Tellurium-Terminated MXene Synthesis via One-Step Tellurium Etching
Corresponding Author: Patrice Simon
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 28
Abstract
With the rapid development of two-dimensional MXene materials, numerous preparation strategies have been proposed to enhance synthesis efficiency, mitigate environmental impact, and enable scalability for large-scale production. The compound etching approach, which relies on cationic oxidation of the A element of MAX phase precursors while anions typically adsorb onto MXene surfaces as functional groups, remains the main prevalent strategy. By contrast, synthesis methodologies utilizing elemental etching agents have been rarely reported. Here, we report a new elemental tellurium (Te)-based etching strategy for the preparation of MXene materials with tunable surface chemistry. By selectively removing the A-site element in MAX phases using Te, our approach avoids the use of toxic fluoride reagents and achieves tellurium-terminated surface groups that significantly enhance sodium storage performance. Experimental results show that Te-etched MXene delivers substantially higher capacities (exceeding 50% improvement over conventionally etched MXene) with superior rate capability, retaining high capacity at large current densities and demonstrating over 90% capacity retention after 1000 cycles. This innovative synthetic strategy provides new insight into controllable MXene preparation and performance optimization, while the as-obtained materials hold promises for high-performance sodium-ion batteries and other energy storage systems.
Highlights:
1 A novel and efficient Te etching method for the preparation of Te-functionalized MXene materials is presented
2 This simple etching method enables the processing of V- and Nb-based MAX phases and demonstrates potential for large-scale production.
3 V2CTex MXene has a sodium storage capacity of up to 247 mAh g−1 and maintains 216 mAh g−1 at 23 C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Yang, L. Mei, Z. Lin, Y. Fan, J. Lim et al., Intercalation in 2D materials and in situ studies. Nat. Rev. Chem. 8(6), 410–432 (2024). https://doi.org/10.1038/s41570-024-00605-2
- J. Zhou, Z. Lin, H. Ren, X. Duan, I. Shakir et al., Layered intercalation materials. Adv. Mater. 33(25), e2004557 (2021). https://doi.org/10.1002/adma.202004557
- A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science (2021). https://doi.org/10.1126/science.abf1581
- H. Ding, Y. Li, M. Li, Z. Chai, Q. Huang, Layered transition metal carbides/nitrides: from chemical etching to chemical editing. Acc. Mater. Res. 6(1), 28–39 (2025). https://doi.org/10.1021/accountsmr.4c00250
- M. Naguib, M.W. Barsoum, Y. Gogotsi, Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 33(39), e2103393 (2021). https://doi.org/10.1002/adma.202103393
- J.L. Hart, K. Hantanasirisakul, A.C. Lang, B. Anasori, D. Pinto et al., Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10(1), 522 (2019). https://doi.org/10.1038/s41467-018-08169-8
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- C. Guan, X. Yue, J. Fan, Q. Xiang, MXene quantum dots of Ti3C2: Properties, synthesis, and energy-related applications. Chin. J. Catal. 43(10), 2484–2499 (2022). https://doi.org/10.1016/S1872-2067(22)64102-0
- K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi et al., Fundamentals of MXene synthesis. Nat. Synth 1(8), 601–614 (2022). https://doi.org/10.1038/s44160-022-00104-6
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- P. Das, Z.-S. Wu, MXene for energy storage: present status and future perspectives. J. Phys. Energy 2(3), 032004 (2020). https://doi.org/10.1088/2515-7655/ab9b1d
- X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi et al., MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6(6), 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
