Electric-Field-Driven Generative Nanoimprinting for Tilted Metasurface Nanostructures
Corresponding Author: Jinyou Shao
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 12
Abstract
Tilted metasurface nanostructures, with excellent physical properties and enormous application potential, pose an urgent need for manufacturing methods. Here, electric-field-driven generative-nanoimprinting technique is proposed. The electric field applied between the template and the substrate drives the contact, tilting, filling, and holding processes. By accurately controlling the introduced included angle between the flexible template and the substrate, tilted nanostructures with a controllable angle are imprinted onto the substrate, although they are vertical on the template. By flexibly adjusting the electric field intensity and the included angle, large-area uniform-tilted, gradient-tilted, and high-angle-tilted nanostructures are fabricated. In contrast to traditional replication, the morphology of the nanoimprinting structure is extended to customized control. This work provides a cost-effective, efficient, and versatile technology for the fabrication of various large-area tilted metasurface structures. As an illustration, a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays, demonstrating superior imaging quality.
Highlights:
1 The developed electric-field-driven generative-nanoimprinting technology enables direct fabrication of large-area tilted metasurface nanostructures with cost-efficiency and high-throughput advantages.
2 Real-time tuning of process parameters facilitates customized fabrication of various tilted metasurface nanostructures.
3 Integration of these custom-designed high-angle-tilted nanostructures into augmented reality displays achieves superior image quality.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.R. Parker, H.E. Townley, Biomimetics of photonic nanostructures. Nat. Nanotechnol. 2(6), 347–353 (2007). https://doi.org/10.1038/nnano.2007.152
- Q. Guo, S. Zhang, J. Zhang, C.P. Chen, Design of single-layer color echelle grating optical waveguide for augmented-reality display. Opt. Express 31(3), 3954–3969 (2023). https://doi.org/10.1364/OE.478490
- H. Chen, P. Wang, X. Wang, X. Wang, L. Rao et al., 3D InGaN nanowire arrays on oblique pyramid-textured Si (311) for light trapping and solar water splitting enhancement. Nano Energy 83, 105768 (2021). https://doi.org/10.1016/j.nanoen.2021.105768
- J. He, B. Tao, R. Zhao, X. Chen, K. Yang et al., Light-induced transverse thermoelectric effect in MOCVD-deposited La1−xSrxMnO3 (0.08 ≤ x ≤ 0.7) thin films with inclined structure. J. Mater. Sci. Mater. Electron. 35(6), 379 (2024). https://doi.org/10.1007/s10854-024-12150-1
- M. Li, X. Wang, Beating the size-dependent limit with spin-lattice coupling in nanomagnetism. J. Am. Chem. Soc. 147(2), 1732–1739 (2025). https://doi.org/10.1021/jacs.4c12978
- K.-I. Uchida, T. Hirai, F. Ando, H. Sepehri-Amin, Hybrid transverse magneto-thermoelectric cooling in artificially tilted multilayers. Adv. Energy Mater. 14(3), 2302375 (2024). https://doi.org/10.1002/aenm.202302375
- Y. Cai, Z. Zhao, J. Chen, T. Yang, P.S. Cremer, Deflected capillary force lithography. ACS Nano 6(2), 1548–1556 (2012). https://doi.org/10.1021/nn2045278
- Y. Sekiguchi, K. Takahashi, C. Sato, Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment. J. Phys. D Appl. Phys. 48(47), 475301 (2015). https://doi.org/10.1088/0022-3727/48/47/475301
- Z. Wang, J. Liu, D. Hui, Mechanical behaviors of inclined cell honeycomb structure subjected to compression. Compos. Part B Eng. 110, 307–314 (2017). https://doi.org/10.1016/j.compositesb.2016.10.062
