tan, Y. Ren, H. Wang et al., Insulating electrets converted from organic semiconductor for high-performance transistors, memories, and artificial synapses. Adv. Funct. Mater. 33(45), 2305012 (2023). https://doi.org/10.1002/adfm.202305012
- Y. Ni, Y. Wang, W. Xu, Recent process of flexible transistor-structured memory. Small 17(9), 1905332 (2021). https://doi.org/10.1002/smll.201905332
- A. Sumanth, K.L. Ganapathi, M.S. Ramachandra Rao, T. Dixit, A review on realizing the modern optoelectronic applications through persistent photoconductivity. J. Phys. D Appl. Phys. 55(39), 393001 (2022). https://doi.org/10.1088/1361-6463/ac7f66
- Y. Kang, J. Jang, D. Cha, S. Lee, Synaptic weight evolution and charge trapping mechanisms in a synaptic pass-transistor operation with a direct potential output. IEEE Trans. Neural Netw. Learn. Syst. 32(10), 4728–4741 (2021). https://doi.org/10.1109/TNNLS.2020.3047963
- Z. Gao, R. Jiang, M. Deng, C. Zhao, Z. Hong et al., Tunable negative and positive photoconductance in van der Waals heterostructure for image preprocessing. Adv. Mater. 36(29), 2401585 (2024). https://doi.org/10.1002/adma.202401585
- Y.-C. Mi, C.-H. Yang, L.-C. Shih, J.-S. Chen, All-optical-controlled excitatory and inhibitory synaptic signaling through bipolar photoresponse of an oxide-based phototransistor. Adv. Opt. Mater. 11(14), 2300089 (2023). https://doi.org/10.1002/adom.202300089
- B. Xu, D. Guo, W. Dong, H. Gao, P. Zhu et al., Gap state-modulated van der Waals short-term memory with broad band negative photoconductance. Small 20(21), e2309626 (2024). https://doi.org/10.1002/smll.202309626
- Y. Yang, X. Peng, H.-S. Kim, T. Kim, S. Jeon et al., Hot carrier trapping induced negative photoconductance in InAs nanowires toward novel nonvolatile memory. Nano Lett. 15(9), 5875–5882 (2015). https://doi.org/10.1021/acs.nanolett.5b01962
- Y. Ishijima, T. Ishiguro, Negative photoconductance in a single crystal of C60. J. Phys. Soc. Jpn. 65(6), 1574–1577 (1996). https://doi.org/10.1143/jpsj.65.1574
- Y. Zhu, M. Juhl, G. Coletti, Z. Hameiri, On the transient negative photoconductance in n-type czochralski silicon. IEEE J. Photovolt. 8(2), 421–427 (2018). https://doi.org/10.1109/JPHOTOV.2017.2784679
- W. He, D. Wu, L. Kong, P. Yu, G. Yang, Giant negative photoresponse in van der Waals graphene/AgBiP2Se6/graphene trilayer heterostructures. Adv. Mater. 36(16), e2312541 (2024). https://doi.org/10.1002/adma.202312541
- R. Wang, J.-L. Wang, T. Liu, Z. He, H. Wang et al., Controllable inverse photoconductance in semiconducting nanowire films. Adv. Mater. 34(36), e2204698 (2022). https://doi.org/10.1002/adma.202204698
- M.A. Mangold, M. Calame, M. Mayor, A.W. Holleitner, Negative differential photoconductance in gold nanop arrays in the coulomb blockade regime. ACS Nano 6(5), 4181–4189 (2012). https://doi.org/10.1021/nn300673t
- Y. Wang, E. Liu, A. Gao, T. Cao, M. Long et al., Negative photoconductance in van der Waals heterostructure-based floating gate phototransistor. ACS Nano 12(9), 9513–9520 (2018). https://doi.org/10.1021/acsnano.8b04885
- J.W. John, V. Dhyani, Y.M. Georgiev, A.S. Gangnaik, S. Biswas et al., Ultrahigh negative infrared photoconductance in highly As-doped germanium nanowires induced by hot electron trapping. ACS Appl. Electron. Mater. 2(7), 1934–1942 (2020). https://doi.org/10.1021/acsaelm.0c00245
- D. Xue, W. Gong, C. Yan, Y. Zhang, J. Lu et al., Boosting bidirectional photoresponse with wavelength selectivity through ambipolar transport modulation. Adv. Funct. Mater. 34(38), 2402884 (2024). https://doi.org/10.1002/adfm.202402884
- Y. Xu, X. Xu, Y. Huang, Y. Tian, M. Cheng et al., Gate-tunable positive and negative photoconductance in near-infrared organic heterostructures for in-sensor computing. Adv. Mater. 36(30), e2402903 (2024). https://doi.org/10.1002/adma.202402903
- H. Wei, Z. Xu, Y. Ni, L. Yang, L. Sun et al., Mixed-dimensional nanop–nanowire channels for flexible optoelectronic artificial synapse with enhanced photoelectric response and asymmetric bidirectional plasticity. Nano Lett. 23(18), 8743–8752 (2023). https://doi.org/10.1021/acs.nanolett.3c02836
- P. Xie, X. Chen, Z. Zeng, W. Wang, Y. Meng et al., Artificial visual systems with tunable photoconductivity based on organic molecule-nanowire heterojunctions. Adv. Funct. Mater. 33(4), 2209091 (2023). https://doi.org/10.1002/adfm.202209091
- X. Zhu, Y. Yan, L. Sun, Y. Ren, Y. Zhang et al., Negative phototransistors with ultrahigh sensitivity and weak-light detection based on 1D/2D molecular crystal p–n heterojunctions and their application in light encoders. Adv. Mater. 34(23), 2270174 (2022). https://doi.org/10.1002/adma.202270174
- Y.-C. Chiang, C.-C. Hung, Y.-C. Lin, Y.-C. Chiu, T. Isono et al., High-performance nonvolatile organic photonic transistor memory devices using conjugated rod–coil materials as a floating gate. Adv. Mater. 32(36), 2002638 (2020). https://doi.org/10.1002/adma.202002638
- Z. Lv, M. Chen, F. Qian, V.A.L. Roy, W. Ye et al., Mimicking neuroplasticity in a hybrid biopolymer transistor by dual modes modulation. Adv. Funct. Mater. 29(31), 1902374 (2019). https://doi.org/10.1002/adfm.201902374
- D. Berco, D. Shenp Ang, Recent progress in synaptic devices paving the way toward an artificial cogni-retina for bionic and machine vision. Adv. Intell. Syst. 1(1), 1900012 (2019). https://doi.org/10.1002/aisy.201900012
- X. Shi, Y. Xu, W. Liu, C. Jin, S. Wang et al., Organic heterojunction phototransistors with bi-directional photoresponse for vision biomimetics. Adv. Funct. Mater. 34(32), 2401534 (2024). https://doi.org/10.1002/adfm.202401534
- X. Wu, Y. Chu, R. Liu, H.E. Katz, J. Huang, Pursuing polymer dielectric interfacial effect in organic transistors for photosensing performance optimization. Adv. Sci. 4(12), 1700442 (2017). https://doi.org/10.1002/advs.201700442
- Y. Ren, J.-Q. Yang, L. Zhou, J.-Y. Mao, S.-R. Zhang et al., Gate-tunable synaptic plasticity through controlled polarity of charge trapping in fullerene composites. Adv. Funct. Mater. 28(50), 1805599 (2018). https://doi.org/10.1002/adfm.201805599
- N. Qiao, P. Wei, Y. Xing, X. Qin, X. Wang et al., Rapid charge storage and release at etching-assist electret in organic transistors for memories, photodetectors, and artificial synapses. Adv. Mater. Interfaces 9(19), 2200713 (2022). https://doi.org/10.1002/admi.202200713
- P. Moon, Y. Won, O. Hak, L. Kwang, Enhancement of synaptic behavior in organic electrochemical transistors via the introduction of layer-by-layer grown metal-organic framework. Adv. Mater. Technol. 10(6), 2401316 (2025). https://doi.org/10.1002/admt.202401316
- H.R. Lee, D. Lee, J.H. Oh, A hippocampus-inspired dual-gated organic artificial synapse for simultaneous sensing of a neurotransmitter and light. Adv. Mater. 33(17), 2100119 (2021). https://doi.org/10.1002/adma.202100119
- J. Li, Z. Feng, Y. Qian, W. Huang, W. Li et al., Organic semiconductor heterojunction-based photonic synaptic transistor with temperature stability and adaptive learning ability for neuromorphic computing systems. ACS Appl. Electron. Mater. 7(13), 6149–6157 (2025). https://doi.org/10.1021/acsaelm.5c00882
- Y. Liang, H. Li, H. Tang, C. Zhang, D. Men et al., Bioinspired electrolyte-gated organic synaptic transistors: from fundamental requirements to applications. Nano-Micro Lett. 17(1), 198 (2025). https://doi.org/10.1007/s40820-025-01708-1
- S. Zhong, L. Su, M. Xu, D. Loke, B. Yu et al., Recent advances in artificial sensory neurons: biological fundamentals, devices, applications, and challenges. Nano-Micro Lett. 17(1), 61 (2024). https://doi.org/10.1007/s40820-024-01550-x
- Y. Zhu, T. Nyberg, L. Nyholm, D. Primetzhofer, X. Shi et al., Wafer-scale Ag2S-based memristive crossbar arrays with ultra-low switching-energies reaching biological synapses. Nano-Micro Lett. 17(1), 69 (2024). https://doi.org/10.1007/s40820-024-01559-2
- J. Xia, C. Gao, C. Peng, Y. Liu, P.-A. Chen et al., Multidimensional deep ultraviolet (DUV) synapses based on organic/perovskite semiconductor heterojunction transistors for antispoofing facial recognition systems. Nano Lett. 24(22), 6673–6682 (2024). https://doi.org/10.1021/acs.nanolett.4c01356
- S. Kang, M. Kim, C. Yoo, B.M. Lim, B.C. Jang et al., Photogating-based organic synapse electronics modulated by dielectric. Org. Electron. 129, 107056 (2024). https://doi.org/10.1016/j.orgel.2024.107056
- J. Chen, X.-C. Zhao, Y.-Q. Zhu, Z.-H. Wang, Z. Zhang et al., Polarized tunneling transistor for ultralow-energy-consumption artificial synapse toward neuromorphic computing. ACS Nano 18(1), 581–591 (2024). https://doi.org/10.1021/acsnano.3c08632
- L. Sun, S. Qu, Y. Du, L. Yang, Y. Li et al., Bio-inspired vision and neuromorphic image processing using printable metal oxide photonic synapses. ACS Photonics 10(1), 242–252 (2023). https://doi.org/10.1021/acsphotonics.2c01583
- S.T. Keene, C. Lubrano, S. Kazemzadeh, A. Melianas, Y. Tuchman et al., A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 19(9), 969–973 (2020). https://doi.org/10.1038/s41563-020-0703-y
- F. Xu, C. Zhang, X. Zhao, H. Yu, G. Zhao et al., Intrinsically stretchable photonic synaptic transistors for retina-like visual image systems. J. Mater. Chem. C 10(29), 10586–10594 (2022). https://doi.org/10.1039/d2tc01775j
- A. Jones, A. Rush, C. Merkel, E. Herrmann, A.P. Jacob et al., A neuromorphic SLAM architecture using gated-memristive synapses. Neurocomputing 381, 89–104 (2020). https://doi.org/10.1016/j.neucom.2019.09.098
- M.M. Islam, D. Dev, A. Krishnaprasad, L. Tetard, T. Roy, Optoelectronic synapse using monolayer MoS2 field effect transistors. Sci. Rep. 10(1), 21870 (2020). https://doi.org/10.1038/s41598-020-78767-4
- J.-H. Choi, H.-M. An, H.-L. Park, Polarized light-sensitive optoelectronic synapses for expanding artificial vision systems. Flex. Print. Electron. 10(1), 013501 (2025). https://doi.org/10.1088/2058-8585/adb595
- H. Wurzer, C. Hoffmann, A. Al Absi, C. Thomas, Actin cytoskeleton straddling the immunological synapse between cytotoxic lymphocytes and cancer cells. Cells 8(5), 463 (2019). https://doi.org/10.3390/cells8050463
- C. Zhang, Y. Li, F. Yu, G. Wang, K. Wang et al., Visual growth of nano-HOFs for low‐power memristive spiking neuromorphic system. Nano Energy 109, 108274 (2023). https://doi.org/10.1016/j.nanoen.2023.108274
- M. Dong, Y. Zhang, J. Zhu, X. Zhu, J. Zhao et al., All-in-one 2D molecular crystal optoelectronic synapse for polarization-sensitive neuromorphic visual system. Adv. Mater. 36(40), 2409550 (2024). https://doi.org/10.1002/adma.202409550
- I.-K. Hwang, M.G. Lee, J.B. Jeon, S.H. Nam, D. Lee et al., Visible-light chiral photonic synapses based on hybrid organic-inorganic 2D perovskites. Adv. Electron. Mater. 11(3), 2400525 (2025). https://doi.org/10.1002/aelm.202400525
- P. Xie, Y. Xu, J. Wang, D. Li, Y. Zhang et al., Birdlike broadband neuromorphic visual sensor arrays for fusion imaging. Nat. Commun. 15(1), 8298 (2024). https://doi.org/10.1038/s41467-024-52563-4
- D. Li, Y. Chen, H. Ren, Y. Tang, S. Zhang et al., An active-matrix synaptic phototransistor array for in-sensor spectral processing. Adv. Sci. 11(39), 2406401 (2024). https://doi.org/10.1002/advs.202406401
- X. Liu, S. Dai, W. Zhao, J. Zhang, Z. Guo et al., All-photolithography fabrication of ion-gated flexible organic transistor array for multimode neuromorphic computing. Adv. Mater. 36(21), e2312473 (2024). https://doi.org/10.1002/adma.202312473
- S. Zhang, R. Chen, D. Kong, Y. Chen, W. Liu et al., Photovoltaic nanocells for high-performance large-scale-integrated organic phototransistors. Nat. Nanotechnol. 19(9), 1323–1332 (2024). https://doi.org/10.1038/s41565-024-01707-0
