Recycling of High-Purity Lithium Metal from Waste Battery by Photoelectrochemical Extraction at Ultralow Overall Potential
Corresponding Author: Jianyun Zheng
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 117
Abstract
To ease the scarcity of lithium (Li) resource and cut down on environmental pollution, an efficient, selective, inexpensive and sustainable Li recycling process from waste batteries is needed, which is yet to be achieved. Here, we report a low-potential photoelectrochemical (PEC) system that selectively and efficiently extracts Li metals from multi-cation electrolytes under 1 sun illumination. Based on the difference of redox potential, we can get rid of the disturbance of other cations (i.e., Fe, Co and Ni ions) by a bias-free PEC device to realize the extraction of high-purity Li metals on a coplanar Si-based photocathode-TiO2 photoanode tandem device at 2 V of applied bias (far less than the redox potentials of Li+/Li). In such system, the extraction rate of Li metals (purity > 99.5%) exceeds 1.35 g h−1 m−2 with 90% of Faradaic efficiency. Long-term experiments, different electrode/electrolyte tests, and various price assessments further demonstrate the stability, compatibility and economy of PEC extraction system, enabling a solar-driven pathway for the recycling of critical metal resources.
Highlights:
1 A low-potential photoelectrochemical (PEC) system was designed and used to selectively and efficiently extracts Li metals from multi-cation electrolytes under 1 sun illumination.
2 A coplanar Si-based photocathode-TiO2 photoanode PEC device exhibited an acceptable extraction rate of ~1.38 g h−1 m−2, an excellent FE of 90.7% and a high production purity of 99.5%.
3 The designed PEC system also showed potential for purifying the waste electrolytes and recycling the other metals (i.e., Fe, Co, and Ni).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.M. Turner, The matter of a clean energy future. Science 376(6600), 1361 (2022). https://doi.org/10.1126/science.add5094
- F. Degen, M. Winter, D. Bendig, J. Tübke, Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nat. Energy 8(11), 1284–1295 (2023). https://doi.org/10.1038/s41560-023-01355-z
- X. Wu, M. Wang, H. Pan, X. Sun, S. Tang et al., Developing high-energy, stable all-solid-state lithium batteries using aluminum-based anodes and high-nickel cathodes. Nanomicro Lett. 17(1), 239 (2025). https://doi.org/10.1007/s40820-025-01751-y
- X. Chen, M. Yang, S. Zheng, F. Temprano-Coleto, Q. Dong et al., Spatially separated crystallization for selective lithium extraction from saline water. Nat. Water 1(9), 808–817 (2023). https://doi.org/10.1038/s44221-023-00131-3
- K. Turcheniuk, D. Bondarev, V. Singhal, G. Yushin, Ten years left to redesign lithium-ion batteries. Nature 559(7715), 467–470 (2018). https://doi.org/10.1038/d41586-018-05752-3
- M. Huang, M. Wang, L. Yang, Z. Wang, H. Yu et al., Direct regeneration of spent lithium-ion battery cathodes: from theoretical study to production practice. Nano-Micro Lett. 16(1), 207 (2024). https://doi.org/10.1007/s40820-024-01434-0
- J. Wang, X. Yue, P. Wang, T. Yu, X. Du et al., Electrochemical technologies for lithium recovery from liquid resources: a review. Renew. Sustain. Energy Rev. 154, 111813 (2022). https://doi.org/10.1016/j.rser.2021.111813