- X. Xu, L. Yang, W. Zheng, H. Zhang, F. Wu et al., MXenes with applications in supercapacitors and secondary batteries: a comprehensive review. Mater. Rep. Energy 2(1), 100080 (2022). https://doi.org/10.1016/j.matre.2022.100080
- X. Gao, Y. Liu, M. Shen, X. Liu, Y. Zhao et al., Gas-phase conversion promising controlled construction of functional ZnF2/V2CTx for stabilizing Zn metal anodes toward aqueous zinc-ion batteries. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202503212
- Y. Liu, X. Gao, M. Shen, Y. Zhao, X. Zhang et al., In-situ construction of functional multi-dimensional MXene-based composites directly from MAX phases through gas-solid reactions. Angew. Chem. Int. Ed. 63(52), e202412898 (2024). https://doi.org/10.1002/anie.202412898
- J. Zhang, R. Jia, K.B. Tan, J. Li, S. Xu et al., A review of MAX series materials: from diversity, synthesis, prediction, properties oriented to functions. Nano-Micro Lett. 17(1), 173 (2025). https://doi.org/10.1007/s40820-025-01673-9
- X. Zuo, Y. Qiu, M. Zhen, D. Liu, Y. Zhang, Review on MXenes-based electrocatalysts for high-energy-density lithium-sulfur batteries. Nano-Micro Lett. 17(1), 209 (2025). https://doi.org/10.1007/s40820-025-01726-z
- Z. Kang, M.A. Khan, Y. Gong, R. Javed, Y. Xu et al., Recent progress of MXenes and MXene-based nanomaterials for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 9(10), 6089–6108 (2021). https://doi.org/10.1039/D0TA11735H
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
- D.H. Ho, Y.Y. Choi, S.B. Jo, J.-M. Myoung, J.H. Cho, Sensing with MXenes: progress and prospects. Adv. Mater. 33(47), 2005846 (2021). https://doi.org/10.1002/adma.202005846
- A. Maleki, M. Ghomi, N. Nikfarjam, M. Akbari, E. Sharifi et al., Biomedical applications of MXene-integrated composites: regenerative medicine, infection therapy, cancer treatment, and biosensing. Adv. Funct. Mater. 32(34), 2203430 (2022). https://doi.org/10.1002/adfm.202203430
- B.C. Wyatt, A. Rosenkranz, B. Anasori, 2D MXenes: tunable mechanical and tribological properties. Adv. Mater. 33(17), 2007973 (2021). https://doi.org/10.1002/adma.202007973
- M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
- C.E. Shuck, K. Ventura-Martinez, A. Goad, S. Uzun, M. Shekhirev et al., Safe synthesis of MAX and MXene: guidelines to reduce risk during synthesis. ACS Chem. Health Saf. 28(5), 326–338 (2021). https://doi.org/10.1021/acs.chas.1c00051
- Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19(8), 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
- M. Li, J. Lu, K. Luo, Y. Li, K. Chang et al., Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141(11), 4730–4737 (2019). https://doi.org/10.1021/jacs.9b00574
- G. Ma, H. Shao, J. Xu, Y. Liu, Q. Huang et al., Li-ion storage properties of two-dimensional titanium-carbide synthesized via fast one-pot method in air atmosphere. Nat. Commun. 12(1), 5085 (2021). https://doi.org/10.1038/s41467-021-25306-y
- J. Chen, Q. Jin, Y. Li, H. Shao, P. Liu et al., Molten salt-shielded synthesis (MS3) of MXenes in air. Energy Environ. Mater. 6(2), e12328 (2023). https://doi.org/10.1002/eem2.12328
- J. Zhu, S. Zhu, Z. Cui, Z. Li, S. Wu et al., Solvent-free one-step green synthesis of MXenes by “gas-phase selective etching.” Energy Storage Mater. 70, 103503 (2024). https://doi.org/10.1016/j.ensm.2024.103503
- J. Mei, G.A. Ayoko, C. Hu, Z. Sun, Thermal reduction of sulfur-containing MAX phase for MXene production. Chem. Eng. J. 395, 125111 (2020). https://doi.org/10.1016/j.cej.2020.125111
- J. Mei, G.A. Ayoko, C. Hu, J.M. Bell, Z. Sun, Two-dimensional fluorine-free mesoporous Mo2C MXene via UV-induced selective etching of Mo2Ga2C for energy storage. Sustain. Mater. Technol. 25, e00156 (2020). https://doi.org/10.1016/j.susmat.2020.e00156
- S. Munir, A. Rasheed, T. Rasheed, I. Ayman, S. Ajmal et al., Exploring the influence of critical parameters for the effective synthesis of high-quality 2D MXene. ACS Omega 5(41), 26845–26854 (2020). https://doi.org/10.1021/acsomega.0c03970