- Y. Chen, H. Deng, X. Sha, W. Chen, R. Wang et al., Observation of intrinsic chiral bound states in the continuum. Nature 613(7944), 474–478 (2023). https://doi.org/10.1038/s41586-022-05467-6
- H. Qin, Z. Su, Z. Zhang, W. Lv, Z. Yang et al., Disorder-assisted real-momentum topological photonic crystal. Nature 639(8055), 602–608 (2025). https://doi.org/10.1038/s41586-025-08632-9
- X. Guo, Q. Song, S. Ma, J. Wang, G. Ma et al., Design and fabrication of polygonal grating waveguide display with full-color 2D eye-box expansion. Opt. Lasers Eng. 180, 108311 (2024). https://doi.org/10.1016/j.optlaseng.2024.108311
- M. Chen, X. Chen, Q. Wang, X. Ning, Z. Li et al., Ultra-broadband light detection based on the light-induced transverse thermoelectric effect of epitaxial PbSe thin films with inclined structure. Appl. Phys. Lett. 120(17), 173505 (2022). https://doi.org/10.1063/5.0088584
- J. Mendoza-Carreño, S. Bertucci, M. Garbarino, M. Cirignano, S. Fiorito et al., A single nanophotonic platform for producing circularly polarized white light from non-chiral emitters. Nat. Commun. 15(1), 10443 (2024). https://doi.org/10.1038/s41467-024-54792-z
- Y. Luo, X. Chen, H. Tian, X. Li, Y. Lu et al., Gecko-inspired slant hierarchical microstructure-based ultrasensitive iontronic pressure sensor for intelligent interaction. Research 2022, 9852138 (2022). https://doi.org/10.3413/2022/9852138
- C. Su, X. Liu, Y. You, Y. Ma, T. Geng, Highly sensitive magnetostrictive sensor with well-sealed and sensitivity tunability. Opt. Fiber Technol. 84, 103737 (2024). https://doi.org/10.1016/j.yofte.2024.103737
- J. Albert, L.-Y. Shao, C. Caucheteur, Tilted fiber Bragg grating sensors. Laser Photon. Rev. 7(1), 83–108 (2013). https://doi.org/10.1002/lpor.201100039
- B.C. Kress, Optical waveguide combiners for AR headsets: features and limitations. Digital Optical Technologies 2019. June 24–27, 2019. Munich, Germany. SPIE, (2019). 17. https://doi.org/10.1117/12.2527680
- G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang et al., Metasurface eyepiece for augmented reality. Nat. Commun. 9, 4562 (2018). https://doi.org/10.1038/s41467-018-07011-5
- T.I. Jeong, S. Kim, S. Kim, M. Shin, A. Gliserin et al., Three-dimensional surface lattice plasmon resonance effect from plasmonic inclined nanostructures via one-step stencil lithography. Nanophotonics 13(7), 1169–1180 (2024). https://doi.org/10.1515/nanoph-2023-0755
- Z. Cao, L. Liu, J. Tian, X. Zhangyang, Z. Wang et al., Enhanced photoemission performance of InGaN inclined nanowire array. ACS Appl. Mater. Interfaces 16(30), 39818–39826 (2024). https://doi.org/10.1021/acsami.4c06932
- L. Liu, F. Lu, J. Tian, X. Zhangyang, Enhancement of electron collection and light trapping of inclined GaN and AlGaN nanowire arrays. Energy Technol. 9(2), 2000801 (2021). https://doi.org/10.1002/ente.202000801
- C. Li, H. Ren, Beyond the lab: a nanoimprint metalens array-based augmented reality. Light Sci. Appl. 13(1), 102 (2024). https://doi.org/10.1038/s41377-024-01429-x
- J. Xiong, E.-L. Hsiang, Z. He, T. Zhan, S.-T. Wu, Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci. Appl. 10(1), 216 (2021). https://doi.org/10.1038/s41377-021-00658-8
- T. Zhan, K. Yin, J. Xiong, Z. He, S.-T. Wu, Augmented reality and virtual reality displays: perspectives and challenges. iScience 23(8), 101397 (2020). https://doi.org/10.1016/j.isci.2020.101397
- Z. Tian, X. Zhu, P.A. Surman, Z. Chen, X.W. Sun, An achromatic metasurface waveguide for augmented reality displays. Light Sci. Appl. 14(1), 94 (2025). https://doi.org/10.1038/s41377-025-01761-w
