Scalable Fabrication of Large-Scale Electrochromic Smart Windows for Superior Solar Radiation Regulation and Energy Savings
Corresponding Author: Chunyang Jia
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 211
Abstract
Electrochromic smart windows (ESWs) can significantly reduce building energy consumption, but the high cost hinders large-scale production. The in situ growth of tungsten oxide (WO3) films is only by a simple immersion process, the silver nanowires (AgNWs) undergo oxidation to Ag+ ions through electron loss, and the liberated electrons provide driving force for the deposition of WO42−. Enabled the fabrication of large-area WO3 films and ESWs were fabricated under minimal laboratory conditions, demonstrating the economic feasibility, efficient and reliable nature of industrial production. Structural characterization and density functional theory calculations were combined to confirm that AgNWs effectively regulate oxygen vacancies of WO3 films and promote the in situ growth process. The optimized WO3 exhibits a maximum transmittance modulation of 90.8% and excellent cycling stability of 20,000 cycles. The large-scale WO3-based ESWs can save building energy up to 140.0 MJ m−2 compared to traditional windows in tropical regions, as verified by simulations more than 40 global cities. This research provides a new approach for improving the performance and industrial production of ESW, providing the full understanding and development direction to short the distance of the ESW commercial production.
Highlights:
1 Propose the in-situ growth strategy of WO3 films and deeply explore the growth mechanism and reveal the "one stone, three birds" synergistic mechanism of silver nanowires.
2 The WO3-based electrochromic devices not only can achieve large-area fabrication, dual-band regulation, and excellent cycling stability, but also possess excellent photothermal control capabilities.
3 A uniform and large-scale WO3-based electrochromic smart windows of 6000 cm2 was fabricated through a simple device, which can save building energy up to 140.0 MJ m-2 compared to traditional windows.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Zhang, X. Yan, S. Liu, E. Wu, Y. Tian, Polydopamine modified Nd-doped TiO2 films for improved electrochromism and energy storage. Opt. Mater. 163, 116969 (2025). https://doi.org/10.1016/j.optmat.2025.116969
- Y. Liang, S. Cao, Q. Wei, R. Zeng, J. Zhao et al., Reversible Zn2+ insertion in tungsten ion-activated titanium dioxide nanocrystals for electrochromic windows. Nano-Micro Lett. 13(1), 196 (2021). https://doi.org/10.1007/s40820-021-00719-y
- X. Yu, Y. Liu, W. Luo, X. Zeng, L. Cheng et al., Electrochromic devices and smart window applications of near-infrared electrochromic thienoviologens polymer properties. ACS Appl. Mater. Interfaces 17(19), 28472–28483 (2025). https://doi.org/10.1021/acsami.5c06091
- Z. Song, B. Wang, W. Zhang, Q. Zhu, A.Y. Elezzabi et al., Fast and stable zinc anode-based electrochromic displays enabled by bimetallically doped vanadate and aqueous Zn2+/Na+ hybrid electrolytes. Nano-Micro Lett. 15(1), 229 (2023). https://doi.org/10.1007/s40820-023-01209-z
- P. Lei, J. Wang, Y. Gao, C. Hu, S. Zhang et al., An electrochromic nickel phosphate film for large-area smart window with ultra-large optical modulation. Nano-Micro Lett. 15(1), 34 (2023). https://doi.org/10.1007/s40820-022-01002-4
- Z. Zhang, M. Yu, C. Ma, L. He, X. He et al., A Janus smart window for temperature-adaptive radiative cooling and adjustable solar transmittance. Nano-Micro Lett. 17(1), 233 (2025). https://doi.org/10.1007/s40820-025-01740-1
