On-Skin Epidermal Electronics for Next-Generation Health Management
Corresponding Author: Xiaoliang Chen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 25
Abstract
Continuous monitoring of biosignals is essential for advancing early disease detection, personalized treatment, and health management. Flexible electronics, capable of accurately monitoring biosignals in daily life, have garnered considerable attention due to their softness, conformability, and biocompatibility. However, several challenges remain, including imperfect skin-device interfaces, limited breathability, and insufficient mechanoelectrical stability. On-skin epidermal electronics, distinguished by their excellent conformability, breathability, and mechanoelectrical robustness, offer a promising solution for high-fidelity, long-term health monitoring. These devices can seamlessly integrate with the human body, leading to transformative advancements in future personalized healthcare. This review provides a systematic examination of recent advancements in on-skin epidermal electronics, with particular emphasis on critical aspects including material science, structural design, desired properties, and practical applications. We explore various materials, considering their properties and the corresponding structural designs developed to construct high-performance epidermal electronics. We then discuss different approaches for achieving the desired device properties necessary for long-term health monitoring, including adhesiveness, breathability, and mechanoelectrical stability. Additionally, we summarize the diverse applications of these devices in monitoring biophysical and physiological signals. Finally, we address the challenges facing these devices and outline future prospects, offering insights into the ongoing development of on-skin epidermal electronics for long-term health monitoring.
Highlights:
1 This review comprehensively examines representative functional materials, analyzes their intrinsic properties, and illustrates how rational structural design and fabrication strategies can be employed to achieve high-performance epidermal electronics.
2 Three essential performance requirements for long-term, continuous health monitoring—adhesiveness, breathability, and mechanoelectrical stability—are emphasized, alongside effective strategies for their realization.
3 Current scientific challenges in this field are critically discussed, offering in-depth insights into the development of next-generation on-skin epidermal electronics aimed at transforming personalized healthcare.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Wang, M.L. Adam, Y. Zhao, W. Zheng, L. Gao et al., Machine learning-enhanced flexible mechanical sensing. Nano-Micro Lett. 15(1), 55 (2023). https://doi.org/10.1007/s40820-023-01013-9
- Z. Xu, C. Zhang, F. Wang, J. Yu, G. Yang et al., Smart textiles for personalized sports and healthcare. Nano-Micro Lett. 17(1), 232 (2025). https://doi.org/10.1007/s40820-025-01749-6
- W. Yue, Y. Guo, J.-C. Lee, E. Ganbold, J.-K. Wu et al., Advancements in passive wireless sensing systems in monitoring harsh environment and healthcare applications. Nano-Micro Lett. 17(1), 106 (2025). https://doi.org/10.1007/s40820-024-01599-8
- J. Min, J. Tu, C. Xu, H. Lukas, S. Shin et al., Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 123(8), 5049–5138 (2023). https://doi.org/10.1021/acs.chemrev.2c00823
- H. Li, P. Tan, Y. Rao, S. Bhattacharya, Z. Wang et al., E-tattoos: toward functional but imperceptible interfacing with human skin. Chem. Rev. 124(6), 3220–3283 (2024). https://doi.org/10.1021/acs.chemrev.3c00626
- J.-H. Lee, K. Cho, J.-K. Kim, Age of flexible electronics: emerging trends in soft multifunctional sensors. Adv. Mater. 36(16), 2310505 (2024). https://doi.org/10.1002/adma.202310505
- R. Qin, J. Nong, K. Wang, Y. Liu, S. Zhou et al., Recent advances in flexible pressure sensors based on MXene materials. Adv. Mater. 36(24), e2312761 (2024). https://doi.org/10.1002/adma.202312761
- D. Won, J. Bang, S.H. Choi, K.R. Pyun, S. Jeong et al., Transparent electronics for wearable electronics application. Chem. Rev. 123(16), 9982–10078 (2023). https://doi.org/10.1021/acs.chemrev.3c00139
- K.-N. Wang, Z.-Z. Li, Z.-M. Cai, L.-M. Cao, N.-N. Zhong et al., The applications of flexible electronics in dental, oral, and craniofacial medicine. NPJ Flex. Electron. 8, 33 (2024). https://doi.org/10.1038/s41528-024-00318-y
- Z. Wang, S. Wang, B. Lan, Y. Sun, L. Huang et al., Piezotronic sensor for bimodal monitoring of Achilles tendon behavior. Nano-Micro Lett. 17(1), 241 (2025). https://doi.org/10.1007/s40820-025-01757-6
- Y. Qiao, J. Luo, T. Cui, H. Liu, H. Tang et al., Soft electronics for health monitoring assisted by machine learning. Nano-Micro Lett. 15(1), 66 (2023). https://doi.org/10.1007/s40820-023-01029-1
- J. Chang, J. Li, J. Ye, B. Zhang, J. Chen et al., AI-enabled piezoelectric wearable for joint torque monitoring. Nano-Micro Lett. 17(1), 247 (2025). https://doi.org/10.1007/s40820-025-01753-w
- J. Lee, H.R. Cho, G.D. Cha, H. Seo, S. Lee et al., Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nat. Commun. 10, 5205 (2019). https://doi.org/10.1038/s41467-019-13198-y
- K. Kaewpradub, K. Veenuttranon, H. Jantapaso, P. Mittraparp-Arthorn, I. Jeerapan, A fully-printed wearable bandage-based electrochemical sensor with pH correction for wound infection monitoring. Nano-Micro Lett. 17(1), 71 (2024). https://doi.org/10.1007/s40820-024-01561-8
- Y. Zhao, Y. Sun, C. Pei, X. Yin, X. Li et al., Low-temperature fabrication of stable black-phase CsPbI3 perovskite flexible photodetectors toward wearable health monitoring. Nano-Micro Lett 17(1), 63 (2024). https://doi.org/10.1007/s40820-024-01565-4
- C. Xu, J. Chen, Z. Zhu, M. Liu, R. Lan et al., Flexible pressure sensors in human–machine interface applications. Small 20(15), 2306655 (2024). https://doi.org/10.1002/smll.202306655
- W. Shi, Y. Guo, Y. Liu, When flexible organic field-effect transistors meet biomimetics: a prospective view of the internet of things. Adv. Mater. 32(15), 1901493 (2020). https://doi.org/10.1002/adma.201901493
- W. Chen, J. Lin, Z. Ye, X. Wang, J. Shen et al., Customized surface adhesive and wettability properties of conformal electronic devices. Mater. Horiz. 11(24), 6289–6325 (2024). https://doi.org/10.1039/d4mh00753k
- Z. Yang, Z. Zhang, T. Zhou, N. Yu, R. Yu et al., An on-skin-formed silk protein bioelectrode for conformable and robust electrophysiological interface. Adv. Funct. Mater. 34(38), 2402608 (2024). https://doi.org/10.1002/adfm.202402608
- C. Wang, H. Wang, B. Wang, H. Miyata, Y. Wang et al., On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Sci. Adv. 8(20), eabo1396 (2022). https://doi.org/10.1126/sciadv.abo1396
- F. Ershad, A. Thukral, J. Yue, P. Comeaux, Y. Lu et al., Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment. Nat. Commun. 11(1), 3823 (2020). https://doi.org/10.1038/s41467-020-17619-1
- K. Zhao, Y. Zhao, R. Qian, C. Ye, Recent progress on tattoo-like electronics: from materials and structural designs to versatile applications. Chem. Eng. J. 477, 147109 (2023). https://doi.org/10.1016/j.cej.2023.147109
- J. Dong, J. Hou, Y. Peng, Y. Zhang, H. Liu et al., Breathable and stretchable epidermal electronics for health management: recent advances and challenges. Adv. Mater. 36(49), 2409071 (2024). https://doi.org/10.1002/adma.202409071
- Q. Zhou, Q. Ding, Z. Geng, C. Hu, L. Yang et al., A flexible smart healthcare platform conjugated with artificial epidermis assembled by three-dimensionally conductive MOF network for gas and pressure sensing. Nano-Micro Lett 17(1), 50 (2024). https://doi.org/10.1007/s40820-024-01548-5
- H. Yuk, B. Lu, X. Zhao, Hydrogel bioelectronics. Chem. Soc. Rev. 48(6), 1642–1667 (2019). https://doi.org/10.1039/C8CS00595H
- J.V. Vaghasiya, C.C. Mayorga-Martinez, M. Pumera, Wearable sensors for telehealth based on emerging materials and nanoarchitectonics. NPJ Flex. Electron. 7, 26 (2023). https://doi.org/10.1038/s41528-023-00261-4
- L. Wang, D. Chen, K. Jiang, G. Shen, New insights and perspectives into biological materials for flexible electronics. Chem. Soc. Rev. 46(22), 6764–6815 (2017). https://doi.org/10.1039/c7cs00278e
- Y. Du, J. Sun, J. Zhao, P. Liu, X. Lv et al., Flexible graphene-based composite films for energy storage devices: from interfacial modification to interlayer structure design. Chem. Eng. J. 493, 152704 (2024). https://doi.org/10.1016/j.cej.2024.152704
- Z. Shen, F. Liu, S. Huang, H. Wang, C. Yang et al., Progress of flexible strain sensors for physiological signal monitoring. Biosens. Bioelectron. 211, 114298 (2022). https://doi.org/10.1016/j.bios.2022.114298
- L. Wang, J. Liu, X. Qi, X. Zhang, H. Wang et al., Flexible micro/nanopatterned pressure tactile sensors: technologies, morphology and applications. J. Mater. Chem. A 12(14), 8065–8099 (2024). https://doi.org/10.1039/D4TA00017J
- J.Y. Lee, J.E. Ju, C. Lee, S.M. Won, K.J. Yu, Novel fabrication techniques for ultra-thin silicon based flexible electronics. Int. J. Extreme Manuf. 6(4), 042005 (2024). https://doi.org/10.1088/2631-7990/ad492e
- T. Zhang, N. Liu, J. Xu, Z. Liu, Y. Zhou et al., Flexible electronics for cardiovascular healthcare monitoring. Innovation 4(5), 100485 (2023). https://doi.org/10.1016/j.xinn.2023.100485
- W.-H. Yeo, Y.-S. Kim, J. Lee, A. Ameen, L. Shi et al., Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25(20), 2773–2778 (2013). https://doi.org/10.1002/adma.201204426
- H. Hu, C. Zhang, Y. Ding, F. Chen, Q. Huang et al., A review of structure engineering of strain-tolerant architectures for stretchable electronics. Small Methods 7(11), 2300671 (2023). https://doi.org/10.1002/smtd.202300671
- D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim et al., Epidermal electronics. Science 333(6044), 838–843 (2011). https://doi.org/10.1126/science.1206157
- Y. Zhang, S. Wang, X. Li, J.A. Fan, S. Xu et al., Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics. Adv. Funct. Mater. 24(14), 2028–2037 (2014). https://doi.org/10.1002/adfm.201302957
