A Reconfigurable Omnidirectional Triboelectric Whisker Sensor Array for Versatile Human–Machine–Environment Interaction
Corresponding Author: Juntian Qu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 76
Abstract
Developing effective, versatile, and high-precision sensing interfaces remains a crucial challenge in human–machine–environment interaction applications. Despite progress in interaction-oriented sensing skins, limitations remain in unit-level reconfiguration, multiaxial force and motion sensing, and robust operation across dynamically changing or irregular surfaces. Herein, we develop a reconfigurable omnidirectional triboelectric whisker sensor array (RO-TWSA) comprising multiple sensing units that integrate a triboelectric whisker structure (TWS) with an untethered hydro-sealing vacuum sucker (UHSVS), enabling reversibly portable deployment and omnidirectional perception across diverse surfaces. Using a simple dual-triangular electrode layout paired with MXene/silicone nanocomposite dielectric layer, the sensor unit achieves precise omnidirectional force and motion sensing with a detection threshold as low as 0.024 N and an angular resolution of 5°, while the UHSVS provides reliable and reversible multi-surface anchoring for the sensor units by involving a newly designed hydrogel combining high mechanical robustness and superior water absorption. Extensive experiments demonstrate the effectiveness of RO-TWSA across various interactive scenarios, including teleoperation, tactile diagnostics, and robotic autonomous exploration. Overall, RO-TWSA presents a versatile and high-resolution tactile interface, offering new avenues for intelligent perception and interaction in complex real-world environments.
Highlights:
1 Dual-triangular electrode layout with MXene/silicone nanocomposite achieves quite competitive omnidirectional force detection (threshold: 0.024 N) and angular resolution (5°) using only two electrodes.
2 Based on a newly designed hydrogel combining high mechanical robustness and superior water absorption, the untethered hydro-sealing vacuum sucker can achieve robust and reversible anchoring on diverse surfaces with a compact structure, maintaining a consistently high anchoring force for more than 200 cycles with a single rehydration.
3 The reconfigurable omnidirectional triboelectric whisker sensor array demonstrates exceptional performance in real-world applications, including teleoperation, adjustable robotic arm palpation, and robotic autonomous environmental exploration, validating its potential as a universal interface for dynamic human–machine–environment interactions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Zhu, Z. Sun, Z. Zhang, Q. Shi, T. He et al., Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci. Adv. 6(19), eaaz8693 (2020). https://doi.org/10.1126/sciadv.aaz8693
- Y. Wang, C. Zhao, L. Chen, Q. Wu, Z. Zhao et al., Flexible, multifunctional, ultra-light and high-efficiency liquid metal/polydimethylsiloxane sponge-based triboelectric nanogenerator for wearable power source and self-powered sensor. Nano Energy 127, 109808 (2024). https://doi.org/10.1016/j.nanoen.2024.109808
- P. Wei, Z. Zhang, S. Cheng, Y. Meng, M. Tong et al., Biodegradable origami enables closed-loop sustainable robotic systems. Sci. Adv. 11(6), eads0217 (2025). https://doi.org/10.1126/sciadv.ads0217
- K. Yao, J. Zhou, Q. Huang, M. Wu, C.K. Yiu et al., Encoding of tactile information in hand via skin-integrated wireless haptic interface. Nat. Mach. Intell. 4(10), 893–903 (2022). https://doi.org/10.1038/s42256-022-00543-y
- H. Zhao, L. Ruan, Z. Wang, M. Shu, C. Lyu et al., Flexible nanogenerators for intelligent robotics: design, manufacturing, and applications. Int. J. Extrem. Manuf. 7(2), 022012 (2025). https://doi.org/10.1088/2631-7990/ad94b8
- Y. Qiu, F. Wang, Z. Zhang, K. Shi, Y. Song et al., Quantitative softness and texture bimodal haptic sensors for robotic clinical feature identification and intelligent picking. Sci. Adv. 10(30), eadp0348 (2024). https://doi.org/10.1126/sciadv.adp0348