- Y. Song, S. Fang, N. Xu, M. Wang, S. Chen et al., Solar transpiration-powered lithium extraction and storage. Science 385(6716), 1444–1449 (2024). https://doi.org/10.1126/science.adm7034
- Y. Lyu, J. Zheng, S. Wang, Photoelectrochemical lithium extraction from waste batteries. Chemsuschem 17(17), e202301526 (2024). https://doi.org/10.1002/cssc.202301526
- M.L. Vera, W.R. Torres, C.I. Galli, A. Chagnes, V. Flexer, Environmental impact of direct lithium extraction from brines. Nat. Rev. Earth Environ. 4(3), 149–165 (2023). https://doi.org/10.1038/s43017-022-00387-5
- R.M. DuChanois, N.J. Cooper, B. Lee, S.K. Patel, L. Mazurowski et al., Prospects of metal recovery from wastewater and brine. Nat. Water 1(1), 37–46 (2023). https://doi.org/10.1038/s44221-022-00006-z
- M. Yong, M. Tang, L. Sun, F. Xiong, L. Xie et al., Sustainable lithium extraction and magnesium hydroxide co-production from salt-lake brines. Nat. Sustain. 7(12), 1662–1671 (2024). https://doi.org/10.1038/s41893-024-01435-2
- O.A. Kazi, W. Chen, J.G. Eatman, F. Gao, Y. Liu et al., Material design strategies for recovery of critical resources from water. Adv. Mater. 35(36), 2300913 (2023). https://doi.org/10.1002/adma.202300913
- R.M. DuChanois, A fast evaporative method for extracting lithium from brines. Nat. Water 1(9), 754–755 (2023). https://doi.org/10.1038/s44221-023-00129-x
- J. Lu, Y. Jung Lee, X. Luo, K. Chun Lau, M. Asadi et al., A lithium–oxygen battery based on lithium superoxide. Nature 529(7586), 377–382 (2016). https://doi.org/10.1038/nature16484
- C. Niu, H. Pan, W. Xu, J. Xiao, J.-G. Zhang et al., Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol. 14(6), 594–601 (2019). https://doi.org/10.1038/s41565-019-0427-9
- Y. Yang, W. Yang, H. Yang, H. Zhou, Electrolyte design principles for low-temperature lithium-ion batteries. eScience 3(6), 100170 (2023). https://doi.org/10.1016/j.esci.2023.100170
- Y. Yan, T. Zeng, S. Liu, C. Shu, Y. Zeng, Lithium metal stabilization for next-generation lithium-based batteries: from fundamental chemistry to advanced characterization and effective protection. Energy Mater. 3, 300002 (2023). https://doi.org/10.20517/energymater.2022.60
- R. Ma, S. Tao, X. Sun, Y. Ren, C. Sun et al., Pathway decisions for reuse and recycling of retired lithium-ion batteries considering economic and environmental functions. Nat. Commun. 15(1), 7641 (2024). https://doi.org/10.1038/s41467-024-52030-0
- Y.-H. Huang, S.-Y. Zou, C.-Y. Sheng, Y.-C. Fang, X.-D. Wang et al., Lattice anchoring stabilizes α-FAPbI(3) perovskite for high-performance X-ray detectors. Nanomicro Lett. 18(1), 14 (2025). https://doi.org/10.1007/s40820-025-01856-4
- B. Swain, Recovery and recycling of lithium: a review. Sep. Purif. Technol. 172, 388–403 (2017). https://doi.org/10.1016/j.seppur.2016.08.031
- M. Yu, J. Wang, M. Lei, M.S. Jung, Z. Zhuo et al., Unlocking iron metal as a cathode for sustainable Li-ion batteries by an anion solid solution. Sci. Adv. 10(21), eadn4441 (2024). https://doi.org/10.1126/sciadv.adn4441
- M. Li, J. Lu, Cobalt in lithium-ion batteries. Science 367(6481), 979–980 (2020). https://doi.org/10.1126/science.aba9168