- H.C. Ko, G. Shin, S. Wang, M.P. Stoykovich, J.W. Lee et al., Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small 5(23), 2703–2709 (2009). https://doi.org/10.1002/smll.200900934
- S. Xu, Z. Yan, K.-I. Jang, W. Huang, H. Fu et al., Materials science. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347(6218), 154–159 (2015). https://doi.org/10.1126/science.1260960
- J. Liu, S. Jiang, W. Xiong, C. Zhu, K. Li et al., Self-healing kirigami assembly strategy for conformal electronics. Adv. Funct. Mater. 32(12), 2109214 (2022). https://doi.org/10.1002/adfm.202109214
- H. Liu, H. Li, Z. Wang, X. Wei, H. Zhu et al., Robust and multifunctional kirigami electronics with a tough and permeable aramid nanofiber framework. Adv. Mater. 34(50), 2207350 (2022). https://doi.org/10.1002/adma.202207350
- Z. Jiang, N. Chen, Z. Yi, J. Zhong, F. Zhang et al., A 1.3-micrometre-thick elastic conductor for seamless on-skin and implantable sensors. Nat. Electron. 5(11), 784–793 (2022). https://doi.org/10.1038/s41928-022-00868-x
- Y. Wang, T. Hong, L. Wang, G. Li, N. Bai et al., Epidermal electrodes with enhanced breathability and high sensing performance. Mater. Today Phys. 12, 100191 (2020). https://doi.org/10.1016/j.mtphys.2020.100191
- A. Miyamoto, S. Lee, N.F. Cooray, S. Lee, M. Mori et al., Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12(9), 907–913 (2017). https://doi.org/10.1038/nnano.2017.125
- Y. Wang, S. Lee, T. Yokota, H. Wang, Z. Jiang et al., A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Sci. Adv. 6(33), eabb7043 (2020). https://doi.org/10.1126/sciadv.abb7043
- L. Liu, H.Y. Li, Y.J. Fan, Y.H. Chen, S.Y. Kuang et al., Nanofiber-reinforced silver nanowires network as a robust, ultrathin, and conformable epidermal electrode for ambulatory monitoring of physiological signals. Small 15(22), 1900755 (2019). https://doi.org/10.1002/smll.201900755
- M.O.G. Nayeem, S. Lee, H. Jin, N. Matsuhisa, H. Jinno et al., All-nanofiber–based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. Proc. Natl. Acad. Sci. U. S. A. 117, 7063 (2020). https://doi.org/10.1073/pnas.1920911117
- S. Lee, D. Sasaki, D. Kim, M. Mori, T. Yokota et al., Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat. Nanotechnol. 14(2), 156–160 (2019). https://doi.org/10.1038/s41565-018-0331-8
- S. Lee, S. Franklin, F.A. Hassani, T. Yokota, M.O.G. Nayeem et al., Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370(6519), 966–970 (2020). https://doi.org/10.1126/science.abc9735
- S. Sun, X.-L. Shi, W. Lyu, M. Hong, W. Chen et al., Stable, self-adhesive, and high-performance graphene-oxide-modified flexible ionogel thermoelectric films. Adv. Funct. Mater. 34(39), 2402823 (2024). https://doi.org/10.1002/adfm.202402823
- Z. Xiang, H. Wang, P. Zhao, X. Fa, J. Wan et al., Hard magnetic graphene nanocomposite for multimodal, reconfigurable soft electronics. Adv. Mater. 36(14), e2308575 (2024). https://doi.org/10.1002/adma.202308575
- M. Sun, S. Wang, Y. Liang, C. Wang, Y. Zhang et al., Flexible graphene field-effect transistors and their application in flexible biomedical sensing. Nano-Micro Lett. 17(1), 34 (2024). https://doi.org/10.1007/s40820-024-01534-x
- S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang et al., Graphene electronic tattoo sensors. ACS Nano 11(8), 7634–7641 (2017). https://doi.org/10.1021/acsnano.7b02182
- Y. Qiao, Y. Wang, H. Tian, M. Li, J. Jian et al., Multilayer graphene epidermal electronic skin. ACS Nano 12(9), 8839–8846 (2018). https://doi.org/10.1021/acsnano.8b02162
- F. Liu, P. Li, H. An, P. Peng, B. McLean et al., Achievements and challenges of graphene chemical vapor deposition growth. Adv. Funct. Mater. 32(42), 2203191 (2022). https://doi.org/10.1002/adfm.202203191
- S. Wang, S. Li, H. Wang, H. Lu, M. Zhu et al., Highly adhesive epidermal sensors with superior water-interference-resistance for aquatic applications. Adv. Funct. Mater. 33(41), 2302687 (2023). https://doi.org/10.1002/adfm.202302687
- Q. Wang, S. Ling, X. Liang, H. Wang, H. Lu et al., Self-healable multifunctional electronic tattoos based on silk and graphene. Adv. Funct. Mater. 29(16), 1808695 (2019). https://doi.org/10.1002/adfm.201808695
- S.R. Joshi, M. Lee, H.Y. Lee, M.-E. Lee, S. Kim, Self-powered, multifunctional, and skin-compatible electronic-tattoos based on hybrid bio-nanomaterials as electrically functionalized skins. Chem. Eng. J. 496, 154160 (2024). https://doi.org/10.1016/j.cej.2024.154160
- D. Kireev, K. Sel, B. Ibrahim, N. Kumar, A. Akbari et al., Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat. Nanotechnol. 17(8), 864–870 (2022). https://doi.org/10.1038/s41565-022-01145-w
- H. Jang, K. Sel, E. Kim, S. Kim, X. Yang et al., Graphene e-tattoos for unobstructive ambulatory electrodermal activity sensing on the palm enabled by heterogeneous serpentine ribbons. Nat. Commun. 13(1), 6604 (2022). https://doi.org/10.1038/s41467-022-34406-2
- H. Wang, M. Jian, S. Li, X. Liang, H. Lu et al., Inter-shell sliding in individual few-walled carbon nanotubes for flexible electronics. Adv. Mater. 35(48), e2306144 (2023). https://doi.org/10.1002/adma.202306144
- C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31(9), 1801072 (2019). https://doi.org/10.1002/adma.201801072
- N. Gogurla, S. Kim, Self-powered and imperceptible electronic tattoos based on silk protein nanofiber and carbon nanotubes for human–machine interfaces (Adv. Energy Mater. 29/2021). Adv. Energy Mater. 11(29), 2170115 (2021). https://doi.org/10.1002/aenm.202170115
- N. Gogurla, Y. Kim, S. Cho, J. Kim, S. Kim, Multifunctional and ultrathin electronic tattoo for on-skin diagnostic and therapeutic applications. Adv. Mater. 33(24), 2008308 (2021). https://doi.org/10.1002/adma.202008308
- G.B. Pradhan, S. Jeong, S. Sharma, S. Lim, K. Shrestha et al., A breathable and strain-insensitive multi-layered E-skin patch for digital healthcare wearables. Adv. Funct. Mater. 34(46), 2407978 (2024). https://doi.org/10.1002/adfm.202407978
- C. Gu, W. Qin, X. Guo, B. Zhao, Y. Wang et al., Highly conductive, super-stretchable and stable stretchable conductor with CNT and liquid metal alternating layered structure. Chem. Eng. J. 487, 150589 (2024). https://doi.org/10.1016/j.cej.2024.150589
- G.-H. Lee, H. Woo, C. Yoon, C. Yang, J.-Y. Bae et al., A personalized electronic tattoo for healthcare realized by on-the-spot assembly of an intrinsically conductive and durable liquid-metal composite. Adv. Mater. 34(32), 2204159 (2022). https://doi.org/10.1002/adma.202204159
- L. Xiang, Y. Wang, F. Xia, F. Liu, D. He et al., An epidermal electronic system for physiological information acquisition, processing, and storage with an integrated flash memory array. Sci. Adv. 8(33), eabp8075 (2022). https://doi.org/10.1126/sciadv.abp8075
- Y. Chen, G. Zhou, X. Yuan, C. Li, L. Liu et al., Substrate-free, ultra-conformable PEDOT: PSS e-tattoo achieved by energy regulation on skin. Biosens. Bioelectron. 206, 114118 (2022). https://doi.org/10.1016/j.bios.2022.114118
- Y. Jiang, J. Ou, Z. Luo, Y. Chen, Z. Wu et al., High capacitive antimonene/CNT/PANI free-standing electrodes for flexible supercapacitor engaged with self-healing function. Small 18(25), 2201377 (2022). https://doi.org/10.1002/smll.202201377
- L. You, X. Shi, J. Cheng, J. Yang, C. Xiong et al., Flexible porous gelatin/polypyrrole/reduction graphene oxide organohydrogel for wearable electronics. J. Colloid Interface Sci. 625, 197–209 (2022). https://doi.org/10.1016/j.jcis.2022.06.041
- Q.-B. Zheng, Y.-C. Lin, Y.-T. Lin, Y. Chang, W.-N. Wu et al., Investigating the stretchability of doped poly(3-hexylthiophene)-block-poly(butyl acrylate) conjugated block copolymer thermoelectric thin films. Chem. Eng. J. 472, 145121 (2023). https://doi.org/10.1016/j.cej.2023.145121
- X. Fan, N.E. Stott, J. Zeng, Y. Li, J. Ouyang et al., PEDOT: PSS materials for optoelectronics, thermoelectrics, and flexible and stretchable electronics. J. Mater. Chem. A 11(35), 18561–18591 (2023). https://doi.org/10.1039/D3TA03213B
- P. Tan, H. Wang, F. Xiao, X. Lu, W. Shang et al., Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun. 13(1), 358 (2022). https://doi.org/10.1038/s41467-022-28027-y
- G. Li, Y. Gong, S. Fang, T. You, R. Shao et al., Substrate-free ultra-thin epidermal bioelectrodes with enhanced conformality and breathability for long-term physiological monitoring. Sci. China Mater. 67(5), 1481–1490 (2024). https://doi.org/10.1007/s40843-024-2823-9
- T. Cheng, F. Wang, Y.-Z. Zhang, L. Li, S.-Y. Gao et al., 3D printable conductive polymer hydrogels with ultra-high conductivity and superior stretchability for free-standing elastic all-gel supercapacitors. Chem. Eng. J. 450, 138311 (2022). https://doi.org/10.1016/j.cej.2022.138311
- P. Wang, H. Zeng, J. Zhu, Q. Gao, Micro-supercapacitors based on ultra-fine PEDOT: PSS fibers prepared via wet-spinning. Chem. Eng. J. 484, 149676 (2024). https://doi.org/10.1016/j.cej.2024.149676
- L. Zhang, K.S. Kumar, H. He, C.J. Cai, X. He et al., Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 11(1), 4683 (2020). https://doi.org/10.1038/s41467-020-18503-8
- Y. Li, Y. Pang, L. Wang, Q. Li, B. Liu et al., Boosting the performance of PEDOT: PSS based electronics via ionic liquids. Adv. Mater. 36(13), 2310973 (2024). https://doi.org/10.1002/adma.202310973
- B. Wei, Z. Wang, H. Guo, F. Xie, S. Cheng et al., Ultraflexible tattoo electrodes for epidermal and in vivo electrophysiological recording. Cell Rep. Phys. Sci. 4(4), 101335 (2023). https://doi.org/10.1016/j.xcrp.2023.101335
- Y. Zhao, S. Zhang, T. Yu, Y. Zhang, G. Ye et al., Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nat. Commun. 12(1), 4880 (2021). https://doi.org/10.1038/s41467-021-25152-y
- G. Lu, E. Ni, Y. Jiang, W. Wu, H. Li, Room-temperature liquid metals for flexible electronic devices. Small 20(9), 2304147 (2024). https://doi.org/10.1002/smll.202304147
- P. Wu, Z. Wang, X. Yao, J. Fu, Y. He, Recyclable conductive nanoclay for direct in situ printing flexible electronics. Mater. Horiz. 8(7), 2006–2017 (2021). https://doi.org/10.1039/D0MH02065F