- C. Jang, K. Bang, M. Chae, B. Lee, D. Lanman, Waveguide holography for 3D augmented reality glasses. Nat. Commun. 15(1), 66 (2024). https://doi.org/10.1038/s41467-023-44032-1
- C. Gu, G. Yang, W. Wang, A. Shi, W. Fang et al., Direct photolithography of WOx nanops for high-resolution non-emissive displays. Nano-Micro Lett. 17(1), 67 (2024). https://doi.org/10.1007/s40820-024-01563-6
- Y. Yin, B. Liu, Y. Han, Q. Liu, J. Kou et al., Nanoscale 3D printing for empowering future nanodevices. Adv. Mater. Technol., 2500083 (2025). https://doi.org/10.1002/admt.202500083
- B. Chang, Oblique angled plasma etching for 3D silicon structures with wiggling geometries. Nanotechnology 31(8), 085301 (2020). https://doi.org/10.1088/1361-6528/ab53fb
- K. Kim, K. Park, H. Nam, G.H. Kim, S.K. Hong et al., Fabrication of oblique submicron-scale structures using synchrotron hard X-ray lithography. Polymers 13(7), 1045 (2021). https://doi.org/10.3390/polym13071045
- N. Mojarad, D. Kazazis, Y. Ekinci (2021). Fabrication of high aspect ratio and tilted nanostructures using extreme ultraviolet and soft X-ray interference lithography. J. Vac. Sci. Technol. Microelectron. Nanometer Struct. Process. Meas. Phenom. 39(4): 042601. https://doi.org/10.1116/6.0001089
- S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori et al., Direct creation of three-dimensional photonic crystals by a top-down approach. Nat. Mater. 8(9), 721–725 (2009). https://doi.org/10.1038/nmat2507
- Z. Chen, Q. Yu, K. Shimada, P. Liu, Y. He et al., High-precision and high-efficiency fabrication of blazed grating by ultrasonic-assisted ultraprecision planing. J. Mater. Process. Technol. 311, 117802 (2023). https://doi.org/10.1016/j.jmatprotec.2022.117802
- X. Mi, S. Zhang, X. Qi, H. Yu, H. Yu et al., Ruling engine using adjustable diamond and interferometric control for high-quality gratings and large echelles. Opt. Express 27(14), 19448–19462 (2019). https://doi.org/10.1364/OE.27.019448
- T. Burzynski, M. Papini, A level set methodology for predicting the surface evolution of inclined masked micro-channels resulting from abrasive jet micro-machining at oblique incidence. Int. J. Mach. Tools Manuf 51(7–8), 628–641 (2011). https://doi.org/10.1016/j.ijmachtools.2011.03.003
- M. Roeder, S. Thiele, D. Hera, C. Pruss, T. Guenther et al., Fabrication of curved diffractive optical elements by means of laser direct writing, electroplating, and injection compression molding. J. Manuf. Process. 47, 402–409 (2019). https://doi.org/10.1016/j.jmapro.2019.10.012
- C. Shen, X. Tan, Q. Jiao, W. Zhang, N. Wu et al., Convex blazed grating of high diffraction efficiency fabricated by swing ion-beam etching method. Opt. Express 26(19), 25381–25398 (2018). https://doi.org/10.1364/OE.26.025381
- F. Li, K. Wang, N. Deng, J. Xu, M. Yi et al., Self-assembly of polymer end-tethered gold nanorods into two-dimensional arrays with tunable tilt structures. ACS Appl. Mater. Interfaces 13(5), 6566–6574 (2021). https://doi.org/10.1021/acsami.0c22468
- R. Fu, K. Chen, Z. Li, S. Yu, G. Zheng, Metasurface-based nanoprinting: principle, design and advances. Opto Electron. Sci. 1(10), 220011 (2022). https://doi.org/10.2902/oes.2022.220011
- J. Gong, L. Xiong, F. Zhang, M. Pu, M. Hong et al., Integrated quad-color nanoprinting and tri-channel holographic encryption meta-marks with printable metasurfaces. Laser Photon. Rev. 19(2), 2401045 (2025). https://doi.org/10.1002/lpor.202401045
- H. Kang, T. Tanaka, H. Duan, T. Cao, J. Rho, State-of-the-art micro- and nano-scale photonics research in Asia: devices, fabrication, manufacturing, and applications. Microsyst. Nanoeng. 10(1), 114 (2024). https://doi.org/10.1038/s41378-024-00736-y