- K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4(6), eaas9820 (2018). https://doi.org/10.1126/sciadv.aas9820
- G. Assat, J.-M. Tarascon, Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3(5), 373–386 (2018). https://doi.org/10.1038/s41560-018-0097-0
- G. Zhang, Y. Li, X. Guan, G. Hu, H. Su et al., Spontaneous lithium extraction and enrichment from brine with net energy output driven by counter-ion gradients. Nat. Water 2(11), 1091–1101 (2024). https://doi.org/10.1038/s44221-024-00326-2
- Y. Song, Z. Zhao, L. He, Lithium recovery from Li3PO4 leaching liquor: solvent extraction mechanism of saponified D2EHPA system. Sep. Purif. Technol. 249, 117161 (2020). https://doi.org/10.1016/j.seppur.2020.117161
- B.K. Biswal, U.U. Jadhav, M. Madhaiyan, L. Ji, E.-H. Yang et al., Biological leaching and chemical precipitation methods for recovery of Co and Li from spent lithium-ion batteries. ACS Sustain Chem. Eng. 6(9), 12343–12352 (2018). https://doi.org/10.1021/acssuschemeng.8b02810
- L. Wang, D. Rehman, P.-F. Sun, A. Deshmukh, L. Zhang et al., Novel positively charged metal-coordinated nanofiltration membrane for lithium recovery. ACS Appl. Mater. Interfaces 13(14), 16906–16915 (2021). https://doi.org/10.1021/acsami.1c02252
- Z. Li, I.-C. Chen, L. Cao, X. Liu, K.-W. Huang et al., Lithium extraction from brine through a decoupled and membrane-free electrochemical cell design. Science 385(6716), 1438–1444 (2024). https://doi.org/10.1126/science.adg8487
- G. Yan, M. Wang, G.T. Hill, S. Zou, C. Liu, Defining the challenges of Li extraction with olivine host: the roles of competitor and spectator ions. Proc. Natl. Acad. Sci. U.S.A. 119(31), e2200751119 (2022). https://doi.org/10.1073/pnas.2200751119
- A. Battistel, M.S. Palagonia, D. Brogioli, F. La Mantia, R. Trócoli, Electrochemical methods for lithium recovery: a comprehensive and critical review. Adv. Mater. 32(23), 1905440 (2020). https://doi.org/10.1002/adma.201905440
- G.T. Hill, F. Shi, H. Zhou, Y. Han, C. Liu, Layer spacing gradient (NaLi)1–CoO2 for electrochemical Li extraction. Matter 4(5), 1611–1624 (2021). https://doi.org/10.1016/j.matt.2021.02.005
- C. Liu, Y. Li, D. Lin, P.-C. Hsu, B. Liu et al., Lithium extraction from seawater through pulsed electrochemical intercalation. Joule 4(7), 1459–1469 (2020). https://doi.org/10.1016/j.joule.2020.05.017
- Y. Xiong, J. Zhou, P. Lu, J. Yin, Y. Wang et al., Electrochemical lithium extraction from aqueous sources. Matter 5(6), 1760–1791 (2022). https://doi.org/10.1016/j.matt.2022.04.034
- H. Peng, K. Yu, X. Liu, J. Li, X. Hu et al., Quaternization-spiro design of chlorine-resistant and high-permeance lithium separation membranes. Nat. Commun. 14(1), 5483 (2023). https://doi.org/10.1038/s41467-023-41169-x
- J. Lu, H. Zhang, J. Hou, X. Li, X. Hu et al., Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks. Nat. Mater. 19(7), 767–774 (2020). https://doi.org/10.1038/s41563-020-0634-7
- R. Wang, R. He, T. He, M. Elimelech, S. Lin, Performance metrics for nanofiltration-based selective separation for resource extraction and recovery. Nat. Water 1(3), 291–300 (2023). https://doi.org/10.1038/s44221-023-00037-0
- S.J. Warnock, R. Sujanani, E.S. Zofchak, S. Zhao, T.J. Dilenschneider et al., Engineering Li/Na selectivity in 12-Crown-4-functionalized polymer membranes. Proc. Natl. Acad. Sci. U.S.A. 118(37), e2022197118 (2021). https://doi.org/10.1073/pnas.2022197118