- Y. Zhang, Z. Wang, S. Wang, Z. Yu, Z. Xu et al., Dynamic-wetting liquid metal thin layer induced via surface oxygen-containing functional groups. ACS Nano 19(4), 4913–4923 (2025). https://doi.org/10.1021/acsnano.4c16623
- J. Cheng, J. Shang, S. Yang, J. Dou, X. Shi et al., Wet-adhesive elastomer for liquid metal-based conformal epidermal electronics. Adv. Funct. Mater. 32(25), 2200444 (2022). https://doi.org/10.1002/adfm.202200444
- G.-H. Lee, Y.R. Lee, H. Kim, D.A. Kwon, H. Kim et al., Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-p for soft electronics. Nat. Commun. 13, 2643 (2022). https://doi.org/10.1038/s41467-022-30427-z
- K. Zheng, F. Gu, H. Wei, L. Zhang, X.-A. Chen et al., Flexible, permeable, and recyclable liquid-metal-based transient circuit enables contact/noncontact sensing for wearable human-machine interaction. Small Methods 7(4), e2201534 (2023). https://doi.org/10.1002/smtd.202201534
- K.Y. Chung, B. Xu, D. Tan, Q. Yang, Z. Li et al., Naturally crosslinked biocompatible carbonaceous liquid metal aqueous ink printing wearable electronics for multi-sensing and energy harvesting. Nano-Micro Lett. 16(1), 149 (2024). https://doi.org/10.1007/s40820-024-01362-z
- L. Ding, C. Hang, S. Yang, J. Qi, R. Dong et al., In situ deposition of skin-adhesive liquid metal ps with robust wear resistance for epidermal electronics. Nano Lett. 22(11), 4482–4490 (2022). https://doi.org/10.1021/acs.nanolett.2c01270
- S. Lee, S.A. Jaseem, N. Atar, M. Wang, J.Y. Kim et al., Connecting the dots: sintering of liquid metal ps for soft and stretchable conductors. Chem. Rev. 125(6), 3551–3585 (2025). https://doi.org/10.1021/acs.chemrev.4c00850
- D.H. Lee, T. Lim, J. Pyeon, H. Park, S.-W. Lee et al., Self-mixed biphasic liquid metal composite with ultra-high stretchability and strain-insensitivity for neuromorphic circuits. Adv. Mater. 36(16), 2310956 (2024). https://doi.org/10.1002/adma.202310956
- H. Seo, G.-H. Lee, J. Park, D.-Y. Kim, Y. Son et al., Self-packaged stretchable printed circuits with ligand-bound liquid metal ps in elastomer. Nat. Commun. 16, 4944 (2025). https://doi.org/10.1038/s41467-025-60118-4
- S. Lee, G.-H. Lee, I. Kang, W. Jeon, S. Kim et al., Phase-change metal ink with pH-controlled chemical sintering for versatile and scalable fabrication of variable stiffness electronics. Sci. Adv. 11(22), eadv4921 (2025). https://doi.org/10.1126/sciadv.adv4921
- W. Lin, L. Ai, Y. Wang, X. Yang, J. Liao et al., Imperceptible liquid metal based tattoo for human-machine interface on hairy skin. Chem. Eng. J. 490, 151595 (2024). https://doi.org/10.1016/j.cej.2024.151595
- S. Zheng, X. Wang, W. Li, Z. Liu, Q. Li et al., Pressure-stamped stretchable electronics using a nanofibre membrane containing semi-embedded liquid metal ps. Nat. Electron. 7(7), 576–585 (2024). https://doi.org/10.1038/s41928-024-01194-0
- Q. Zhuang, K. Yao, X. Song, Q. Zhang, C. Zhang et al., An ICU-grade breathable cardiac electronic skin for health, diagnostics, and intraoperative and postoperative monitoring. Sci. Adv. 11(12), eadu3146 (2025). https://doi.org/10.1126/sciadv.adu3146
- Y. Cao, C. Liu, W. Ye, T. Zhao, F. Fu, Functional hydrogel interfaces for cartilage and bone regeneration. Adv. Healthc. Mater. 14(6), 2403079 (2025). https://doi.org/10.1002/adhm.202403079
- M.M. Hasani-Sadrabadi, P. Sarrion, S. Pouraghaei, Y. Chau, S. Ansari et al., An engineered cell-laden adhesive hydrogel promotes craniofacial bone tissue regeneration in rats. Sci. Transl. Med. 12(534), eaay6853 (2020). https://doi.org/10.1126/scitranslmed.aay6853
- P.Y.M. Yew, P.L. Chee, Q. Lin, C. Owh, J. Li et al., Hydrogel for light delivery in biomedical applications. Bioact. Mater. 37, 407–423 (2024). https://doi.org/10.1016/j.bioactmat.2024.03.031
- H. Baniasadi, R. Abidnejad, M. Fazeli, J. Lipponen, J. Niskanen et al., Innovations in hydrogel-based manufacturing: a comprehensive review of direct ink writing technique for biomedical applications. Adv. Colloid Interface Sci. 324, 103095 (2024). https://doi.org/10.1016/j.cis.2024.103095
- L. Hu, P.L. Chee, S. Sugiarto, Y. Yu, C. Shi et al., Hydrogel-based flexible electronics. Adv. Mater. 35(14), 2205326 (2023). https://doi.org/10.1002/adma.202205326
- S. Wang, Z. Wang, L. Zhang, Z. Song, H. Liu et al., Sweat-adaptive adhesive hydrogel electronics enabled by dynamic hydrogen bond networks. Chem. Eng. J. 492, 152290 (2024). https://doi.org/10.1016/j.cej.2024.152290
- J. Wang, Y. Bi, J. Liang, Z. Lu, K. Liu et al., Atmospheric moisture-digesting zwitterionic skin for non-drying and self-adhesive multifunctional electronics. Nano Energy 124, 109500 (2024). https://doi.org/10.1016/j.nanoen.2024.109500
- L. Lan, J. Ping, H. Li, C. Wang, G. Li et al., Skin-inspired all-natural biogel for bioadhesive interface. Adv. Mater. 36(25), e2401151 (2024). https://doi.org/10.1002/adma.202401151
- S. Cheng, Z. Lou, L. Zhang, H. Guo, Z. Wang et al., Ultrathin hydrogel films toward breathable skin-integrated electronics. Adv. Mater. 35(1), e2206793 (2023). https://doi.org/10.1002/adma.202206793
- Q. Gao, F. Sun, Y. Li, L. Li, M. Liu et al., Biological tissue-inspired ultrasoft, ultrathin, and mechanically enhanced microfiber composite hydrogel for flexible bioelectronics. Nano-Micro Lett. 15(1), 139 (2023). https://doi.org/10.1007/s40820-023-01096-4
- B. Bao, Q. Zeng, K. Li, J. Wen, Y. Zhang et al., Rapid fabrication of physically robust hydrogels. Nat. Mater. 22(10), 1253–1260 (2023). https://doi.org/10.1038/s41563-023-01648-4
- S.J.K. O’Neill, Z. Huang, X. Chen, R.L. Sala, J.A. McCune et al., Highly stretchable dynamic hydrogels for soft multilayer electronics. Sci. Adv. 10(29), eadn5142 (2024). https://doi.org/10.1126/sciadv.adn5142
- J. Wang, B. Wu, P. Wei, S. Sun, P. Wu, Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh. Nat. Commun. 13(1), 4411 (2022). https://doi.org/10.1038/s41467-022-32140-3
- P. Liu, Y. Zhang, Y. Guan, Y. Zhang, Peptide-crosslinked, highly entangled hydrogels with excellent mechanical properties but ultra-low solid content. Adv. Mater. 35(13), e2210021 (2023). https://doi.org/10.1002/adma.202210021
- M. Hua, S. Wu, Y. Ma, Y. Zhao, Z. Chen et al., Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 590(7847), 594–599 (2021). https://doi.org/10.1038/s41586-021-03212-z
- Y. Shin, H.S. Lee, J.-U. Kim, Y.-H. An, Y.-S. Kim et al., Functional-hydrogel-based electronic-skin patch for accelerated healing and monitoring of skin wounds. Biomaterials 314, 122802 (2025). https://doi.org/10.1016/j.biomaterials.2024.122802
- S. Zhuo, A. Tessier, M. Arefi, A. Zhang, C. Williams et al., Reusable free-standing hydrogel electronic tattoo sensors with superior performance. NPJ Flex. Electron. 8, 49 (2024). https://doi.org/10.1038/s41528-024-00335-x
- S. Wang, M. Li, J. Wu, D.-H. Kim, N. Lu et al., Mechanics of epidermal electronics. J. Appl. Mech. 79(3), 031022 (2012). https://doi.org/10.1115/1.4005963
- X. Hu, M. Wu, L. Che, J. Huang, H. Li et al., Nanoengineering ultrathin flexible pressure sensor with superior sensitivity and perfect conformability. Small 19(33), 2208015 (2023). https://doi.org/10.1002/smll.202208015
- R.A. Nawrocki, H. Jin, S. Lee, T. Yokota, M. Sekino et al., Self-adhesive and ultra-conformable, sub-300 nm dry thin-film electrodes for surface monitoring of biopotentials. Adv. Funct. Mater. 28(36), 1803279 (2018). https://doi.org/10.1002/adfm.201803279
- Y. Wang, S. Lee, H. Wang, Z. Jiang, Y. Jimbo et al., Robust, self-adhesive, reinforced polymeric nanofilms enabling gas-permeable dry electrodes for long-term application. Proc. Natl. Acad. Sci. U. S. A. 118, e2111904118 (2021). https://doi.org/10.1073/pnas.2111904118
- M. Liao, P. Wan, J. Wen, M. Gong, X. Wu et al., Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework. Adv. Funct. Mater. 27(48), 1703852 (2017). https://doi.org/10.1002/adfm.201703852
- Y. Zheng, M. Wu, M. Duan, Q. Jin, S. Chen et al., Skin temperature-triggered switchable adhesive coatings for wearing comfortable epidermal electronics. Chem. Eng. J. 488, 150459 (2024). https://doi.org/10.1016/j.cej.2024.150459
- Z. Wang, D. Wang, D. Liu, X. Han, X. Liu et al., A universal interfacial strategy enabling ultra-robust gel hybrids for extreme epidermal bio-monitoring. Adv. Funct. Mater. 33(29), 2301117 (2023). https://doi.org/10.1002/adfm.202301117
- X. Yuan, W. Kong, P. Xia, Z. Wang, Q. Gao et al., Implantable wet-adhesive flexible electronics with ultrathin gelatin film. Adv. Funct. Mater. 34(42), 2404824 (2024). https://doi.org/10.1002/adfm.202404824
- L. Pan, P. Cai, L. Mei, Y. Cheng, Y. Zeng et al., A compliant ionic adhesive electrode with ultralow bioelectronic impedance. Adv. Mater. 32(38), e2003723 (2020). https://doi.org/10.1002/adma.202003723
- X. Chen, H. Yuk, J. Wu, C.S. Nabzdyk, X. Zhao, Instant tough bioadhesive with triggerable benign detachment. Proc. Natl. Acad. Sci. U. S. A. 117, 15497 (2020). https://doi.org/10.1073/pnas.2006389117
- G.W. Hwang, S.H. Jeon, J.H. Song, D.W. Kim, J. Lee et al., A spatially selective electroactive-actuating adhesive electronics for multi-object manipulation and adaptive haptic interaction. Adv. Funct. Mater. 34(6), 2308747 (2024). https://doi.org/10.1002/adfm.202308747
- F. Stauffer, M. Thielen, C. Sauter, S. Chardonnens, S. Bachmann et al., Skin conformal polymer electrodes for clinical ECG and EEG recordings. Adv. Healthc. Mater. 7(7), 1700994 (2018). https://doi.org/10.1002/adhm.201700994
- Y.-C. Chen, H. Yang, Octopus-inspired assembly of nanosucker arrays for dry/wet adhesion. ACS Nano 11(6), 5332–5338 (2017). https://doi.org/10.1021/acsnano.7b00809
- D.W. Kim, S. Baik, H. Min, S. Chun, H.J. Lee et al., Highly permeable skin patch with conductive hierarchical architectures inspired by amphibians and octopi for omnidirectionally enhanced wet adhesion. Adv. Funct. Mater. 29(13), 1807614 (2019). https://doi.org/10.1002/adfm.201807614
- S. Baik, H.J. Lee, D.W. Kim, J.W. Kim, Y. Lee et al., Bioinspired adhesive architectures: from skin patch to integrated bioelectronics. Adv. Mater. 31(34), 1803309 (2019). https://doi.org/10.1002/adma.201803309