- L. Yan, Z. Liu, J. Wang, L. Yu, Integrating hard silicon for high-performance soft electronics via geometry engineering. Nano-Micro Lett. 17(1), 218 (2025). https://doi.org/10.1007/s40820-025-01724-1
- Y. Wang, S. Jin, Q. Wang, M. Wu, S. Yao et al., Parallel nanoimprint forming of one-dimensional chiral semiconductor for strain-engineered optical properties. Nano-Micro Lett. 12(1), 160 (2020). https://doi.org/10.1007/s40820-020-00493-3
- J. Kim, W. Kim, M. Choi, Y. Park, D. Kang et al., Amorphous to crystalline transition in nanoimprinted sol-gel titanium oxide metasurfaces. Adv. Mater. 36(49), e2405378 (2024). https://doi.org/10.1002/adma.202405378
- C. Wang, Y. Fan, J. Shao, Z. Yang, J. Sun et al., Discretely-supported nanoimprint lithography for patterning the high-spatial-frequency stepped surface. Nano Res. 14(8), 2606–2612 (2021). https://doi.org/10.1007/s12274-020-3261-3
- S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272(5258), 85–87 (1996). https://doi.org/10.1126/science.272.5258.85
- S.-X. Li, G.-Y. Huang, H. Xia, T. Fu, X.-J. Wang et al., Nanoimprint crystalithography for organic semiconductors. Nat. Commun. 16(1), 3636 (2025). https://doi.org/10.1038/s41467-025-58934-9
- J. Kim, H. Kim, H. Kang, W. Kim, Y. Chen et al., A water-soluble label for food products prevents packaging waste and counterfeiting. Nat. Food 5(4), 293–300 (2024). https://doi.org/10.1038/s43016-024-00957-4
- C. Wang, J. Shao, H. Tian, X. Li, Y. Ding et al., Step-controllable electric-field-assisted nanoimprint lithography for uneven large-area substrates. ACS Nano 10(4), 4354–4363 (2016). https://doi.org/10.1021/acsnano.5b08032
- J. Kim, J. Seong, W. Kim, G.-Y. Lee, S. Kim et al., Scalable manufacturing of high-index atomic layer-polymer hybrid metasurfaces for metaphotonics in the visible. Nat. Mater. 22(4), 474–481 (2023). https://doi.org/10.1038/s41563-023-01485-5
- A. Cherala, S.V. Sreenivasan, Molecular dynamics modeling framework for overcoming nanoshape retention limits of imprint lithography. Microsyst. Nanoeng. 4, 3 (2018). https://doi.org/10.1038/s41378-018-0007-4
- Y. Park, J. Kim, Y. Yang, D.K. Oh, H. Kang et al., Tape-assisted residual layer-free one-step nanoimprinting of high-index hybrid polymer for optical loss-suppressed metasurfaces. Adv. Sci. 12(10), 2409371 (2025). https://doi.org/10.1002/advs.202409371
- C. Wang, J. Shao, D. Lai, H. Tian, X. Li, Suspended-template electric-assisted nanoimprinting for hierarchical micro-nanostructures on a fragile substrate. ACS Nano 13(9), 10333–10342 (2019). https://doi.org/10.1021/acsnano.9b04031
- J. Kim, W. Kim, D.K. Oh, H. Kang, H. Kim et al., One-step printable platform for high-efficiency metasurfaces down to the deep-ultraviolet region. Light Sci. Appl. 12(1), 68 (2023). https://doi.org/10.1038/s41377-023-01086-6
- L. Wen, R. Xu, Y. Mi, Y. Lei, Multiple nanostructures based on anodized aluminium oxide templates. Nat. Nanotechnol. 12(3), 244–250 (2017). https://doi.org/10.1038/nnano.2016.257
- G. Yoon, K. Kim, D. Huh, H. Lee, J. Rho, Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun. 11(1), 2268 (2020). https://doi.org/10.1038/s41467-020-16136-5
- Y. Fan, C. Wang, J. Sun, X. Peng, H. Tian et al., Electric-driven flexible-roller nanoimprint lithography on the stress-sensitive warped wafer. Int. J. Extrem. Manuf. 5(3), 035101 (2023). https://doi.org/10.1088/2631-7990/acd827
- M. Gopakumar, G.-Y. Lee, S. Choi, B. Chao, Y. Peng et al., Full-colour 3D holographic augmented-reality displays with metasurface waveguides. Nature 629(8013), 791–797 (2024). https://doi.org/10.1038/s41586-024-07386-0