- H. Lee, J.H. Hwang, S.H. Song, H. Han, S.-J. Han et al., Chiroptical synaptic heterojunction phototransistors based on self-assembled nanohelix of π-conjugated molecules for direct noise-reduced detection of circularly polarized light. Adv. Sci. 10(27), 2304039 (2023). https://doi.org/10.1002/advs.202304039
- S.D. Namgung, R.M. Kim, Y.-C. Lim, J.W. Lee, N.H. Cho et al., Circularly polarized light-sensitive, hot electron transistor with chiral plasmonic nanops. Nat. Commun. 13(1), 5081 (2022). https://doi.org/10.1038/s41467-022-32721-2
- J.H. Kim, M. Stolte, F. Würthner, Wavelength and polarization sensitive synaptic phototransistor based on organic n-type semiconductor/supramolecular J-aggregate heterostructure. ACS Nano 16(11), 19523–19532 (2022). https://doi.org/10.1021/acsnano.2c09747
- C. Zhang, C. Xu, C. Chen, J. Cheng, H. Zhang et al., Optically programmable circularly polarized photodetector. ACS Nano 16(8), 12452–12461 (2022). https://doi.org/10.1021/acsnano.2c03746
- G. Vats, B. Hodges, A.J. Ferguson, L.M. Wheeler, J.L. Blackburn, Optical memory, switching, and neuromorphic functionality in metal halide perovskite materials and devices. Adv. Mater. 35(37), 2205459 (2023). https://doi.org/10.1002/adma.202205459
- J. Choi, J.S. Han, K. Hong, S.Y. Kim, H.W. Jang, Organic-inorganic hybrid halide perovskites for memories, transistors, and artificial synapses. Adv. Mater. 30(42), e1704002 (2018). https://doi.org/10.1002/adma.201704002
- D. Hao, Z. Yang, J. Huang, F. Shan, Recent developments of optoelectronic synaptic devices based on metal halide perovskites. Adv. Funct. Mater. 33(8), 2211467 (2023). https://doi.org/10.1002/adfm.202211467
- O. Yildiz, Z. Wang, M. Borkowski, G. Fytas, P.W.M. Blom et al., Optimized charge transport in molecular semiconductors by control of fluid dynamics and crystallization in Meniscus-guided coating. Adv. Funct. Mater. 32(2), 2107976 (2022). https://doi.org/10.1002/adfm.202107976
- H. Ma, H. Fang, X. Xie, Y. Liu, H. Tian et al., Optoelectronic synapses based on MXene/violet phosphorus van der Waals heterojunctions for visual-olfactory crossmodal perception. Nano-Micro Lett. 16(1), 104 (2024). https://doi.org/10.1007/s40820-024-01330-7
- C. Wang, X. Ren, C. Xu, B. Fu, R. Wang et al., N-type 2D organic single crystals for high-performance organic field-effect transistors and near-infrared phototransistors. Adv. Mater. 30(16), 1706260 (2018). https://doi.org/10.1002/adma.201706260
- F. Yang, S. Cheng, X. Zhang, X. Ren, R. Li et al., 2D organic materials for optoelectronic applications. Adv. Mater. 30(2), 1702415 (2018). https://doi.org/10.1002/adma.201702415
- S. Mafrica, S. Godiot, M. Menouni, M. Boyron, F. Expert et al., A bio-inspired analog silicon retina with Michaelis-Menten auto-adaptive pixels sensitive to small and large changes in light. Opt. Express 23(5), 5614–5635 (2015). https://doi.org/10.1364/OE.23.005614
- Z. He, H. Shen, D. Ye, L. Xiang, W. Zhao et al., An organic transistor with light intensity-dependent active photoadaptation. Nat. Electron. 4(7), 522–529 (2021). https://doi.org/10.1038/s41928-021-00615-8
- J. Marshall, T.W. Cronin, S. Kleinlogel, Stomatopod eye structure and function: a review. Arthropod Struct. Dev. 36(4), 420–448 (2007). https://doi.org/10.1016/j.asd.2007.01.006
- M.M. Islam, A. Krishnaprasad, D. Dev, R. Martinez-Martinez, V. Okonkwo et al., Multiwavelength optoelectronic synapse with 2D materials for mixed-color pattern recognition. ACS Nano 16(7), 10188–10198 (2022). https://doi.org/10.1021/acsnano.2c01035
- Y. Yang, R.C. da Costa, M.J. Fuchter, A.J. Campbell, Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photonics 7(8), 634–638 (2013). https://doi.org/10.1038/nphoton.2013.176
- L. Zhang, I. Song, J. Ahn, M. Han, M. Linares et al., π-extended perylene diimide double-heterohelicenes as ambipolar organic semiconductors for broadband circularly polarized light detection. Nat. Commun. 12(1), 142 (2021). https://doi.org/10.1038/s41467-020-20390-y
- H. Han, Y.J. Lee, J. Kyhm, J.S. Jeong, J.-H. Han et al., High-performance circularly polarized light-sensing near-infrared organic phototransistors for optoelectronic cryptographic primitives. Adv. Funct. Mater. 30(52), 2006236 (2020). https://doi.org/10.1002/adfm.202006236
- W. Wen, G. Liu, X. Wei, H. Huang, C. Wang et al., Biomimetic nanocluster photoreceptors for adaptative circular polarization vision. Nat. Commun. 15(1), 2397 (2024). https://doi.org/10.1038/s41467-024-46646-5
- Y. Yang, C. Pan, Y. Li, X. Yangdong, P. Wang et al., In-sensor dynamic computing for intelligent machine vision. Nat. Electron. 7(3), 225–233 (2024). https://doi.org/10.1038/s41928-024-01124-0
- T. Qiu, Q. An, J. Wang, J. Wang, C.-W. Qiu et al., Vision-driven metasurfaces for perception enhancement. Nat. Commun. 15(1), 1631 (2024). https://doi.org/10.1038/s41467-024-45296-x
- G. Wu, J. Zhang, X. Wan, Y. Yang, S. Jiang, Chitosan-based biopolysaccharide proton conductors for synaptic transistors on paper substrates. J. Mater. Chem. C 2(31), 6249–6255 (2014). https://doi.org/10.1039/c4tc00652f
- G. Wu, C. Wan, J. Zhou, L. Zhu, Q. Wan, Low-voltage protonic/electronic hybrid indium zinc oxide synaptic transistors on paper substrates. Nanotechnology 25(9), 094001 (2014). https://doi.org/10.1088/0957-4484/25/9/094001
- Y. Jeon, G. Lee, Y.J. Kim, B.C. Jang, H. Yoo, Dual synapses and security devices from ternary C60-pentacene-TiO2-x nanorods heterostructures. Adv. Funct. Mater. 34(48), 2409578 (2024). https://doi.org/10.1002/adfm.202409578
- Y. Zhang, H. Chen, W. Sun, Y. Hou, Y. Cai et al., All-photonic synapses for biomimetic ocular system. Adv. Funct. Mater. 34(49), 2409419 (2024). https://doi.org/10.1002/adfm.202409419
- J. Gong, H. Wei, J. Liu, L. Sun, Z. Xu et al., An artificial visual nerve for mimicking pupil reflex. Matter 5(5), 1578–1589 (2022). https://doi.org/10.1016/j.matt.2022.02.020
- W. Li, S. Wu, H. Zhang, X. Zhang, J. Zhuang et al., Enhanced biological photosynthetic efficiency using light-harvesting engineering with dual-emissive carbon dots. Adv. Funct. Mater. 28(44), 1804004 (2018). https://doi.org/10.1002/adfm.201804004
- F. Liao, Z. Zhou, B.J. Kim, J. Chen, J. Wang et al., Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5(2), 84–91 (2022). https://doi.org/10.1038/s41928-022-00713-1
- R.D. van Jansen- Vuuren, A. Armin, A.K. Pandey, P.L. Burn, P. Meredith, Organic photodiodes: the future of full color detection and image sensing. Adv. Mater. 28(24), 4766–4802 (2016). https://doi.org/10.1002/adma.201505405
- A. Reisman, Device, circuit, and technology scaling to micron and submicron dimensions. Proc. IEEE 71(5), 550–565 (1983). https://doi.org/10.1109/PROC.1983.12638
- Y.-Q. Zheng, Y. Liu, D. Zhong, S. Nikzad, S. Liu et al., Monolithic optical microlithography of high-density elastic circuits. Science 373(6550), 88–94 (2021). https://doi.org/10.1126/science.abh3551
- Y. Zheng, Z. Yu, S. Zhang, X. Kong, W. Michaels et al., A molecular design approach towards elastic and multifunctional polymer electronics. Nat. Commun. 12(1), 5701 (2021). https://doi.org/10.1038/s41467-021-25719-9
- IEEE transactions on circuits and systems for video technology publication information. IEEE Trans. Circuits Syst. Video Technol. 35(3), C2–C2 (2025). https://doi.org/10.1109/TCSVT.2025.3541359
- E.J. Fuller, S.T. Keene, A. Melianas, Z. Wang, S. Agarwal et al., Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364(6440), 570–574 (2019). https://doi.org/10.1126/science.aaw5581
- S.H. Kim, G.W. Baek, J. Yoon, S. Seo, J. Park et al., A bioinspired stretchable sensory-neuromorphic system. Adv. Mater. 33(44), e2104690 (2021). https://doi.org/10.1002/adma.202104690
- Y. Wang, Y. Gong, S. Huang, X. Xing, Z. Lv et al., Memristor-based biomimetic compound eye for real-time collision detection. Nat. Commun. 12(1), 5979 (2021). https://doi.org/10.1038/s41467-021-26314-8
- C. Du, F. Cai, M.A. Zidan, W. Ma, S.H. Lee et al., Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204 (2017). https://doi.org/10.1038/s41467-017-02337-y
- Y. Choi, S. Oh, C. Qian, J.-H. Park, J.H. Cho, Vertical organic synapse expandable to 3D crossbar array. Nat. Commun. 11(1), 4595 (2020). https://doi.org/10.1038/s41467-020-17850-w
- Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya et al., Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16(1), 101–108 (2017). https://doi.org/10.1038/nmat4756
- H. Chen, L. Lv, Y. Wei, T. Liu, S. Wang et al., Self-powered flexible artificial synapse for near-infrared light detection. Cell Rep. Phys. Sci. 2(7), 100507 (2021). https://doi.org/10.1016/j.xcrp.2021.100507
- G. Liu, W. Wen, Z. Zhao, X. Huang, Y. Li et al., Bionic tactile-gustatory receptor for object identification based on all-polymer electrochemical transistor. Adv. Mater. 35(24), 2300242 (2023). https://doi.org/10.1002/adma.202300242
- J. Shi, J. Jie, W. Deng, G. Luo, X. Fang et al., A fully solution-printed photosynaptic transistor array with ultralow energy consumption for artificial-vision neural networks. Adv. Mater. 34(18), 2200380 (2022). https://doi.org/10.1002/adma.202200380
- H. Jo, J. Jang, H.J. Park, H. Lee, S.J. An et al., Physical reservoir computing using tellurium-based gate-tunable artificial photonic synapses. ACS Nano 18(44), 30761–30773 (2024). https://doi.org/10.1021/acsnano.4c10489
- A. Moazzeni, H. Riyahi Madvar, S. Hamedi, Z. Kordrostami, Fabrication of graphene oxide-based resistive switching memory by the spray pyrolysis technique for neuromorphic computing. ACS Appl. Nano Mater. 6(3), 2236–2248 (2023). https://doi.org/10.1021/acsanm.2c05497
- Z. Chen, J. He, Y. Zheng, T. Song, Z. Deng, An optimized feedforward decoupling PD register control method of roll-to-roll web printing systems. IEEE Trans. Autom. Sci. Eng. 13(1), 274–283 (2016). https://doi.org/10.1109/TASE.2015.2489687
- B. Grant, Y. Bandera, S.H. Foulger, J. Vilčáková, P. Sáha et al., Boolean and elementary algebra with a roll-to-roll printed electrochemical memristor. Adv. Mater. Technol. 7(5), 2101108 (2022). https://doi.org/10.1002/admt.202101108
- W. Choi, J.S. Yoon, W.W. Lee, G.H. Hong, H. Kim et al., DPP-DTT nanowire phototransistors for optoelectronic synapses in EMG and ECG signal classification. Small (2025). https://doi.org/10.1002/smll.202506440
- W. Xu, S.-Y. Min, H. Hwang, T.-W. Lee, Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2(6), e1501326 (2016). https://doi.org/10.1126/sciadv.1501326
- X. Zhang, X. Yu, J. Chen, Solution-processed organic nanostructure arrays: from nanofabrication to applications. Surf. Interfaces 72, 106981 (2025). https://doi.org/10.1016/j.surfin.2025.106981
- S.-X. Li, G.-Y. Huang, H. Xia, T. Fu, X.-J. Wang et al., Nanoimprint crystalithography for organic semiconductors. Nat. Commun. 16(1), 3636 (2025). https://doi.org/10.1038/s41467-025-58934-9
- X. Liu, D. Wang, W. Chen, Y. Kang, S. Fang et al., Optoelectronic synapses with chemical-electric behaviors in gallium nitride semiconductors for biorealistic neuromorphic functionality. Nat. Commun. 15, 7671 (2024). https://doi.org/10.1038/s41467-024-51194-z
- L. Lu, X. Liu, P. Gu, Z. Hu, X. Liang et al., Stretchable all-gel organic electrochemical transistors. Nat. Commun. 16(1), 3831 (2025). https://doi.org/10.1038/s41467-025-59240-0
- S. Woo, D. Moon, Y. Won, C. Kyung, J. Yoo et al., A pattern recognition artificial olfactory system based on human olfactory receptors and organic synaptic devices. Sci. Adv. 10(21), eadl2882 (2024). https://doi.org/10.1126/sciadv.adl2882