- S. Yang, F. Zhang, H. Ding, P. He, H. Zhou, Lithium metal extraction from seawater. Joule 2(9), 1648–1651 (2018). https://doi.org/10.1016/j.joule.2018.07.006
- L. Jiang, Y. Lyu, A. Huang, J. Zheng, C. Xie et al., Mixed-phase WO3 cocatalysts on hierarchical Si-based photocathode for efficient photoelectrochemical Li extraction. Angew. Chem. Int. Ed. 62(24), e202304079 (2023). https://doi.org/10.1002/anie.202304079
- X. Zhang, Y. Lyu, H. Zhou, J. Zheng, A. Huang et al., Photoelectrochemical N2-to-NH3 fixation with high efficiency and rates via optimized Si-based system at positive potential versus Li0/+. Adv. Mater. 35(21), 2211894 (2023). https://doi.org/10.1002/adma.202211894
- Y. Shimodaira, T. Miura, A. Kudo, H. Kobayashi, DFT method estimation of standard redox potential of metal ions and metal complexes. J. Chem. Theory Comput. 3(3), 789–795 (2007). https://doi.org/10.1021/ct700015t
- R. Li, X. Ma, J. Li, J. Cao, H. Gao et al., Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures. Nat. Commun. 12(1), 1587 (2021). https://doi.org/10.1038/s41467-021-21852-7
- R.-T. Wen, C.G. Granqvist, G.A. Niklasson, Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nat. Mater. 14(10), 996–1001 (2015). https://doi.org/10.1038/nmat4368
- J.N. Yao, K. Hashimoto, A. Fujishima, Photochromism induced in an electrolytically pretreated MoO3 thin film by visible light. Nature 355(6361), 624–626 (1992). https://doi.org/10.1038/355624a0
- W. Liu, Y. Liu, Z. Yang, C. Xu, X. Li et al., Flexible solar cells based on foldable silicon wafers with blunted edges. Nature 617(7962), 717–723 (2023). https://doi.org/10.1038/s41586-023-05921-z
- J. Zheng, Y. Lyu, R. Wang, C. Xie, H. Zhou et al., Crystalline TiO2 protective layer with graded oxygen defects for efficient and stable silicon-based photocathode. Nat. Commun. 9, 3572 (2018). https://doi.org/10.1038/s41467-018-05580-z
- K. Murugappan, E.M. Anderson, D. Teschner, T.E. Jones, K. Skorupska et al., operando NAP-XPS unveils differences in MoO3 and Mo2C during hydrodeoxygenation. Nat. Catal. 1(12), 960–967 (2018). https://doi.org/10.1038/s41929-018-0171-9
- Y. Lyu, J. Zheng, A. Huang, H. Zhou, S.P. Jiang et al., Reactivity and durability of TiO2 photoanodes with dominant high-energy (211) facets. J. Mater. Chem. A 12(32), 21041–21049 (2024). https://doi.org/10.1039/d4ta03737e
- J. Ding, Y. Lyu, H. Zhou, B. Johannessen, X. Zhang et al., Efficiently unbiased solar-to-ammonia conversion by photoelectrochemical Cu/C/Si-TiO2 tandems. Appl. Catal. B Environ. Energy 345, 123735 (2024). https://doi.org/10.1016/j.apcatb.2024.123735
- C.-E. Dutoit, M. Tang, D. Gourier, J.-M. Tarascon, H. Vezin et al., Monitoring metallic sub-micrometric lithium structures in Li-ion batteries by in situ electron paramagnetic resonance correlated spectroscopy and imaging. Nat. Commun. 12(1), 1410 (2021). https://doi.org/10.1038/s41467-021-21598-2
- Y.H. Kwon, K. Minnici, J.J. Park, S.R. Lee, G. Zhang et al., SWNT anchored with carboxylated polythiophene “links” on high-capacity Li-ion battery anode materials. J. Am. Chem. Soc. 140(17), 5666–5669 (2018). https://doi.org/10.1021/jacs.8b00693