- Y. Ding, Y. Gu, Q. Yang, Z. Yang, Y. Huang et al., Breaking the in-coupling efficiency limit in waveguide-based AR displays with polarization volume gratings. Light Sci. Appl. 13(1), 185 (2024). https://doi.org/10.1038/s41377-024-01537-8
- S. Wang, P.C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen et al., A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13(3), 227–232 (2018). https://doi.org/10.1038/s41565-017-0052-4
- M. Choi, J. Kim, S. Moon, K. Shin, S.W. Nam et al., Roll-to-plate printable RGB achromatic metalens for wide-field-of-view holographic near-eye displays. Nat. Mater. 24(4), 535–543 (2025). https://doi.org/10.1038/s41563-025-02121-0
- J. Gong, L. Xiong, M. Pu, X. Li, X. Ma et al., Visible meta-displays for anti-counterfeiting with printable dielectric metasurfaces. Adv. Sci. 11(17), e2308687 (2024). https://doi.org/10.1002/advs.202308687
References
A.R. Parker, H.E. Townley, Biomimetics of photonic nanostructures. Nat. Nanotechnol. 2(6), 347–353 (2007). https://doi.org/10.1038/nnano.2007.152
Q. Guo, S. Zhang, J. Zhang, C.P. Chen, Design of single-layer color echelle grating optical waveguide for augmented-reality display. Opt. Express 31(3), 3954–3969 (2023). https://doi.org/10.1364/OE.478490
H. Chen, P. Wang, X. Wang, X. Wang, L. Rao et al., 3D InGaN nanowire arrays on oblique pyramid-textured Si (311) for light trapping and solar water splitting enhancement. Nano Energy 83, 105768 (2021). https://doi.org/10.1016/j.nanoen.2021.105768
J. He, B. Tao, R. Zhao, X. Chen, K. Yang et al., Light-induced transverse thermoelectric effect in MOCVD-deposited La1−xSrxMnO3 (0.08 ≤ x ≤ 0.7) thin films with inclined structure. J. Mater. Sci. Mater. Electron. 35(6), 379 (2024). https://doi.org/10.1007/s10854-024-12150-1
M. Li, X. Wang, Beating the size-dependent limit with spin-lattice coupling in nanomagnetism. J. Am. Chem. Soc. 147(2), 1732–1739 (2025). https://doi.org/10.1021/jacs.4c12978
K.-I. Uchida, T. Hirai, F. Ando, H. Sepehri-Amin, Hybrid transverse magneto-thermoelectric cooling in artificially tilted multilayers. Adv. Energy Mater. 14(3), 2302375 (2024). https://doi.org/10.1002/aenm.202302375
Y. Cai, Z. Zhao, J. Chen, T. Yang, P.S. Cremer, Deflected capillary force lithography. ACS Nano 6(2), 1548–1556 (2012). https://doi.org/10.1021/nn2045278
Y. Sekiguchi, K. Takahashi, C. Sato, Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment. J. Phys. D Appl. Phys. 48(47), 475301 (2015). https://doi.org/10.1088/0022-3727/48/47/475301
Z. Wang, J. Liu, D. Hui, Mechanical behaviors of inclined cell honeycomb structure subjected to compression. Compos. Part B Eng. 110, 307–314 (2017). https://doi.org/10.1016/j.compositesb.2016.10.062
Y. Chen, H. Deng, X. Sha, W. Chen, R. Wang et al., Observation of intrinsic chiral bound states in the continuum. Nature 613(7944), 474–478 (2023). https://doi.org/10.1038/s41586-022-05467-6
H. Qin, Z. Su, Z. Zhang, W. Lv, Z. Yang et al., Disorder-assisted real-momentum topological photonic crystal. Nature 639(8055), 602–608 (2025). https://doi.org/10.1038/s41586-025-08632-9
X. Guo, Q. Song, S. Ma, J. Wang, G. Ma et al., Design and fabrication of polygonal grating waveguide display with full-color 2D eye-box expansion. Opt. Lasers Eng. 180, 108311 (2024). https://doi.org/10.1016/j.optlaseng.2024.108311
M. Chen, X. Chen, Q. Wang, X. Ning, Z. Li et al., Ultra-broadband light detection based on the light-induced transverse thermoelectric effect of epitaxial PbSe thin films with inclined structure. Appl. Phys. Lett. 120(17), 173505 (2022). https://doi.org/10.1063/5.0088584