- G. Dastgeer, M.W. Zulfiqar, S. Nisar, R. Zulfiqar, M. Imran et al., Emerging role of 2D materials in photovoltaics: efficiency enhancement and future perspectives. Nano-Micro Lett. 18(1), 32 (2025). https://doi.org/10.1007/s40820-025-01869-z
- M. Kumar, P.P. Cho, R.K. Sethi, V. Biju, C. Subrahmanyam, Near infrared light-assisted photoelectrochemical conversion and environmental remediation. J. Photochem. Photobiol. C Photochem. Rev. 64, 100710 (2025). https://doi.org/10.1016/j.jphotochemrev.2025.100710
- Z. Huang, Y. Peng, J. Zhao, S. Zhang, P. Qi et al., An efficient and flexible bifunctional dual-band electrochromic device integrating with energy storage. Nano-Micro Lett. 17(1), 98 (2024). https://doi.org/10.1007/s40820-024-01604-0
- W. Wu, M. Tian, Y. Tang, C. Song, R. Zheng et al., Revolutionizing dual-band modulation and superior cycling stability in GDQDs-doped WO3 electrochromic films for advanced smart window applications. Small 21(6), 2407708 (2025). https://doi.org/10.1002/smll.202407708
- M. Tian, R. Zheng, C. Jia, Bridging to commercialization: record-breaking of ultra-large and superior cyclic stability tungsten oxide electrochromic smart window. Adv. Mater. 37(3), 2409790 (2025). https://doi.org/10.1002/adma.202409790
- T. Zhang, Y. Dai, Y. Li, X. Tang, Y. Hu et al., Colorful transmissive all-solid-state electrochromic devices empowered by optical resonant cavities. Chem. Eng. J. 516, 164254 (2025). https://doi.org/10.1016/j.cej.2025.164254
- G.T. Phan, D. Van Pham, N.L. Doan Thi, C.C.S. Maria, Y.-H. Chu et al., Nanorod-based smart windows with solid-gel electrolyte: an integrated electrochromic and pseudocapacitive technology for energy-saving and conversion. Nano Energy 132, 110374 (2024). https://doi.org/10.1016/j.nanoen.2024.110374
- J. Wang, Z. Wang, L. Cui, M. Zhang, X. Huo et al., Visible-near infrared independent modulation of hexagonal WO3 induced by ionic insertion sequence and cavity characteristics. Adv. Mater. 36(45), 2406939 (2024). https://doi.org/10.1002/adma.202406939
- W. Wu, H. Fang, H. Ma, L. Wu, W. Zhang et al., Boosting transport kinetics of ions and electrons simultaneously by Ti3C2Tx (MXene) addition for enhanced electrochromic performance. Nano-Micro Lett. 13, 20 (2020). https://doi.org/10.1007/s40820-020-00544-9
- T.P. Dao, T.M. Aminabhavi, Y. Vasseghian, S.-W. Joo, 3D-printed TaSe2/WO3/ZnIn2S4 for increased photocatalytic degradation of rifampicin antibiotic: role of reactive oxygen species and interfacial charge transfer. Chem. Eng. J. 511, 161763 (2025). https://doi.org/10.1016/j.cej.2025.161763
- C.-S. Park, S. Park, H. Cheon, H.-K. Kim, Enhanced flexibility of WO3-based flexible electrochromic devices for smart windows via ion beam treatment. Chem. Eng. J. 509, 161283 (2025). https://doi.org/10.1016/j.cej.2025.161283
- Y. Zhou, Y. Lv, X. Guo, X. Wang, Z. Liu et al., Electrochromic smart windows with on-demand photothermal regulation for energy-saving buildings. Adv. Mater. 37(29), e2502706 (2025). https://doi.org/10.1002/adma.202502706
- S. Li, Y. Chen, Z. Wang, M. Wang, X. Guo et al., Electrochromism via reversible electrodeposition of solid iodine. Nat. Commun. 16, 724 (2025). https://doi.org/10.1038/s41467-024-55348-x
- J. Fan, T. Wan, Y. He, C. Liu, T. Mei et al., Constructing long and stable Ag-Al2O3 core–shell nanowires for humidity sensing and triboelectric energy generation. Small Struct. 5(12), 2400208 (2024). https://doi.org/10.1002/sstr.202400208
- C. Qin, Q. Sun, Y. Chen, S. Fahad, J. Wu et al., Evaporation-induced self-assembled ultrathin AgNW networks for highly conformable wearable electronics. NPJ Flex. Electron. 8, 26 (2024). https://doi.org/10.1038/s41528-024-00314-2