- B. Wu, Y. Lyu, W. Chen, J. Zheng, H. Zhou et al., Compression stress-induced internal magnetic field in bulky TiO2 photoanodes for enhancing charge-carrier dynamics. JACS Au 3(2), 592–602 (2023). https://doi.org/10.1021/jacsau.2c00690
- Z. Yan, H. Sun, X. Chen, H. Liu, Y. Zhao et al., Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nat. Commun. 9(1), 2373 (2018). https://doi.org/10.1038/s41467-018-04788-3
- J. Zheng, H. Zhou, Y. Zou, R. Wang, Y. Lyu et al., Efficiency and stability of narrow-gap semiconductor-based photoelectrodes. Energy Environ. Sci. 12(8), 2345–2374 (2019). https://doi.org/10.1039/c9ee00524b
- W. He, A.-C. Le Henaff, S. Amrose, T. Buonassisi, I.M. Peters et al., Flexible batch electrodialysis for low-cost solar-powered brackish water desalination. Nat. Water 2(4), 370–379 (2024). https://doi.org/10.1038/s44221-024-00213-w
- G.A. Giffin, The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries. Nat. Commun. 13(1), 5250 (2022). https://doi.org/10.1038/s41467-022-32794-z
References
J.M. Turner, The matter of a clean energy future. Science 376(6600), 1361 (2022). https://doi.org/10.1126/science.add5094
F. Degen, M. Winter, D. Bendig, J. Tübke, Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nat. Energy 8(11), 1284–1295 (2023). https://doi.org/10.1038/s41560-023-01355-z
X. Wu, M. Wang, H. Pan, X. Sun, S. Tang et al., Developing high-energy, stable all-solid-state lithium batteries using aluminum-based anodes and high-nickel cathodes. Nanomicro Lett. 17(1), 239 (2025). https://doi.org/10.1007/s40820-025-01751-y
X. Chen, M. Yang, S. Zheng, F. Temprano-Coleto, Q. Dong et al., Spatially separated crystallization for selective lithium extraction from saline water. Nat. Water 1(9), 808–817 (2023). https://doi.org/10.1038/s44221-023-00131-3
K. Turcheniuk, D. Bondarev, V. Singhal, G. Yushin, Ten years left to redesign lithium-ion batteries. Nature 559(7715), 467–470 (2018). https://doi.org/10.1038/d41586-018-05752-3
M. Huang, M. Wang, L. Yang, Z. Wang, H. Yu et al., Direct regeneration of spent lithium-ion battery cathodes: from theoretical study to production practice. Nano-Micro Lett. 16(1), 207 (2024). https://doi.org/10.1007/s40820-024-01434-0
J. Wang, X. Yue, P. Wang, T. Yu, X. Du et al., Electrochemical technologies for lithium recovery from liquid resources: a review. Renew. Sustain. Energy Rev. 154, 111813 (2022). https://doi.org/10.1016/j.rser.2021.111813
Y. Song, S. Fang, N. Xu, M. Wang, S. Chen et al., Solar transpiration-powered lithium extraction and storage. Science 385(6716), 1444–1449 (2024). https://doi.org/10.1126/science.adm7034
Y. Lyu, J. Zheng, S. Wang, Photoelectrochemical lithium extraction from waste batteries. Chemsuschem 17(17), e202301526 (2024). https://doi.org/10.1002/cssc.202301526
M.L. Vera, W.R. Torres, C.I. Galli, A. Chagnes, V. Flexer, Environmental impact of direct lithium extraction from brines. Nat. Rev. Earth Environ. 4(3), 149–165 (2023). https://doi.org/10.1038/s43017-022-00387-5
R.M. DuChanois, N.J. Cooper, B. Lee, S.K. Patel, L. Mazurowski et al., Prospects of metal recovery from wastewater and brine. Nat. Water 1(1), 37–46 (2023). https://doi.org/10.1038/s44221-022-00006-z
