Dopant-Free Ultra-Thin Spiro-OMeTAD Enables Near 30%-Efficient n–i–p Perovskite/Silicon Tandem Solar Cells
Corresponding Author: Jichun Ye
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 116
Abstract
A major challenge for n–i–p structured perovskite/silicon tandem solar cells (TSCs) is the use of 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-OMeTAD), a commonly used hole transport layer, which induces significant optical losses and consequently reduces device current. Herein, we propose an ultra-thin (10 nm) vacuum thermal evaporation (VTE)-deposited spiro-OMeTAD, coupled with a 2D/3D perovskite heterojunction, to simultaneously enhance the optical and electrical properties of n–i–p perovskite/silicon TSCs. Our results demonstrate that the 10-nm-thick spiro-OMeTAD layer significantly improves optical performance, achieving a 92.2% reduction in parasitic absorption and an 18.4% decrease in reflection losses. Additionally, the incorporation of the 2D/3D perovskite heterojunction facilitates improved molecular arrangement and enhanced surface uniformity of the ultrathin spiro-OMeTAD, leading to higher tolerance to interface defects and more efficient hole extraction. Consequently, n–i–p perovskite/silicon TSCs featuring ultrathin spiro-OMeTAD exhibit remarkable efficiencies of 29.73% (0.135 cm2) and 28.77% (28.25% certified efficiency, 1.012 cm2), along with improved stability.
Highlights:
1 Optical loss reduction: The 10-nm-thick vacuum thermal evaporation (VTE)-based 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-OMeTAD) film reduces parasitic absorption by 92.2% and reflection losses by 18.4% compared to conventional spin-coated 200-nm-thick spiro-OMeTAD.
2 Electrical performance improvement: The VTE-deposited spiro-OMeTAD, coupled with a 2D/3D perovskite heterojunction, ensures conformal coverage, optimizes energy-level alignment, and passivates interface defects.
3 Device efficiency and stability enhancement of perovskite/silicon tandems: A remarkable efficiency of 29.73% is achieved, the highest reported value for spiro-OMeTAD-based n–i–p tandems, with a 11 times improvement of stability under operational conditions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Best Research−Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html. Accessed 05/2025.
- X.Y. Chin, D. Turkay, J.A. Steele, S. Tabean, S. Eswara et al., Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science 381(6653), 59–63 (2023). https://doi.org/10.1126/science.adg0091
- E. Aydin, E. Ugur, B.K. Yildirim, T.G. Allen, P. Dally et al., Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623(7988), 732–738 (2023). https://doi.org/10.1038/s41586-023-06667-4
- S. Mariotti, E. Köhnen, F. Scheler, K. Sveinbjörnsson, L. Zimmermann et al., Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells. Science 381(6653), 63–69 (2023). https://doi.org/10.1126/science.adf5872
- L. Mazzarella, Y.-H. Lin, S. Kirner, A.B. Morales-Vilches, L. Korte et al., Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Adv. Energy Mater. 9(14), 1803241 (2019). https://doi.org/10.1002/aenm.201803241
- Z. Ying, Z. Yang, J. Zheng, H. Wei, L. Chen et al., Monolithic perovskite/black-silicon tandems based on tunnel oxide passivated contacts. Joule 6(11), 2644–2661 (2022). https://doi.org/10.1016/j.joule.2022.09.006
- P. Tockhorn, J. Sutter, A. Cruz, P. Wagner, K. Jäger et al., Nano-optical designs for high-efficiency monolithic perovskite-silicon tandem solar cells. Nat. Nanotechnol. 17(11), 1214–1221 (2022). https://doi.org/10.1038/s41565-022-01228-8
- J. Zheng, H. Wei, Z. Ying, X. Yang, J. Sheng et al., Balancing charge-carrier transport and recombination for perovskite/TOPCon tandem solar cells with double-textured structures. Adv. Energy Mater. 13(5), 2203006 (2023). https://doi.org/10.1002/aenm.202203006
- B. Chen, Z.J. Yu, S. Manzoor, S. Wang, W. Weigand et al., Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4(4), 850–864 (2020). https://doi.org/10.1016/j.joule.2020.01.008