- H. Kim, J. Lee, U. Heo, D.K. Jayashankar, K.-C. Agno et al., Skin preparation-free, stretchable microneedle adhesive patches for reliable electrophysiological sensing and exoskeleton robot control. Sci. Adv. 10(3), eadk5260 (2024). https://doi.org/10.1126/sciadv.adk5260
- C.J. Smith, G. Havenith, Body mapping of sweating patterns in male athletes in mild exercise-induced hyperthermia. Eur. J. Appl. Physiol. 111(7), 1391–1404 (2011). https://doi.org/10.1007/s00421-010-1744-8
- Y. Fang, Y. Li, Y. Li, M. Ding, J. Xie et al., Solution-processed submicron free-standing, conformal, transparent, breathable epidermal electrodes. ACS Appl. Mater. Interfaces 12(21), 23689–23696 (2020). https://doi.org/10.1021/acsami.0c04134
- X. Yang, L. Li, S. Wang, Q. Lu, Y. Bai et al., Ultrathin, stretchable, and breathable epidermal electronics based on a facile bubble blowing method. Adv. Electron. Mater. 6(11), 2000306 (2020). https://doi.org/10.1002/aelm.202000306
- Y. Zhang, T. Zhang, Z. Huang, J. Yang, A new class of electronic devices based on flexible porous substrates. Adv. Sci. 9(7), 2105084 (2022). https://doi.org/10.1002/advs.202105084
- X. Wang, Y. Tao, C. Zhao, M. Sang, J. Wu et al., Bionic-leaf vein inspired breathable anti-impact wearable electronics with health monitoring, electromagnetic interference shielding and thermal management. J. Mater. Sci. Technol. 188, 216–227 (2024). https://doi.org/10.1016/j.jmst.2023.11.038
- B. Sun, R.N. McCay, S. Goswami, Y. Xu, C. Zhang et al., Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater. 30(50), 1804327 (2018). https://doi.org/10.1002/adma.201804327
- W. Zhou, S. Yao, H. Wang, Q. Du, Y. Ma et al., Gas-permeable, ultrathin, stretchable epidermal electronics with porous electrodes. ACS Nano 14(5), 5798–5805 (2020). https://doi.org/10.1021/acsnano.0c00906
- Q. Zhuang, K. Yao, C. Zhang, X. Song, J. Zhou et al., Permeable, three-dimensional integrated electronic skins with stretchable hybrid liquid metal solders. Nat. Electron. 7(7), 598–609 (2024). https://doi.org/10.1038/s41928-024-01189-x
- H. Yoon, J. Choi, J. Kim, J. Kim, J. Min et al., Adaptive epidermal bioelectronics by highly breathable and stretchable metal nanowire bioelectrodes on electrospun nanofiber membrane. Adv. Funct. Mater. 34(22), 2313504 (2024). https://doi.org/10.1002/adfm.202313504
- Q. Zhuang, K. Yao, M. Wu, Z. Lei, F. Chen et al., Wafer-patterned, permeable, and stretchable liquid metal microelectrodes for implantable bioelectronics with chronic biocompatibility. Sci. Adv. 9(22), eadg8602 (2023). https://doi.org/10.1126/sciadv.adg8602
- K. Yao, Q. Zhuang, Q. Zhang, J. Zhou, C.K. Yiu et al., A fully integrated breathable haptic textile. Sci. Adv. 10(42), eadq9575 (2024). https://doi.org/10.1126/sciadv.adq9575
- T. Lan, H. Tian, X. Chen, X. Li, C. Wang et al., Treefrog-inspired flexible electrode with high permeability, stable adhesion, and robust durability. Adv. Mater. 36(31), 2404761 (2024). https://doi.org/10.1002/adma.202404761
- B. Zhang, J. Li, J. Zhou, L. Chow, G. Zhao et al., A three-dimensional liquid diode for soft, integrated permeable electronics. Nature 628(8006), 84–92 (2024). https://doi.org/10.1038/s41586-024-07161-1
- C. Zhang, Q. Bao, H. Zhu, Q. Zhang, Highly transparent and long-term stable dielectric elastomer composites enabled by poly(ionic liquid) inclusion. Adv. Funct. Mater. 34(37), 2401901 (2024). https://doi.org/10.1002/adfm.202401901
- D. Li, T. Cui, J. Jian, J. Yan, J. Xu et al., Lantern-inspired on-skin helical interconnects for epidermal electronic sensors. Adv. Funct. Mater. 33(18), 2213335 (2023). https://doi.org/10.1002/adfm.202213335
- J. Lv, G. Thangavel, Y. Li, J. Xiong, D. Gao et al., Printable elastomeric electrodes with sweat-enhanced conductivity for wearables. Sci. Adv. 7(29), eabg8433 (2021). https://doi.org/10.1126/sciadv.abg8433
- K. He, Z. Liu, C. Wan, Y. Jiang, T. Wang et al., An on-skin electrode with anti-epidermal-surface-lipid function based on a zwitterionic polymer brush. Adv. Mater. 32(24), 2001130 (2020). https://doi.org/10.1002/adma.202001130
- M. Fu, Z. Sun, X. Liu, Z. Huang, G. Luan et al., Highly stretchable, resilient, adhesive, and self-healing ionic hydrogels for thermoelectric application. Adv. Funct. Mater. 33(43), 2306086 (2023). https://doi.org/10.1002/adfm.202306086
- Y. Feng, C. Wu, M. Chen, H. Sun, A.L.R. Vellaisamy, W.A. Daoud, X. Yu, G. Zhang, W.J. Li, Amoeba-inspired self-healing electronic slime for adaptable, durable epidermal wearable electronics. Adv. Funct. Mater. 34(37), 2402393 (2024). https://doi.org/10.1002/adfm.202402393
- Q. Xie, L. Han, J. Liu, W. Zhang, L. Zhao et al., Kirigami-inspired stretchable piezoelectret sensor for analysis and assessment of Parkinson’s tremor. Adv. Healthc. Mater. 14(1), 2402010 (2025). https://doi.org/10.1002/adhm.202402010
- S. Chen, J. Qi, S. Fan, Z. Qiao, J.C. Yeo et al., Flexible wearable sensors for cardiovascular health monitoring. Adv. Healthc. Mater. 10(17), 2100116 (2021). https://doi.org/10.1002/adhm.202100116
- Y. Bai, L. Yin, C. Hou, Y. Zhou, F. Zhang et al., Response regulation for epidermal fabric strain sensors via mechanical strategy. Adv. Funct. Mater. 33(31), 2214119 (2023). https://doi.org/10.1002/adfm.202214119
- K.-M. Wu, K. Kuo, Y.-T. Deng, L. Yang, Y.-R. Zhang et al., Association of grip strength and walking pace with the risk of incident Parkinson’s disease: a prospective cohort study of 422, 531 participants. J. Neurol. 271(5), 2529–2538 (2024). https://doi.org/10.1007/s00415-024-12194-7
- L. Tang, J. Shang, X. Jiang, Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci. Adv. 7(3), eabe3778 (2021). https://doi.org/10.1126/sciadv.abe3778
- W. Li, K. Zou, J. Guo, C. Zhang, J. Feng et al., Integrated fibrous iontronic pressure sensors with high sensitivity and reliability for human plantar pressure and gait analysis. ACS Nano 18(22), 14672–14684 (2024). https://doi.org/10.1021/acsnano.4c02919
- S. Del Din, M. Elshehabi, B. Galna, M.A. Hobert, E. Warmerdam et al., Gait analysis with wearables predicts conversion to Parkinson disease. Ann. Neurol. 86(3), 357–367 (2019). https://doi.org/10.1002/ana.25548
- B. Ghoraani, L.N. Boettcher, M.D. Hssayeni, A. Rosenfeld, M.I. Tolea et al., Detection of mild cognitive impairment and Alzheimer’s disease using dual-task gait assessments and machine learning. Biomed. Signal Process. Control 64, 102249 (2021). https://doi.org/10.1016/j.bspc.2020.102249
- X. Ren, S. Wang, D. Xiong, G. Tian, B. Lan et al., Heterogeneously assembled bionic piezoresistive sensor for spinal behavior monitoring. Chem. Eng. J. 485, 149817 (2024). https://doi.org/10.1016/j.cej.2024.149817
- B.G. Diebo, N.V. Shah, O. Boachie-Adjei, F. Zhu, D.A. Rothenfluh et al., Adult spinal deformity. Lancet 394(10193), 160–172 (2019). https://doi.org/10.1016/S0140-6736(19)31125-0
- R. Yu, C. Wang, X. Du, X. Bai, Y. Tong et al., In-situ forming ultra-mechanically sensitive materials for high-sensitivity stretchable fiber strain sensors. Natl. Sci. Rev. 11(6), nwae158 (2024). https://doi.org/10.1093/nsr/nwae158
- S. Li, H. Wang, W. Ma, L. Qiu, K. Xia et al., Monitoring blood pressure and cardiac function without positioning via a deep learning-assisted strain sensor array. Sci. Adv. 9(32), eadh0615 (2023). https://doi.org/10.1126/sciadv.adh0615
- Q. Yang, W. Jin, Q. Zhang, Y. Wei, Z. Guo et al., Mixed-modality speech recognition and interaction using a wearable artificial throat. Nat. Mach. Intell. 5(2), 169–180 (2023). https://doi.org/10.1038/s42256-023-00616-6
- L. Liu, Y. Dou, J. Wang, Y. Zhao, W. Kong et al., Recent advances in flexible temperature sensors: materials, mechanism, fabrication, and applications. Adv. Sci. 11(36), 2405003 (2024). https://doi.org/10.1002/advs.202405003
- J. Shin, B. Jeong, J. Kim, V.B. Nam, Y. Yoon et al., Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 32(2), e1905527 (2020). https://doi.org/10.1002/adma.201905527
- K.C. Siontis, P.A. Noseworthy, Z.I. Attia, P.A. Friedman, Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat. Rev. Cardiol. 18(7), 465–478 (2021). https://doi.org/10.1038/s41569-020-00503-2
- H.U. Chung, B.H. Kim, J.Y. Lee, J. Lee, Z. Xie et al., Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363(6430), eaau0780 (2019). https://doi.org/10.1126/science.aau0780
- Z. Zhang, J. Yang, H. Wang, C. Wang, Y. Gu et al., A 10-micrometer-thick nanomesh-reinforced gas-permeable hydrogel skin sensor for long-term electrophysiological monitoring. Sci. Adv. 10(2), eadj5389 (2024). https://doi.org/10.1126/sciadv.adj5389
- J. Rahul, L.D. Sharma, Advancements in AI for cardiac arrhythmia detection: a comprehensive overview. Comput. Sci. Rev. 56, 100719 (2025). https://doi.org/10.1016/j.cosrev.2024.100719
- P. Zou, J. Wang, X. Zhao, X. Zhang, K. Hua et al., Integrated iontronic FMG-sEMG sensing for decoding muscle activation mechanisms and force assessment. Adv. Healthc. Mater. 14(16), 2500843 (2025). https://doi.org/10.1002/adhm.202500843
- A. Suppa, F. Asci, N. Kamble, K.-H. Chen, G. Sciacca et al., Neurophysiology of atypical parkinsonian syndromes: a study group position paper. Mov. Disord. (2025). https://doi.org/10.1002/mds.30225
- K. Belaya, P.M. Rodríguez Cruz, W.W. Liu, S. Maxwell, S. McGowan et al., Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain 138(9), 2493–2504 (2015). https://doi.org/10.1093/brain/awv185
- Q. Tian, H. Zhao, X. Wang, Y. Jiang, M. Zhu et al., Hairy-skin-adaptive viscoelastic dry electrodes for long-term electrophysiological monitoring. Adv. Mater. 35(30), 2211236 (2023). https://doi.org/10.1002/adma.202211236
- X. Huang, C. Chen, X. Ma, T. Zhu, W. Ma et al., In situ forming dual-conductive hydrogels enable conformal, self-adhesive and antibacterial epidermal electrodes. Adv. Funct. Mater. 33(38), 2302846 (2023). https://doi.org/10.1002/adfm.202302846
- D. Duan, H. Yang, G. Lan, T. Li, X. Jia et al., EMGSense: a low-effort self-supervised domain adaptation framework for EMG sensing. 2023 IEEE International Conference on Pervasive Computing and Communications (PerCom). March 13–17, 2023, Atlanta, GA, USA. IEEE, (2023), pp. 160–170.