- M. Du, Z. Yang, Y. Miao, C. Wang, P. Dong et al., Facile nanowelding process for silver nanowire electrodes toward high-performance large-area flexible organic light-emitting diodes. Adv. Funct. Mater. 34(42), 2404567 (2024). https://doi.org/10.1002/adfm.202404567
- Z. Sun, Y. Hu, H. Liu, Z. Lü, Y. Chen et al., Flexible alternating current electroluminescent devices using superstable AgNWs@Nd2O3/PU transparent conductive film as an electrode. Surf. Interfaces 64, 106482 (2025). https://doi.org/10.1016/j.surfin.2025.106482
- X. Wu, X. Zheng, T. Chen, S. Zhang, Y. Zhou et al., High-performance intrinsically stretchable organic photovoltaics enabled by robust silver nanowires/S-PH1000 hybrid transparent electrodes. Adv. Mater. 36(40), 2406879 (2024). https://doi.org/10.1002/adma.202406879
- L. Gan, Y. Liu, X. Yang, W. Huang, N. Yang et al., SrVO3-modified silver nanowire transparent conductive films with enhanced photoelectric performance and optical stability. J. Mater. Chem. A 13(23), 17629–17645 (2025). https://doi.org/10.1039/d5ta01446h
- B. Liu, P. Li, J. Zeng, J. Li, K. Chen, UV-induced plasma welding and interface customization strategy of cellulose nanofiber/silver nanowire composite electrode for advanced flexible photoelectric applications. Carbohydr. Polym. 357, 123479 (2025). https://doi.org/10.1016/j.carbpol.2025.123479
- F. Wu, L. Cheng, W. Wang, Surface plasmon resonance of large-size Ag nanobars. Micromachines 13(4), 638 (2022). https://doi.org/10.3390/mi13040638
- S. Zhang, Y. Peng, J. Zhao, Z. Fan, B. Ding et al., Amorphous and porous tungsten oxide films for fast-switching dual-band electrochromic smart windows. Advanced Optical Materials 11(1), 2202115 (2023). https://doi.org/10.1002/adom.202202115
- T. Hao, S. Wang, H. Xu, X. Zhang, J. Xue et al., Stretchable electrochromic devices based on embedded WO3@AgNW core-shell nanowire elastic conductors. Chem. Eng. J. 426, 130840 (2021). https://doi.org/10.1016/j.cej.2021.130840
- D.-K. An, S.-J. Jeon, Improved coloration efficiency and stability of WO3 electrochromic devices by the addition of silver nanowires. Korean J. Chem. Eng. 41(7), 2173–2181 (2024). https://doi.org/10.1007/s11814-024-00142-0
- B.-R. Koo, M.-H. Jo, K.-H. Kim, H.-J. Ahn, Amorphous-quantized WO3·H2O films as novel flexible electrode for advanced electrochromic energy storage devices. Chem. Eng. J. 424, 130383 (2021). https://doi.org/10.1016/j.cej.2021.130383
- J. Wang, J. Weng, L. Wang, Y. Zhou, H. Chen et al., Amorphous hydrated tungsten oxide films with electrochromic cycling stability up to 40 000 cycles enabled by regulating the coloring potential and structural water. ACS Appl. Mater. Interfaces 17(45), 62285–62296 (2025). https://doi.org/10.1021/acsami.5c14394
- H. Li, J. Li, C. Hou, D. Ho, Q. Zhang et al., Solution-processed porous tungsten molybdenum oxide electrodes for energy storage smart windows. Adv. Mater. Technol. 2(8), 1700047 (2017). https://doi.org/10.1002/admt.201700047
- Z. Wei, W. Wang, W. Li, X. Bai, J. Zhao et al., Steering electron–hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance. Angew. Chem. Int. Ed. 60(15), 8236–8242 (2021). https://doi.org/10.1002/anie.202016170
- Q. Meng, S. Cao, J. Guo, Q. Wang, K. Wang et al., Sol-gel-based porous Ti-doped tungsten oxide films for high-performance dual-band electrochromic smart windows. J. Energy Chem. 77, 137–143 (2023). https://doi.org/10.1016/j.jechem.2022.10.047
- L. Zhou, P. Wei, H. Fang, W. Wu, L. Wu et al., Self-doped tungsten oxide films induced by in situ carbothermal reduction for high performance electrochromic devices. J. Mater. Chem. C 8(40), 13999–14006 (2020). https://doi.org/10.1039/d0tc03103h