- X. Wu, S. Chen, L. Jiang, X. Wang, L. Qiu et al., Highly sensitive, low-energy-consumption biomimetic olfactory synaptic transistors based on the aggregation of the semiconductor films. ACS Sens. 9(5), 2673–2683 (2024). https://doi.org/10.1021/acssensors.4c00616
- P. Li, H.P. Anwar Ali, W. Cheng, J. Yang, B.C.K. Tee, Bioinspired prosthetic interfaces. Adv. Mater. Technol. 5(3), 1900856 (2020). https://doi.org/10.1002/admt.201900856
- K. Liang, R. Wang, H. Ren, D. Li, Y. Tang et al., Printable coffee-ring structures for highly uniform all-oxide optoelectronic synaptic transistors. Adv. Opt. Mater. 10(24), 2201754 (2022). https://doi.org/10.1002/adom.202201754
- L. Yu, Y. Li, Y. Lv, B. Gu, J. Cai et al., Treadmill exercise facilitates synaptic plasticity in APP/PS1 mice by regulating hippocampal AMPAR activity. Cells 13(19), 1608 (2024). https://doi.org/10.3390/cells13191608
- M. Deodato, D. Melcher, Continuous temporal integration in the human visual system. J. Vis. 24(13), 5 (2024). https://doi.org/10.1167/jov.24.13.5
- A. Bartels, S. Zeki, The theory of multistage integration in the visual brain. Proc. R. Soc. Lond. B 265(1412), 2327–2332 (1998). https://doi.org/10.1098/rspb.1998.0579
- A. Pérez-Bellido, M.O. Ernst, S. Soto-Faraco, J. López-Moliner, Visual limitations shape audio-visual integration. J. Vis. 15(14), 5 (2015). https://doi.org/10.1167/15.14.5
- Z. Zhao, A. Abdelsamie, R. Guo, S. Shi, J. Zhao et al., Flexible artificial synapse based on single-crystalline BiFeO3 thin film. Nano Res. 15(3), 2682–2688 (2022). https://doi.org/10.1007/s12274-021-3782-4
- X. Yan, Z. Zhou, J. Zhao, Q. Liu, H. Wang et al., Flexible memristors as electronic synapses for neuro-inspired computation based on Scotch tape-exfoliated Mica substrates. Nano Res. 11(3), 1183–1192 (2018). https://doi.org/10.1007/s12274-017-1781-2
- Y. Lin, T. Zeng, H. Xu, Z. Wang, X. Zhao et al., Transferable and flexible artificial memristive synapse based on WOx Schottky junction on arbitrary substrates. Adv. Electron. Mater. 4(12), 1800373 (2018). https://doi.org/10.1002/aelm.201800373
- X. Huang, K. Zhang, B. Peng, G. Wang, M. Muhler et al., Ceria-based materials for thermocatalytic and photocatalytic organic synthesis. ACS Catal. 11(15), 9618–9678 (2021). https://doi.org/10.1021/acscatal.1c02443
- L. Cui, J. Wu, H. Ju, Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron. 63, 276–286 (2015). https://doi.org/10.1016/j.bios.2014.07.052
- D. Liu, K. Lu, C. Poon, W. Lin, Metal–organic frameworks as sensory materials and imaging agents. Inorg. Chem. 53(4), 1916–1924 (2014). https://doi.org/10.1021/ic402194c
- R. Xue, Y.-S. Liu, S.-L. Huang, G.-Y. Yang, Recent progress of covalent organic frameworks applied in electrochemical sensors. ACS Sens. 8(6), 2124–2148 (2023). https://doi.org/10.1021/acssensors.3c00269
- B. Salonikidou, A. Mehonic, Y. Takeda, S. Tokito, J. England et al., Inkjet-printed Ag/a-TiO2/Ag neuromorphic nanodevice based on functionalized ink. Adv. Eng. Mater. 24(11), 2200439 (2022). https://doi.org/10.1002/adem.202200439
- G. Zhu, X. Chen, J. Ma, G. Dai, Z. Liu, Inkjet-printed niobium tungsten oxide thin-film memristors for neuromorphic computing. Mater. Today Commun. 44, 112088 (2025). https://doi.org/10.1016/j.mtcomm.2025.112088
- H. Hu, A. Scholz, C. Dolle, A. Zintler, A. Quintilla et al., Inkjet-printed tungsten oxide memristor displaying non-volatile memory and neuromorphic properties. Adv. Funct. Mater. 34(20), 2302290 (2024). https://doi.org/10.1002/adfm.202302290
- C. Bao, S.K. Seol, W.S. Kim, A 3D integrated neuromorphic chemical sensing system. Sens. Actuat. B Chem. 332, 129527 (2021). https://doi.org/10.1016/j.snb.2021.129527
- Q. Cao, M. Shin, N.V. Lavrik, B.J. Venton, 3D-printed carbon nanoelectrodes for in vivo neurotransmitter sensing. Nano Lett. 20(9), 6831–6836 (2020). https://doi.org/10.1021/acs.nanolett.0c02844
- X. Li, R. Bi, X. Ou, S. Han, Y. Sheng et al., 3D-printed intrinsically stretchable organic electrochemical synaptic transistor array. ACS Appl. Mater. Interfaces 15(35), 41656–41665 (2023). https://doi.org/10.1021/acsami.3c07169
- Q. Chen, R. Yang, D. Hu, Z. Ye, J. Lu, Artificial neurosynaptic device based on amorphous oxides for artificial neural network constructing. J. Mater. Chem. C 12(25), 9165–9174 (2024). https://doi.org/10.1039/D4TC01244E
- D.-H. Kim, S.-M. Yoon, Improvement in energy consumption and operational stability of electrolyte-gated synapse transistors using atomic-layer-deposited HfO2 thin films. Mater. Sci. Semicond. Process. 153, 107182 (2023). https://doi.org/10.1016/j.mssp.2022.107182
- C. Liu, L. Zhu, J.-K. Weng, Y.-C. Li, Z. Chen et al., Ultraflexible and energy-efficient artificial synapses based on molecular/atomic layer deposited organic–inorganic hybrid thin films. Adv. Electron. Mater. 9(2), 2200821 (2023). https://doi.org/10.1002/aelm.202200821
- K.-X. Guo, H.-Y. Yu, H. Han, H.-H. Wei, J.-D. Gong et al., Artificial synapse based on MoO3 nanosheets prepared by hydrothermal synthesis. Acta Phys. Sin. 69(23), 238501 (2020). https://doi.org/10.7498/aps.69.20200928
- Z. Guo, J. Liu, X. Han, F. Ma, D. Rong et al., High-performance artificial synapse based on CVD-grown WSe2 flakes with intrinsic defects. ACS Appl. Mater. Interfaces 15(15), 19152–19162 (2023). https://doi.org/10.1021/acsami.3c00417
- D.-P. Yang, R.-H. Li, X.-G. Tang, D.-L. Li, Q.-J. Sun, Photoelectric dual mode sensing system based on one-step fabricated heterojunction artificial synapses device. Mater. Sci. Eng. R. Rep. 165, 101021 (2025). https://doi.org/10.1016/j.mser.2025.101021
- Y.H. Kim, G.H. Kim, A.Y. Kim, N.S. Baek, J.I. Jeong et al., Optimisation of bi-layer resist overhang structure formation and SiO2 sputter-deposition process for fabrication of gold multi-electrode array. RSC Adv. 5(9), 6675–6681 (2015). https://doi.org/10.1039/c4ra11746h
- W. Luo, Z. Yang, J. Zheng, Z. Cai, X. Li et al., Small molecule hydrogels loading small molecule drugs from Chinese medicine for the enhanced treatment of traumatic brain injury. ACS Nano 18(42), 28894–28909 (2024). https://doi.org/10.1021/acsnano.4c09097
- J. Li, S.J. Bandekar, D. Araç, The structure of fly Teneurin-m reveals an asymmetric self-assembly that allows expansion into zippers. EMBO Rep. 24(6), e56728 (2023). https://doi.org/10.15252/embr.202256728
- Y. Shen, Z. Jiang, H. Huang, S. Wang, S. Wu et al., Advances in textile-based triboelectric sensors for physiological signal monitoring. Adv. Funct. Mater. 35(37), 2426081 (2025). https://doi.org/10.1002/adfm.202426081
- J. Zeng, J. Zhao, C. Li, Y. Qi, G. Liu et al., Triboelectric nanogenerators as active tactile stimulators for multifunctional sensing and artificial synapses. Sensors 22(3), 975 (2022). https://doi.org/10.3390/s22030975
- W.-S. Khwa, T.-H. Wen, H.-H. Hsu, W.-H. Huang, Y.-C. Chang et al., A mixed-precision memristor and SRAM compute-in-memory AI processor. Nature 639(8055), 617–623 (2025). https://doi.org/10.1038/s41586-025-08639-2
- A. Renner, L. Supic, A. Danielescu, G. Indiveri, B.A. Olshausen et al., Neuromorphic visual scene understanding with resonator networks. Nat. Mach. Intell. 6(6), 641–652 (2024). https://doi.org/10.1038/s42256-024-00848-0
- C.-Y. Wang, S.-J. Liang, S. Wang, P. Wang, Z.-A. Li et al., Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv. 6(26), eaba6173 (2020). https://doi.org/10.1126/sciadv.aba6173
- A. Natarajan, A. Sudha, D. Dean, V.M. Vijayan, 3D surface-patterned hyaluronic acid hydrogels: customizable platforms for enhanced chondrogenic differentiation and organized production of a specific hyaline cartilage extracellular matrix. ACS Appl. Mater. Interfaces 17(38), 53343–53364 (2025). https://doi.org/10.1021/acsami.5c16374
- Y. Yang, Y. Liu, R. Yin, Fiber-shaped fluidic pumps for wearable applications. Adv. Fiber Mater. 5(5), 1552–1554 (2023). https://doi.org/10.1007/s42765-023-00319-y
References
J. von Neumann, The principles of large-scale computing machines. IEEE Ann. Hist. Comput. 10(4), 243–256 (1988). https://doi.org/10.1109/MAHC.1988.10045
P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, A.S. Cassidy, J. Sawada et al., Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014). https://doi.org/10.1126/science.1254642
K. Sun, J. Chen, X. Yan, The future of memristors: materials engineering and neural networks. Adv. Funct. Mater. 31(8), 2006773 (2021). https://doi.org/10.1002/adfm.202006773
Y. Xiao, B. Jiang, Z. Zhang, S. Ke, Y. Jin et al., A review of memristor: material and structure design, device performance, applications and prospects. Sci. Technol. Adv. Mater. 24(1), 2162323 (2023). https://doi.org/10.1080/14686996.2022.2162323
D. Attwell, S.B. Laughlin, An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21(10), 1133–1145 (2001). https://doi.org/10.1097/00004647-200110000-00001
D.A. Drachman, Do we have brain to spare? Neurology 64(12), 2004–2005 (2005). https://doi.org/10.1212/01.wnl.0000166914.38327.bb
G. Indiveri, S.-C. Liu, Memory and information processing in neuromorphic systems. Proc. IEEE 103(8), 1379–1397 (2015). https://doi.org/10.1109/JPROC.2015.2444094
M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev et al., Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61–64 (2015). https://doi.org/10.1038/nature14441
Y. Li, Z. Wang, R. Midya, Q. Xia, J.J. Yang, Review of memristor devices in neuromorphic computing: materials sciences and device challenges. J. Phys. D Appl. Phys. 51(50), 503002 (2018). https://doi.org/10.1088/1361-6463/aade3f
S.K. Esser, P.A. Merolla, J.V. Arthur, A.S. Cassidy, R. Appuswamy et al., Convolutional networks for fast, energy-efficient neuromorphic computing. Proc. Natl. Acad. Sci. U. S. A. 113(41), 11441–11446 (2016). https://doi.org/10.1073/pnas.1604850113
Z. Cheng, C. Ríos, W.H.P. Pernice, C.D. Wright, H. Bhaskaran, On-chip photonic synapse. Sci. Adv. 3(9), e1700160 (2017). https://doi.org/10.1126/sciadv.1700160
P. Gkoupidenis, D.A. Koutsouras, G.G. Malliaras, Neuromorphic device architectures with global connectivity through electrolyte gating. Nat. Commun. 8, 15448 (2017). https://doi.org/10.1038/ncomms15448
G. Wang, R. Wang, W. Kong, J. Zhang, Simulation of retinal ganglion cell response using fast independent component analysis. Cogn. Neurodyn. 12(6), 615–624 (2018). https://doi.org/10.1007/s11571-018-9490-4
C.S. Yang, D.S. Shang, N. Liu, G. Shi, X. Shen et al., A synaptic transistor based on quasi-2D molybdenum oxide. Adv. Mater. 29(27), 1700906 (2017). https://doi.org/10.1002/adma.201700906
Q. Zhang, T. Jin, X. Ye, D. Geng, W. Chen et al., Organic field effect transistor-based photonic synapses: materials, devices, and applications. Adv. Funct. Mater. 31(49), 2106151 (2021). https://doi.org/10.1002/adfm.202106151
S. Dai, Y. Zhao, Y. Wang, J. Zhang, L. Fang et al., Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 29(42), 1903700 (2019). https://doi.org/10.1002/adfm.201903700
S. Lan, Y. Ke, H. Chen, Photonic synaptic transistor based on P-type organic semiconductor blending with N-type organic semiconductor. IEEE Electron Device Lett. 42(8), 1180–1183 (2021). https://doi.org/10.1109/LED.2021.3090906
G. Lee, Y.E. Kim, H. Kim, H.-K. Lee, J.Y. Park et al., Organic synaptic transistors and printed circuit board defect inspection with photonic stimulation: a novel approach using oblique angle deposition. Small 21(25), 2501997 (2025). https://doi.org/10.1002/smll.202501997
C. Xiang, D. Xue, H. Liu, Q. Wang, X. Jiang et al., Organic photonic synapses with UV–vis–NIR broadband perception based on organic electrochemical transistors. ACS Appl. Mater. Interfaces 17(24), 35822–35832 (2025). https://doi.org/10.1021/acsami.5c07976