J. Mendoza-Carreño, S. Bertucci, M. Garbarino, M. Cirignano, S. Fiorito et al., A single nanophotonic platform for producing circularly polarized white light from non-chiral emitters. Nat. Commun. 15(1), 10443 (2024). https://doi.org/10.1038/s41467-024-54792-z
Y. Luo, X. Chen, H. Tian, X. Li, Y. Lu et al., Gecko-inspired slant hierarchical microstructure-based ultrasensitive iontronic pressure sensor for intelligent interaction. Research 2022, 9852138 (2022). https://doi.org/10.3413/2022/9852138
C. Su, X. Liu, Y. You, Y. Ma, T. Geng, Highly sensitive magnetostrictive sensor with well-sealed and sensitivity tunability. Opt. Fiber Technol. 84, 103737 (2024). https://doi.org/10.1016/j.yofte.2024.103737
J. Albert, L.-Y. Shao, C. Caucheteur, Tilted fiber Bragg grating sensors. Laser Photon. Rev. 7(1), 83–108 (2013). https://doi.org/10.1002/lpor.201100039
B.C. Kress, Optical waveguide combiners for AR headsets: features and limitations. Digital Optical Technologies 2019. June 24–27, 2019. Munich, Germany. SPIE, (2019). 17. https://doi.org/10.1117/12.2527680
G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang et al., Metasurface eyepiece for augmented reality. Nat. Commun. 9, 4562 (2018). https://doi.org/10.1038/s41467-018-07011-5
T.I. Jeong, S. Kim, S. Kim, M. Shin, A. Gliserin et al., Three-dimensional surface lattice plasmon resonance effect from plasmonic inclined nanostructures via one-step stencil lithography. Nanophotonics 13(7), 1169–1180 (2024). https://doi.org/10.1515/nanoph-2023-0755
Z. Cao, L. Liu, J. Tian, X. Zhangyang, Z. Wang et al., Enhanced photoemission performance of InGaN inclined nanowire array. ACS Appl. Mater. Interfaces 16(30), 39818–39826 (2024). https://doi.org/10.1021/acsami.4c06932
L. Liu, F. Lu, J. Tian, X. Zhangyang, Enhancement of electron collection and light trapping of inclined GaN and AlGaN nanowire arrays. Energy Technol. 9(2), 2000801 (2021). https://doi.org/10.1002/ente.202000801
C. Li, H. Ren, Beyond the lab: a nanoimprint metalens array-based augmented reality. Light Sci. Appl. 13(1), 102 (2024). https://doi.org/10.1038/s41377-024-01429-x
J. Xiong, E.-L. Hsiang, Z. He, T. Zhan, S.-T. Wu, Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci. Appl. 10(1), 216 (2021). https://doi.org/10.1038/s41377-021-00658-8
T. Zhan, K. Yin, J. Xiong, Z. He, S.-T. Wu, Augmented reality and virtual reality displays: perspectives and challenges. iScience 23(8), 101397 (2020). https://doi.org/10.1016/j.isci.2020.101397
Z. Tian, X. Zhu, P.A. Surman, Z. Chen, X.W. Sun, An achromatic metasurface waveguide for augmented reality displays. Light Sci. Appl. 14(1), 94 (2025). https://doi.org/10.1038/s41377-025-01761-w
C. Jang, K. Bang, M. Chae, B. Lee, D. Lanman, Waveguide holography for 3D augmented reality glasses. Nat. Commun. 15(1), 66 (2024). https://doi.org/10.1038/s41467-023-44032-1
C. Gu, G. Yang, W. Wang, A. Shi, W. Fang et al., Direct photolithography of WOx nanops for high-resolution non-emissive displays. Nano-Micro Lett. 17(1), 67 (2024). https://doi.org/10.1007/s40820-024-01563-6
Y. Yin, B. Liu, Y. Han, Q. Liu, J. Kou et al., Nanoscale 3D printing for empowering future nanodevices. Adv. Mater. Technol., 2500083 (2025). https://doi.org/10.1002/admt.202500083
B. Chang, Oblique angled plasma etching for 3D silicon structures with wiggling geometries. Nanotechnology 31(8), 085301 (2020). https://doi.org/10.1088/1361-6528/ab53fb
K. Kim, K. Park, H. Nam, G.H. Kim, S.K. Hong et al., Fabrication of oblique submicron-scale structures using synchrotron hard X-ray lithography. Polymers 13(7), 1045 (2021). https://doi.org/10.3390/polym13071045