- M. Zhang, Z. Ying, X. Li, S. Li, L. Chen et al., Hole-selective transparent in situ passivation contacts for efficient and stable n–i–p graded perovskite/silicon tandem solar cells. Adv. Mater. 37(14), 2416530 (2025). https://doi.org/10.1002/adma.202416530
- T. Leijtens, K.A. Bush, R. Prasanna, M.D. McGehee, Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3(10), 828–838 (2018). https://doi.org/10.1038/s41560-018-0190-4
- M.H. Futscher, B. Ehrler, Efficiency limit of perovskite/Si tandem solar cells. ACS Energy Lett. 1(4), 863–868 (2016). https://doi.org/10.1021/acsenergylett.6b00405
- E. Ugur, A. Ali Said, P. Dally, S. Zhang, C.E. Petoukhoff et al., Enhanced cation interaction in perovskites for efficient tandem solar cells with silicon. Science 385(6708), 533–538 (2024). https://doi.org/10.1126/science.adp1621
- H. Yang, Y. Shen, G. Xu, F. Yang, X. Wu et al., Functional spiro-OMeTAD-like dopant for Li-ion-free hole transport layer to develop stable and efficient n-i-p perovskite solar cells. Nano Energy 119, 109033 (2024). https://doi.org/10.1016/j.nanoen.2023.109033
- L. Ye, J. Wu, S. Catalán-Gómez, L. Yuan, R. Sun et al., Superoxide radical derived metal-free spiro-OMeTAD for highly stable perovskite solar cells. Nat. Commun. 15(1), 7889 (2024). https://doi.org/10.1038/s41467-024-52199-4
- X. Luo, D. Gao, D. Zhang, G. Zhou, Y. Guo et al., Highly soluble and oxidizing organic salts doped hole-transporting layer enables efficient and stable perovskite solar cells. Adv. Funct. Mater. 35(30), 2425038 (2025). https://doi.org/10.1002/adfm.202425038
- F. Hou, L. Yan, B. Shi, J. Chen, S. Zhu et al., Monolithic perovskite/silicon-heterojunction tandem solar cells with open-circuit voltage of over 1.8 V. ACS Appl. Energy Mater. 2(1), 243–249 (2019). https://doi.org/10.1021/acsaem.8b00926
- X. Sallenave, M. Shasti, E.H. Anaraki, D. Volyniuk, J.V. Grazulevicius et al., Interfacial and bulk properties of hole transporting materials in perovskite solar cells: spiro-MeTAD versus spiro-OMeTAD. J. Mater. Chem. A 8(17), 8527–8539 (2020). https://doi.org/10.1039/D0TA00623H
- J. Zheng, W. Duan, Y. Guo, Z.C. Zhao, H. Yi et al., Efficient monolithic perovskite–Si tandem solar cells enabled by an ultra-thin indium tin oxide interlayer. Energy Environ. Sci. 16(3), 1223–1233 (2023). https://doi.org/10.1039/D2EE04007G
- L. Wang, H. Zhou, N. Li, Y. Zhang, L. Chen et al., Carrier transport composites with suppressed glass-transition for stable planar perovskite solar cells. J. Mater. Chem. A 8(28), 14106–14113 (2020). https://doi.org/10.1039/D0TA03376F
- L. Wang, Q. Song, F. Pei, Y. Chen, J. Dou et al., Strain modulation for light-stable n-i-p perovskite/silicon tandem solar cells. Adv. Mater. 34(26), e2201315 (2022). https://doi.org/10.1002/adma.202201315
- M.J. Jeong, J.H. Lee, C.H. You, S.Y. Kim, S. Lee et al., Oxide/halide/oxide architecture for high performance semi-transparent perovskite solar cells. Adv. Energy Mater. 12(31), 2200661 (2022). https://doi.org/10.1002/aenm.202200661
- E. Ugur, E. Aydin, M. De Bastiani, G.T. Harrison, B.K. Yildirim et al., Front-contact passivation through 2D/3D perovskite heterojunctions enables efficient bifacial perovskite/silicon tandem solar cells. Matter 6(9), 2919–2934 (2023). https://doi.org/10.1016/j.matt.2023.05.028
- E. Aydin, J. Liu, E. Ugur, R. Azmi, G.T. Harrison et al., Ligand-bridged charge extraction and enhanced quantum efficiency enable efficient n–i–p perovskite/silicon tandem solar cells. Energy Environ. Sci. 14(8), 4377–4390 (2021). https://doi.org/10.1039/D1EE01206A
- G. Du, L. Yang, P. Dong, L. Qi, Y. Che et al., Sequential molecule-doped hole conductor to achieve >23% perovskite solar cells with 3000-hour operational stability. Adv. Mater. 35(35), 2303692 (2023). https://doi.org/10.1002/adma.202303692
- G. Du, L. Yang, J. Zhang, Light soaking induced halide doping of evaporated spiro-OMeTAD in perovskite solar cells. Laser Photon. Rev. 17(1), 2200475 (2023). https://doi.org/10.1002/lpor.202200475