- A. Muraja-Murro, E. Mervaala, S. Westeren-Punnonen, P. Lepola, J. Töyräs et al., Forehead EEG electrode set versus full-head scalp EEG in 100 patients with altered mental state. Epilepsy Behav. 49, 245–249 (2015). https://doi.org/10.1016/j.yebeh.2015.04.041
- C.-S. Huang, C.-L. Lin, L.-W. Ko, S.-Y. Liu, T.-P. Su et al., Knowledge-based identification of sleep stages based on two forehead electroencephalogram channels. Front. Neurosci. 8, 263 (2014). https://doi.org/10.3389/fnins.2014.00263
- K. Zheng, C. Zheng, L. Zhu, B. Yang, X. Jin et al., Machine learning enabled reusable adhesion, entangled network-based hydrogel for long-term, high-fidelity EEG recording and attention assessment. Nano-Micro Lett. 17(1), 281 (2025). https://doi.org/10.1007/s40820-025-01780-7
- Y. Li, Y. Gu, J. Teng, S. Zheng, Y. Pang et al., Advancing EEG-based brain-computer interface technology via PEDOT: PSS electrodes. Matter 7(9), 2859–2895 (2024). https://doi.org/10.1016/j.matt.2024.05.023
- L. Tian, B. Zimmerman, A. Akhtar, K.J. Yu, M. Moore et al., Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat. Biomed. Eng. 3(3), 194–205 (2019). https://doi.org/10.1038/s41551-019-0347-x
- S. Yasin, A. Othmani, I. Raza, S.A. Hussain, Machine learning based approaches for clinical and non-clinical depression recognition and depression relapse prediction using audiovisual and EEG modalities: a comprehensive review. Comput. Biol. Med. 159, 106741 (2023). https://doi.org/10.1016/j.compbiomed.2023.106741
- N. Ahire, EEG-derived brainwave patterns for depression diagnosis via hybrid machine learning and deep learning frameworks. Appl. Neuropsychol. Adult (2025). https://doi.org/10.1080/23279095.2025.2457999
References
Y. Wang, M.L. Adam, Y. Zhao, W. Zheng, L. Gao et al., Machine learning-enhanced flexible mechanical sensing. Nano-Micro Lett. 15(1), 55 (2023). https://doi.org/10.1007/s40820-023-01013-9
Z. Xu, C. Zhang, F. Wang, J. Yu, G. Yang et al., Smart textiles for personalized sports and healthcare. Nano-Micro Lett. 17(1), 232 (2025). https://doi.org/10.1007/s40820-025-01749-6
W. Yue, Y. Guo, J.-C. Lee, E. Ganbold, J.-K. Wu et al., Advancements in passive wireless sensing systems in monitoring harsh environment and healthcare applications. Nano-Micro Lett. 17(1), 106 (2025). https://doi.org/10.1007/s40820-024-01599-8
J. Min, J. Tu, C. Xu, H. Lukas, S. Shin et al., Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 123(8), 5049–5138 (2023). https://doi.org/10.1021/acs.chemrev.2c00823
H. Li, P. Tan, Y. Rao, S. Bhattacharya, Z. Wang et al., E-tattoos: toward functional but imperceptible interfacing with human skin. Chem. Rev. 124(6), 3220–3283 (2024). https://doi.org/10.1021/acs.chemrev.3c00626
J.-H. Lee, K. Cho, J.-K. Kim, Age of flexible electronics: emerging trends in soft multifunctional sensors. Adv. Mater. 36(16), 2310505 (2024). https://doi.org/10.1002/adma.202310505
R. Qin, J. Nong, K. Wang, Y. Liu, S. Zhou et al., Recent advances in flexible pressure sensors based on MXene materials. Adv. Mater. 36(24), e2312761 (2024). https://doi.org/10.1002/adma.202312761
D. Won, J. Bang, S.H. Choi, K.R. Pyun, S. Jeong et al., Transparent electronics for wearable electronics application. Chem. Rev. 123(16), 9982–10078 (2023). https://doi.org/10.1021/acs.chemrev.3c00139
K.-N. Wang, Z.-Z. Li, Z.-M. Cai, L.-M. Cao, N.-N. Zhong et al., The applications of flexible electronics in dental, oral, and craniofacial medicine. NPJ Flex. Electron. 8, 33 (2024). https://doi.org/10.1038/s41528-024-00318-y
Z. Wang, S. Wang, B. Lan, Y. Sun, L. Huang et al., Piezotronic sensor for bimodal monitoring of Achilles tendon behavior. Nano-Micro Lett. 17(1), 241 (2025). https://doi.org/10.1007/s40820-025-01757-6
Y. Qiao, J. Luo, T. Cui, H. Liu, H. Tang et al., Soft electronics for health monitoring assisted by machine learning. Nano-Micro Lett. 15(1), 66 (2023). https://doi.org/10.1007/s40820-023-01029-1
J. Chang, J. Li, J. Ye, B. Zhang, J. Chen et al., AI-enabled piezoelectric wearable for joint torque monitoring. Nano-Micro Lett. 17(1), 247 (2025). https://doi.org/10.1007/s40820-025-01753-w
J. Lee, H.R. Cho, G.D. Cha, H. Seo, S. Lee et al., Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nat. Commun. 10, 5205 (2019). https://doi.org/10.1038/s41467-019-13198-y
K. Kaewpradub, K. Veenuttranon, H. Jantapaso, P. Mittraparp-Arthorn, I. Jeerapan, A fully-printed wearable bandage-based electrochemical sensor with pH correction for wound infection monitoring. Nano-Micro Lett. 17(1), 71 (2024). https://doi.org/10.1007/s40820-024-01561-8
Y. Zhao, Y. Sun, C. Pei, X. Yin, X. Li et al., Low-temperature fabrication of stable black-phase CsPbI3 perovskite flexible photodetectors toward wearable health monitoring. Nano-Micro Lett 17(1), 63 (2024). https://doi.org/10.1007/s40820-024-01565-4
C. Xu, J. Chen, Z. Zhu, M. Liu, R. Lan et al., Flexible pressure sensors in human–machine interface applications. Small 20(15), 2306655 (2024). https://doi.org/10.1002/smll.202306655
W. Shi, Y. Guo, Y. Liu, When flexible organic field-effect transistors meet biomimetics: a prospective view of the internet of things. Adv. Mater. 32(15), 1901493 (2020). https://doi.org/10.1002/adma.201901493
W. Chen, J. Lin, Z. Ye, X. Wang, J. Shen et al., Customized surface adhesive and wettability properties of conformal electronic devices. Mater. Horiz. 11(24), 6289–6325 (2024). https://doi.org/10.1039/d4mh00753k
Z. Yang, Z. Zhang, T. Zhou, N. Yu, R. Yu et al., An on-skin-formed silk protein bioelectrode for conformable and robust electrophysiological interface. Adv. Funct. Mater. 34(38), 2402608 (2024). https://doi.org/10.1002/adfm.202402608
C. Wang, H. Wang, B. Wang, H. Miyata, Y. Wang et al., On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Sci. Adv. 8(20), eabo1396 (2022). https://doi.org/10.1126/sciadv.abo1396
F. Ershad, A. Thukral, J. Yue, P. Comeaux, Y. Lu et al., Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment. Nat. Commun. 11(1), 3823 (2020). https://doi.org/10.1038/s41467-020-17619-1
K. Zhao, Y. Zhao, R. Qian, C. Ye, Recent progress on tattoo-like electronics: from materials and structural designs to versatile applications. Chem. Eng. J. 477, 147109 (2023). https://doi.org/10.1016/j.cej.2023.147109
J. Dong, J. Hou, Y. Peng, Y. Zhang, H. Liu et al., Breathable and stretchable epidermal electronics for health management: recent advances and challenges. Adv. Mater. 36(49), 2409071 (2024). https://doi.org/10.1002/adma.202409071
Q. Zhou, Q. Ding, Z. Geng, C. Hu, L. Yang et al., A flexible smart healthcare platform conjugated with artificial epidermis assembled by three-dimensionally conductive MOF network for gas and pressure sensing. Nano-Micro Lett 17(1), 50 (2024). https://doi.org/10.1007/s40820-024-01548-5
H. Yuk, B. Lu, X. Zhao, Hydrogel bioelectronics. Chem. Soc. Rev. 48(6), 1642–1667 (2019). https://doi.org/10.1039/C8CS00595H
J.V. Vaghasiya, C.C. Mayorga-Martinez, M. Pumera, Wearable sensors for telehealth based on emerging materials and nanoarchitectonics. NPJ Flex. Electron. 7, 26 (2023). https://doi.org/10.1038/s41528-023-00261-4
L. Wang, D. Chen, K. Jiang, G. Shen, New insights and perspectives into biological materials for flexible electronics. Chem. Soc. Rev. 46(22), 6764–6815 (2017). https://doi.org/10.1039/c7cs00278e
Y. Du, J. Sun, J. Zhao, P. Liu, X. Lv et al., Flexible graphene-based composite films for energy storage devices: from interfacial modification to interlayer structure design. Chem. Eng. J. 493, 152704 (2024). https://doi.org/10.1016/j.cej.2024.152704
Z. Shen, F. Liu, S. Huang, H. Wang, C. Yang et al., Progress of flexible strain sensors for physiological signal monitoring. Biosens. Bioelectron. 211, 114298 (2022). https://doi.org/10.1016/j.bios.2022.114298
L. Wang, J. Liu, X. Qi, X. Zhang, H. Wang et al., Flexible micro/nanopatterned pressure tactile sensors: technologies, morphology and applications. J. Mater. Chem. A 12(14), 8065–8099 (2024). https://doi.org/10.1039/D4TA00017J
J.Y. Lee, J.E. Ju, C. Lee, S.M. Won, K.J. Yu, Novel fabrication techniques for ultra-thin silicon based flexible electronics. Int. J. Extreme Manuf. 6(4), 042005 (2024). https://doi.org/10.1088/2631-7990/ad492e
T. Zhang, N. Liu, J. Xu, Z. Liu, Y. Zhou et al., Flexible electronics for cardiovascular healthcare monitoring. Innovation 4(5), 100485 (2023). https://doi.org/10.1016/j.xinn.2023.100485
W.-H. Yeo, Y.-S. Kim, J. Lee, A. Ameen, L. Shi et al., Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25(20), 2773–2778 (2013). https://doi.org/10.1002/adma.201204426
H. Hu, C. Zhang, Y. Ding, F. Chen, Q. Huang et al., A review of structure engineering of strain-tolerant architectures for stretchable electronics. Small Methods 7(11), 2300671 (2023). https://doi.org/10.1002/smtd.202300671
D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim et al., Epidermal electronics. Science 333(6044), 838–843 (2011). https://doi.org/10.1126/science.1206157
Y. Zhang, S. Wang, X. Li, J.A. Fan, S. Xu et al., Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics. Adv. Funct. Mater. 24(14), 2028–2037 (2014). https://doi.org/10.1002/adfm.201302957
H.C. Ko, G. Shin, S. Wang, M.P. Stoykovich, J.W. Lee et al., Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small 5(23), 2703–2709 (2009). https://doi.org/10.1002/smll.200900934
S. Xu, Z. Yan, K.-I. Jang, W. Huang, H. Fu et al., Materials science. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347(6218), 154–159 (2015). https://doi.org/10.1126/science.1260960
J. Liu, S. Jiang, W. Xiong, C. Zhu, K. Li et al., Self-healing kirigami assembly strategy for conformal electronics. Adv. Funct. Mater. 32(12), 2109214 (2022). https://doi.org/10.1002/adfm.202109214
H. Liu, H. Li, Z. Wang, X. Wei, H. Zhu et al., Robust and multifunctional kirigami electronics with a tough and permeable aramid nanofiber framework. Adv. Mater. 34(50), 2207350 (2022). https://doi.org/10.1002/adma.202207350
Z. Jiang, N. Chen, Z. Yi, J. Zhong, F. Zhang et al., A 1.3-micrometre-thick elastic conductor for seamless on-skin and implantable sensors. Nat. Electron. 5(11), 784–793 (2022). https://doi.org/10.1038/s41928-022-00868-x