N. Mojarad, D. Kazazis, Y. Ekinci (2021). Fabrication of high aspect ratio and tilted nanostructures using extreme ultraviolet and soft X-ray interference lithography. J. Vac. Sci. Technol. Microelectron. Nanometer Struct. Process. Meas. Phenom. 39(4): 042601. https://doi.org/10.1116/6.0001089
S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori et al., Direct creation of three-dimensional photonic crystals by a top-down approach. Nat. Mater. 8(9), 721–725 (2009). https://doi.org/10.1038/nmat2507
Z. Chen, Q. Yu, K. Shimada, P. Liu, Y. He et al., High-precision and high-efficiency fabrication of blazed grating by ultrasonic-assisted ultraprecision planing. J. Mater. Process. Technol. 311, 117802 (2023). https://doi.org/10.1016/j.jmatprotec.2022.117802
X. Mi, S. Zhang, X. Qi, H. Yu, H. Yu et al., Ruling engine using adjustable diamond and interferometric control for high-quality gratings and large echelles. Opt. Express 27(14), 19448–19462 (2019). https://doi.org/10.1364/OE.27.019448
T. Burzynski, M. Papini, A level set methodology for predicting the surface evolution of inclined masked micro-channels resulting from abrasive jet micro-machining at oblique incidence. Int. J. Mach. Tools Manuf 51(7–8), 628–641 (2011). https://doi.org/10.1016/j.ijmachtools.2011.03.003
M. Roeder, S. Thiele, D. Hera, C. Pruss, T. Guenther et al., Fabrication of curved diffractive optical elements by means of laser direct writing, electroplating, and injection compression molding. J. Manuf. Process. 47, 402–409 (2019). https://doi.org/10.1016/j.jmapro.2019.10.012
C. Shen, X. Tan, Q. Jiao, W. Zhang, N. Wu et al., Convex blazed grating of high diffraction efficiency fabricated by swing ion-beam etching method. Opt. Express 26(19), 25381–25398 (2018). https://doi.org/10.1364/OE.26.025381
F. Li, K. Wang, N. Deng, J. Xu, M. Yi et al., Self-assembly of polymer end-tethered gold nanorods into two-dimensional arrays with tunable tilt structures. ACS Appl. Mater. Interfaces 13(5), 6566–6574 (2021). https://doi.org/10.1021/acsami.0c22468
R. Fu, K. Chen, Z. Li, S. Yu, G. Zheng, Metasurface-based nanoprinting: principle, design and advances. Opto Electron. Sci. 1(10), 220011 (2022). https://doi.org/10.2902/oes.2022.220011
J. Gong, L. Xiong, F. Zhang, M. Pu, M. Hong et al., Integrated quad-color nanoprinting and tri-channel holographic encryption meta-marks with printable metasurfaces. Laser Photon. Rev. 19(2), 2401045 (2025). https://doi.org/10.1002/lpor.202401045
H. Kang, T. Tanaka, H. Duan, T. Cao, J. Rho, State-of-the-art micro- and nano-scale photonics research in Asia: devices, fabrication, manufacturing, and applications. Microsyst. Nanoeng. 10(1), 114 (2024). https://doi.org/10.1038/s41378-024-00736-y
L. Yan, Z. Liu, J. Wang, L. Yu, Integrating hard silicon for high-performance soft electronics via geometry engineering. Nano-Micro Lett. 17(1), 218 (2025). https://doi.org/10.1007/s40820-025-01724-1
Y. Wang, S. Jin, Q. Wang, M. Wu, S. Yao et al., Parallel nanoimprint forming of one-dimensional chiral semiconductor for strain-engineered optical properties. Nano-Micro Lett. 12(1), 160 (2020). https://doi.org/10.1007/s40820-020-00493-3
J. Kim, W. Kim, M. Choi, Y. Park, D. Kang et al., Amorphous to crystalline transition in nanoimprinted sol-gel titanium oxide metasurfaces. Adv. Mater. 36(49), e2405378 (2024). https://doi.org/10.1002/adma.202405378
C. Wang, Y. Fan, J. Shao, Z. Yang, J. Sun et al., Discretely-supported nanoimprint lithography for patterning the high-spatial-frequency stepped surface. Nano Res. 14(8), 2606–2612 (2021). https://doi.org/10.1007/s12274-020-3261-3