- J. Zheng, Z. Ying, Z. Yang, Z. Lin, H. Wei et al., Polycrystalline silicon tunnelling recombination layers for high-efficiency perovskite/tunnel oxide passivating contact tandem solar cells. Nat. Energy 8(11), 1250–1261 (2023). https://doi.org/10.1038/s41560-023-01382-w
- W. Yang, Z. Yang, C. Shou, J. Sheng, B. Yan et al., Optical design and optimization for back-contact perovskite solar cells. Sol. Energy 201, 84–91 (2020). https://doi.org/10.1016/j.solener.2020.02.099
- G. Yu, C. Shou, Z. Yang, H. He, Y. Zhang et al., Optical management of spacer layer of high-performance four-terminal perovskite/silicon tandem solar cells. Sol. Energy 228, 226–234 (2021). https://doi.org/10.1016/j.solener.2021.09.018
- A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
- P. Schulz, J.O. Tiepelt, J.A. Christians, I. Levine, E. Edri et al., High-work-function molybdenum oxide hole extraction contacts in hybrid organic-inorganic perovskite solar cells. ACS Appl. Mater. Interfaces 8(46), 31491–31499 (2016). https://doi.org/10.1021/acsami.6b10898
- H. Liu, R. Lang, S. Jiang, W. Lu, W. Zhang et al., Bifacial semitransparent perovskite solar cells with MoOx/Cu/Ag/MoOx multilayer transparent electrode. Sol. Energy 228, 290–298 (2021). https://doi.org/10.1016/j.solener.2021.09.065
- F. Hou, Y. Li, L. Yan, B. Shi, N. Ren et al., Control perovskite crystals vertical growth for obtaining high-performance monolithic perovskite/silicon heterojunction tandem solar cells with VOC of 1.93 V. Solar RRL 5(10), 2100357 (2021). https://doi.org/10.1002/solr.202100357
- L. Yang, Y. Jin, Z. Fang, J. Zhang, Z. Nan et al., Efficient semi-transparent wide-bandgap perovskite solar cells enabled by pure-chloride 2D-perovskite passivation. Nano-Micro Lett. 15(1), 111 (2023). https://doi.org/10.1007/s40820-023-01090-w
- G. Du, L. Yang, C. Zhang, X. Zhang, N. Rolston et al., Evaporated undoped spiro-OMeTAD enables stable perovskite solar cells exceeding 20% efficiency. Adv. Energy Mater. 12(22), 2103966 (2022). https://doi.org/10.1002/aenm.202103966
- W. Luo, C. Wu, D. Wang, Z. Zhang, X. Qi et al., Dopant-free Spiro-OMeTAD as hole transporting layer for stable and efficient perovskite solar cells. Org. Electron. 74, 7–12 (2019). https://doi.org/10.1016/j.orgel.2019.06.039
- G.-W. Kim, D.V. Shinde, T. Park, Thickness of the hole transport layer in perovskite solar cells: performance versus reproducibility. RSC Adv. 5(120), 99356–99360 (2015). https://doi.org/10.1039/C5RA18648J
- N. Marinova, W. Tress, R. Humphry-Baker, M.I. Dar, V. Bojinov et al., Light harvesting and charge recombination in CH3NH3PbI3 perovskite solar cells studied by hole transport layer thickness variation. ACS Nano 9(4), 4200–4209 (2015). https://doi.org/10.1021/acsnano.5b00447
- N. Shibayama, H. Maekawa, Y. Nakamura, Y. Haruyama, M. Niibe et al., Control of molecular orientation of spiro-OMeTAD on substrates. ACS Appl. Mater. Interfaces 12(44), 50187–50191 (2020). https://doi.org/10.1021/acsami.0c15509
- H. Kanda, N. Shibayama, A.J. Huckaba, Y. Lee, S. Paek et al., Band-bending induced passivation: high performance and stable perovskite solar cells using a perhydropoly(silazane) precursor. Energy Environ. Sci. 13(4), 1222–1230 (2020). https://doi.org/10.1039/C9EE02028D
- W. Yang, B. Ding, Z. Lin, J. Sun, Y. Meng et al., Visualizing interfacial energy offset and defects in efficient 2D/3D heterojunction perovskite solar cells and modules. Adv. Mater. 35(35), 2302071 (2023). https://doi.org/10.1002/adma.202302071
- S. Jeong, S. Seo, H. Yang, H. Park, S. Shin et al., Cyclohexylammonium-based 2D/3D perovskite heterojunction with funnel-like energy band alignment for efficient solar cells (23.91%). Adv. Energy Mater. 11(42), 2102236 (2021). https://doi.org/10.1002/aenm.202102236
- D. Shi, X. Qin, Y. Li, Y. He, C. Zhong et al., Spiro-OMeTAD single crystals: remarkably enhanced charge-carrier transport via mesoscale ordering. Sci. Adv. 2(4), e1501491 (2016). https://doi.org/10.1126/sciadv.1501491
- P. Fassl, Y. Zakharko, L.M. Falk, K.P. Goetz, F. Paulus et al., Effect of density of surface defects on photoluminescence properties in MAPbI3 perovskite films. J. Mater. Chem. C 7(18), 5285–5292 (2019). https://doi.org/10.1039/C8TC05998E