Y. Wang, T. Hong, L. Wang, G. Li, N. Bai et al., Epidermal electrodes with enhanced breathability and high sensing performance. Mater. Today Phys. 12, 100191 (2020). https://doi.org/10.1016/j.mtphys.2020.100191
A. Miyamoto, S. Lee, N.F. Cooray, S. Lee, M. Mori et al., Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12(9), 907–913 (2017). https://doi.org/10.1038/nnano.2017.125
Y. Wang, S. Lee, T. Yokota, H. Wang, Z. Jiang et al., A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Sci. Adv. 6(33), eabb7043 (2020). https://doi.org/10.1126/sciadv.abb7043
L. Liu, H.Y. Li, Y.J. Fan, Y.H. Chen, S.Y. Kuang et al., Nanofiber-reinforced silver nanowires network as a robust, ultrathin, and conformable epidermal electrode for ambulatory monitoring of physiological signals. Small 15(22), 1900755 (2019). https://doi.org/10.1002/smll.201900755
M.O.G. Nayeem, S. Lee, H. Jin, N. Matsuhisa, H. Jinno et al., All-nanofiber–based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. Proc. Natl. Acad. Sci. U. S. A. 117, 7063 (2020). https://doi.org/10.1073/pnas.1920911117
S. Lee, D. Sasaki, D. Kim, M. Mori, T. Yokota et al., Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat. Nanotechnol. 14(2), 156–160 (2019). https://doi.org/10.1038/s41565-018-0331-8
S. Lee, S. Franklin, F.A. Hassani, T. Yokota, M.O.G. Nayeem et al., Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370(6519), 966–970 (2020). https://doi.org/10.1126/science.abc9735
S. Sun, X.-L. Shi, W. Lyu, M. Hong, W. Chen et al., Stable, self-adhesive, and high-performance graphene-oxide-modified flexible ionogel thermoelectric films. Adv. Funct. Mater. 34(39), 2402823 (2024). https://doi.org/10.1002/adfm.202402823
Z. Xiang, H. Wang, P. Zhao, X. Fa, J. Wan et al., Hard magnetic graphene nanocomposite for multimodal, reconfigurable soft electronics. Adv. Mater. 36(14), e2308575 (2024). https://doi.org/10.1002/adma.202308575
M. Sun, S. Wang, Y. Liang, C. Wang, Y. Zhang et al., Flexible graphene field-effect transistors and their application in flexible biomedical sensing. Nano-Micro Lett. 17(1), 34 (2024). https://doi.org/10.1007/s40820-024-01534-x
S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang et al., Graphene electronic tattoo sensors. ACS Nano 11(8), 7634–7641 (2017). https://doi.org/10.1021/acsnano.7b02182
Y. Qiao, Y. Wang, H. Tian, M. Li, J. Jian et al., Multilayer graphene epidermal electronic skin. ACS Nano 12(9), 8839–8846 (2018). https://doi.org/10.1021/acsnano.8b02162
F. Liu, P. Li, H. An, P. Peng, B. McLean et al., Achievements and challenges of graphene chemical vapor deposition growth. Adv. Funct. Mater. 32(42), 2203191 (2022). https://doi.org/10.1002/adfm.202203191
S. Wang, S. Li, H. Wang, H. Lu, M. Zhu et al., Highly adhesive epidermal sensors with superior water-interference-resistance for aquatic applications. Adv. Funct. Mater. 33(41), 2302687 (2023). https://doi.org/10.1002/adfm.202302687
Q. Wang, S. Ling, X. Liang, H. Wang, H. Lu et al., Self-healable multifunctional electronic tattoos based on silk and graphene. Adv. Funct. Mater. 29(16), 1808695 (2019). https://doi.org/10.1002/adfm.201808695
S.R. Joshi, M. Lee, H.Y. Lee, M.-E. Lee, S. Kim, Self-powered, multifunctional, and skin-compatible electronic-tattoos based on hybrid bio-nanomaterials as electrically functionalized skins. Chem. Eng. J. 496, 154160 (2024). https://doi.org/10.1016/j.cej.2024.154160
D. Kireev, K. Sel, B. Ibrahim, N. Kumar, A. Akbari et al., Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat. Nanotechnol. 17(8), 864–870 (2022). https://doi.org/10.1038/s41565-022-01145-w
H. Jang, K. Sel, E. Kim, S. Kim, X. Yang et al., Graphene e-tattoos for unobstructive ambulatory electrodermal activity sensing on the palm enabled by heterogeneous serpentine ribbons. Nat. Commun. 13(1), 6604 (2022). https://doi.org/10.1038/s41467-022-34406-2
H. Wang, M. Jian, S. Li, X. Liang, H. Lu et al., Inter-shell sliding in individual few-walled carbon nanotubes for flexible electronics. Adv. Mater. 35(48), e2306144 (2023). https://doi.org/10.1002/adma.202306144
C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31(9), 1801072 (2019). https://doi.org/10.1002/adma.201801072
N. Gogurla, S. Kim, Self-powered and imperceptible electronic tattoos based on silk protein nanofiber and carbon nanotubes for human–machine interfaces (Adv. Energy Mater. 29/2021). Adv. Energy Mater. 11(29), 2170115 (2021). https://doi.org/10.1002/aenm.202170115
N. Gogurla, Y. Kim, S. Cho, J. Kim, S. Kim, Multifunctional and ultrathin electronic tattoo for on-skin diagnostic and therapeutic applications. Adv. Mater. 33(24), 2008308 (2021). https://doi.org/10.1002/adma.202008308
G.B. Pradhan, S. Jeong, S. Sharma, S. Lim, K. Shrestha et al., A breathable and strain-insensitive multi-layered E-skin patch for digital healthcare wearables. Adv. Funct. Mater. 34(46), 2407978 (2024). https://doi.org/10.1002/adfm.202407978
C. Gu, W. Qin, X. Guo, B. Zhao, Y. Wang et al., Highly conductive, super-stretchable and stable stretchable conductor with CNT and liquid metal alternating layered structure. Chem. Eng. J. 487, 150589 (2024). https://doi.org/10.1016/j.cej.2024.150589
G.-H. Lee, H. Woo, C. Yoon, C. Yang, J.-Y. Bae et al., A personalized electronic tattoo for healthcare realized by on-the-spot assembly of an intrinsically conductive and durable liquid-metal composite. Adv. Mater. 34(32), 2204159 (2022). https://doi.org/10.1002/adma.202204159
L. Xiang, Y. Wang, F. Xia, F. Liu, D. He et al., An epidermal electronic system for physiological information acquisition, processing, and storage with an integrated flash memory array. Sci. Adv. 8(33), eabp8075 (2022). https://doi.org/10.1126/sciadv.abp8075
Y. Chen, G. Zhou, X. Yuan, C. Li, L. Liu et al., Substrate-free, ultra-conformable PEDOT: PSS e-tattoo achieved by energy regulation on skin. Biosens. Bioelectron. 206, 114118 (2022). https://doi.org/10.1016/j.bios.2022.114118
Y. Jiang, J. Ou, Z. Luo, Y. Chen, Z. Wu et al., High capacitive antimonene/CNT/PANI free-standing electrodes for flexible supercapacitor engaged with self-healing function. Small 18(25), 2201377 (2022). https://doi.org/10.1002/smll.202201377
L. You, X. Shi, J. Cheng, J. Yang, C. Xiong et al., Flexible porous gelatin/polypyrrole/reduction graphene oxide organohydrogel for wearable electronics. J. Colloid Interface Sci. 625, 197–209 (2022). https://doi.org/10.1016/j.jcis.2022.06.041
Q.-B. Zheng, Y.-C. Lin, Y.-T. Lin, Y. Chang, W.-N. Wu et al., Investigating the stretchability of doped poly(3-hexylthiophene)-block-poly(butyl acrylate) conjugated block copolymer thermoelectric thin films. Chem. Eng. J. 472, 145121 (2023). https://doi.org/10.1016/j.cej.2023.145121
X. Fan, N.E. Stott, J. Zeng, Y. Li, J. Ouyang et al., PEDOT: PSS materials for optoelectronics, thermoelectrics, and flexible and stretchable electronics. J. Mater. Chem. A 11(35), 18561–18591 (2023). https://doi.org/10.1039/D3TA03213B
P. Tan, H. Wang, F. Xiao, X. Lu, W. Shang et al., Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun. 13(1), 358 (2022). https://doi.org/10.1038/s41467-022-28027-y
G. Li, Y. Gong, S. Fang, T. You, R. Shao et al., Substrate-free ultra-thin epidermal bioelectrodes with enhanced conformality and breathability for long-term physiological monitoring. Sci. China Mater. 67(5), 1481–1490 (2024). https://doi.org/10.1007/s40843-024-2823-9
T. Cheng, F. Wang, Y.-Z. Zhang, L. Li, S.-Y. Gao et al., 3D printable conductive polymer hydrogels with ultra-high conductivity and superior stretchability for free-standing elastic all-gel supercapacitors. Chem. Eng. J. 450, 138311 (2022). https://doi.org/10.1016/j.cej.2022.138311
P. Wang, H. Zeng, J. Zhu, Q. Gao, Micro-supercapacitors based on ultra-fine PEDOT: PSS fibers prepared via wet-spinning. Chem. Eng. J. 484, 149676 (2024). https://doi.org/10.1016/j.cej.2024.149676
L. Zhang, K.S. Kumar, H. He, C.J. Cai, X. He et al., Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 11(1), 4683 (2020). https://doi.org/10.1038/s41467-020-18503-8
Y. Li, Y. Pang, L. Wang, Q. Li, B. Liu et al., Boosting the performance of PEDOT: PSS based electronics via ionic liquids. Adv. Mater. 36(13), 2310973 (2024). https://doi.org/10.1002/adma.202310973
B. Wei, Z. Wang, H. Guo, F. Xie, S. Cheng et al., Ultraflexible tattoo electrodes for epidermal and in vivo electrophysiological recording. Cell Rep. Phys. Sci. 4(4), 101335 (2023). https://doi.org/10.1016/j.xcrp.2023.101335
Y. Zhao, S. Zhang, T. Yu, Y. Zhang, G. Ye et al., Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nat. Commun. 12(1), 4880 (2021). https://doi.org/10.1038/s41467-021-25152-y
G. Lu, E. Ni, Y. Jiang, W. Wu, H. Li, Room-temperature liquid metals for flexible electronic devices. Small 20(9), 2304147 (2024). https://doi.org/10.1002/smll.202304147
P. Wu, Z. Wang, X. Yao, J. Fu, Y. He, Recyclable conductive nanoclay for direct in situ printing flexible electronics. Mater. Horiz. 8(7), 2006–2017 (2021). https://doi.org/10.1039/D0MH02065F
Y. Zhang, Z. Wang, S. Wang, Z. Yu, Z. Xu et al., Dynamic-wetting liquid metal thin layer induced via surface oxygen-containing functional groups. ACS Nano 19(4), 4913–4923 (2025). https://doi.org/10.1021/acsnano.4c16623
J. Cheng, J. Shang, S. Yang, J. Dou, X. Shi et al., Wet-adhesive elastomer for liquid metal-based conformal epidermal electronics. Adv. Funct. Mater. 32(25), 2200444 (2022). https://doi.org/10.1002/adfm.202200444
G.-H. Lee, Y.R. Lee, H. Kim, D.A. Kwon, H. Kim et al., Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-p for soft electronics. Nat. Commun. 13, 2643 (2022). https://doi.org/10.1038/s41467-022-30427-z
K. Zheng, F. Gu, H. Wei, L. Zhang, X.-A. Chen et al., Flexible, permeable, and recyclable liquid-metal-based transient circuit enables contact/noncontact sensing for wearable human-machine interaction. Small Methods 7(4), e2201534 (2023). https://doi.org/10.1002/smtd.202201534
K.Y. Chung, B. Xu, D. Tan, Q. Yang, Z. Li et al., Naturally crosslinked biocompatible carbonaceous liquid metal aqueous ink printing wearable electronics for multi-sensing and energy harvesting. Nano-Micro Lett. 16(1), 149 (2024). https://doi.org/10.1007/s40820-024-01362-z
L. Ding, C. Hang, S. Yang, J. Qi, R. Dong et al., In situ deposition of skin-adhesive liquid metal ps with robust wear resistance for epidermal electronics. Nano Lett. 22(11), 4482–4490 (2022). https://doi.org/10.1021/acs.nanolett.2c01270