- P. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369(6506), 979–983 (2020). https://doi.org/10.1126/science.aba8311
- H. Ding, Y. Li, M. Li, K. Chen, K. Liang et al., Chemical Scissor-mediated structural editing of layered transition metal carbides. Science 379(6637), 1130–1135 (2023). https://doi.org/10.1126/science.add5901
- L. Dai, J. Zhao, Q. Li, M. Chen, H. Li et al., Understanding the tunable sodium storage performance in pillared MXenes: a first-principles study. Phys. Chem. Chem. Phys. 24(44), 27184–27194 (2022). https://doi.org/10.1039/D2CP02961H
- S. Dong, D. Yu, J. Yang, L. Jiang, J. Wang et al., Tellurium: a high-volumetric-capacity potassium-ion battery electrode material. Adv. Mater. 32(23), e1908027 (2020). https://doi.org/10.1002/adma.201908027
- H. Fan, P. Mao, H. Sun, Y. Wang, S.S. Mofarah et al., Recent advances of metal telluride anodes for high-performance lithium/sodium-ion batteries. Mater. Horiz. 9(2), 524–546 (2022). https://doi.org/10.1039/d1mh01587g
References
R. Yang, L. Mei, Z. Lin, Y. Fan, J. Lim et al., Intercalation in 2D materials and in situ studies. Nat. Rev. Chem. 8(6), 410–432 (2024). https://doi.org/10.1038/s41570-024-00605-2
J. Zhou, Z. Lin, H. Ren, X. Duan, I. Shakir et al., Layered intercalation materials. Adv. Mater. 33(25), e2004557 (2021). https://doi.org/10.1002/adma.202004557
A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science (2021). https://doi.org/10.1126/science.abf1581
H. Ding, Y. Li, M. Li, Z. Chai, Q. Huang, Layered transition metal carbides/nitrides: from chemical etching to chemical editing. Acc. Mater. Res. 6(1), 28–39 (2025). https://doi.org/10.1021/accountsmr.4c00250
M. Naguib, M.W. Barsoum, Y. Gogotsi, Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 33(39), e2103393 (2021). https://doi.org/10.1002/adma.202103393
J.L. Hart, K. Hantanasirisakul, A.C. Lang, B. Anasori, D. Pinto et al., Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10(1), 522 (2019). https://doi.org/10.1038/s41467-018-08169-8
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
C. Guan, X. Yue, J. Fan, Q. Xiang, MXene quantum dots of Ti3C2: Properties, synthesis, and energy-related applications. Chin. J. Catal. 43(10), 2484–2499 (2022). https://doi.org/10.1016/S1872-2067(22)64102-0
K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi et al., Fundamentals of MXene synthesis. Nat. Synth 1(8), 601–614 (2022). https://doi.org/10.1038/s44160-022-00104-6
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
P. Das, Z.-S. Wu, MXene for energy storage: present status and future perspectives. J. Phys. Energy 2(3), 032004 (2020). https://doi.org/10.1088/2515-7655/ab9b1d
X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi et al., MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6(6), 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
X. Xu, L. Yang, W. Zheng, H. Zhang, F. Wu et al., MXenes with applications in supercapacitors and secondary batteries: a comprehensive review. Mater. Rep. Energy 2(1), 100080 (2022). https://doi.org/10.1016/j.matre.2022.100080
X. Gao, Y. Liu, M. Shen, X. Liu, Y. Zhao et al., Gas-phase conversion promising controlled construction of functional ZnF2/V2CTx for stabilizing Zn metal anodes toward aqueous zinc-ion batteries. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202503212
Y. Liu, X. Gao, M. Shen, Y. Zhao, X. Zhang et al., In-situ construction of functional multi-dimensional MXene-based composites directly from MAX phases through gas-solid reactions. Angew. Chem. Int. Ed. 63(52), e202412898 (2024). https://doi.org/10.1002/anie.202412898
J. Zhang, R. Jia, K.B. Tan, J. Li, S. Xu et al., A review of MAX series materials: from diversity, synthesis, prediction, properties oriented to functions. Nano-Micro Lett. 17(1), 173 (2025). https://doi.org/10.1007/s40820-025-01673-9