- H. Tsai, D. Ghosh, W. Panaccione, L.-Y. Su, C.-H. Hou et al., Addressing the voltage induced instability problem of perovskite semiconductor detectors. ACS Energy Lett. 7(11), 3871–3879 (2022). https://doi.org/10.1021/acsenergylett.2c02054
- Y. Zhang, C. Zhou, L. Lin, F. Pei, M. Xiao et al., Gelation of hole transport layer to improve the stability of perovskite solar cells. Nano-Micro Lett. 15(1), 175 (2023). https://doi.org/10.1007/s40820-023-01145-y
- X. Liu, B. Zheng, L. Shi, S. Zhou, J. Xu et al., Perovskite solar cells based on spiro-OMeTAD stabilized with an alkylthiol additive. Nat. Photonics 17(1), 96–105 (2023). https://doi.org/10.1038/s41566-022-01111-x
- S. Zhang, S.M. Hosseini, R. Gunder, A. Petsiuk, P. Caprioglio et al., The role of bulk and interface recombination in high-efficiency low-dimensional perovskite solar cells. Adv. Mater. 31(30), 1901090 (2019). https://doi.org/10.1002/adma.201901090
- S.N. Habisreutinger, B. Wenger, H.J. Snaith, R.J. Nicholas, Dopant-free planar n–i–p perovskite solar cells with steady-state efficiencies exceeding 18%. ACS Energy Lett. 2(3), 622–628 (2017). https://doi.org/10.1021/acsenergylett.7b00028
- Y. Bao, T. Ma, Z. Ai, Y. Zhang, L. Shi et al., Insights into efficiency deviation from current-mismatch for tandem photovoltaics. Nano Energy 120, 109165 (2024). https://doi.org/10.1016/j.nanoen.2023.109165
- T. Kirchartz, J.A. Márquez, M. Stolterfoht, T. Unold, Photoluminescence-based characterization of halide perovskites for photovoltaics. Adv. Energy Mater. 10(26), 1904134 (2020). https://doi.org/10.1002/aenm.201904134
- F. Staub, H. Hempel, J.-C. Hebig, J. Mock, U.W. Paetzold et al., Beyond bulk lifetimes: insights into lead halide perovskite films from time-resolved photoluminescence. Phys. Rev. Appl. 6(4), 044017 (2016). https://doi.org/10.1103/physrevapplied.6.044017
- B. Krogmeier, F. Staub, D. Grabowski, U. Rau, T. Kirchartz, Quantitative analysis of the transient photoluminescence of CH3NH3PbI3/PC61BM heterojunctions by numerical simulations. Sustain. Energy Fuels 2(5), 1027–1034 (2018). https://doi.org/10.1039/c7se00603a
- X. Li, Z. Ying, S. Li, L. Chen, M. Zhang et al., Top-down dual-interface carrier management for highly efficient and stable perovskite/silicon tandem solar cells. Nano-Micro Lett. 17(1), 141 (2025). https://doi.org/10.1007/s40820-024-01631-x
- X. Liu, Z. Yu, T. Wang, K.L. Chiu, F. Lin et al., Full defects passivation enables 21% efficiency perovskite solar cells operating in air. Adv. Energy Mater. 10(38), 2001958 (2020). https://doi.org/10.1002/aenm.202001958
- M. Wang, Z. Shi, C. Fei, Z.J.D. Deng, G. Yang et al., Ammonium cations with high pKa in perovskite solar cells for improved high-temperature photostability. Nat. Energy 8(11), 1229–1239 (2023). https://doi.org/10.1038/s41560-023-01362-0
- M.V. Khenkin, E.A. Katz, A. Abate, G. Bardizza, J.J. Berry et al., Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5(1), 35–49 (2020). https://doi.org/10.1038/s41560-019-0529-5
- X. Shen, X. Lin, Y. Peng, Y. Zhang, F. Long et al., Two-dimensional materials for highly efficient and stable perovskite solar cells. Nano-Micro Lett. 16(1), 201 (2024). https://doi.org/10.1007/s40820-024-01417-1
- J. Wen, Y. Zhao, P. Wu, Y. Liu, X. Zheng et al., Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells. Nat. Commun. 14(1), 7118 (2023). https://doi.org/10.1038/s41467-023-43016-5
- W. Yang, H. Long, X. Sha, J. Sun, Y. Zhao et al., Unlocking voltage potentials of mixed-halide perovskite solar cells via phase segregation suppression. Adv. Funct. Mater. 32(12), 2110698 (2022). https://doi.org/10.1002/adfm.202110698
- J. Warby, F. Zu, S. Zeiske, E. Gutierrez-Partida, L. Frohloff et al., Understanding performance limiting interfacial recombination in pin perovskite solar cells. Adv. Energy Mater. 12(12), 2103567 (2022). https://doi.org/10.1002/aenm.202103567
References
Best Research−Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html. Accessed 05/2025.