S. Lee, S.A. Jaseem, N. Atar, M. Wang, J.Y. Kim et al., Connecting the dots: sintering of liquid metal ps for soft and stretchable conductors. Chem. Rev. 125(6), 3551–3585 (2025). https://doi.org/10.1021/acs.chemrev.4c00850
D.H. Lee, T. Lim, J. Pyeon, H. Park, S.-W. Lee et al., Self-mixed biphasic liquid metal composite with ultra-high stretchability and strain-insensitivity for neuromorphic circuits. Adv. Mater. 36(16), 2310956 (2024). https://doi.org/10.1002/adma.202310956
H. Seo, G.-H. Lee, J. Park, D.-Y. Kim, Y. Son et al., Self-packaged stretchable printed circuits with ligand-bound liquid metal ps in elastomer. Nat. Commun. 16, 4944 (2025). https://doi.org/10.1038/s41467-025-60118-4
S. Lee, G.-H. Lee, I. Kang, W. Jeon, S. Kim et al., Phase-change metal ink with pH-controlled chemical sintering for versatile and scalable fabrication of variable stiffness electronics. Sci. Adv. 11(22), eadv4921 (2025). https://doi.org/10.1126/sciadv.adv4921
W. Lin, L. Ai, Y. Wang, X. Yang, J. Liao et al., Imperceptible liquid metal based tattoo for human-machine interface on hairy skin. Chem. Eng. J. 490, 151595 (2024). https://doi.org/10.1016/j.cej.2024.151595
S. Zheng, X. Wang, W. Li, Z. Liu, Q. Li et al., Pressure-stamped stretchable electronics using a nanofibre membrane containing semi-embedded liquid metal ps. Nat. Electron. 7(7), 576–585 (2024). https://doi.org/10.1038/s41928-024-01194-0
Q. Zhuang, K. Yao, X. Song, Q. Zhang, C. Zhang et al., An ICU-grade breathable cardiac electronic skin for health, diagnostics, and intraoperative and postoperative monitoring. Sci. Adv. 11(12), eadu3146 (2025). https://doi.org/10.1126/sciadv.adu3146
Y. Cao, C. Liu, W. Ye, T. Zhao, F. Fu, Functional hydrogel interfaces for cartilage and bone regeneration. Adv. Healthc. Mater. 14(6), 2403079 (2025). https://doi.org/10.1002/adhm.202403079
M.M. Hasani-Sadrabadi, P. Sarrion, S. Pouraghaei, Y. Chau, S. Ansari et al., An engineered cell-laden adhesive hydrogel promotes craniofacial bone tissue regeneration in rats. Sci. Transl. Med. 12(534), eaay6853 (2020). https://doi.org/10.1126/scitranslmed.aay6853
P.Y.M. Yew, P.L. Chee, Q. Lin, C. Owh, J. Li et al., Hydrogel for light delivery in biomedical applications. Bioact. Mater. 37, 407–423 (2024). https://doi.org/10.1016/j.bioactmat.2024.03.031
H. Baniasadi, R. Abidnejad, M. Fazeli, J. Lipponen, J. Niskanen et al., Innovations in hydrogel-based manufacturing: a comprehensive review of direct ink writing technique for biomedical applications. Adv. Colloid Interface Sci. 324, 103095 (2024). https://doi.org/10.1016/j.cis.2024.103095
L. Hu, P.L. Chee, S. Sugiarto, Y. Yu, C. Shi et al., Hydrogel-based flexible electronics. Adv. Mater. 35(14), 2205326 (2023). https://doi.org/10.1002/adma.202205326
S. Wang, Z. Wang, L. Zhang, Z. Song, H. Liu et al., Sweat-adaptive adhesive hydrogel electronics enabled by dynamic hydrogen bond networks. Chem. Eng. J. 492, 152290 (2024). https://doi.org/10.1016/j.cej.2024.152290
J. Wang, Y. Bi, J. Liang, Z. Lu, K. Liu et al., Atmospheric moisture-digesting zwitterionic skin for non-drying and self-adhesive multifunctional electronics. Nano Energy 124, 109500 (2024). https://doi.org/10.1016/j.nanoen.2024.109500
L. Lan, J. Ping, H. Li, C. Wang, G. Li et al., Skin-inspired all-natural biogel for bioadhesive interface. Adv. Mater. 36(25), e2401151 (2024). https://doi.org/10.1002/adma.202401151
S. Cheng, Z. Lou, L. Zhang, H. Guo, Z. Wang et al., Ultrathin hydrogel films toward breathable skin-integrated electronics. Adv. Mater. 35(1), e2206793 (2023). https://doi.org/10.1002/adma.202206793
Q. Gao, F. Sun, Y. Li, L. Li, M. Liu et al., Biological tissue-inspired ultrasoft, ultrathin, and mechanically enhanced microfiber composite hydrogel for flexible bioelectronics. Nano-Micro Lett. 15(1), 139 (2023). https://doi.org/10.1007/s40820-023-01096-4
B. Bao, Q. Zeng, K. Li, J. Wen, Y. Zhang et al., Rapid fabrication of physically robust hydrogels. Nat. Mater. 22(10), 1253–1260 (2023). https://doi.org/10.1038/s41563-023-01648-4
S.J.K. O’Neill, Z. Huang, X. Chen, R.L. Sala, J.A. McCune et al., Highly stretchable dynamic hydrogels for soft multilayer electronics. Sci. Adv. 10(29), eadn5142 (2024). https://doi.org/10.1126/sciadv.adn5142
J. Wang, B. Wu, P. Wei, S. Sun, P. Wu, Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh. Nat. Commun. 13(1), 4411 (2022). https://doi.org/10.1038/s41467-022-32140-3
P. Liu, Y. Zhang, Y. Guan, Y. Zhang, Peptide-crosslinked, highly entangled hydrogels with excellent mechanical properties but ultra-low solid content. Adv. Mater. 35(13), e2210021 (2023). https://doi.org/10.1002/adma.202210021
M. Hua, S. Wu, Y. Ma, Y. Zhao, Z. Chen et al., Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 590(7847), 594–599 (2021). https://doi.org/10.1038/s41586-021-03212-z
Y. Shin, H.S. Lee, J.-U. Kim, Y.-H. An, Y.-S. Kim et al., Functional-hydrogel-based electronic-skin patch for accelerated healing and monitoring of skin wounds. Biomaterials 314, 122802 (2025). https://doi.org/10.1016/j.biomaterials.2024.122802
S. Zhuo, A. Tessier, M. Arefi, A. Zhang, C. Williams et al., Reusable free-standing hydrogel electronic tattoo sensors with superior performance. NPJ Flex. Electron. 8, 49 (2024). https://doi.org/10.1038/s41528-024-00335-x
S. Wang, M. Li, J. Wu, D.-H. Kim, N. Lu et al., Mechanics of epidermal electronics. J. Appl. Mech. 79(3), 031022 (2012). https://doi.org/10.1115/1.4005963
X. Hu, M. Wu, L. Che, J. Huang, H. Li et al., Nanoengineering ultrathin flexible pressure sensor with superior sensitivity and perfect conformability. Small 19(33), 2208015 (2023). https://doi.org/10.1002/smll.202208015
R.A. Nawrocki, H. Jin, S. Lee, T. Yokota, M. Sekino et al., Self-adhesive and ultra-conformable, sub-300 nm dry thin-film electrodes for surface monitoring of biopotentials. Adv. Funct. Mater. 28(36), 1803279 (2018). https://doi.org/10.1002/adfm.201803279
Y. Wang, S. Lee, H. Wang, Z. Jiang, Y. Jimbo et al., Robust, self-adhesive, reinforced polymeric nanofilms enabling gas-permeable dry electrodes for long-term application. Proc. Natl. Acad. Sci. U. S. A. 118, e2111904118 (2021). https://doi.org/10.1073/pnas.2111904118
M. Liao, P. Wan, J. Wen, M. Gong, X. Wu et al., Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework. Adv. Funct. Mater. 27(48), 1703852 (2017). https://doi.org/10.1002/adfm.201703852
Y. Zheng, M. Wu, M. Duan, Q. Jin, S. Chen et al., Skin temperature-triggered switchable adhesive coatings for wearing comfortable epidermal electronics. Chem. Eng. J. 488, 150459 (2024). https://doi.org/10.1016/j.cej.2024.150459
Z. Wang, D. Wang, D. Liu, X. Han, X. Liu et al., A universal interfacial strategy enabling ultra-robust gel hybrids for extreme epidermal bio-monitoring. Adv. Funct. Mater. 33(29), 2301117 (2023). https://doi.org/10.1002/adfm.202301117
X. Yuan, W. Kong, P. Xia, Z. Wang, Q. Gao et al., Implantable wet-adhesive flexible electronics with ultrathin gelatin film. Adv. Funct. Mater. 34(42), 2404824 (2024). https://doi.org/10.1002/adfm.202404824
L. Pan, P. Cai, L. Mei, Y. Cheng, Y. Zeng et al., A compliant ionic adhesive electrode with ultralow bioelectronic impedance. Adv. Mater. 32(38), e2003723 (2020). https://doi.org/10.1002/adma.202003723
X. Chen, H. Yuk, J. Wu, C.S. Nabzdyk, X. Zhao, Instant tough bioadhesive with triggerable benign detachment. Proc. Natl. Acad. Sci. U. S. A. 117, 15497 (2020). https://doi.org/10.1073/pnas.2006389117
G.W. Hwang, S.H. Jeon, J.H. Song, D.W. Kim, J. Lee et al., A spatially selective electroactive-actuating adhesive electronics for multi-object manipulation and adaptive haptic interaction. Adv. Funct. Mater. 34(6), 2308747 (2024). https://doi.org/10.1002/adfm.202308747
F. Stauffer, M. Thielen, C. Sauter, S. Chardonnens, S. Bachmann et al., Skin conformal polymer electrodes for clinical ECG and EEG recordings. Adv. Healthc. Mater. 7(7), 1700994 (2018). https://doi.org/10.1002/adhm.201700994
Y.-C. Chen, H. Yang, Octopus-inspired assembly of nanosucker arrays for dry/wet adhesion. ACS Nano 11(6), 5332–5338 (2017). https://doi.org/10.1021/acsnano.7b00809
D.W. Kim, S. Baik, H. Min, S. Chun, H.J. Lee et al., Highly permeable skin patch with conductive hierarchical architectures inspired by amphibians and octopi for omnidirectionally enhanced wet adhesion. Adv. Funct. Mater. 29(13), 1807614 (2019). https://doi.org/10.1002/adfm.201807614
S. Baik, H.J. Lee, D.W. Kim, J.W. Kim, Y. Lee et al., Bioinspired adhesive architectures: from skin patch to integrated bioelectronics. Adv. Mater. 31(34), 1803309 (2019). https://doi.org/10.1002/adma.201803309
H. Kim, J. Lee, U. Heo, D.K. Jayashankar, K.-C. Agno et al., Skin preparation-free, stretchable microneedle adhesive patches for reliable electrophysiological sensing and exoskeleton robot control. Sci. Adv. 10(3), eadk5260 (2024). https://doi.org/10.1126/sciadv.adk5260
C.J. Smith, G. Havenith, Body mapping of sweating patterns in male athletes in mild exercise-induced hyperthermia. Eur. J. Appl. Physiol. 111(7), 1391–1404 (2011). https://doi.org/10.1007/s00421-010-1744-8
Y. Fang, Y. Li, Y. Li, M. Ding, J. Xie et al., Solution-processed submicron free-standing, conformal, transparent, breathable epidermal electrodes. ACS Appl. Mater. Interfaces 12(21), 23689–23696 (2020). https://doi.org/10.1021/acsami.0c04134
X. Yang, L. Li, S. Wang, Q. Lu, Y. Bai et al., Ultrathin, stretchable, and breathable epidermal electronics based on a facile bubble blowing method. Adv. Electron. Mater. 6(11), 2000306 (2020). https://doi.org/10.1002/aelm.202000306
Y. Zhang, T. Zhang, Z. Huang, J. Yang, A new class of electronic devices based on flexible porous substrates. Adv. Sci. 9(7), 2105084 (2022). https://doi.org/10.1002/advs.202105084
X. Wang, Y. Tao, C. Zhao, M. Sang, J. Wu et al., Bionic-leaf vein inspired breathable anti-impact wearable electronics with health monitoring, electromagnetic interference shielding and thermal management. J. Mater. Sci. Technol. 188, 216–227 (2024). https://doi.org/10.1016/j.jmst.2023.11.038
B. Sun, R.N. McCay, S. Goswami, Y. Xu, C. Zhang et al., Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater. 30(50), 1804327 (2018). https://doi.org/10.1002/adma.201804327