- Z. Zhang, Z. Xu, L. Emu, P. Wei, S. Chen et al., Active mechanical haptics with high-fidelity perceptions for immersive virtual reality. Nat. Mach. Intell. 5(6), 643–655 (2023). https://doi.org/10.1038/s42256-023-00671-z
- Q. Cheng, J. Li, Q. Zhang, Fibre computer enables more accurate recognition of human activity. Nano-Micro Lett. 17(1), 286 (2025). https://doi.org/10.1007/s40820-025-01809-x
- J. Guo, T. Zhang, X. Hao, S. Liu, Y. Zou et al., Aramid nanofiber/MXene-reinforced polyelectrolyte hydrogels for absorption-dominated electromagnetic interference shielding and wearable sensing. Nano-Micro Lett. 17(1), 271 (2025). https://doi.org/10.1007/s40820-025-01791-4
- Z. Shen, Z. Zhang, N. Zhang, J. Li, P. Zhou et al., High-stretchability, ultralow-hysteresis ConductingPolymer hydrogel strain sensors for soft machines. Adv. Mater. 34(32), e2203650 (2022). https://doi.org/10.1002/adma.202203650
- C. Zhao, Z. Wang, Y. Wang, Z. Qian, Z. Tan et al., MXene-composite-enabled ultra-long-distance detection and highly sensitive self-powered noncontact triboelectric sensors and their applications in intelligent vehicle perception. Adv. Funct. Mater. 33(52), 2306381 (2023). https://doi.org/10.1002/adfm.202306381
- J. Zhao, T. Lu, Y. Zhang, C. Zhang, C. Pan et al., Magnetically actuated adhesives with switchable adhesion. Adv. Funct. Mater. 33(52), 2305484 (2023). https://doi.org/10.1002/adfm.202305484
- J. Zhao, X. Li, Y. Tan, X. Liu, T. Lu et al., Smart adhesives via magnetic actuation. Adv. Mater. 34(8), 2107748 (2022). https://doi.org/10.1002/adma.202107748
- Q. Hu, E. Dong, G. Cheng, H. Jin, J. Yang et al., Inchworm-inspired soft climbing robot using microspine arrays, in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2020), pp. 5800–5805. https://doi.org/10.1109/IROS40897.2019.8967601
- E.W. Hawkes, D.L. Christensen, M.R. Cutkosky, Vertical dry adhesive climbing with a 100 × bodyweight payload, in 2015 IEEE International Conference on Robotics and Automation (ICRA). (IEEE, 2015), pp. 3762–3769. https://doi.org/10.1109/ICRA.2015.7139722
- G. Gu, J. Zou, R. Zhao, X. Zhao, X. Zhu, Soft wall-climbing robots. Sci. Robot. 3(25), eaat2874 (2018). https://doi.org/10.1126/scirobotics.aat2874
- B. Liao, H. Zang, M. Chen, Y. Wang, X. Lang et al., Soft rod-climbing robot inspired by winding locomotion of snake. Soft Robot. 7(4), 500–511 (2020). https://doi.org/10.1089/soro.2019.0070
- M.A. Robertson, J. Paik, New soft robots really suck: vacuum-powered systems empower diverse capabilities. Sci. Robot. 2(9), eaan6357 (2017). https://doi.org/10.1126/scirobotics.aan6357
- D. Wang, H. Hu, S. Li, H. Tian, W. Fan et al., Sensing-triggered stiffness-tunable smart adhesives. Sci. Adv. 9(11), eadf4051 (2023). https://doi.org/10.1126/sciadv.adf4051
- K. Shi, X. Li, Vacuum suction unit based on the zero pressure difference method. Phys. Fluids 32, 017104 (2020). https://doi.org/10.1063/1.5129958
- G. Du, Y. Shao, B. Luo, T. Liu, J. Zhao et al., Compliant iontronic triboelectric gels with phase-locked structure enabled by competitive hydrogen bonding. Nano-Micro Lett. 16(1), 170 (2024). https://doi.org/10.1007/s40820-024-01387-4
- Y. Wang, Z. Hu, J. Wang, X. Liu, Q. Shi et al., Deep learning-assisted triboelectric smart mats for personnel comprehensive monitoring toward maritime safety. ACS Appl. Mater. Interfaces 14(21), 24832–24839 (2022). https://doi.org/10.1021/acsami.2c05734
- Y. Luo, Z. Wang, J. Wang, X. Xiao, Q. Li et al., Triboelectric bending sensor based smart glove towards intuitive multi-dimensional human-machine interfaces. Nano Energy 89, 106330 (2021). https://doi.org/10.1016/j.nanoen.2021.106330
- Y. Li, B. Liu, P. Xu, J. Liu, X. Dai et al., A palm-like 3d tactile sensor based on liquid-metal triboelectric nanogenerator for underwater robot gripper. Nano Res. 17(11), 10008–10016 (2024). https://doi.org/10.1007/s12274-024-6903-3
- C. Xu, Y. Wang, J. Zhang, J. Wan, Z. Xiang et al., Three-dimensional micro strain gauges as flexible, modular tactile sensors for versatile integration with micro- and macroelectronics. Sci. Adv. 10(34), eadp6094 (2024). https://doi.org/10.1126/sciadv.adp6094
- Z. Yu, P.R.N. Childs, Y. Ge, T. Nanayakkara, Whisker sensor for robot environments perception: a review. IEEE Sens. J. 24(18), 28504–28521 (2024). https://doi.org/10.1109/JSEN.2024.3429373