X.Y. Chin, D. Turkay, J.A. Steele, S. Tabean, S. Eswara et al., Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science 381(6653), 59–63 (2023). https://doi.org/10.1126/science.adg0091
E. Aydin, E. Ugur, B.K. Yildirim, T.G. Allen, P. Dally et al., Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623(7988), 732–738 (2023). https://doi.org/10.1038/s41586-023-06667-4
S. Mariotti, E. Köhnen, F. Scheler, K. Sveinbjörnsson, L. Zimmermann et al., Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells. Science 381(6653), 63–69 (2023). https://doi.org/10.1126/science.adf5872
L. Mazzarella, Y.-H. Lin, S. Kirner, A.B. Morales-Vilches, L. Korte et al., Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Adv. Energy Mater. 9(14), 1803241 (2019). https://doi.org/10.1002/aenm.201803241
Z. Ying, Z. Yang, J. Zheng, H. Wei, L. Chen et al., Monolithic perovskite/black-silicon tandems based on tunnel oxide passivated contacts. Joule 6(11), 2644–2661 (2022). https://doi.org/10.1016/j.joule.2022.09.006
P. Tockhorn, J. Sutter, A. Cruz, P. Wagner, K. Jäger et al., Nano-optical designs for high-efficiency monolithic perovskite-silicon tandem solar cells. Nat. Nanotechnol. 17(11), 1214–1221 (2022). https://doi.org/10.1038/s41565-022-01228-8
J. Zheng, H. Wei, Z. Ying, X. Yang, J. Sheng et al., Balancing charge-carrier transport and recombination for perovskite/TOPCon tandem solar cells with double-textured structures. Adv. Energy Mater. 13(5), 2203006 (2023). https://doi.org/10.1002/aenm.202203006
B. Chen, Z.J. Yu, S. Manzoor, S. Wang, W. Weigand et al., Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4(4), 850–864 (2020). https://doi.org/10.1016/j.joule.2020.01.008
M. Zhang, Z. Ying, X. Li, S. Li, L. Chen et al., Hole-selective transparent in situ passivation contacts for efficient and stable n–i–p graded perovskite/silicon tandem solar cells. Adv. Mater. 37(14), 2416530 (2025). https://doi.org/10.1002/adma.202416530
T. Leijtens, K.A. Bush, R. Prasanna, M.D. McGehee, Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3(10), 828–838 (2018). https://doi.org/10.1038/s41560-018-0190-4
M.H. Futscher, B. Ehrler, Efficiency limit of perovskite/Si tandem solar cells. ACS Energy Lett. 1(4), 863–868 (2016). https://doi.org/10.1021/acsenergylett.6b00405
E. Ugur, A. Ali Said, P. Dally, S. Zhang, C.E. Petoukhoff et al., Enhanced cation interaction in perovskites for efficient tandem solar cells with silicon. Science 385(6708), 533–538 (2024). https://doi.org/10.1126/science.adp1621
H. Yang, Y. Shen, G. Xu, F. Yang, X. Wu et al., Functional spiro-OMeTAD-like dopant for Li-ion-free hole transport layer to develop stable and efficient n-i-p perovskite solar cells. Nano Energy 119, 109033 (2024). https://doi.org/10.1016/j.nanoen.2023.109033
L. Ye, J. Wu, S. Catalán-Gómez, L. Yuan, R. Sun et al., Superoxide radical derived metal-free spiro-OMeTAD for highly stable perovskite solar cells. Nat. Commun. 15(1), 7889 (2024). https://doi.org/10.1038/s41467-024-52199-4
X. Luo, D. Gao, D. Zhang, G. Zhou, Y. Guo et al., Highly soluble and oxidizing organic salts doped hole-transporting layer enables efficient and stable perovskite solar cells. Adv. Funct. Mater. 35(30), 2425038 (2025). https://doi.org/10.1002/adfm.202425038
F. Hou, L. Yan, B. Shi, J. Chen, S. Zhu et al., Monolithic perovskite/silicon-heterojunction tandem solar cells with open-circuit voltage of over 1.8 V. ACS Appl. Energy Mater. 2(1), 243–249 (2019). https://doi.org/10.1021/acsaem.8b00926