- M. Chen, X. Zhang, W. Sun, Y. Xiao, H. Zhang et al., A dual-responsive smart window based on inorganic all-solid-state electro- and photochromic device. Nano Energy 123, 109352 (2024). https://doi.org/10.1016/j.nanoen.2024.109352
- S.P. Gupta, H.H. Nishad, S.D. Chakane, S.W. Gosavi, D.J. Late et al., Phase transformation in tungsten oxide nanoplates as a function of post-annealing temperature and its electrochemical influence on energy storage. Nanoscale Adv. 2(10), 4689–4701 (2020). https://doi.org/10.1039/d0na00423e
- V. Lokhande, A. Lokhande, G. Namkoong, J.H. Kim, T. Ji, Charge storage in WO3 polymorphs and their application as supercapacitor electrode material. Results Phys. 12, 2012–2020 (2019). https://doi.org/10.1016/j.rinp.2019.02.012
- J. Du, Z. Zhang, C. Yue, Z. Nie, H. Tan et al., Two-dimensional oxygen vacancy-doped tungsten oxide hydrate nanosheets for high-performance electrochromic device. Mater. Today Chem. 26, 101089 (2022). https://doi.org/10.1016/j.mtchem.2022.101089
- C.Y. Ng, K. Abdul Razak, Z. Lockman, Effect of annealing on acid-treated WO3·H2O nanoplates and their electrochromic properties. Electrochim. Acta 178, 673–681 (2015). https://doi.org/10.1016/j.electacta.2015.08.069
- J. Yan, T. Wang, G. Wu, W. Dai, N. Guan et al., Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting. Adv. Mater. 27(9), 1580–1586 (2015). https://doi.org/10.1002/adma.201404792
- M.D. Brown, T. Suteewong, R.S.S. Kumar, V. D’Innocenzo, A. Petrozza et al., Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanops. Nano Lett. 11(2), 438–445 (2011). https://doi.org/10.1021/nl1031106
- M. Shen, T. Ding, C. Tan, W.H. Rackers, D. Zhang et al., In situ imaging of catalytic reactions on tungsten oxide nanowires connects surface–ligand redox chemistry with photocatalytic activity. Nano Lett. 22(12), 4694–4701 (2022). https://doi.org/10.1021/acs.nanolett.2c00674
- Z.-H. Huang, H. Li, W.-H. Li, G. Henkelman, B. Jia et al., Electrical and structural dual function of oxygen vacancies for promoting electrochemical capacitance in tungsten oxide. Small 16(52), 2004709 (2020). https://doi.org/10.1002/smll.202004709
- A. Chithambararaj, P. Nandigana, M. Kaleesh Kumar, A.S. Prakash, S.K. Panda, Enhanced electrochromism from non-stoichiometric electrodeposited tungsten oxide thin films. Appl. Surf. Sci. 582, 152424 (2022). https://doi.org/10.1016/j.apsusc.2022.152424
- S. Darmawi, S. Burkhardt, T. Leichtweiss, D.A. Weber, S. Wenzel et al., Correlation of electrochromic properties and oxidation states in nanocrystalline tungsten trioxide. Phys. Chem. Chem. Phys. 17(24), 15903–15911 (2015). https://doi.org/10.1039/c5cp02482j
- Y. Wang, C. Peng, T. Jiang, J. Zhang, Z. Jiang et al., Construction of defect-engineered three-dimensionally ordered macroporous WO3 for efficient photocatalytic water oxidation reaction. J. Mater. Chem. A 9(5), 3036–3043 (2021). https://doi.org/10.1039/d0ta10803k
- X. Yang, F. Li, W. Liu, L. Chen, J. Qi et al., Oxygen vacancy-induced spin polarization of tungsten oxide nanowires for efficient photocatalytic reduction and immobilization of uranium(VI) under simulated solar light. Appl. Catal. B Environ. 324, 122202 (2023). https://doi.org/10.1016/j.apcatb.2022.122202
- S. Nie, M. Ruan, Y. Lian, L. Zhao, J. Shi et al., Enhanced electrochromic properties and amphoteric coloration of V-doped WO3 supported by electronic structure optimization and oxygen vacancy-mediated Li+ capture structures. J. Mater. Chem. C 12(34), 13572–13584 (2024). https://doi.org/10.1039/d4tc01819b