X. Zuo, Y. Qiu, M. Zhen, D. Liu, Y. Zhang, Review on MXenes-based electrocatalysts for high-energy-density lithium-sulfur batteries. Nano-Micro Lett. 17(1), 209 (2025). https://doi.org/10.1007/s40820-025-01726-z
Z. Kang, M.A. Khan, Y. Gong, R. Javed, Y. Xu et al., Recent progress of MXenes and MXene-based nanomaterials for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 9(10), 6089–6108 (2021). https://doi.org/10.1039/D0TA11735H
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
D.H. Ho, Y.Y. Choi, S.B. Jo, J.-M. Myoung, J.H. Cho, Sensing with MXenes: progress and prospects. Adv. Mater. 33(47), 2005846 (2021). https://doi.org/10.1002/adma.202005846
A. Maleki, M. Ghomi, N. Nikfarjam, M. Akbari, E. Sharifi et al., Biomedical applications of MXene-integrated composites: regenerative medicine, infection therapy, cancer treatment, and biosensing. Adv. Funct. Mater. 32(34), 2203430 (2022). https://doi.org/10.1002/adfm.202203430
B.C. Wyatt, A. Rosenkranz, B. Anasori, 2D MXenes: tunable mechanical and tribological properties. Adv. Mater. 33(17), 2007973 (2021). https://doi.org/10.1002/adma.202007973
M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
C.E. Shuck, K. Ventura-Martinez, A. Goad, S. Uzun, M. Shekhirev et al., Safe synthesis of MAX and MXene: guidelines to reduce risk during synthesis. ACS Chem. Health Saf. 28(5), 326–338 (2021). https://doi.org/10.1021/acs.chas.1c00051
Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19(8), 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
M. Li, J. Lu, K. Luo, Y. Li, K. Chang et al., Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141(11), 4730–4737 (2019). https://doi.org/10.1021/jacs.9b00574
G. Ma, H. Shao, J. Xu, Y. Liu, Q. Huang et al., Li-ion storage properties of two-dimensional titanium-carbide synthesized via fast one-pot method in air atmosphere. Nat. Commun. 12(1), 5085 (2021). https://doi.org/10.1038/s41467-021-25306-y
J. Chen, Q. Jin, Y. Li, H. Shao, P. Liu et al., Molten salt-shielded synthesis (MS3) of MXenes in air. Energy Environ. Mater. 6(2), e12328 (2023). https://doi.org/10.1002/eem2.12328
J. Zhu, S. Zhu, Z. Cui, Z. Li, S. Wu et al., Solvent-free one-step green synthesis of MXenes by “gas-phase selective etching.” Energy Storage Mater. 70, 103503 (2024). https://doi.org/10.1016/j.ensm.2024.103503
J. Mei, G.A. Ayoko, C. Hu, Z. Sun, Thermal reduction of sulfur-containing MAX phase for MXene production. Chem. Eng. J. 395, 125111 (2020). https://doi.org/10.1016/j.cej.2020.125111
J. Mei, G.A. Ayoko, C. Hu, J.M. Bell, Z. Sun, Two-dimensional fluorine-free mesoporous Mo2C MXene via UV-induced selective etching of Mo2Ga2C for energy storage. Sustain. Mater. Technol. 25, e00156 (2020). https://doi.org/10.1016/j.susmat.2020.e00156
S. Munir, A. Rasheed, T. Rasheed, I. Ayman, S. Ajmal et al., Exploring the influence of critical parameters for the effective synthesis of high-quality 2D MXene. ACS Omega 5(41), 26845–26854 (2020). https://doi.org/10.1021/acsomega.0c03970
P. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369(6506), 979–983 (2020). https://doi.org/10.1126/science.aba8311
H. Ding, Y. Li, M. Li, K. Chen, K. Liang et al., Chemical Scissor-mediated structural editing of layered transition metal carbides. Science 379(6637), 1130–1135 (2023). https://doi.org/10.1126/science.add5901
L. Dai, J. Zhao, Q. Li, M. Chen, H. Li et al., Understanding the tunable sodium storage performance in pillared MXenes: a first-principles study. Phys. Chem. Chem. Phys. 24(44), 27184–27194 (2022). https://doi.org/10.1039/D2CP02961H
S. Dong, D. Yu, J. Yang, L. Jiang, J. Wang et al., Tellurium: a high-volumetric-capacity potassium-ion battery electrode material. Adv. Mater. 32(23), e1908027 (2020). https://doi.org/10.1002/adma.201908027
H. Fan, P. Mao, H. Sun, Y. Wang, S.S. Mofarah et al., Recent advances of metal telluride anodes for high-performance lithium/sodium-ion batteries. Mater. Horiz. 9(2), 524–546 (2022). https://doi.org/10.1039/d1mh01587g