X. Sallenave, M. Shasti, E.H. Anaraki, D. Volyniuk, J.V. Grazulevicius et al., Interfacial and bulk properties of hole transporting materials in perovskite solar cells: spiro-MeTAD versus spiro-OMeTAD. J. Mater. Chem. A 8(17), 8527–8539 (2020). https://doi.org/10.1039/D0TA00623H
J. Zheng, W. Duan, Y. Guo, Z.C. Zhao, H. Yi et al., Efficient monolithic perovskite–Si tandem solar cells enabled by an ultra-thin indium tin oxide interlayer. Energy Environ. Sci. 16(3), 1223–1233 (2023). https://doi.org/10.1039/D2EE04007G
L. Wang, H. Zhou, N. Li, Y. Zhang, L. Chen et al., Carrier transport composites with suppressed glass-transition for stable planar perovskite solar cells. J. Mater. Chem. A 8(28), 14106–14113 (2020). https://doi.org/10.1039/D0TA03376F
L. Wang, Q. Song, F. Pei, Y. Chen, J. Dou et al., Strain modulation for light-stable n-i-p perovskite/silicon tandem solar cells. Adv. Mater. 34(26), e2201315 (2022). https://doi.org/10.1002/adma.202201315
M.J. Jeong, J.H. Lee, C.H. You, S.Y. Kim, S. Lee et al., Oxide/halide/oxide architecture for high performance semi-transparent perovskite solar cells. Adv. Energy Mater. 12(31), 2200661 (2022). https://doi.org/10.1002/aenm.202200661
E. Ugur, E. Aydin, M. De Bastiani, G.T. Harrison, B.K. Yildirim et al., Front-contact passivation through 2D/3D perovskite heterojunctions enables efficient bifacial perovskite/silicon tandem solar cells. Matter 6(9), 2919–2934 (2023). https://doi.org/10.1016/j.matt.2023.05.028
E. Aydin, J. Liu, E. Ugur, R. Azmi, G.T. Harrison et al., Ligand-bridged charge extraction and enhanced quantum efficiency enable efficient n–i–p perovskite/silicon tandem solar cells. Energy Environ. Sci. 14(8), 4377–4390 (2021). https://doi.org/10.1039/D1EE01206A
G. Du, L. Yang, P. Dong, L. Qi, Y. Che et al., Sequential molecule-doped hole conductor to achieve >23% perovskite solar cells with 3000-hour operational stability. Adv. Mater. 35(35), 2303692 (2023). https://doi.org/10.1002/adma.202303692
G. Du, L. Yang, J. Zhang, Light soaking induced halide doping of evaporated spiro-OMeTAD in perovskite solar cells. Laser Photon. Rev. 17(1), 2200475 (2023). https://doi.org/10.1002/lpor.202200475
J. Zheng, Z. Ying, Z. Yang, Z. Lin, H. Wei et al., Polycrystalline silicon tunnelling recombination layers for high-efficiency perovskite/tunnel oxide passivating contact tandem solar cells. Nat. Energy 8(11), 1250–1261 (2023). https://doi.org/10.1038/s41560-023-01382-w
W. Yang, Z. Yang, C. Shou, J. Sheng, B. Yan et al., Optical design and optimization for back-contact perovskite solar cells. Sol. Energy 201, 84–91 (2020). https://doi.org/10.1016/j.solener.2020.02.099
G. Yu, C. Shou, Z. Yang, H. He, Y. Zhang et al., Optical management of spacer layer of high-performance four-terminal perovskite/silicon tandem solar cells. Sol. Energy 228, 226–234 (2021). https://doi.org/10.1016/j.solener.2021.09.018
A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
P. Schulz, J.O. Tiepelt, J.A. Christians, I. Levine, E. Edri et al., High-work-function molybdenum oxide hole extraction contacts in hybrid organic-inorganic perovskite solar cells. ACS Appl. Mater. Interfaces 8(46), 31491–31499 (2016). https://doi.org/10.1021/acsami.6b10898
H. Liu, R. Lang, S. Jiang, W. Lu, W. Zhang et al., Bifacial semitransparent perovskite solar cells with MoOx/Cu/Ag/MoOx multilayer transparent electrode. Sol. Energy 228, 290–298 (2021). https://doi.org/10.1016/j.solener.2021.09.065