- G. Yang, A.K. Bindra, S.Z.F. Phua, J. Liu, H. Wu et al., Light-triggered hypoxia-responsive nanoscale metal-organic frameworks for highly efficient antitumor treatment. Adv. Opt. Mater. 11(11), 2201043 (2023). https://doi.org/10.1002/adom.202201043
- W. Zhao, J. Wang, B. Tam, H. Zhang, F. Li et al., Structural water in amorphous tungsten oxide hydrate enables fast and ultrastable regulation of near-infrared light transmittance. Adv. Opt. Mater. 11(10), 2202774 (2023). https://doi.org/10.1002/adom.202202774
- D. Zhuang, Z. Zhang, J. Weng, J. Wang, H. Zhang et al., Amorphous hydrated tungsten oxides with enhanced pseudocapacitive contribution for aqueous zinc-ion electrochromic energy storage. Adv. Energy Mater. 14(40), 2402603 (2024). https://doi.org/10.1002/aenm.202402603
- Y.-T. Park, S.-H. Lee, K.-T. Lee, Electrochromic properties of silver nanowire-embedded tungsten trioxide thin films fabricated by electrodeposition. Ceram. Int. 46(18), 29052–29059 (2020). https://doi.org/10.1016/j.ceramint.2020.08.076
- H.E. Beck, T.R. McVicar, N. Vergopolan, A. Berg, N.J. Lutsko et al., High-resolution (1 km) Köppen-Geiger maps for 1901-2099 based on constrained CMIP6 projections. Sci. Data 10(1), 724 (2023). https://doi.org/10.1038/s41597-023-02549-6
References
B. Zhang, X. Yan, S. Liu, E. Wu, Y. Tian, Polydopamine modified Nd-doped TiO2 films for improved electrochromism and energy storage. Opt. Mater. 163, 116969 (2025). https://doi.org/10.1016/j.optmat.2025.116969
Y. Liang, S. Cao, Q. Wei, R. Zeng, J. Zhao et al., Reversible Zn2+ insertion in tungsten ion-activated titanium dioxide nanocrystals for electrochromic windows. Nano-Micro Lett. 13(1), 196 (2021). https://doi.org/10.1007/s40820-021-00719-y
X. Yu, Y. Liu, W. Luo, X. Zeng, L. Cheng et al., Electrochromic devices and smart window applications of near-infrared electrochromic thienoviologens polymer properties. ACS Appl. Mater. Interfaces 17(19), 28472–28483 (2025). https://doi.org/10.1021/acsami.5c06091
Z. Song, B. Wang, W. Zhang, Q. Zhu, A.Y. Elezzabi et al., Fast and stable zinc anode-based electrochromic displays enabled by bimetallically doped vanadate and aqueous Zn2+/Na+ hybrid electrolytes. Nano-Micro Lett. 15(1), 229 (2023). https://doi.org/10.1007/s40820-023-01209-z
P. Lei, J. Wang, Y. Gao, C. Hu, S. Zhang et al., An electrochromic nickel phosphate film for large-area smart window with ultra-large optical modulation. Nano-Micro Lett. 15(1), 34 (2023). https://doi.org/10.1007/s40820-022-01002-4
Z. Zhang, M. Yu, C. Ma, L. He, X. He et al., A Janus smart window for temperature-adaptive radiative cooling and adjustable solar transmittance. Nano-Micro Lett. 17(1), 233 (2025). https://doi.org/10.1007/s40820-025-01740-1
G. Dastgeer, M.W. Zulfiqar, S. Nisar, R. Zulfiqar, M. Imran et al., Emerging role of 2D materials in photovoltaics: efficiency enhancement and future perspectives. Nano-Micro Lett. 18(1), 32 (2025). https://doi.org/10.1007/s40820-025-01869-z
M. Kumar, P.P. Cho, R.K. Sethi, V. Biju, C. Subrahmanyam, Near infrared light-assisted photoelectrochemical conversion and environmental remediation. J. Photochem. Photobiol. C Photochem. Rev. 64, 100710 (2025). https://doi.org/10.1016/j.jphotochemrev.2025.100710
Z. Huang, Y. Peng, J. Zhao, S. Zhang, P. Qi et al., An efficient and flexible bifunctional dual-band electrochromic device integrating with energy storage. Nano-Micro Lett. 17(1), 98 (2024). https://doi.org/10.1007/s40820-024-01604-0
W. Wu, M. Tian, Y. Tang, C. Song, R. Zheng et al., Revolutionizing dual-band modulation and superior cycling stability in GDQDs-doped WO3 electrochromic films for advanced smart window applications. Small 21(6), 2407708 (2025). https://doi.org/10.1002/smll.202407708