D. Dutta, S. Mukherjee, M. Uzhansky, E. Koren, Cross-field optoelectronic modulation via inter-coupled ferroelectricity in 2D In2Se3. NPJ 2D Mater. Appl. 5, 81 (2021). https://doi.org/10.1038/s41699-021-00261-w
L. Fang, S. Dai, Y. Zhao, D. Liu, J. Huang, Light-stimulated artificial synapses based on 2D organic field-effect transistors. Adv. Electron. Mater. 6(1), 1901217 (2020). https://doi.org/10.1002/aelm.201901217
W. Wang, S. Gao, Y. Li, W. Yue, H. Kan et al., Artificial optoelectronic synapses based on TiNxO2–x/MoS2 heterojunction for neuromorphic computing and visual system. Adv. Funct. Mater. 31(34), 2101201 (2021). https://doi.org/10.1002/adfm.202101201
B. Pradhan, S. Das, J. Li, F. Chowdhury, J. Cherusseri et al., Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. Sci. Adv. 6(7), eaay5225 (2020). https://doi.org/10.1126/sciadv.aay5225
B. Gholipour, P. Bastock, C. Craig, K. Khan, D. Hewak et al., Amorphous metal-sulphide microfibers enable photonic synapses for brain-like computing. Adv. Opt. Mater. 3(5), 635–641 (2015). https://doi.org/10.1002/adom.201400472
J.-Y. Wu, Y.T. Chun, S. Li, T. Zhang, J. Wang et al., Broadband MoS2 field-effect phototransistors: ultrasensitive visible-light photoresponse and negative infrared photoresponse. Adv. Mater. 30(7), 1705880 (2018). https://doi.org/10.1002/adma.201705880
Q. Wu, J. Wang, J. Cao, C. Lu, G. Yang et al., Photoelectric plasticity in oxide thin film transistors with tunable synaptic functions. Adv. Electron. Mater. 4(12), 1800556 (2018). https://doi.org/10.1002/aelm.201800556
R. Karimi Azari, L.P. Camargo, J.R.H. Garza, L. Collins, W. Yu Tsai et al., Emulation of synaptic plasticity in WO3-based ion-gated transistors. Adv. Electron. Mater. 11(8), 2400807 (2025). https://doi.org/10.1002/aelm.202400807
Y. Lee, T.-W. Lee, Organic synapses for neuromorphic electronics: from brain-inspired computing to sensorimotor nervetronics. Acc. Chem. Res. 52(4), 964–974 (2019). https://doi.org/10.1021/acs.accounts.8b00553
H. Dong, H. Zhu, Q. Meng, X. Gong, W. Hu, Organic photoresponse materials and devices. Chem. Soc. Rev. 41(5), 1754–1808 (2012). https://doi.org/10.1039/c1cs15205j
H. Chen, Y. Cai, Y. Han, H. Huang, Towards artificial visual sensory system: organic optoelectronic synaptic materials and devices. Angew. Chem. Int. Ed. 63(1), e202313634 (2024). https://doi.org/10.1002/anie.202313634
J. Stollberg, Synapse elimination, the size principle, and Hebbian synapses. J. Neurobiol. 26(2), 273–282 (1995). https://doi.org/10.1002/neu.480260211
L. Wang, R.S.T. Lee, Excitatory and inhibitory neuronal synapse unit: a novel recurrent cell for time series prediction. Neurocomputing 594, 127858 (2024). https://doi.org/10.1016/j.neucom.2024.127858
Y. Bai, T. Suzuki, Activity-dependent synaptic plasticity in Drosophila melanogaster. Front. Physiol. 11, 161 (2020). https://doi.org/10.3389/fphys.2020.00161
M. DiNuzzo, F. Giove, Activity-dependent energy budget for neocortical signaling: effect of short-term synaptic plasticity on the energy expended by spiking and synaptic activity. J. Neurosci. Res. 90(11), 2094–2102 (2012). https://doi.org/10.1002/jnr.23098
F. Gobbo, A. Cattaneo, Neuronal activity at synapse resolution: reporters and effectors for synaptic neuroscience. Front. Mol. Neurosci. 13, 572312 (2020). https://doi.org/10.3389/fnmol.2020.572312
C. Wu, T. Ruan, Y. Yuan, C. Xu, L. Du et al., Alterations in synaptic connectivity and synaptic transmission in Alzheimer’s disease with high physical activity. J. Alzheimers Dis. 99(3), 1005–1022 (2024). https://doi.org/10.3233/JAD-240123
Y. Ozaki, A. Soya, J. Nakamura, T. Matsumoto, Y. Ueta, Potentiation by angiotensin II of spontaneous excitatory postsynaptic currents in rat supraoptic magnocellular neurones. J. Neuroendocrinol. 16(11), 871–879 (2004). https://doi.org/10.1111/j.1365-2826.2004.01244.x
J.-J. Zhang, X.-D. Liu, L.-C. Yu, Influences of morphine on the spontaneous and evoked excitatory postsynaptic currents in lateral amygdala of rats. Physiol. Res. 65(1), 165–169 (2016). https://doi.org/10.33549/physiolres.933027
A. Dvorzhak, O. Myakhar, A. Kamkin, K. Kirmse, S. Kirischuk, Postsynaptically different inhibitory postsynaptic currents in Cajal-Retzius cells in the developing neocortex. NeuroReport 19(12), 1213–1216 (2008). https://doi.org/10.1097/WNR.0b013e328308daa0
B. Szabo, L. Dörner, C. Pfreundtner, W. Nörenberg, K. Starke, Inhibition of GABAergic inhibitory postsynaptic currents by cannabinoids in rat corpus striatum. Neuroscience 85(2), 395–403 (1998). https://doi.org/10.1016/S0306-4522(97)00597-6
K.C. Bittner, A.D. Milstein, C. Grienberger, S. Romani, J.C. Magee, Behavioral time scale synaptic plasticity underlies CA1 place fields. Science 357(6355), 1033–1036 (2017). https://doi.org/10.1126/science.aan3846
J.C. Magee, C. Grienberger, Synaptic plasticity forms and functions. Annu. Rev. Neurosci. 43, 95–117 (2020). https://doi.org/10.1146/annurev-neuro-090919-022842
S.L. Jackman, W.G. Regehr, The mechanisms and functions of synaptic facilitation. Neuron 94(3), 447–464 (2017). https://doi.org/10.1016/j.neuron.2017.02.047
L.Q. Zhu, C.J. Wan, L.Q. Guo, Y. Shi, Q. Wan, Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5, 3158 (2014). https://doi.org/10.1038/ncomms4158
D.M. Bannerman, R. Sprengel, D.J. Sanderson, S.B. McHugh, J.N.P. Rawlins et al., Hippocampal synaptic plasticity, spatial memory and anxiety. Nat. Rev. Neurosci. 15(3), 181–192 (2014). https://doi.org/10.1038/nrn3677
S. Grover, W. Wen, V. Viswanathan, C.T. Gill, R.M.G. Reinhart, Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nat. Neurosci. 25(9), 1237–1246 (2022). https://doi.org/10.1038/s41593-022-01132-3
M.-K. Kim, J.-S. Lee, Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano 12(2), 1680–1687 (2018). https://doi.org/10.1021/acsnano.7b08331
S. Gao, G. Liu, H. Yang, C. Hu, Q. Chen et al., An oxide Schottky junction artificial optoelectronic synapse. ACS Nano 13(2), 2634–2642 (2019). https://doi.org/10.1021/acsnano.9b00340
C. Lu, J. Meng, J. Song, T. Wang, H. Zhu et al., Self-rectifying all-optical modulated optoelectronic multistates memristor crossbar array for neuromorphic computing. Nano Lett. 24(5), 1667–1672 (2024). https://doi.org/10.1021/acs.nanolett.3c04358
N. Li, C. He, Q. Wang, J. Tang, Q. Zhang et al., Gate-tunable large-scale flexible monolayer MoS2 devices for photodetectors and optoelectronic synapses. Nano Res. 15(6), 5418–5424 (2022). https://doi.org/10.1007/s12274-022-4122-z
J. Zhu, Y. Yang, R. Jia, Z. Liang, W. Zhu et al., Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 30(21), 1800195 (2018). https://doi.org/10.1002/adma.201800195
R.S. Zucker, W.G. Regehr, Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002). https://doi.org/10.1146/annurev.physiol.64.092501.114547
C. Tian, J. Ma, C. Zhang, P. Zhan, A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network. Energies 11(12), 3493 (2018). https://doi.org/10.3390/en11123493
H. Zhou, Y. Zhang, L. Yang, Q. Liu, K. Yan et al., Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism. IEEE Access 7, 78063–78074 (2019). https://doi.org/10.21227/9hje-dz22
H.-K. He, R. Yang, W. Zhou, H.-M. Huang, J. Xiong et al., Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2. Small 14(15), 1800079 (2018). https://doi.org/10.1002/smll.201800079
K. Pilarczyk, A. Podborska, M. Lis, M. Kawa, D. Migdal et al., Synaptic behavior in an optoelectronic device based on semiconductor-nanotube hybrid. Adv. Electron. Mater. 2(6), 1500471 (2016). https://doi.org/10.1002/aelm.201500471
C.-S. Yang, D.-S. Shang, Y.-S. Chai, L.-Q. Yan, B.-G. Shen et al., Electrochemical-reaction-induced synaptic plasticity in MoOx-based solid state electrochemical cells. Phys. Chem. Chem. Phys. 19(6), 4190–4198 (2017). https://doi.org/10.1039/c6cp06004h
S.W. Cho, S.M. Kwon, M. Lee, J.-W. Jo, J.S. Heo et al., Multi-spectral gate-triggered heterogeneous photonic neuro-transistors for power-efficient brain-inspired neuromorphic computing. Nano Energy 66, 104097 (2019). https://doi.org/10.1016/j.nanoen.2019.104097
Y.B. Guo, L.Q. Zhu, W.T. Gao, Z.Y. Ren, H. Xiao et al., Low-voltage protonic/photonic synergic coupled oxide phototransistor. Org. Electron. 71, 31–35 (2019). https://doi.org/10.1016/j.orgel.2019.04.038
M.L. Schneider, C.A. Donnelly, S.E. Russek, B. Baek, M.R. Pufall et al., Ultralow power artificial synapses using nanotextured magnetic Josephson junctions. Sci. Adv. 4(1), e1701329 (2018). https://doi.org/10.1126/sciadv.1701329
G. Indiveri, E. Chicca, R. Douglas, A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 17(1), 211–221 (2006). https://doi.org/10.1109/TNN.2005.860850
Y. van de Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria et al., A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16(4), 414–418 (2017). https://doi.org/10.1038/nmat4856
F. Teng, K. Hu, W. Ouyang, X. Fang, Photoelectric detectors based on inorganic p-type semiconductor materials. Adv. Mater. 30(35), e1706262 (2018). https://doi.org/10.1002/adma.201706262
W. Ouyang, F. Teng, J.-H. He, X. Fang, Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering. Adv. Funct. Mater. 29(9), 1807672 (2019). https://doi.org/10.1002/adfm.201807672
S. Li, L. Zhan, C. Sun, H. Zhu, G. Zhou et al., Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets. J. Am. Chem. Soc. 141(7), 3073–3082 (2019). https://doi.org/10.1021/jacs.8b12126
C. Sun, S. Qin, R. Wang, S. Chen, F. Pan et al., High efficiency polymer solar cells with efficient hole transfer at zero highest occupied molecular orbital offset between methylated polymer donor and brominated acceptor. J. Am. Chem. Soc. 142(3), 1465–1474 (2020). https://doi.org/10.1021/jacs.9b09939
Y. Yuan, G. Giri, A.L. Ayzner, A.P. Zoombelt, S.C.B. Mannsfeld et al., Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 5, 3005 (2014). https://doi.org/10.1038/ncomms4005
P.E. Shaw, A. Ruseckas, I.D.W. Samuel, Exciton diffusion measurements in poly(3-hexylthiophene). Adv. Mater. 20(18), 3516–3520 (2008). https://doi.org/10.1002/adma.200800982
K.-J. Baeg, M. Binda, D. Natali, M. Caironi, Y.-Y. Noh, Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25(31), 4267–4295 (2013). https://doi.org/10.1002/adma.201204979
M.A. Brady, G.M. Su, M.L. Chabinyc, Recent progress in the morphology of bulk heterojunction photovoltaics. Soft Matter 7(23), 11065 (2011). https://doi.org/10.1039/c1sm06147j
M.A. Ruderer, P. Müller-Buschbaum, Morphology of polymer-based bulk heterojunction films for organic photovoltaics. Soft Matter 7(12), 5482 (2011). https://doi.org/10.1039/c0sm01502d
T. Sun, B. Feng, J. Huo, Y. Xiao, W. Wang et al., Artificial intelligence meets flexible sensors: emerging smart flexible sensing systems driven by machine learning and artificial synapses. Nano-Micro Lett. 16(1), 14 (2023). https://doi.org/10.1007/s40820-023-01235-x
X. Bai, X. Zhang, Artificial intelligence-powered materials science. Nano-Micro Lett. 17(1), 135 (2025). https://doi.org/10.1007/s40820-024-01634-8
K. He, C. Wang, Y. He, J. Su, X. Chen, Artificial neuron devices. Chem. Rev. 123(23), 13796–13865 (2023). https://doi.org/10.1021/acs.chemrev.3c00527
S. Wang, X. Shi, J. Gong, W. Liu, C. Jin et al., Artificial retina based on organic heterojunction transistors for mobile recognition. Nano Lett. 24(10), 3204–3212 (2024). https://doi.org/10.1021/acs.nanolett.4c00087
B. Mu, L. Guo, J. Liao, P. Xie, G. Ding et al., Near-infrared artificial synapses for artificial sensory neuron system. Small 17(38), e2103837 (2021). https://doi.org/10.1002/smll.202103837