F. Hou, Y. Li, L. Yan, B. Shi, N. Ren et al., Control perovskite crystals vertical growth for obtaining high-performance monolithic perovskite/silicon heterojunction tandem solar cells with VOC of 1.93 V. Solar RRL 5(10), 2100357 (2021). https://doi.org/10.1002/solr.202100357
L. Yang, Y. Jin, Z. Fang, J. Zhang, Z. Nan et al., Efficient semi-transparent wide-bandgap perovskite solar cells enabled by pure-chloride 2D-perovskite passivation. Nano-Micro Lett. 15(1), 111 (2023). https://doi.org/10.1007/s40820-023-01090-w
G. Du, L. Yang, C. Zhang, X. Zhang, N. Rolston et al., Evaporated undoped spiro-OMeTAD enables stable perovskite solar cells exceeding 20% efficiency. Adv. Energy Mater. 12(22), 2103966 (2022). https://doi.org/10.1002/aenm.202103966
W. Luo, C. Wu, D. Wang, Z. Zhang, X. Qi et al., Dopant-free Spiro-OMeTAD as hole transporting layer for stable and efficient perovskite solar cells. Org. Electron. 74, 7–12 (2019). https://doi.org/10.1016/j.orgel.2019.06.039
G.-W. Kim, D.V. Shinde, T. Park, Thickness of the hole transport layer in perovskite solar cells: performance versus reproducibility. RSC Adv. 5(120), 99356–99360 (2015). https://doi.org/10.1039/C5RA18648J
N. Marinova, W. Tress, R. Humphry-Baker, M.I. Dar, V. Bojinov et al., Light harvesting and charge recombination in CH3NH3PbI3 perovskite solar cells studied by hole transport layer thickness variation. ACS Nano 9(4), 4200–4209 (2015). https://doi.org/10.1021/acsnano.5b00447
N. Shibayama, H. Maekawa, Y. Nakamura, Y. Haruyama, M. Niibe et al., Control of molecular orientation of spiro-OMeTAD on substrates. ACS Appl. Mater. Interfaces 12(44), 50187–50191 (2020). https://doi.org/10.1021/acsami.0c15509
H. Kanda, N. Shibayama, A.J. Huckaba, Y. Lee, S. Paek et al., Band-bending induced passivation: high performance and stable perovskite solar cells using a perhydropoly(silazane) precursor. Energy Environ. Sci. 13(4), 1222–1230 (2020). https://doi.org/10.1039/C9EE02028D
W. Yang, B. Ding, Z. Lin, J. Sun, Y. Meng et al., Visualizing interfacial energy offset and defects in efficient 2D/3D heterojunction perovskite solar cells and modules. Adv. Mater. 35(35), 2302071 (2023). https://doi.org/10.1002/adma.202302071
S. Jeong, S. Seo, H. Yang, H. Park, S. Shin et al., Cyclohexylammonium-based 2D/3D perovskite heterojunction with funnel-like energy band alignment for efficient solar cells (23.91%). Adv. Energy Mater. 11(42), 2102236 (2021). https://doi.org/10.1002/aenm.202102236
D. Shi, X. Qin, Y. Li, Y. He, C. Zhong et al., Spiro-OMeTAD single crystals: remarkably enhanced charge-carrier transport via mesoscale ordering. Sci. Adv. 2(4), e1501491 (2016). https://doi.org/10.1126/sciadv.1501491
P. Fassl, Y. Zakharko, L.M. Falk, K.P. Goetz, F. Paulus et al., Effect of density of surface defects on photoluminescence properties in MAPbI3 perovskite films. J. Mater. Chem. C 7(18), 5285–5292 (2019). https://doi.org/10.1039/C8TC05998E
H. Tsai, D. Ghosh, W. Panaccione, L.-Y. Su, C.-H. Hou et al., Addressing the voltage induced instability problem of perovskite semiconductor detectors. ACS Energy Lett. 7(11), 3871–3879 (2022). https://doi.org/10.1021/acsenergylett.2c02054
Y. Zhang, C. Zhou, L. Lin, F. Pei, M. Xiao et al., Gelation of hole transport layer to improve the stability of perovskite solar cells. Nano-Micro Lett. 15(1), 175 (2023). https://doi.org/10.1007/s40820-023-01145-y