M. Tian, R. Zheng, C. Jia, Bridging to commercialization: record-breaking of ultra-large and superior cyclic stability tungsten oxide electrochromic smart window. Adv. Mater. 37(3), 2409790 (2025). https://doi.org/10.1002/adma.202409790
T. Zhang, Y. Dai, Y. Li, X. Tang, Y. Hu et al., Colorful transmissive all-solid-state electrochromic devices empowered by optical resonant cavities. Chem. Eng. J. 516, 164254 (2025). https://doi.org/10.1016/j.cej.2025.164254
G.T. Phan, D. Van Pham, N.L. Doan Thi, C.C.S. Maria, Y.-H. Chu et al., Nanorod-based smart windows with solid-gel electrolyte: an integrated electrochromic and pseudocapacitive technology for energy-saving and conversion. Nano Energy 132, 110374 (2024). https://doi.org/10.1016/j.nanoen.2024.110374
J. Wang, Z. Wang, L. Cui, M. Zhang, X. Huo et al., Visible-near infrared independent modulation of hexagonal WO3 induced by ionic insertion sequence and cavity characteristics. Adv. Mater. 36(45), 2406939 (2024). https://doi.org/10.1002/adma.202406939
W. Wu, H. Fang, H. Ma, L. Wu, W. Zhang et al., Boosting transport kinetics of ions and electrons simultaneously by Ti3C2Tx (MXene) addition for enhanced electrochromic performance. Nano-Micro Lett. 13, 20 (2020). https://doi.org/10.1007/s40820-020-00544-9
T.P. Dao, T.M. Aminabhavi, Y. Vasseghian, S.-W. Joo, 3D-printed TaSe2/WO3/ZnIn2S4 for increased photocatalytic degradation of rifampicin antibiotic: role of reactive oxygen species and interfacial charge transfer. Chem. Eng. J. 511, 161763 (2025). https://doi.org/10.1016/j.cej.2025.161763
C.-S. Park, S. Park, H. Cheon, H.-K. Kim, Enhanced flexibility of WO3-based flexible electrochromic devices for smart windows via ion beam treatment. Chem. Eng. J. 509, 161283 (2025). https://doi.org/10.1016/j.cej.2025.161283
Y. Zhou, Y. Lv, X. Guo, X. Wang, Z. Liu et al., Electrochromic smart windows with on-demand photothermal regulation for energy-saving buildings. Adv. Mater. 37(29), e2502706 (2025). https://doi.org/10.1002/adma.202502706
S. Li, Y. Chen, Z. Wang, M. Wang, X. Guo et al., Electrochromism via reversible electrodeposition of solid iodine. Nat. Commun. 16, 724 (2025). https://doi.org/10.1038/s41467-024-55348-x
J. Fan, T. Wan, Y. He, C. Liu, T. Mei et al., Constructing long and stable Ag-Al2O3 core–shell nanowires for humidity sensing and triboelectric energy generation. Small Struct. 5(12), 2400208 (2024). https://doi.org/10.1002/sstr.202400208
C. Qin, Q. Sun, Y. Chen, S. Fahad, J. Wu et al., Evaporation-induced self-assembled ultrathin AgNW networks for highly conformable wearable electronics. NPJ Flex. Electron. 8, 26 (2024). https://doi.org/10.1038/s41528-024-00314-2
M. Du, Z. Yang, Y. Miao, C. Wang, P. Dong et al., Facile nanowelding process for silver nanowire electrodes toward high-performance large-area flexible organic light-emitting diodes. Adv. Funct. Mater. 34(42), 2404567 (2024). https://doi.org/10.1002/adfm.202404567
Z. Sun, Y. Hu, H. Liu, Z. Lü, Y. Chen et al., Flexible alternating current electroluminescent devices using superstable AgNWs@Nd2O3/PU transparent conductive film as an electrode. Surf. Interfaces 64, 106482 (2025). https://doi.org/10.1016/j.surfin.2025.106482
X. Wu, X. Zheng, T. Chen, S. Zhang, Y. Zhou et al., High-performance intrinsically stretchable organic photovoltaics enabled by robust silver nanowires/S-PH1000 hybrid transparent electrodes. Adv. Mater. 36(40), 2406879 (2024). https://doi.org/10.1002/adma.202406879
L. Gan, Y. Liu, X. Yang, W. Huang, N. Yang et al., SrVO3-modified silver nanowire transparent conductive films with enhanced photoelectric performance and optical stability. J. Mater. Chem. A 13(23), 17629–17645 (2025). https://doi.org/10.1039/d5ta01446h