S. Kang, S. Sohn, H. Kim, H.J. Yun, B.C. Jang et al., Imitating synapse behavior: exploiting off-current in TPBi-doped small molecule phototransistors for broadband wavelength recognition. ACS Appl. Mater. Interfaces 16(9), 11758–11766 (2024). https://doi.org/10.1021/acsami.3c17855
J. Anderson, B. Anderson, The myth of persistence of vision revisited. J. Film Video 45(1), 3–12 (1993)
Y. Gu, Z. Guo, W. Yuan, M. Kong, Y. Liu et al., High-sensitivity imaging of time-domain near-infrared light transducer. Nat. Photonics 13(8), 525–531 (2019). https://doi.org/10.1038/s41566-019-0437-z
L. Jiang, T. Chen, E. Song, Y. Fan, D. Min et al., High-performance near-infrared fluorescence probe for fast and specific visualization of harmful sulfite in food, living cells, and zebrafish. Chem. Eng. J. 427, 131563 (2022). https://doi.org/10.1016/j.cej.2021.131563
Y. Yang, Y. Xie, F. Zhang, Second near-infrared window fluorescence nanoprobes for deep-tissue in vivo multiplexed bioimaging. Adv. Drug Deliv. Rev. 193, 114697 (2023). https://doi.org/10.1016/j.addr.2023.114697
X. Zhao, C. Li, H. Qi, J. Huang, Y. Xu et al., Integrated near-infrared fiber-optic photoacoustic sensing demodulator for ultra-high sensitivity gas detection. Photoacoustics 33, 100560 (2023). https://doi.org/10.1016/j.pacs.2023.100560
Z. Lv, Y. Wang, J. Chen, J. Wang, Y. Zhou et al., Semiconductor quantum dots for memories and neuromorphic computing systems. Chem. Rev. 120(9), 3941–4006 (2020). https://doi.org/10.1021/acs.chemrev.9b00730
N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews et al., 25th anniversary : semiconductor nanowires: synthesis, characterization, and applications. Adv. Mater. 26(14), 2137–2184 (2014). https://doi.org/10.1002/adma.201305929
H. Zhang, Ö. Gül, S. Conesa-Boj, M.P. Nowak, M. Wimmer et al., Ballistic superconductivity in semiconductor nanowires. Nat. Commun. 8, 16025 (2017). https://doi.org/10.1038/ncomms16025
Y. Tong, B.J. Bohn, E. Bladt, K. Wang, P. Müller-Buschbaum et al., From precursor powders to CsPbX3 perovskite nanowires: one-pot synthesis, growth mechanism, and oriented self-assembly. Angew. Chem. Int. Ed. 56(44), 13887–13892 (2017). https://doi.org/10.1002/anie.201707224
G. Zhou, L. Xu, G. Hu, L. Mai, Y. Cui, Nanowires for electrochemical energy storage. Chem. Rev. 119(20), 11042–11109 (2019). https://doi.org/10.1021/acs.chemrev.9b00326
Y.-J. Kim, C.-H. Cho, K. Paek, M. Jo, M.-K. Park et al., Precise control of quantum dot location within the P3HT-b-P2VP/QD nanowires formed by crystallization-driven 1D growth of hybrid dimeric seeds. J. Am. Chem. Soc. 136(7), 2767–2774 (2014). https://doi.org/10.1021/ja410165f
S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith et al., Inorganic–organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano Lett. 11(9), 3998–4002 (2011). https://doi.org/10.1021/nl202435t
Z. Zhang, S. Wang, Z. Wang, L. Ding, T. Pei et al., Almost perfectly symmetric SWCNT-based CMOS devices and scaling. ACS Nano 3(11), 3781–3787 (2009). https://doi.org/10.1021/nn901079p
Q. Cao, H.-S. Kim, N. Pimparkar, J.P. Kulkarni, C. Wang et al., Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454(7203), 495–500 (2008). https://doi.org/10.1038/nature07110
S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393(6680), 49–52 (1998). https://doi.org/10.1038/29954
Z. Zhang, S. Wang, L. Ding, X. Liang, T. Pei et al., Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Lett. 8(11), 3696–3701 (2008). https://doi.org/10.1021/nl8018802
X. Li, S. Chen, P.-F. Liu, Y. Zhang, Y. Chen et al., Evidence for ferroelectricity of all-inorganic perovskite CsPbBr3 quantum dots. J. Am. Chem. Soc. 142(7), 3316–3320 (2020). https://doi.org/10.1021/jacs.9b12254
Y. Chen, Y. Chu, X. Wu, W. Ou-Yang, J. Huang, High-performance inorganic perovskite quantum dot-organic semiconductor hybrid phototransistors. Adv. Mater. 29(44), 1704062 (2017). https://doi.org/10.1002/adma.201704062
K. Wang, S. Dai, Y. Zhao, Y. Wang, C. Liu et al., Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small 15(11), 1900010 (2019). https://doi.org/10.1002/smll.201900010
D. Hao, J. Zhang, S. Dai, J. Zhang, J. Huang, Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl. Mater. Interfaces 12(35), 39487–39495 (2020). https://doi.org/10.1021/acsami.0c10851
D. Hao, J. Zou, J. Huang, Recent developments in flexible photodetectors based on metal halide perovskite. InfoMat 2(1), 139–169 (2020). https://doi.org/10.1002/inf2.12053
Q. Shi, D. Liu, D. Hao, J. Zhang, L. Tian et al., Printable, ultralow-power ternary synaptic transistors for multifunctional information processing system. Nano Energy 87, 106197 (2021). https://doi.org/10.1016/j.nanoen.2021.106197
J. Kuang, K. Liu, M. Liu, M. Shao, M. Zhu et al., Interface defects tuning in polymer-perovskite phototransistors for visual synapse and adaptation functions. Adv. Funct. Mater. 33(5), 2209502 (2023). https://doi.org/10.1002/adfm.202209502
Z. Zhao, Z. Hu, M. Deng, E. Hong, P. Wang et al., Bias-switchable photodetection and photosynapse dual-functional devices based on 2D perovskite/organic heterojunction for imaging-to-recognition conversion. Adv. Mater. 37(5), 2416033 (2025). https://doi.org/10.1002/adma.202416033
S. Feng, J. Li, L. Feng, Z. Liu, J. Wang et al., Dual-mode conversion of photodetector and neuromorphic vision sensor via bias voltage regulation on a single device. Adv. Mater. 35(49), e2308090 (2023). https://doi.org/10.1002/adma.202308090
C. Fu, J. Yang, J. Wang, S. Luo, L. Luo et al., Dual-mode semiconductor device enabling optoelectronic detection and neuromorphic processing with extended spectral responsivity. Adv. Mater. 36(49), e2409406 (2024). https://doi.org/10.1002/adma.202409406
E. Ercan, Y.-C. Lin, W.-C. Yang, W.-C. Chen, Self-assembled nanostructures of quantum dot/conjugated polymer hybrids for photonic synaptic transistors with ultralow energy consumption and zero-gate bias. Adv. Funct. Mater. 32(6), 2107925 (2022). https://doi.org/10.1002/adfm.202107925
X. Luo, W. Deng, F. Sheng, X. Ren, Z. Zhao et al., Bionic scotopic adaptation transistors for nighttime low illumination imaging. ACS Nano 18(21), 13726–13737 (2024). https://doi.org/10.1021/acsnano.4c01663
Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou et al., Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30(38), 1802883 (2018). https://doi.org/10.1002/adma.201802883
D. Uddin, B.G. Jeffrey, O. Flynn, W. Wong, H. Wiley et al., Repeatability of scotopic sensitivity and dark adaptation using a medmont dark-adapted chromatic perimeter in age-related macular degeneration. Transl. Vis. Sci. Technol. 9(7), 31 (2020). https://doi.org/10.1167/tvst.9.7.31
G.R. Jackson, C. Owsley, E. Price Cordle, C.D. Finley, Aging and scotopic sensitivity. Vis. Res. 38(22), 3655–3662 (1998). https://doi.org/10.1016/S0042-6989(98)00044-3
S. Hong, S.H. Choi, J. Park, H. Yoo, J.Y. Oh et al., Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1–xIx)3 perovskite and MoS2 hybrid structure. ACS Nano 14(8), 9796–9806 (2020). https://doi.org/10.1021/acsnano.0c01689
C. Jin, W. Liu, Y. Xu, Y. Huang, Y. Nie et al., Artificial vision adaption mimicked by an optoelectrical In2O3 transistor array. Nano Lett. 22(8), 3372–3379 (2022). https://doi.org/10.1021/acs.nanolett.2c00599
X. Sha, Y. Cao, L. Meng, Z. Yao, Y. Gao et al., Near-infrared photonic artificial synapses based on organic heterojunction phototransistors. Appl. Phys. Lett. 120(15), 151103 (2022). https://doi.org/10.1063/5.0083925
N. Sui, Y. Ji, M. Li, F. Zheng, S. Shao et al., Photoprogrammed multifunctional optoelectronic synaptic transistor arrays based on photosensitive polymer-sorted semiconducting single-walled carbon nanotubes for image recognition. Adv. Sci. 11(29), 2401794 (2024). https://doi.org/10.1002/advs.202401794
Y.-B. Leng, Z. Lv, S. Huang, P. Xie, H.-X. Li et al., A near-infrared retinomorphic device with high dimensionality reservoir expression. Adv. Mater. 36(48), 2411225 (2024). https://doi.org/10.1002/adma.202411225
X. Luo, C. Chen, Z. He, M. Wang, K. Pan et al., A bionic self-driven retinomorphic eye with ionogel photosynaptic retina. Nat. Commun. 15(1), 3086 (2024). https://doi.org/10.1038/s41467-024-47374-6
C. Gallicchio, A. Micheli, Echo state property of deep reservoir computing networks. Cogn. Comput. 9(3), 337–350 (2017). https://doi.org/10.1007/s12559-017-9461-9
L. Chen, X. Wang, C. Yang, Z. Chen, J. Zhang et al., Full-analog reservoir computing circuit based on memristor with a hybrid wide-deep architecture. IEEE Trans. Circuits Syst. I Regul. Pap. 71(2), 501–514 (2024). https://doi.org/10.1109/TCSI.2023.3334267
L. Pedrelli, X. Hinaut, Hierarchical-task reservoir for online semantic analysis from continuous speech. IEEE Trans. Neural Netw. Learn. Syst. 33(6), 2654–2663 (2022). https://doi.org/10.1109/TNNLS.2021.3095140
E.A. Antonelo, B. Schrauwen, On learning navigation behaviors for small mobile robots with reservoir computing architectures. IEEE Trans. Neural Netw. Learn. Syst. 26(4), 763–780 (2015). https://doi.org/10.1109/TNNLS.2014.2323247
C. Gao, D. Liu, C. Xu, W. Xie, X. Zhang et al., Toward grouped-reservoir computing: organic neuromorphic vertical transistor with distributed reservoir states for efficient recognition and prediction. Nat. Commun. 15(1), 740 (2024). https://doi.org/10.1038/s41467-024-44942-8
N. Kumar, M. Patel, T.T. Nguyen, P. Bhatnagar, J. Kim, All-oxide-based and metallic electrode-free artificial synapses for transparent neuromorphic computing. Mater. Today Chem. 23, 100681 (2022). https://doi.org/10.1016/j.mtchem.2021.100681
C. Jiang, J. Liu, Y. Ni, S. Qu, L. Liu et al., Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement. Nat. Commun. 14(1), 1344 (2023). https://doi.org/10.1038/s41467-023-36935-w
K. Yang, J.J. Yang, R. Huang, Y. Yang, Nonlinearity in memristors for neuromorphic dynamic systems. Small Sci. 2(1), 2100049 (2021). https://doi.org/10.1002/smsc.202100049
J. Chen, Z. Zhou, B.J. Kim, Y. Zhou, Z. Wang et al., Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat. Nanotechnol. 18(8), 882–888 (2023). https://doi.org/10.1038/s41565-023-01379-2
S. Liu, J. Zeng, Z. Wu, H. Hu, A. Xu et al., An ultrasmall organic synapse for neuromorphic computing. Nat. Commun. 14(1), 7655 (2023). https://doi.org/10.1038/s41467-023-43542-2
T. Yan, Z. Li, F. Cao, J. Chen, L. Wu et al., An all-organic self-powered photodetector with ultraflexible dual-polarity output for biosignal detection. Adv. Mater. 34(30), 2201303 (2022). https://doi.org/10.1002/adma.202201303
J. Lao, M. Yan, B. Tian, C. Jiang, C. Luo et al., Ultralow-power machine vision with self-powered sensor reservoir. Adv. Sci. 9(15), 2106092 (2022). https://doi.org/10.1002/advs.202106092
L. Gu, S. Poddar, Y. Lin, Z. Long, D. Zhang et al., A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581(7808), 278–282 (2020). https://doi.org/10.1038/s41586-020-2285-x
T.Q. Trung, A. Bag, L.T.N. Huyen, M. Meeseepong, N.-E. Lee, Bio-inspired artificial retinas based on a fibrous inorganic–organic heterostructure for neuromorphic vision. Adv. Funct. Mater. 34(11), 2309378 (2024). https://doi.org/10.1002/adfm.202309378
C. Gao, D. Liu, C. Xu, J. Bai, E. Li et al., Feedforward photoadaptive organic neuromorphic transistor with mixed-weight plasticity for augmenting perception. Adv. Funct. Mater. 34(18), 2313217 (2024). https://doi.org/10.1002/adfm.202313217
J.S. Heo, J. Eom, Y.-H. Kim, S.K. Park, Recent progress of textile-based wearable electronics: a comprehensive review of materials, devices, and applications. Small 14(3), 1703034 (2018). https://doi.org/10.1002/smll.201703034