M. Yong, M. Tang, L. Sun, F. Xiong, L. Xie et al., Sustainable lithium extraction and magnesium hydroxide co-production from salt-lake brines. Nat. Sustain. 7(12), 1662–1671 (2024). https://doi.org/10.1038/s41893-024-01435-2
O.A. Kazi, W. Chen, J.G. Eatman, F. Gao, Y. Liu et al., Material design strategies for recovery of critical resources from water. Adv. Mater. 35(36), 2300913 (2023). https://doi.org/10.1002/adma.202300913
R.M. DuChanois, A fast evaporative method for extracting lithium from brines. Nat. Water 1(9), 754–755 (2023). https://doi.org/10.1038/s44221-023-00129-x
J. Lu, Y. Jung Lee, X. Luo, K. Chun Lau, M. Asadi et al., A lithium–oxygen battery based on lithium superoxide. Nature 529(7586), 377–382 (2016). https://doi.org/10.1038/nature16484
C. Niu, H. Pan, W. Xu, J. Xiao, J.-G. Zhang et al., Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol. 14(6), 594–601 (2019). https://doi.org/10.1038/s41565-019-0427-9
Y. Yang, W. Yang, H. Yang, H. Zhou, Electrolyte design principles for low-temperature lithium-ion batteries. eScience 3(6), 100170 (2023). https://doi.org/10.1016/j.esci.2023.100170
Y. Yan, T. Zeng, S. Liu, C. Shu, Y. Zeng, Lithium metal stabilization for next-generation lithium-based batteries: from fundamental chemistry to advanced characterization and effective protection. Energy Mater. 3, 300002 (2023). https://doi.org/10.20517/energymater.2022.60
R. Ma, S. Tao, X. Sun, Y. Ren, C. Sun et al., Pathway decisions for reuse and recycling of retired lithium-ion batteries considering economic and environmental functions. Nat. Commun. 15(1), 7641 (2024). https://doi.org/10.1038/s41467-024-52030-0
Y.-H. Huang, S.-Y. Zou, C.-Y. Sheng, Y.-C. Fang, X.-D. Wang et al., Lattice anchoring stabilizes α-FAPbI(3) perovskite for high-performance X-ray detectors. Nanomicro Lett. 18(1), 14 (2025). https://doi.org/10.1007/s40820-025-01856-4
B. Swain, Recovery and recycling of lithium: a review. Sep. Purif. Technol. 172, 388–403 (2017). https://doi.org/10.1016/j.seppur.2016.08.031
M. Yu, J. Wang, M. Lei, M.S. Jung, Z. Zhuo et al., Unlocking iron metal as a cathode for sustainable Li-ion batteries by an anion solid solution. Sci. Adv. 10(21), eadn4441 (2024). https://doi.org/10.1126/sciadv.adn4441
M. Li, J. Lu, Cobalt in lithium-ion batteries. Science 367(6481), 979–980 (2020). https://doi.org/10.1126/science.aba9168
K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4(6), eaas9820 (2018). https://doi.org/10.1126/sciadv.aas9820
G. Assat, J.-M. Tarascon, Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3(5), 373–386 (2018). https://doi.org/10.1038/s41560-018-0097-0
G. Zhang, Y. Li, X. Guan, G. Hu, H. Su et al., Spontaneous lithium extraction and enrichment from brine with net energy output driven by counter-ion gradients. Nat. Water 2(11), 1091–1101 (2024). https://doi.org/10.1038/s44221-024-00326-2
Y. Song, Z. Zhao, L. He, Lithium recovery from Li3PO4 leaching liquor: solvent extraction mechanism of saponified D2EHPA system. Sep. Purif. Technol. 249, 117161 (2020). https://doi.org/10.1016/j.seppur.2020.117161
B.K. Biswal, U.U. Jadhav, M. Madhaiyan, L. Ji, E.-H. Yang et al., Biological leaching and chemical precipitation methods for recovery of Co and Li from spent lithium-ion batteries. ACS Sustain Chem. Eng. 6(9), 12343–12352 (2018). https://doi.org/10.1021/acssuschemeng.8b02810