W. Zhou, S. Yao, H. Wang, Q. Du, Y. Ma et al., Gas-permeable, ultrathin, stretchable epidermal electronics with porous electrodes. ACS Nano 14(5), 5798–5805 (2020). https://doi.org/10.1021/acsnano.0c00906
Q. Zhuang, K. Yao, C. Zhang, X. Song, J. Zhou et al., Permeable, three-dimensional integrated electronic skins with stretchable hybrid liquid metal solders. Nat. Electron. 7(7), 598–609 (2024). https://doi.org/10.1038/s41928-024-01189-x
H. Yoon, J. Choi, J. Kim, J. Kim, J. Min et al., Adaptive epidermal bioelectronics by highly breathable and stretchable metal nanowire bioelectrodes on electrospun nanofiber membrane. Adv. Funct. Mater. 34(22), 2313504 (2024). https://doi.org/10.1002/adfm.202313504
Q. Zhuang, K. Yao, M. Wu, Z. Lei, F. Chen et al., Wafer-patterned, permeable, and stretchable liquid metal microelectrodes for implantable bioelectronics with chronic biocompatibility. Sci. Adv. 9(22), eadg8602 (2023). https://doi.org/10.1126/sciadv.adg8602
K. Yao, Q. Zhuang, Q. Zhang, J. Zhou, C.K. Yiu et al., A fully integrated breathable haptic textile. Sci. Adv. 10(42), eadq9575 (2024). https://doi.org/10.1126/sciadv.adq9575
T. Lan, H. Tian, X. Chen, X. Li, C. Wang et al., Treefrog-inspired flexible electrode with high permeability, stable adhesion, and robust durability. Adv. Mater. 36(31), 2404761 (2024). https://doi.org/10.1002/adma.202404761
B. Zhang, J. Li, J. Zhou, L. Chow, G. Zhao et al., A three-dimensional liquid diode for soft, integrated permeable electronics. Nature 628(8006), 84–92 (2024). https://doi.org/10.1038/s41586-024-07161-1
C. Zhang, Q. Bao, H. Zhu, Q. Zhang, Highly transparent and long-term stable dielectric elastomer composites enabled by poly(ionic liquid) inclusion. Adv. Funct. Mater. 34(37), 2401901 (2024). https://doi.org/10.1002/adfm.202401901
D. Li, T. Cui, J. Jian, J. Yan, J. Xu et al., Lantern-inspired on-skin helical interconnects for epidermal electronic sensors. Adv. Funct. Mater. 33(18), 2213335 (2023). https://doi.org/10.1002/adfm.202213335
J. Lv, G. Thangavel, Y. Li, J. Xiong, D. Gao et al., Printable elastomeric electrodes with sweat-enhanced conductivity for wearables. Sci. Adv. 7(29), eabg8433 (2021). https://doi.org/10.1126/sciadv.abg8433
K. He, Z. Liu, C. Wan, Y. Jiang, T. Wang et al., An on-skin electrode with anti-epidermal-surface-lipid function based on a zwitterionic polymer brush. Adv. Mater. 32(24), 2001130 (2020). https://doi.org/10.1002/adma.202001130
M. Fu, Z. Sun, X. Liu, Z. Huang, G. Luan et al., Highly stretchable, resilient, adhesive, and self-healing ionic hydrogels for thermoelectric application. Adv. Funct. Mater. 33(43), 2306086 (2023). https://doi.org/10.1002/adfm.202306086
Y. Feng, C. Wu, M. Chen, H. Sun, A.L.R. Vellaisamy, W.A. Daoud, X. Yu, G. Zhang, W.J. Li, Amoeba-inspired self-healing electronic slime for adaptable, durable epidermal wearable electronics. Adv. Funct. Mater. 34(37), 2402393 (2024). https://doi.org/10.1002/adfm.202402393
Q. Xie, L. Han, J. Liu, W. Zhang, L. Zhao et al., Kirigami-inspired stretchable piezoelectret sensor for analysis and assessment of Parkinson’s tremor. Adv. Healthc. Mater. 14(1), 2402010 (2025). https://doi.org/10.1002/adhm.202402010
S. Chen, J. Qi, S. Fan, Z. Qiao, J.C. Yeo et al., Flexible wearable sensors for cardiovascular health monitoring. Adv. Healthc. Mater. 10(17), 2100116 (2021). https://doi.org/10.1002/adhm.202100116
Y. Bai, L. Yin, C. Hou, Y. Zhou, F. Zhang et al., Response regulation for epidermal fabric strain sensors via mechanical strategy. Adv. Funct. Mater. 33(31), 2214119 (2023). https://doi.org/10.1002/adfm.202214119
K.-M. Wu, K. Kuo, Y.-T. Deng, L. Yang, Y.-R. Zhang et al., Association of grip strength and walking pace with the risk of incident Parkinson’s disease: a prospective cohort study of 422, 531 participants. J. Neurol. 271(5), 2529–2538 (2024). https://doi.org/10.1007/s00415-024-12194-7
L. Tang, J. Shang, X. Jiang, Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci. Adv. 7(3), eabe3778 (2021). https://doi.org/10.1126/sciadv.abe3778
W. Li, K. Zou, J. Guo, C. Zhang, J. Feng et al., Integrated fibrous iontronic pressure sensors with high sensitivity and reliability for human plantar pressure and gait analysis. ACS Nano 18(22), 14672–14684 (2024). https://doi.org/10.1021/acsnano.4c02919
S. Del Din, M. Elshehabi, B. Galna, M.A. Hobert, E. Warmerdam et al., Gait analysis with wearables predicts conversion to Parkinson disease. Ann. Neurol. 86(3), 357–367 (2019). https://doi.org/10.1002/ana.25548
B. Ghoraani, L.N. Boettcher, M.D. Hssayeni, A. Rosenfeld, M.I. Tolea et al., Detection of mild cognitive impairment and Alzheimer’s disease using dual-task gait assessments and machine learning. Biomed. Signal Process. Control 64, 102249 (2021). https://doi.org/10.1016/j.bspc.2020.102249
X. Ren, S. Wang, D. Xiong, G. Tian, B. Lan et al., Heterogeneously assembled bionic piezoresistive sensor for spinal behavior monitoring. Chem. Eng. J. 485, 149817 (2024). https://doi.org/10.1016/j.cej.2024.149817
B.G. Diebo, N.V. Shah, O. Boachie-Adjei, F. Zhu, D.A. Rothenfluh et al., Adult spinal deformity. Lancet 394(10193), 160–172 (2019). https://doi.org/10.1016/S0140-6736(19)31125-0
R. Yu, C. Wang, X. Du, X. Bai, Y. Tong et al., In-situ forming ultra-mechanically sensitive materials for high-sensitivity stretchable fiber strain sensors. Natl. Sci. Rev. 11(6), nwae158 (2024). https://doi.org/10.1093/nsr/nwae158
S. Li, H. Wang, W. Ma, L. Qiu, K. Xia et al., Monitoring blood pressure and cardiac function without positioning via a deep learning-assisted strain sensor array. Sci. Adv. 9(32), eadh0615 (2023). https://doi.org/10.1126/sciadv.adh0615
Q. Yang, W. Jin, Q. Zhang, Y. Wei, Z. Guo et al., Mixed-modality speech recognition and interaction using a wearable artificial throat. Nat. Mach. Intell. 5(2), 169–180 (2023). https://doi.org/10.1038/s42256-023-00616-6
L. Liu, Y. Dou, J. Wang, Y. Zhao, W. Kong et al., Recent advances in flexible temperature sensors: materials, mechanism, fabrication, and applications. Adv. Sci. 11(36), 2405003 (2024). https://doi.org/10.1002/advs.202405003
J. Shin, B. Jeong, J. Kim, V.B. Nam, Y. Yoon et al., Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 32(2), e1905527 (2020). https://doi.org/10.1002/adma.201905527
K.C. Siontis, P.A. Noseworthy, Z.I. Attia, P.A. Friedman, Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat. Rev. Cardiol. 18(7), 465–478 (2021). https://doi.org/10.1038/s41569-020-00503-2
H.U. Chung, B.H. Kim, J.Y. Lee, J. Lee, Z. Xie et al., Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363(6430), eaau0780 (2019). https://doi.org/10.1126/science.aau0780
Z. Zhang, J. Yang, H. Wang, C. Wang, Y. Gu et al., A 10-micrometer-thick nanomesh-reinforced gas-permeable hydrogel skin sensor for long-term electrophysiological monitoring. Sci. Adv. 10(2), eadj5389 (2024). https://doi.org/10.1126/sciadv.adj5389
J. Rahul, L.D. Sharma, Advancements in AI for cardiac arrhythmia detection: a comprehensive overview. Comput. Sci. Rev. 56, 100719 (2025). https://doi.org/10.1016/j.cosrev.2024.100719
P. Zou, J. Wang, X. Zhao, X. Zhang, K. Hua et al., Integrated iontronic FMG-sEMG sensing for decoding muscle activation mechanisms and force assessment. Adv. Healthc. Mater. 14(16), 2500843 (2025). https://doi.org/10.1002/adhm.202500843
A. Suppa, F. Asci, N. Kamble, K.-H. Chen, G. Sciacca et al., Neurophysiology of atypical parkinsonian syndromes: a study group position paper. Mov. Disord. (2025). https://doi.org/10.1002/mds.30225
K. Belaya, P.M. Rodríguez Cruz, W.W. Liu, S. Maxwell, S. McGowan et al., Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain 138(9), 2493–2504 (2015). https://doi.org/10.1093/brain/awv185
Q. Tian, H. Zhao, X. Wang, Y. Jiang, M. Zhu et al., Hairy-skin-adaptive viscoelastic dry electrodes for long-term electrophysiological monitoring. Adv. Mater. 35(30), 2211236 (2023). https://doi.org/10.1002/adma.202211236
X. Huang, C. Chen, X. Ma, T. Zhu, W. Ma et al., In situ forming dual-conductive hydrogels enable conformal, self-adhesive and antibacterial epidermal electrodes. Adv. Funct. Mater. 33(38), 2302846 (2023). https://doi.org/10.1002/adfm.202302846
D. Duan, H. Yang, G. Lan, T. Li, X. Jia et al., EMGSense: a low-effort self-supervised domain adaptation framework for EMG sensing. 2023 IEEE International Conference on Pervasive Computing and Communications (PerCom). March 13–17, 2023, Atlanta, GA, USA. IEEE, (2023), pp. 160–170.
A. Muraja-Murro, E. Mervaala, S. Westeren-Punnonen, P. Lepola, J. Töyräs et al., Forehead EEG electrode set versus full-head scalp EEG in 100 patients with altered mental state. Epilepsy Behav. 49, 245–249 (2015). https://doi.org/10.1016/j.yebeh.2015.04.041
C.-S. Huang, C.-L. Lin, L.-W. Ko, S.-Y. Liu, T.-P. Su et al., Knowledge-based identification of sleep stages based on two forehead electroencephalogram channels. Front. Neurosci. 8, 263 (2014). https://doi.org/10.3389/fnins.2014.00263
K. Zheng, C. Zheng, L. Zhu, B. Yang, X. Jin et al., Machine learning enabled reusable adhesion, entangled network-based hydrogel for long-term, high-fidelity EEG recording and attention assessment. Nano-Micro Lett. 17(1), 281 (2025). https://doi.org/10.1007/s40820-025-01780-7
Y. Li, Y. Gu, J. Teng, S. Zheng, Y. Pang et al., Advancing EEG-based brain-computer interface technology via PEDOT: PSS electrodes. Matter 7(9), 2859–2895 (2024). https://doi.org/10.1016/j.matt.2024.05.023
L. Tian, B. Zimmerman, A. Akhtar, K.J. Yu, M. Moore et al., Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat. Biomed. Eng. 3(3), 194–205 (2019). https://doi.org/10.1038/s41551-019-0347-x
S. Yasin, A. Othmani, I. Raza, S.A. Hussain, Machine learning based approaches for clinical and non-clinical depression recognition and depression relapse prediction using audiovisual and EEG modalities: a comprehensive review. Comput. Biol. Med. 159, 106741 (2023). https://doi.org/10.1016/j.compbiomed.2023.106741
N. Ahire, EEG-derived brainwave patterns for depression diagnosis via hybrid machine learning and deep learning frameworks. Appl. Neuropsychol. Adult (2025). https://doi.org/10.1080/23279095.2025.2457999