W. Weng, J. Yang, Y. Zhang, Y. Li, S. Yang et al., A route toward smart system integration: from fiber design to device construction. Adv. Mater. 32(5), 1902301 (2020). https://doi.org/10.1002/adma.201902301
Y. Zhang, H. Wang, H. Lu, S. Li, Y. Zhang, Electronic fibers and textiles: recent progress and perspective. iScience 24(7), 102716 (2021). https://doi.org/10.1016/j.isci.2021.102716
S. Chen, Z. Lou, D. Chen, G. Shen, An artificial flexible visual memory system based on an UV-motivated memristor. Adv. Mater. 30(7), 1705400 (2018). https://doi.org/10.1002/adma.201705400
S. Seo, S.-H. Jo, S. Kim, J. Shim, S. Oh et al., Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9(1), 5106 (2018). https://doi.org/10.1038/s41467-018-07572-5
H. Wang, Q. Zhao, Z. Ni, Q. Li, H. Liu et al., A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv. Mater. 30(46), e1803961 (2018). https://doi.org/10.1002/adma.201803961
S.M. Kwon, S.W. Cho, M. Kim, J.S. Heo, Y.-H. Kim et al., Environment-adaptable artificial visual perception behaviors using a light-adjustable optoelectronic neuromorphic device array. Adv. Mater. 31(52), 1906433 (2019). https://doi.org/10.1002/adma.201906433
S.E. Ng, Y.B. Tay, T.Y.K. Ho, N.M. Ankit, Inorganic electrochromic transistors as environmentally adaptable photodetectors. Nano Energy 97, 107142 (2022). https://doi.org/10.1016/j.nanoen.2022.107142
D. Xie, L. Wei, M. Xie, L. Jiang, J. Yang et al., Photoelectric visual adaptation based on 0D-CsPbBr3-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor. Adv. Funct. Mater. 31(14), 2010655 (2021). https://doi.org/10.1002/adfm.202010655
T.-J. Lee, K.-R. Yun, S.-K. Kim, J.-H. Kim, J. Jin et al., Realization of an artificial visual nervous system using an integrated optoelectronic device array. Adv. Mater. 33(51), 2105485 (2021). https://doi.org/10.1002/adma.202105485
H. Shen, Z. He, W. Jin, L. Xiang, W. Zhao et al., Mimicking sensory adaptation with dielectric engineered organic transistors. Adv. Mater. 31(48), e1905018 (2019). https://doi.org/10.1002/adma.201905018
V.A. Pieribone, O. Shupliakov, L. Brodin, S. Hilfiker-Rothenfluh, A.J. Czernik et al., Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375(6531), 493–497 (1995). https://doi.org/10.1038/375493a0
A. Panatier, D.T. Theodosis, J.-P. Mothet, B. Touquet, L. Pollegioni et al., Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 125(4), 775–784 (2006). https://doi.org/10.1016/j.cell.2006.02.051
S.G. Sarwat, B. Kersting, T. Moraitis, V.P. Jonnalagadda, A. Sebastian, Phase-change memtransistive synapses for mixed-plasticity neural computations. Nat. Nanotechnol. 17(5), 507–513 (2022). https://doi.org/10.1038/s41565-022-01095-3
Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360(6392), 998–1003 (2018). https://doi.org/10.1126/science.aao0098
L. Tang, J. Shang, X. Jiang, Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci. Adv. 7(3), eabe3778 (2021). https://doi.org/10.1126/sciadv.abe3778
M. Li, X. Ma, Y. Mu, G. Xie, H. Wan et al., A facile covalent strategy for ultrafast negative photoconductance hybrid graphene/porphyrin-based photodetector. Nanotechnology 34(8), 085201 (2022). https://doi.org/10.1088/1361-6528/aca598
C. Biswas, F. Güneş, D.D. Loc, S.C. Lim, M.S. Jeong et al., Negative and positive persistent photoconductance in graphene. Nano Lett. 11(11), 4682–4687 (2011). https://doi.org/10.1021/nl202266h
G. Zhou, B. Sun, X. Hu, L. Sun, Z. Zou et al., Negative photoconductance effect: an extension function of the TiOx-based memristor. Adv. Sci. 8(13), 2003765 (2021). https://doi.org/10.1002/advs.202003765
E. Baek, T. Rim, J. Schütt, C.-K. Baek, K. Kim et al., Negative photoconductance in heavily doped Si nanowire field-effect transistors. Nano Lett. 17(11), 6727–6734 (2017). https://doi.org/10.1021/acs.nanolett.7b02788
M.A. Haque, J.-L. Li, A.L. Abdelhady, M.I. Saidaminov, D. Baran et al., Transition from positive to negative photoconductance in doped hybrid perovskite semiconductors. Adv. Opt. Mater. 7(22), 1900865 (2019). https://doi.org/10.1002/adom.201900865
D. Li, N. An, K. Tan, Y. Ren, H. Wang et al., Insulating electrets converted from organic semiconductor for high-performance transistors, memories, and artificial synapses. Adv. Funct. Mater. 33(45), 2305012 (2023). https://doi.org/10.1002/adfm.202305012
Y. Ni, Y. Wang, W. Xu, Recent process of flexible transistor-structured memory. Small 17(9), 1905332 (2021). https://doi.org/10.1002/smll.201905332
A. Sumanth, K.L. Ganapathi, M.S. Ramachandra Rao, T. Dixit, A review on realizing the modern optoelectronic applications through persistent photoconductivity. J. Phys. D Appl. Phys. 55(39), 393001 (2022). https://doi.org/10.1088/1361-6463/ac7f66
Y. Kang, J. Jang, D. Cha, S. Lee, Synaptic weight evolution and charge trapping mechanisms in a synaptic pass-transistor operation with a direct potential output. IEEE Trans. Neural Netw. Learn. Syst. 32(10), 4728–4741 (2021). https://doi.org/10.1109/TNNLS.2020.3047963
Z. Gao, R. Jiang, M. Deng, C. Zhao, Z. Hong et al., Tunable negative and positive photoconductance in van der Waals heterostructure for image preprocessing. Adv. Mater. 36(29), 2401585 (2024). https://doi.org/10.1002/adma.202401585
Y.-C. Mi, C.-H. Yang, L.-C. Shih, J.-S. Chen, All-optical-controlled excitatory and inhibitory synaptic signaling through bipolar photoresponse of an oxide-based phototransistor. Adv. Opt. Mater. 11(14), 2300089 (2023). https://doi.org/10.1002/adom.202300089
B. Xu, D. Guo, W. Dong, H. Gao, P. Zhu et al., Gap state-modulated van der Waals short-term memory with broad band negative photoconductance. Small 20(21), e2309626 (2024). https://doi.org/10.1002/smll.202309626
Y. Yang, X. Peng, H.-S. Kim, T. Kim, S. Jeon et al., Hot carrier trapping induced negative photoconductance in InAs nanowires toward novel nonvolatile memory. Nano Lett. 15(9), 5875–5882 (2015). https://doi.org/10.1021/acs.nanolett.5b01962
Y. Ishijima, T. Ishiguro, Negative photoconductance in a single crystal of C60. J. Phys. Soc. Jpn. 65(6), 1574–1577 (1996). https://doi.org/10.1143/jpsj.65.1574
Y. Zhu, M. Juhl, G. Coletti, Z. Hameiri, On the transient negative photoconductance in n-type czochralski silicon. IEEE J. Photovolt. 8(2), 421–427 (2018). https://doi.org/10.1109/JPHOTOV.2017.2784679
W. He, D. Wu, L. Kong, P. Yu, G. Yang, Giant negative photoresponse in van der Waals graphene/AgBiP2Se6/graphene trilayer heterostructures. Adv. Mater. 36(16), e2312541 (2024). https://doi.org/10.1002/adma.202312541
R. Wang, J.-L. Wang, T. Liu, Z. He, H. Wang et al., Controllable inverse photoconductance in semiconducting nanowire films. Adv. Mater. 34(36), e2204698 (2022). https://doi.org/10.1002/adma.202204698
M.A. Mangold, M. Calame, M. Mayor, A.W. Holleitner, Negative differential photoconductance in gold nanop arrays in the coulomb blockade regime. ACS Nano 6(5), 4181–4189 (2012). https://doi.org/10.1021/nn300673t
Y. Wang, E. Liu, A. Gao, T. Cao, M. Long et al., Negative photoconductance in van der Waals heterostructure-based floating gate phototransistor. ACS Nano 12(9), 9513–9520 (2018). https://doi.org/10.1021/acsnano.8b04885
J.W. John, V. Dhyani, Y.M. Georgiev, A.S. Gangnaik, S. Biswas et al., Ultrahigh negative infrared photoconductance in highly As-doped germanium nanowires induced by hot electron trapping. ACS Appl. Electron. Mater. 2(7), 1934–1942 (2020). https://doi.org/10.1021/acsaelm.0c00245
D. Xue, W. Gong, C. Yan, Y. Zhang, J. Lu et al., Boosting bidirectional photoresponse with wavelength selectivity through ambipolar transport modulation. Adv. Funct. Mater. 34(38), 2402884 (2024). https://doi.org/10.1002/adfm.202402884
Y. Xu, X. Xu, Y. Huang, Y. Tian, M. Cheng et al., Gate-tunable positive and negative photoconductance in near-infrared organic heterostructures for in-sensor computing. Adv. Mater. 36(30), e2402903 (2024). https://doi.org/10.1002/adma.202402903
H. Wei, Z. Xu, Y. Ni, L. Yang, L. Sun et al., Mixed-dimensional nanop–nanowire channels for flexible optoelectronic artificial synapse with enhanced photoelectric response and asymmetric bidirectional plasticity. Nano Lett. 23(18), 8743–8752 (2023). https://doi.org/10.1021/acs.nanolett.3c02836
P. Xie, X. Chen, Z. Zeng, W. Wang, Y. Meng et al., Artificial visual systems with tunable photoconductivity based on organic molecule-nanowire heterojunctions. Adv. Funct. Mater. 33(4), 2209091 (2023). https://doi.org/10.1002/adfm.202209091
X. Zhu, Y. Yan, L. Sun, Y. Ren, Y. Zhang et al., Negative phototransistors with ultrahigh sensitivity and weak-light detection based on 1D/2D molecular crystal p–n heterojunctions and their application in light encoders. Adv. Mater. 34(23), 2270174 (2022). https://doi.org/10.1002/adma.202270174
Y.-C. Chiang, C.-C. Hung, Y.-C. Lin, Y.-C. Chiu, T. Isono et al., High-performance nonvolatile organic photonic transistor memory devices using conjugated rod–coil materials as a floating gate. Adv. Mater. 32(36), 2002638 (2020). https://doi.org/10.1002/adma.202002638
Z. Lv, M. Chen, F. Qian, V.A.L. Roy, W. Ye et al., Mimicking neuroplasticity in a hybrid biopolymer transistor by dual modes modulation. Adv. Funct. Mater. 29(31), 1902374 (2019). https://doi.org/10.1002/adfm.201902374
D. Berco, D. Shenp Ang, Recent progress in synaptic devices paving the way toward an artificial cogni-retina for bionic and machine vision. Adv. Intell. Syst. 1(1), 1900012 (2019). https://doi.org/10.1002/aisy.201900012
X. Shi, Y. Xu, W. Liu, C. Jin, S. Wang et al., Organic heterojunction phototransistors with bi-directional photoresponse for vision biomimetics. Adv. Funct. Mater. 34(32), 2401534 (2024). https://doi.org/10.1002/adfm.202401534
X. Wu, Y. Chu, R. Liu, H.E. Katz, J. Huang, Pursuing polymer dielectric interfacial effect in organic transistors for photosensing performance optimization. Adv. Sci. 4(12), 1700442 (2017). https://doi.org/10.1002/advs.201700442
Y. Ren, J.-Q. Yang, L. Zhou, J.-Y. Mao, S.-R. Zhang et al., Gate-tunable synaptic plasticity through controlled polarity of charge trapping in fullerene composites. Adv. Funct. Mater. 28(50), 1805599 (2018). https://doi.org/10.1002/adfm.201805599
N. Qiao, P. Wei, Y. Xing, X. Qin, X. Wang et al., Rapid charge storage and release at etching-assist electret in organic transistors for memories, photodetectors, and artificial synapses. Adv. Mater. Interfaces 9(19), 2200713 (2022). https://doi.org/10.1002/admi.202200713
P. Moon, Y. Won, O. Hak, L. Kwang, Enhancement of synaptic behavior in organic electrochemical transistors via the introduction of layer-by-layer grown metal-organic framework. Adv. Mater. Technol. 10(6), 2401316 (2025). https://doi.org/10.1002/admt.202401316
H.R. Lee, D. Lee, J.H. Oh, A hippocampus-inspired dual-gated organic artificial synapse for simultaneous sensing of a neurotransmitter and light. Adv. Mater. 33(17), 2100119 (2021). https://doi.org/10.1002/adma.202100119
J. Li, Z. Feng, Y. Qian, W. Huang, W. Li et al., Organic semiconductor heterojunction-based photonic synaptic transistor with temperature stability and adaptive learning ability for neuromorphic computing systems. ACS Appl. Electron. Mater. 7(13), 6149–6157 (2025). https://doi.org/10.1021/acsaelm.5c00882
Y. Liang, H. Li, H. Tang, C. Zhang, D. Men et al., Bioinspired electrolyte-gated organic synaptic transistors: from fundamental requirements to applications. Nano-Micro Lett. 17(1), 198 (2025). https://doi.org/10.1007/s40820-025-01708-1
S. Zhong, L. Su, M. Xu, D. Loke, B. Yu et al., Recent advances in artificial sensory neurons: biological fundamentals, devices, applications, and challenges. Nano-Micro Lett. 17(1), 61 (2024). https://doi.org/10.1007/s40820-024-01550-x