X. Liu, B. Zheng, L. Shi, S. Zhou, J. Xu et al., Perovskite solar cells based on spiro-OMeTAD stabilized with an alkylthiol additive. Nat. Photonics 17(1), 96–105 (2023). https://doi.org/10.1038/s41566-022-01111-x
S. Zhang, S.M. Hosseini, R. Gunder, A. Petsiuk, P. Caprioglio et al., The role of bulk and interface recombination in high-efficiency low-dimensional perovskite solar cells. Adv. Mater. 31(30), 1901090 (2019). https://doi.org/10.1002/adma.201901090
S.N. Habisreutinger, B. Wenger, H.J. Snaith, R.J. Nicholas, Dopant-free planar n–i–p perovskite solar cells with steady-state efficiencies exceeding 18%. ACS Energy Lett. 2(3), 622–628 (2017). https://doi.org/10.1021/acsenergylett.7b00028
Y. Bao, T. Ma, Z. Ai, Y. Zhang, L. Shi et al., Insights into efficiency deviation from current-mismatch for tandem photovoltaics. Nano Energy 120, 109165 (2024). https://doi.org/10.1016/j.nanoen.2023.109165
T. Kirchartz, J.A. Márquez, M. Stolterfoht, T. Unold, Photoluminescence-based characterization of halide perovskites for photovoltaics. Adv. Energy Mater. 10(26), 1904134 (2020). https://doi.org/10.1002/aenm.201904134
F. Staub, H. Hempel, J.-C. Hebig, J. Mock, U.W. Paetzold et al., Beyond bulk lifetimes: insights into lead halide perovskite films from time-resolved photoluminescence. Phys. Rev. Appl. 6(4), 044017 (2016). https://doi.org/10.1103/physrevapplied.6.044017
B. Krogmeier, F. Staub, D. Grabowski, U. Rau, T. Kirchartz, Quantitative analysis of the transient photoluminescence of CH3NH3PbI3/PC61BM heterojunctions by numerical simulations. Sustain. Energy Fuels 2(5), 1027–1034 (2018). https://doi.org/10.1039/c7se00603a
X. Li, Z. Ying, S. Li, L. Chen, M. Zhang et al., Top-down dual-interface carrier management for highly efficient and stable perovskite/silicon tandem solar cells. Nano-Micro Lett. 17(1), 141 (2025). https://doi.org/10.1007/s40820-024-01631-x
X. Liu, Z. Yu, T. Wang, K.L. Chiu, F. Lin et al., Full defects passivation enables 21% efficiency perovskite solar cells operating in air. Adv. Energy Mater. 10(38), 2001958 (2020). https://doi.org/10.1002/aenm.202001958
M. Wang, Z. Shi, C. Fei, Z.J.D. Deng, G. Yang et al., Ammonium cations with high pKa in perovskite solar cells for improved high-temperature photostability. Nat. Energy 8(11), 1229–1239 (2023). https://doi.org/10.1038/s41560-023-01362-0
M.V. Khenkin, E.A. Katz, A. Abate, G. Bardizza, J.J. Berry et al., Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5(1), 35–49 (2020). https://doi.org/10.1038/s41560-019-0529-5
X. Shen, X. Lin, Y. Peng, Y. Zhang, F. Long et al., Two-dimensional materials for highly efficient and stable perovskite solar cells. Nano-Micro Lett. 16(1), 201 (2024). https://doi.org/10.1007/s40820-024-01417-1
J. Wen, Y. Zhao, P. Wu, Y. Liu, X. Zheng et al., Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells. Nat. Commun. 14(1), 7118 (2023). https://doi.org/10.1038/s41467-023-43016-5
W. Yang, H. Long, X. Sha, J. Sun, Y. Zhao et al., Unlocking voltage potentials of mixed-halide perovskite solar cells via phase segregation suppression. Adv. Funct. Mater. 32(12), 2110698 (2022). https://doi.org/10.1002/adfm.202110698
J. Warby, F. Zu, S. Zeiske, E. Gutierrez-Partida, L. Frohloff et al., Understanding performance limiting interfacial recombination in pin perovskite solar cells. Adv. Energy Mater. 12(12), 2103567 (2022). https://doi.org/10.1002/aenm.202103567