L. Wang, D. Rehman, P.-F. Sun, A. Deshmukh, L. Zhang et al., Novel positively charged metal-coordinated nanofiltration membrane for lithium recovery. ACS Appl. Mater. Interfaces 13(14), 16906–16915 (2021). https://doi.org/10.1021/acsami.1c02252
Z. Li, I.-C. Chen, L. Cao, X. Liu, K.-W. Huang et al., Lithium extraction from brine through a decoupled and membrane-free electrochemical cell design. Science 385(6716), 1438–1444 (2024). https://doi.org/10.1126/science.adg8487
G. Yan, M. Wang, G.T. Hill, S. Zou, C. Liu, Defining the challenges of Li extraction with olivine host: the roles of competitor and spectator ions. Proc. Natl. Acad. Sci. U.S.A. 119(31), e2200751119 (2022). https://doi.org/10.1073/pnas.2200751119
A. Battistel, M.S. Palagonia, D. Brogioli, F. La Mantia, R. Trócoli, Electrochemical methods for lithium recovery: a comprehensive and critical review. Adv. Mater. 32(23), 1905440 (2020). https://doi.org/10.1002/adma.201905440
G.T. Hill, F. Shi, H. Zhou, Y. Han, C. Liu, Layer spacing gradient (NaLi)1–CoO2 for electrochemical Li extraction. Matter 4(5), 1611–1624 (2021). https://doi.org/10.1016/j.matt.2021.02.005
C. Liu, Y. Li, D. Lin, P.-C. Hsu, B. Liu et al., Lithium extraction from seawater through pulsed electrochemical intercalation. Joule 4(7), 1459–1469 (2020). https://doi.org/10.1016/j.joule.2020.05.017
Y. Xiong, J. Zhou, P. Lu, J. Yin, Y. Wang et al., Electrochemical lithium extraction from aqueous sources. Matter 5(6), 1760–1791 (2022). https://doi.org/10.1016/j.matt.2022.04.034
H. Peng, K. Yu, X. Liu, J. Li, X. Hu et al., Quaternization-spiro design of chlorine-resistant and high-permeance lithium separation membranes. Nat. Commun. 14(1), 5483 (2023). https://doi.org/10.1038/s41467-023-41169-x
J. Lu, H. Zhang, J. Hou, X. Li, X. Hu et al., Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks. Nat. Mater. 19(7), 767–774 (2020). https://doi.org/10.1038/s41563-020-0634-7
R. Wang, R. He, T. He, M. Elimelech, S. Lin, Performance metrics for nanofiltration-based selective separation for resource extraction and recovery. Nat. Water 1(3), 291–300 (2023). https://doi.org/10.1038/s44221-023-00037-0
S.J. Warnock, R. Sujanani, E.S. Zofchak, S. Zhao, T.J. Dilenschneider et al., Engineering Li/Na selectivity in 12-Crown-4-functionalized polymer membranes. Proc. Natl. Acad. Sci. U.S.A. 118(37), e2022197118 (2021). https://doi.org/10.1073/pnas.2022197118
S. Yang, F. Zhang, H. Ding, P. He, H. Zhou, Lithium metal extraction from seawater. Joule 2(9), 1648–1651 (2018). https://doi.org/10.1016/j.joule.2018.07.006
L. Jiang, Y. Lyu, A. Huang, J. Zheng, C. Xie et al., Mixed-phase WO3 cocatalysts on hierarchical Si-based photocathode for efficient photoelectrochemical Li extraction. Angew. Chem. Int. Ed. 62(24), e202304079 (2023). https://doi.org/10.1002/anie.202304079
X. Zhang, Y. Lyu, H. Zhou, J. Zheng, A. Huang et al., Photoelectrochemical N2-to-NH3 fixation with high efficiency and rates via optimized Si-based system at positive potential versus Li0/+. Adv. Mater. 35(21), 2211894 (2023). https://doi.org/10.1002/adma.202211894
Y. Shimodaira, T. Miura, A. Kudo, H. Kobayashi, DFT method estimation of standard redox potential of metal ions and metal complexes. J. Chem. Theory Comput. 3(3), 789–795 (2007). https://doi.org/10.1021/ct700015t