Y. Zhu, T. Nyberg, L. Nyholm, D. Primetzhofer, X. Shi et al., Wafer-scale Ag2S-based memristive crossbar arrays with ultra-low switching-energies reaching biological synapses. Nano-Micro Lett. 17(1), 69 (2024). https://doi.org/10.1007/s40820-024-01559-2
J. Xia, C. Gao, C. Peng, Y. Liu, P.-A. Chen et al., Multidimensional deep ultraviolet (DUV) synapses based on organic/perovskite semiconductor heterojunction transistors for antispoofing facial recognition systems. Nano Lett. 24(22), 6673–6682 (2024). https://doi.org/10.1021/acs.nanolett.4c01356
S. Kang, M. Kim, C. Yoo, B.M. Lim, B.C. Jang et al., Photogating-based organic synapse electronics modulated by dielectric. Org. Electron. 129, 107056 (2024). https://doi.org/10.1016/j.orgel.2024.107056
J. Chen, X.-C. Zhao, Y.-Q. Zhu, Z.-H. Wang, Z. Zhang et al., Polarized tunneling transistor for ultralow-energy-consumption artificial synapse toward neuromorphic computing. ACS Nano 18(1), 581–591 (2024). https://doi.org/10.1021/acsnano.3c08632
L. Sun, S. Qu, Y. Du, L. Yang, Y. Li et al., Bio-inspired vision and neuromorphic image processing using printable metal oxide photonic synapses. ACS Photonics 10(1), 242–252 (2023). https://doi.org/10.1021/acsphotonics.2c01583
S.T. Keene, C. Lubrano, S. Kazemzadeh, A. Melianas, Y. Tuchman et al., A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 19(9), 969–973 (2020). https://doi.org/10.1038/s41563-020-0703-y
F. Xu, C. Zhang, X. Zhao, H. Yu, G. Zhao et al., Intrinsically stretchable photonic synaptic transistors for retina-like visual image systems. J. Mater. Chem. C 10(29), 10586–10594 (2022). https://doi.org/10.1039/d2tc01775j
A. Jones, A. Rush, C. Merkel, E. Herrmann, A.P. Jacob et al., A neuromorphic SLAM architecture using gated-memristive synapses. Neurocomputing 381, 89–104 (2020). https://doi.org/10.1016/j.neucom.2019.09.098
M.M. Islam, D. Dev, A. Krishnaprasad, L. Tetard, T. Roy, Optoelectronic synapse using monolayer MoS2 field effect transistors. Sci. Rep. 10(1), 21870 (2020). https://doi.org/10.1038/s41598-020-78767-4
J.-H. Choi, H.-M. An, H.-L. Park, Polarized light-sensitive optoelectronic synapses for expanding artificial vision systems. Flex. Print. Electron. 10(1), 013501 (2025). https://doi.org/10.1088/2058-8585/adb595
H. Wurzer, C. Hoffmann, A. Al Absi, C. Thomas, Actin cytoskeleton straddling the immunological synapse between cytotoxic lymphocytes and cancer cells. Cells 8(5), 463 (2019). https://doi.org/10.3390/cells8050463
C. Zhang, Y. Li, F. Yu, G. Wang, K. Wang et al., Visual growth of nano-HOFs for low‐power memristive spiking neuromorphic system. Nano Energy 109, 108274 (2023). https://doi.org/10.1016/j.nanoen.2023.108274
M. Dong, Y. Zhang, J. Zhu, X. Zhu, J. Zhao et al., All-in-one 2D molecular crystal optoelectronic synapse for polarization-sensitive neuromorphic visual system. Adv. Mater. 36(40), 2409550 (2024). https://doi.org/10.1002/adma.202409550
I.-K. Hwang, M.G. Lee, J.B. Jeon, S.H. Nam, D. Lee et al., Visible-light chiral photonic synapses based on hybrid organic-inorganic 2D perovskites. Adv. Electron. Mater. 11(3), 2400525 (2025). https://doi.org/10.1002/aelm.202400525
P. Xie, Y. Xu, J. Wang, D. Li, Y. Zhang et al., Birdlike broadband neuromorphic visual sensor arrays for fusion imaging. Nat. Commun. 15(1), 8298 (2024). https://doi.org/10.1038/s41467-024-52563-4
D. Li, Y. Chen, H. Ren, Y. Tang, S. Zhang et al., An active-matrix synaptic phototransistor array for in-sensor spectral processing. Adv. Sci. 11(39), 2406401 (2024). https://doi.org/10.1002/advs.202406401
X. Liu, S. Dai, W. Zhao, J. Zhang, Z. Guo et al., All-photolithography fabrication of ion-gated flexible organic transistor array for multimode neuromorphic computing. Adv. Mater. 36(21), e2312473 (2024). https://doi.org/10.1002/adma.202312473
S. Zhang, R. Chen, D. Kong, Y. Chen, W. Liu et al., Photovoltaic nanocells for high-performance large-scale-integrated organic phototransistors. Nat. Nanotechnol. 19(9), 1323–1332 (2024). https://doi.org/10.1038/s41565-024-01707-0
H. Lee, J.H. Hwang, S.H. Song, H. Han, S.-J. Han et al., Chiroptical synaptic heterojunction phototransistors based on self-assembled nanohelix of π-conjugated molecules for direct noise-reduced detection of circularly polarized light. Adv. Sci. 10(27), 2304039 (2023). https://doi.org/10.1002/advs.202304039
S.D. Namgung, R.M. Kim, Y.-C. Lim, J.W. Lee, N.H. Cho et al., Circularly polarized light-sensitive, hot electron transistor with chiral plasmonic nanops. Nat. Commun. 13(1), 5081 (2022). https://doi.org/10.1038/s41467-022-32721-2
J.H. Kim, M. Stolte, F. Würthner, Wavelength and polarization sensitive synaptic phototransistor based on organic n-type semiconductor/supramolecular J-aggregate heterostructure. ACS Nano 16(11), 19523–19532 (2022). https://doi.org/10.1021/acsnano.2c09747
C. Zhang, C. Xu, C. Chen, J. Cheng, H. Zhang et al., Optically programmable circularly polarized photodetector. ACS Nano 16(8), 12452–12461 (2022). https://doi.org/10.1021/acsnano.2c03746
G. Vats, B. Hodges, A.J. Ferguson, L.M. Wheeler, J.L. Blackburn, Optical memory, switching, and neuromorphic functionality in metal halide perovskite materials and devices. Adv. Mater. 35(37), 2205459 (2023). https://doi.org/10.1002/adma.202205459
J. Choi, J.S. Han, K. Hong, S.Y. Kim, H.W. Jang, Organic-inorganic hybrid halide perovskites for memories, transistors, and artificial synapses. Adv. Mater. 30(42), e1704002 (2018). https://doi.org/10.1002/adma.201704002
D. Hao, Z. Yang, J. Huang, F. Shan, Recent developments of optoelectronic synaptic devices based on metal halide perovskites. Adv. Funct. Mater. 33(8), 2211467 (2023). https://doi.org/10.1002/adfm.202211467
O. Yildiz, Z. Wang, M. Borkowski, G. Fytas, P.W.M. Blom et al., Optimized charge transport in molecular semiconductors by control of fluid dynamics and crystallization in Meniscus-guided coating. Adv. Funct. Mater. 32(2), 2107976 (2022). https://doi.org/10.1002/adfm.202107976
H. Ma, H. Fang, X. Xie, Y. Liu, H. Tian et al., Optoelectronic synapses based on MXene/violet phosphorus van der Waals heterojunctions for visual-olfactory crossmodal perception. Nano-Micro Lett. 16(1), 104 (2024). https://doi.org/10.1007/s40820-024-01330-7
C. Wang, X. Ren, C. Xu, B. Fu, R. Wang et al., N-type 2D organic single crystals for high-performance organic field-effect transistors and near-infrared phototransistors. Adv. Mater. 30(16), 1706260 (2018). https://doi.org/10.1002/adma.201706260
F. Yang, S. Cheng, X. Zhang, X. Ren, R. Li et al., 2D organic materials for optoelectronic applications. Adv. Mater. 30(2), 1702415 (2018). https://doi.org/10.1002/adma.201702415
S. Mafrica, S. Godiot, M. Menouni, M. Boyron, F. Expert et al., A bio-inspired analog silicon retina with Michaelis-Menten auto-adaptive pixels sensitive to small and large changes in light. Opt. Express 23(5), 5614–5635 (2015). https://doi.org/10.1364/OE.23.005614
Z. He, H. Shen, D. Ye, L. Xiang, W. Zhao et al., An organic transistor with light intensity-dependent active photoadaptation. Nat. Electron. 4(7), 522–529 (2021). https://doi.org/10.1038/s41928-021-00615-8
J. Marshall, T.W. Cronin, S. Kleinlogel, Stomatopod eye structure and function: a review. Arthropod Struct. Dev. 36(4), 420–448 (2007). https://doi.org/10.1016/j.asd.2007.01.006
M.M. Islam, A. Krishnaprasad, D. Dev, R. Martinez-Martinez, V. Okonkwo et al., Multiwavelength optoelectronic synapse with 2D materials for mixed-color pattern recognition. ACS Nano 16(7), 10188–10198 (2022). https://doi.org/10.1021/acsnano.2c01035
Y. Yang, R.C. da Costa, M.J. Fuchter, A.J. Campbell, Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photonics 7(8), 634–638 (2013). https://doi.org/10.1038/nphoton.2013.176
L. Zhang, I. Song, J. Ahn, M. Han, M. Linares et al., π-extended perylene diimide double-heterohelicenes as ambipolar organic semiconductors for broadband circularly polarized light detection. Nat. Commun. 12(1), 142 (2021). https://doi.org/10.1038/s41467-020-20390-y
H. Han, Y.J. Lee, J. Kyhm, J.S. Jeong, J.-H. Han et al., High-performance circularly polarized light-sensing near-infrared organic phototransistors for optoelectronic cryptographic primitives. Adv. Funct. Mater. 30(52), 2006236 (2020). https://doi.org/10.1002/adfm.202006236
W. Wen, G. Liu, X. Wei, H. Huang, C. Wang et al., Biomimetic nanocluster photoreceptors for adaptative circular polarization vision. Nat. Commun. 15(1), 2397 (2024). https://doi.org/10.1038/s41467-024-46646-5
Y. Yang, C. Pan, Y. Li, X. Yangdong, P. Wang et al., In-sensor dynamic computing for intelligent machine vision. Nat. Electron. 7(3), 225–233 (2024). https://doi.org/10.1038/s41928-024-01124-0
T. Qiu, Q. An, J. Wang, J. Wang, C.-W. Qiu et al., Vision-driven metasurfaces for perception enhancement. Nat. Commun. 15(1), 1631 (2024). https://doi.org/10.1038/s41467-024-45296-x
G. Wu, J. Zhang, X. Wan, Y. Yang, S. Jiang, Chitosan-based biopolysaccharide proton conductors for synaptic transistors on paper substrates. J. Mater. Chem. C 2(31), 6249–6255 (2014). https://doi.org/10.1039/c4tc00652f
G. Wu, C. Wan, J. Zhou, L. Zhu, Q. Wan, Low-voltage protonic/electronic hybrid indium zinc oxide synaptic transistors on paper substrates. Nanotechnology 25(9), 094001 (2014). https://doi.org/10.1088/0957-4484/25/9/094001
Y. Jeon, G. Lee, Y.J. Kim, B.C. Jang, H. Yoo, Dual synapses and security devices from ternary C60-pentacene-TiO2-x nanorods heterostructures. Adv. Funct. Mater. 34(48), 2409578 (2024). https://doi.org/10.1002/adfm.202409578
Y. Zhang, H. Chen, W. Sun, Y. Hou, Y. Cai et al., All-photonic synapses for biomimetic ocular system. Adv. Funct. Mater. 34(49), 2409419 (2024). https://doi.org/10.1002/adfm.202409419
J. Gong, H. Wei, J. Liu, L. Sun, Z. Xu et al., An artificial visual nerve for mimicking pupil reflex. Matter 5(5), 1578–1589 (2022). https://doi.org/10.1016/j.matt.2022.02.020
W. Li, S. Wu, H. Zhang, X. Zhang, J. Zhuang et al., Enhanced biological photosynthetic efficiency using light-harvesting engineering with dual-emissive carbon dots. Adv. Funct. Mater. 28(44), 1804004 (2018). https://doi.org/10.1002/adfm.201804004
F. Liao, Z. Zhou, B.J. Kim, J. Chen, J. Wang et al., Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5(2), 84–91 (2022). https://doi.org/10.1038/s41928-022-00713-1
R.D. van Jansen- Vuuren, A. Armin, A.K. Pandey, P.L. Burn, P. Meredith, Organic photodiodes: the future of full color detection and image sensing. Adv. Mater. 28(24), 4766–4802 (2016). https://doi.org/10.1002/adma.201505405
A. Reisman, Device, circuit, and technology scaling to micron and submicron dimensions. Proc. IEEE 71(5), 550–565 (1983). https://doi.org/10.1109/PROC.1983.12638
Y.-Q. Zheng, Y. Liu, D. Zhong, S. Nikzad, S. Liu et al., Monolithic optical microlithography of high-density elastic circuits. Science 373(6550), 88–94 (2021). https://doi.org/10.1126/science.abh3551
Y. Zheng, Z. Yu, S. Zhang, X. Kong, W. Michaels et al., A molecular design approach towards elastic and multifunctional polymer electronics. Nat. Commun. 12(1), 5701 (2021). https://doi.org/10.1038/s41467-021-25719-9
IEEE transactions on circuits and systems for video technology publication information. IEEE Trans. Circuits Syst. Video Technol. 35(3), C2–C2 (2025). https://doi.org/10.1109/TCSVT.2025.3541359
E.J. Fuller, S.T. Keene, A. Melianas, Z. Wang, S. Agarwal et al., Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364(6440), 570–574 (2019). https://doi.org/10.1126/science.aaw5581
S.H. Kim, G.W. Baek, J. Yoon, S. Seo, J. Park et al., A bioinspired stretchable sensory-neuromorphic system. Adv. Mater. 33(44), e2104690 (2021). https://doi.org/10.1002/adma.202104690