B. Liu, P. Li, J. Zeng, J. Li, K. Chen, UV-induced plasma welding and interface customization strategy of cellulose nanofiber/silver nanowire composite electrode for advanced flexible photoelectric applications. Carbohydr. Polym. 357, 123479 (2025). https://doi.org/10.1016/j.carbpol.2025.123479
F. Wu, L. Cheng, W. Wang, Surface plasmon resonance of large-size Ag nanobars. Micromachines 13(4), 638 (2022). https://doi.org/10.3390/mi13040638
S. Zhang, Y. Peng, J. Zhao, Z. Fan, B. Ding et al., Amorphous and porous tungsten oxide films for fast-switching dual-band electrochromic smart windows. Advanced Optical Materials 11(1), 2202115 (2023). https://doi.org/10.1002/adom.202202115
T. Hao, S. Wang, H. Xu, X. Zhang, J. Xue et al., Stretchable electrochromic devices based on embedded WO3@AgNW core-shell nanowire elastic conductors. Chem. Eng. J. 426, 130840 (2021). https://doi.org/10.1016/j.cej.2021.130840
D.-K. An, S.-J. Jeon, Improved coloration efficiency and stability of WO3 electrochromic devices by the addition of silver nanowires. Korean J. Chem. Eng. 41(7), 2173–2181 (2024). https://doi.org/10.1007/s11814-024-00142-0
B.-R. Koo, M.-H. Jo, K.-H. Kim, H.-J. Ahn, Amorphous-quantized WO3·H2O films as novel flexible electrode for advanced electrochromic energy storage devices. Chem. Eng. J. 424, 130383 (2021). https://doi.org/10.1016/j.cej.2021.130383
J. Wang, J. Weng, L. Wang, Y. Zhou, H. Chen et al., Amorphous hydrated tungsten oxide films with electrochromic cycling stability up to 40 000 cycles enabled by regulating the coloring potential and structural water. ACS Appl. Mater. Interfaces 17(45), 62285–62296 (2025). https://doi.org/10.1021/acsami.5c14394
H. Li, J. Li, C. Hou, D. Ho, Q. Zhang et al., Solution-processed porous tungsten molybdenum oxide electrodes for energy storage smart windows. Adv. Mater. Technol. 2(8), 1700047 (2017). https://doi.org/10.1002/admt.201700047
Z. Wei, W. Wang, W. Li, X. Bai, J. Zhao et al., Steering electron–hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance. Angew. Chem. Int. Ed. 60(15), 8236–8242 (2021). https://doi.org/10.1002/anie.202016170
Q. Meng, S. Cao, J. Guo, Q. Wang, K. Wang et al., Sol-gel-based porous Ti-doped tungsten oxide films for high-performance dual-band electrochromic smart windows. J. Energy Chem. 77, 137–143 (2023). https://doi.org/10.1016/j.jechem.2022.10.047
L. Zhou, P. Wei, H. Fang, W. Wu, L. Wu et al., Self-doped tungsten oxide films induced by in situ carbothermal reduction for high performance electrochromic devices. J. Mater. Chem. C 8(40), 13999–14006 (2020). https://doi.org/10.1039/d0tc03103h
M. Chen, X. Zhang, W. Sun, Y. Xiao, H. Zhang et al., A dual-responsive smart window based on inorganic all-solid-state electro- and photochromic device. Nano Energy 123, 109352 (2024). https://doi.org/10.1016/j.nanoen.2024.109352
S.P. Gupta, H.H. Nishad, S.D. Chakane, S.W. Gosavi, D.J. Late et al., Phase transformation in tungsten oxide nanoplates as a function of post-annealing temperature and its electrochemical influence on energy storage. Nanoscale Adv. 2(10), 4689–4701 (2020). https://doi.org/10.1039/d0na00423e
V. Lokhande, A. Lokhande, G. Namkoong, J.H. Kim, T. Ji, Charge storage in WO3 polymorphs and their application as supercapacitor electrode material. Results Phys. 12, 2012–2020 (2019). https://doi.org/10.1016/j.rinp.2019.02.012
J. Du, Z. Zhang, C. Yue, Z. Nie, H. Tan et al., Two-dimensional oxygen vacancy-doped tungsten oxide hydrate nanosheets for high-performance electrochromic device. Mater. Today Chem. 26, 101089 (2022). https://doi.org/10.1016/j.mtchem.2022.101089