R. Li, X. Ma, J. Li, J. Cao, H. Gao et al., Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures. Nat. Commun. 12(1), 1587 (2021). https://doi.org/10.1038/s41467-021-21852-7
R.-T. Wen, C.G. Granqvist, G.A. Niklasson, Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nat. Mater. 14(10), 996–1001 (2015). https://doi.org/10.1038/nmat4368
J.N. Yao, K. Hashimoto, A. Fujishima, Photochromism induced in an electrolytically pretreated MoO3 thin film by visible light. Nature 355(6361), 624–626 (1992). https://doi.org/10.1038/355624a0
W. Liu, Y. Liu, Z. Yang, C. Xu, X. Li et al., Flexible solar cells based on foldable silicon wafers with blunted edges. Nature 617(7962), 717–723 (2023). https://doi.org/10.1038/s41586-023-05921-z
J. Zheng, Y. Lyu, R. Wang, C. Xie, H. Zhou et al., Crystalline TiO2 protective layer with graded oxygen defects for efficient and stable silicon-based photocathode. Nat. Commun. 9, 3572 (2018). https://doi.org/10.1038/s41467-018-05580-z
K. Murugappan, E.M. Anderson, D. Teschner, T.E. Jones, K. Skorupska et al., operando NAP-XPS unveils differences in MoO3 and Mo2C during hydrodeoxygenation. Nat. Catal. 1(12), 960–967 (2018). https://doi.org/10.1038/s41929-018-0171-9
Y. Lyu, J. Zheng, A. Huang, H. Zhou, S.P. Jiang et al., Reactivity and durability of TiO2 photoanodes with dominant high-energy (211) facets. J. Mater. Chem. A 12(32), 21041–21049 (2024). https://doi.org/10.1039/d4ta03737e
J. Ding, Y. Lyu, H. Zhou, B. Johannessen, X. Zhang et al., Efficiently unbiased solar-to-ammonia conversion by photoelectrochemical Cu/C/Si-TiO2 tandems. Appl. Catal. B Environ. Energy 345, 123735 (2024). https://doi.org/10.1016/j.apcatb.2024.123735
C.-E. Dutoit, M. Tang, D. Gourier, J.-M. Tarascon, H. Vezin et al., Monitoring metallic sub-micrometric lithium structures in Li-ion batteries by in situ electron paramagnetic resonance correlated spectroscopy and imaging. Nat. Commun. 12(1), 1410 (2021). https://doi.org/10.1038/s41467-021-21598-2
Y.H. Kwon, K. Minnici, J.J. Park, S.R. Lee, G. Zhang et al., SWNT anchored with carboxylated polythiophene “links” on high-capacity Li-ion battery anode materials. J. Am. Chem. Soc. 140(17), 5666–5669 (2018). https://doi.org/10.1021/jacs.8b00693
B. Wu, Y. Lyu, W. Chen, J. Zheng, H. Zhou et al., Compression stress-induced internal magnetic field in bulky TiO2 photoanodes for enhancing charge-carrier dynamics. JACS Au 3(2), 592–602 (2023). https://doi.org/10.1021/jacsau.2c00690
Z. Yan, H. Sun, X. Chen, H. Liu, Y. Zhao et al., Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nat. Commun. 9(1), 2373 (2018). https://doi.org/10.1038/s41467-018-04788-3
J. Zheng, H. Zhou, Y. Zou, R. Wang, Y. Lyu et al., Efficiency and stability of narrow-gap semiconductor-based photoelectrodes. Energy Environ. Sci. 12(8), 2345–2374 (2019). https://doi.org/10.1039/c9ee00524b
W. He, A.-C. Le Henaff, S. Amrose, T. Buonassisi, I.M. Peters et al., Flexible batch electrodialysis for low-cost solar-powered brackish water desalination. Nat. Water 2(4), 370–379 (2024). https://doi.org/10.1038/s44221-024-00213-w
G.A. Giffin, The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries. Nat. Commun. 13(1), 5250 (2022). https://doi.org/10.1038/s41467-022-32794-z