Y. Wang, Y. Gong, S. Huang, X. Xing, Z. Lv et al., Memristor-based biomimetic compound eye for real-time collision detection. Nat. Commun. 12(1), 5979 (2021). https://doi.org/10.1038/s41467-021-26314-8
C. Du, F. Cai, M.A. Zidan, W. Ma, S.H. Lee et al., Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204 (2017). https://doi.org/10.1038/s41467-017-02337-y
Y. Choi, S. Oh, C. Qian, J.-H. Park, J.H. Cho, Vertical organic synapse expandable to 3D crossbar array. Nat. Commun. 11(1), 4595 (2020). https://doi.org/10.1038/s41467-020-17850-w
Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya et al., Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16(1), 101–108 (2017). https://doi.org/10.1038/nmat4756
H. Chen, L. Lv, Y. Wei, T. Liu, S. Wang et al., Self-powered flexible artificial synapse for near-infrared light detection. Cell Rep. Phys. Sci. 2(7), 100507 (2021). https://doi.org/10.1016/j.xcrp.2021.100507
G. Liu, W. Wen, Z. Zhao, X. Huang, Y. Li et al., Bionic tactile-gustatory receptor for object identification based on all-polymer electrochemical transistor. Adv. Mater. 35(24), 2300242 (2023). https://doi.org/10.1002/adma.202300242
J. Shi, J. Jie, W. Deng, G. Luo, X. Fang et al., A fully solution-printed photosynaptic transistor array with ultralow energy consumption for artificial-vision neural networks. Adv. Mater. 34(18), 2200380 (2022). https://doi.org/10.1002/adma.202200380
H. Jo, J. Jang, H.J. Park, H. Lee, S.J. An et al., Physical reservoir computing using tellurium-based gate-tunable artificial photonic synapses. ACS Nano 18(44), 30761–30773 (2024). https://doi.org/10.1021/acsnano.4c10489
A. Moazzeni, H. Riyahi Madvar, S. Hamedi, Z. Kordrostami, Fabrication of graphene oxide-based resistive switching memory by the spray pyrolysis technique for neuromorphic computing. ACS Appl. Nano Mater. 6(3), 2236–2248 (2023). https://doi.org/10.1021/acsanm.2c05497
Z. Chen, J. He, Y. Zheng, T. Song, Z. Deng, An optimized feedforward decoupling PD register control method of roll-to-roll web printing systems. IEEE Trans. Autom. Sci. Eng. 13(1), 274–283 (2016). https://doi.org/10.1109/TASE.2015.2489687
B. Grant, Y. Bandera, S.H. Foulger, J. Vilčáková, P. Sáha et al., Boolean and elementary algebra with a roll-to-roll printed electrochemical memristor. Adv. Mater. Technol. 7(5), 2101108 (2022). https://doi.org/10.1002/admt.202101108
W. Choi, J.S. Yoon, W.W. Lee, G.H. Hong, H. Kim et al., DPP-DTT nanowire phototransistors for optoelectronic synapses in EMG and ECG signal classification. Small (2025). https://doi.org/10.1002/smll.202506440
W. Xu, S.-Y. Min, H. Hwang, T.-W. Lee, Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2(6), e1501326 (2016). https://doi.org/10.1126/sciadv.1501326
X. Zhang, X. Yu, J. Chen, Solution-processed organic nanostructure arrays: from nanofabrication to applications. Surf. Interfaces 72, 106981 (2025). https://doi.org/10.1016/j.surfin.2025.106981
S.-X. Li, G.-Y. Huang, H. Xia, T. Fu, X.-J. Wang et al., Nanoimprint crystalithography for organic semiconductors. Nat. Commun. 16(1), 3636 (2025). https://doi.org/10.1038/s41467-025-58934-9
X. Liu, D. Wang, W. Chen, Y. Kang, S. Fang et al., Optoelectronic synapses with chemical-electric behaviors in gallium nitride semiconductors for biorealistic neuromorphic functionality. Nat. Commun. 15, 7671 (2024). https://doi.org/10.1038/s41467-024-51194-z
L. Lu, X. Liu, P. Gu, Z. Hu, X. Liang et al., Stretchable all-gel organic electrochemical transistors. Nat. Commun. 16(1), 3831 (2025). https://doi.org/10.1038/s41467-025-59240-0
S. Woo, D. Moon, Y. Won, C. Kyung, J. Yoo et al., A pattern recognition artificial olfactory system based on human olfactory receptors and organic synaptic devices. Sci. Adv. 10(21), eadl2882 (2024). https://doi.org/10.1126/sciadv.adl2882
X. Wu, S. Chen, L. Jiang, X. Wang, L. Qiu et al., Highly sensitive, low-energy-consumption biomimetic olfactory synaptic transistors based on the aggregation of the semiconductor films. ACS Sens. 9(5), 2673–2683 (2024). https://doi.org/10.1021/acssensors.4c00616
P. Li, H.P. Anwar Ali, W. Cheng, J. Yang, B.C.K. Tee, Bioinspired prosthetic interfaces. Adv. Mater. Technol. 5(3), 1900856 (2020). https://doi.org/10.1002/admt.201900856
K. Liang, R. Wang, H. Ren, D. Li, Y. Tang et al., Printable coffee-ring structures for highly uniform all-oxide optoelectronic synaptic transistors. Adv. Opt. Mater. 10(24), 2201754 (2022). https://doi.org/10.1002/adom.202201754
L. Yu, Y. Li, Y. Lv, B. Gu, J. Cai et al., Treadmill exercise facilitates synaptic plasticity in APP/PS1 mice by regulating hippocampal AMPAR activity. Cells 13(19), 1608 (2024). https://doi.org/10.3390/cells13191608
M. Deodato, D. Melcher, Continuous temporal integration in the human visual system. J. Vis. 24(13), 5 (2024). https://doi.org/10.1167/jov.24.13.5
A. Bartels, S. Zeki, The theory of multistage integration in the visual brain. Proc. R. Soc. Lond. B 265(1412), 2327–2332 (1998). https://doi.org/10.1098/rspb.1998.0579
A. Pérez-Bellido, M.O. Ernst, S. Soto-Faraco, J. López-Moliner, Visual limitations shape audio-visual integration. J. Vis. 15(14), 5 (2015). https://doi.org/10.1167/15.14.5
Z. Zhao, A. Abdelsamie, R. Guo, S. Shi, J. Zhao et al., Flexible artificial synapse based on single-crystalline BiFeO3 thin film. Nano Res. 15(3), 2682–2688 (2022). https://doi.org/10.1007/s12274-021-3782-4
X. Yan, Z. Zhou, J. Zhao, Q. Liu, H. Wang et al., Flexible memristors as electronic synapses for neuro-inspired computation based on Scotch tape-exfoliated Mica substrates. Nano Res. 11(3), 1183–1192 (2018). https://doi.org/10.1007/s12274-017-1781-2
Y. Lin, T. Zeng, H. Xu, Z. Wang, X. Zhao et al., Transferable and flexible artificial memristive synapse based on WOx Schottky junction on arbitrary substrates. Adv. Electron. Mater. 4(12), 1800373 (2018). https://doi.org/10.1002/aelm.201800373
X. Huang, K. Zhang, B. Peng, G. Wang, M. Muhler et al., Ceria-based materials for thermocatalytic and photocatalytic organic synthesis. ACS Catal. 11(15), 9618–9678 (2021). https://doi.org/10.1021/acscatal.1c02443
L. Cui, J. Wu, H. Ju, Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron. 63, 276–286 (2015). https://doi.org/10.1016/j.bios.2014.07.052
D. Liu, K. Lu, C. Poon, W. Lin, Metal–organic frameworks as sensory materials and imaging agents. Inorg. Chem. 53(4), 1916–1924 (2014). https://doi.org/10.1021/ic402194c
R. Xue, Y.-S. Liu, S.-L. Huang, G.-Y. Yang, Recent progress of covalent organic frameworks applied in electrochemical sensors. ACS Sens. 8(6), 2124–2148 (2023). https://doi.org/10.1021/acssensors.3c00269
B. Salonikidou, A. Mehonic, Y. Takeda, S. Tokito, J. England et al., Inkjet-printed Ag/a-TiO2/Ag neuromorphic nanodevice based on functionalized ink. Adv. Eng. Mater. 24(11), 2200439 (2022). https://doi.org/10.1002/adem.202200439
G. Zhu, X. Chen, J. Ma, G. Dai, Z. Liu, Inkjet-printed niobium tungsten oxide thin-film memristors for neuromorphic computing. Mater. Today Commun. 44, 112088 (2025). https://doi.org/10.1016/j.mtcomm.2025.112088
H. Hu, A. Scholz, C. Dolle, A. Zintler, A. Quintilla et al., Inkjet-printed tungsten oxide memristor displaying non-volatile memory and neuromorphic properties. Adv. Funct. Mater. 34(20), 2302290 (2024). https://doi.org/10.1002/adfm.202302290
C. Bao, S.K. Seol, W.S. Kim, A 3D integrated neuromorphic chemical sensing system. Sens. Actuat. B Chem. 332, 129527 (2021). https://doi.org/10.1016/j.snb.2021.129527
Q. Cao, M. Shin, N.V. Lavrik, B.J. Venton, 3D-printed carbon nanoelectrodes for in vivo neurotransmitter sensing. Nano Lett. 20(9), 6831–6836 (2020). https://doi.org/10.1021/acs.nanolett.0c02844
X. Li, R. Bi, X. Ou, S. Han, Y. Sheng et al., 3D-printed intrinsically stretchable organic electrochemical synaptic transistor array. ACS Appl. Mater. Interfaces 15(35), 41656–41665 (2023). https://doi.org/10.1021/acsami.3c07169
Q. Chen, R. Yang, D. Hu, Z. Ye, J. Lu, Artificial neurosynaptic device based on amorphous oxides for artificial neural network constructing. J. Mater. Chem. C 12(25), 9165–9174 (2024). https://doi.org/10.1039/D4TC01244E
D.-H. Kim, S.-M. Yoon, Improvement in energy consumption and operational stability of electrolyte-gated synapse transistors using atomic-layer-deposited HfO2 thin films. Mater. Sci. Semicond. Process. 153, 107182 (2023). https://doi.org/10.1016/j.mssp.2022.107182
C. Liu, L. Zhu, J.-K. Weng, Y.-C. Li, Z. Chen et al., Ultraflexible and energy-efficient artificial synapses based on molecular/atomic layer deposited organic–inorganic hybrid thin films. Adv. Electron. Mater. 9(2), 2200821 (2023). https://doi.org/10.1002/aelm.202200821
K.-X. Guo, H.-Y. Yu, H. Han, H.-H. Wei, J.-D. Gong et al., Artificial synapse based on MoO3 nanosheets prepared by hydrothermal synthesis. Acta Phys. Sin. 69(23), 238501 (2020). https://doi.org/10.7498/aps.69.20200928
Z. Guo, J. Liu, X. Han, F. Ma, D. Rong et al., High-performance artificial synapse based on CVD-grown WSe2 flakes with intrinsic defects. ACS Appl. Mater. Interfaces 15(15), 19152–19162 (2023). https://doi.org/10.1021/acsami.3c00417
D.-P. Yang, R.-H. Li, X.-G. Tang, D.-L. Li, Q.-J. Sun, Photoelectric dual mode sensing system based on one-step fabricated heterojunction artificial synapses device. Mater. Sci. Eng. R. Rep. 165, 101021 (2025). https://doi.org/10.1016/j.mser.2025.101021
Y.H. Kim, G.H. Kim, A.Y. Kim, N.S. Baek, J.I. Jeong et al., Optimisation of bi-layer resist overhang structure formation and SiO2 sputter-deposition process for fabrication of gold multi-electrode array. RSC Adv. 5(9), 6675–6681 (2015). https://doi.org/10.1039/c4ra11746h
W. Luo, Z. Yang, J. Zheng, Z. Cai, X. Li et al., Small molecule hydrogels loading small molecule drugs from Chinese medicine for the enhanced treatment of traumatic brain injury. ACS Nano 18(42), 28894–28909 (2024). https://doi.org/10.1021/acsnano.4c09097
J. Li, S.J. Bandekar, D. Araç, The structure of fly Teneurin-m reveals an asymmetric self-assembly that allows expansion into zippers. EMBO Rep. 24(6), e56728 (2023). https://doi.org/10.15252/embr.202256728
Y. Shen, Z. Jiang, H. Huang, S. Wang, S. Wu et al., Advances in textile-based triboelectric sensors for physiological signal monitoring. Adv. Funct. Mater. 35(37), 2426081 (2025). https://doi.org/10.1002/adfm.202426081
J. Zeng, J. Zhao, C. Li, Y. Qi, G. Liu et al., Triboelectric nanogenerators as active tactile stimulators for multifunctional sensing and artificial synapses. Sensors 22(3), 975 (2022). https://doi.org/10.3390/s22030975
W.-S. Khwa, T.-H. Wen, H.-H. Hsu, W.-H. Huang, Y.-C. Chang et al., A mixed-precision memristor and SRAM compute-in-memory AI processor. Nature 639(8055), 617–623 (2025). https://doi.org/10.1038/s41586-025-08639-2
A. Renner, L. Supic, A. Danielescu, G. Indiveri, B.A. Olshausen et al., Neuromorphic visual scene understanding with resonator networks. Nat. Mach. Intell. 6(6), 641–652 (2024). https://doi.org/10.1038/s42256-024-00848-0
C.-Y. Wang, S.-J. Liang, S. Wang, P. Wang, Z.-A. Li et al., Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv. 6(26), eaba6173 (2020). https://doi.org/10.1126/sciadv.aba6173
A. Natarajan, A. Sudha, D. Dean, V.M. Vijayan, 3D surface-patterned hyaluronic acid hydrogels: customizable platforms for enhanced chondrogenic differentiation and organized production of a specific hyaline cartilage extracellular matrix. ACS Appl. Mater. Interfaces 17(38), 53343–53364 (2025). https://doi.org/10.1021/acsami.5c16374
Y. Yang, Y. Liu, R. Yin, Fiber-shaped fluidic pumps for wearable applications. Adv. Fiber Mater. 5(5), 1552–1554 (2023). https://doi.org/10.1007/s42765-023-00319-y