S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272(5258), 85–87 (1996). https://doi.org/10.1126/science.272.5258.85
S.-X. Li, G.-Y. Huang, H. Xia, T. Fu, X.-J. Wang et al., Nanoimprint crystalithography for organic semiconductors. Nat. Commun. 16(1), 3636 (2025). https://doi.org/10.1038/s41467-025-58934-9
J. Kim, H. Kim, H. Kang, W. Kim, Y. Chen et al., A water-soluble label for food products prevents packaging waste and counterfeiting. Nat. Food 5(4), 293–300 (2024). https://doi.org/10.1038/s43016-024-00957-4
C. Wang, J. Shao, H. Tian, X. Li, Y. Ding et al., Step-controllable electric-field-assisted nanoimprint lithography for uneven large-area substrates. ACS Nano 10(4), 4354–4363 (2016). https://doi.org/10.1021/acsnano.5b08032
J. Kim, J. Seong, W. Kim, G.-Y. Lee, S. Kim et al., Scalable manufacturing of high-index atomic layer-polymer hybrid metasurfaces for metaphotonics in the visible. Nat. Mater. 22(4), 474–481 (2023). https://doi.org/10.1038/s41563-023-01485-5
A. Cherala, S.V. Sreenivasan, Molecular dynamics modeling framework for overcoming nanoshape retention limits of imprint lithography. Microsyst. Nanoeng. 4, 3 (2018). https://doi.org/10.1038/s41378-018-0007-4
Y. Park, J. Kim, Y. Yang, D.K. Oh, H. Kang et al., Tape-assisted residual layer-free one-step nanoimprinting of high-index hybrid polymer for optical loss-suppressed metasurfaces. Adv. Sci. 12(10), 2409371 (2025). https://doi.org/10.1002/advs.202409371
C. Wang, J. Shao, D. Lai, H. Tian, X. Li, Suspended-template electric-assisted nanoimprinting for hierarchical micro-nanostructures on a fragile substrate. ACS Nano 13(9), 10333–10342 (2019). https://doi.org/10.1021/acsnano.9b04031
J. Kim, W. Kim, D.K. Oh, H. Kang, H. Kim et al., One-step printable platform for high-efficiency metasurfaces down to the deep-ultraviolet region. Light Sci. Appl. 12(1), 68 (2023). https://doi.org/10.1038/s41377-023-01086-6
L. Wen, R. Xu, Y. Mi, Y. Lei, Multiple nanostructures based on anodized aluminium oxide templates. Nat. Nanotechnol. 12(3), 244–250 (2017). https://doi.org/10.1038/nnano.2016.257
G. Yoon, K. Kim, D. Huh, H. Lee, J. Rho, Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun. 11(1), 2268 (2020). https://doi.org/10.1038/s41467-020-16136-5
Y. Fan, C. Wang, J. Sun, X. Peng, H. Tian et al., Electric-driven flexible-roller nanoimprint lithography on the stress-sensitive warped wafer. Int. J. Extrem. Manuf. 5(3), 035101 (2023). https://doi.org/10.1088/2631-7990/acd827
M. Gopakumar, G.-Y. Lee, S. Choi, B. Chao, Y. Peng et al., Full-colour 3D holographic augmented-reality displays with metasurface waveguides. Nature 629(8013), 791–797 (2024). https://doi.org/10.1038/s41586-024-07386-0
Y. Ding, Y. Gu, Q. Yang, Z. Yang, Y. Huang et al., Breaking the in-coupling efficiency limit in waveguide-based AR displays with polarization volume gratings. Light Sci. Appl. 13(1), 185 (2024). https://doi.org/10.1038/s41377-024-01537-8
S. Wang, P.C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen et al., A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13(3), 227–232 (2018). https://doi.org/10.1038/s41565-017-0052-4
M. Choi, J. Kim, S. Moon, K. Shin, S.W. Nam et al., Roll-to-plate printable RGB achromatic metalens for wide-field-of-view holographic near-eye displays. Nat. Mater. 24(4), 535–543 (2025). https://doi.org/10.1038/s41563-025-02121-0
J. Gong, L. Xiong, M. Pu, X. Li, X. Ma et al., Visible meta-displays for anti-counterfeiting with printable dielectric metasurfaces. Adv. Sci. 11(17), e2308687 (2024). https://doi.org/10.1002/advs.202308687