C.Y. Ng, K. Abdul Razak, Z. Lockman, Effect of annealing on acid-treated WO3·H2O nanoplates and their electrochromic properties. Electrochim. Acta 178, 673–681 (2015). https://doi.org/10.1016/j.electacta.2015.08.069
J. Yan, T. Wang, G. Wu, W. Dai, N. Guan et al., Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting. Adv. Mater. 27(9), 1580–1586 (2015). https://doi.org/10.1002/adma.201404792
M.D. Brown, T. Suteewong, R.S.S. Kumar, V. D’Innocenzo, A. Petrozza et al., Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanops. Nano Lett. 11(2), 438–445 (2011). https://doi.org/10.1021/nl1031106
M. Shen, T. Ding, C. Tan, W.H. Rackers, D. Zhang et al., In situ imaging of catalytic reactions on tungsten oxide nanowires connects surface–ligand redox chemistry with photocatalytic activity. Nano Lett. 22(12), 4694–4701 (2022). https://doi.org/10.1021/acs.nanolett.2c00674
Z.-H. Huang, H. Li, W.-H. Li, G. Henkelman, B. Jia et al., Electrical and structural dual function of oxygen vacancies for promoting electrochemical capacitance in tungsten oxide. Small 16(52), 2004709 (2020). https://doi.org/10.1002/smll.202004709
A. Chithambararaj, P. Nandigana, M. Kaleesh Kumar, A.S. Prakash, S.K. Panda, Enhanced electrochromism from non-stoichiometric electrodeposited tungsten oxide thin films. Appl. Surf. Sci. 582, 152424 (2022). https://doi.org/10.1016/j.apsusc.2022.152424
S. Darmawi, S. Burkhardt, T. Leichtweiss, D.A. Weber, S. Wenzel et al., Correlation of electrochromic properties and oxidation states in nanocrystalline tungsten trioxide. Phys. Chem. Chem. Phys. 17(24), 15903–15911 (2015). https://doi.org/10.1039/c5cp02482j
Y. Wang, C. Peng, T. Jiang, J. Zhang, Z. Jiang et al., Construction of defect-engineered three-dimensionally ordered macroporous WO3 for efficient photocatalytic water oxidation reaction. J. Mater. Chem. A 9(5), 3036–3043 (2021). https://doi.org/10.1039/d0ta10803k
X. Yang, F. Li, W. Liu, L. Chen, J. Qi et al., Oxygen vacancy-induced spin polarization of tungsten oxide nanowires for efficient photocatalytic reduction and immobilization of uranium(VI) under simulated solar light. Appl. Catal. B Environ. 324, 122202 (2023). https://doi.org/10.1016/j.apcatb.2022.122202
S. Nie, M. Ruan, Y. Lian, L. Zhao, J. Shi et al., Enhanced electrochromic properties and amphoteric coloration of V-doped WO3 supported by electronic structure optimization and oxygen vacancy-mediated Li+ capture structures. J. Mater. Chem. C 12(34), 13572–13584 (2024). https://doi.org/10.1039/d4tc01819b
G. Yang, A.K. Bindra, S.Z.F. Phua, J. Liu, H. Wu et al., Light-triggered hypoxia-responsive nanoscale metal-organic frameworks for highly efficient antitumor treatment. Adv. Opt. Mater. 11(11), 2201043 (2023). https://doi.org/10.1002/adom.202201043
W. Zhao, J. Wang, B. Tam, H. Zhang, F. Li et al., Structural water in amorphous tungsten oxide hydrate enables fast and ultrastable regulation of near-infrared light transmittance. Adv. Opt. Mater. 11(10), 2202774 (2023). https://doi.org/10.1002/adom.202202774
D. Zhuang, Z. Zhang, J. Weng, J. Wang, H. Zhang et al., Amorphous hydrated tungsten oxides with enhanced pseudocapacitive contribution for aqueous zinc-ion electrochromic energy storage. Adv. Energy Mater. 14(40), 2402603 (2024). https://doi.org/10.1002/aenm.202402603
Y.-T. Park, S.-H. Lee, K.-T. Lee, Electrochromic properties of silver nanowire-embedded tungsten trioxide thin films fabricated by electrodeposition. Ceram. Int. 46(18), 29052–29059 (2020). https://doi.org/10.1016/j.ceramint.2020.08.076
H.E. Beck, T.R. McVicar, N. Vergopolan, A. Berg, N.J. Lutsko et al., High-resolution (1 km) Köppen-Geiger maps for 1901-2099 based on constrained CMIP6 projections. Sci. Data 10(1), 724 (2023). https://doi.org/10.1038/s41597-023-02549-6