- J. An, P. Chen, Z. Wang, A. Berbille, H. Pang et al., Biomimetic hairy whiskers for robotic skin tactility. Adv. Mater. 33(24), e2101891 (2021). https://doi.org/10.1002/adma.202101891
- J. Liu, P. Xu, J. Zheng, X. Liu, X. Wang et al., Whisker-inspired and self-powered triboelectric sensor for underwater obstacle detection and collision avoidance. Nano Energy 101, 107633 (2022). https://doi.org/10.1016/j.nanoen.2022.107633
- X. Liang, Z. Liu, K. Han, S. Liu, Y. Xie et al., Triboelectric nanogenerators using recycled disposable medical masks for water wave energy harvesting. Adv. Funct. Mater. 34(49), 2409422 (2024). https://doi.org/10.1002/adfm.202409422
- J. Wang, X. Meng, L. Fu, J. Ding, J. Li et al., Implantable and wearable triboelectric nanogenerators as a novel platform for biomedical antibacterial applications. Mater. Today 87, 378–402 (2025). https://doi.org/10.1016/j.mattod.2025.05.005
- Y. Tian, Y. An, B. Xu, MXene-based materials for advanced nanogenerators. Nano Energy 101, 107556 (2022). https://doi.org/10.1016/j.nanoen.2022.107556
- M. Salauddin, S.M. Sohel Rana, M. Sharifuzzaman, M.T. Rahman, C. Park et al., A novel MXene/Ecoflex nanocomposite-coated fabric as a highly negative and stable friction layer for high-output triboelectric nanogenerators. Adv. Energy Mater. 11(1), 2002832 (2021). https://doi.org/10.1002/aenm.202002832
- W.-T. Cao, H. Ouyang, W. Xin, S. Chao, C. Ma et al., A stretchable highoutput triboelectric nanogenerator improved by MXene liquid electrode with high electronegativity. Adv. Funct. Mater. 30(50), 2004181 (2020). https://doi.org/10.1002/adfm.202004181
- M. Salauddin, S.M. Sohel Rana, M.T. Rahman, M. Sharifuzzaman, P. Maharjan et al., Fabric-assisted MXene/silicone nanocomposite-based triboelectric nanogenerators for self-powered sensors and wearable electronics. Adv. Funct. Mater. 32(5), 2107143 (2022). https://doi.org/10.1002/adfm.202107143
- J. Fan, G. Zhang, J. Yang, A. Zhou, MXenes in triboelectric nanogenerators (TENGs): present status and the future. J. Adv. Ceram. 14(6), 9221087 (2025). https://doi.org/10.26599/jac.2025.9221087
- J. Wu, X. Wang, H. Li, F. Wang, W. Yang et al., Insights into the mechanism of metal-polymer contact electrification for triboelectric nanogenerator via first-principles investigations. Nano Energy 48, 607–616 (2018). https://doi.org/10.1016/j.nanoen.2018.04.025
- Z.L. Wang, A.C. Wang, On the origin of contact-electrification. Mater. Today 30, 34–51 (2019). https://doi.org/10.1016/j.mattod.2019.05.016
- S. Wang, P. Xu, X. Wang, J. Zheng, X. Liu et al., Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception. Nano Energy 97, 107210 (2022). https://doi.org/10.1016/j.nanoen.2022.107210
- C. Chen, X.-L. Li, S. Zhao, Y. Song, Y. Zhu et al., A biomimetic e-whisker sensor with multimodal perception and stimuli discrimination. Device 1(5), 100148 (2023). https://doi.org/10.1016/j.device.2023.100148
- H. Varghese, V. Priya K, U.N.S. Hareesh, A. Chandran, Nanofibrous PAN-PDMS films-based high-performance triboelectric artificial whisker for self-powered obstacle detection. Macromol. Rapid Commun. 45(2), 2300462 (2024). https://doi.org/10.1002/marc.202300462
- D. Zhu, J. Lu, M. Zheng, D. Wang, J. Wang et al., Self-powered bionic antenna based on triboelectric nanogenerator for micro-robotic tactile sensing. Nano Energy 114, 108644 (2023). https://doi.org/10.1016/j.nanoen.2023.108644
- X. Liu, K. Li, S. Qian, L. Niu, W. Chen et al., A high-sensitivity flexible bionic tentacle sensor for multidimensional force sensing and autonomous obstacle avoidance applications. Microsyst. Nanoeng. 10(1), 149 (2024). https://doi.org/10.1038/s41378-024-00749-7
- H. Zhang, L. Weng, G. Lin, Z. Li, S. Jiang et al., Development and application of magnetic tentacles array for sensing tiny forces. Measurement 240, 115533 (2025). https://doi.org/10.1016/j.measurement.2024.115533
- C. Jiang, H. Xu, L. Yang, J. Liu, Y. Li et al., Neuromorphic antennal sensory system. Nat. Commun. 15, 2109 (2024). https://doi.org/10.1038/s41467-024-46393-7
- J.T. Reeder, T. Kang, S. Rains, W. Voit, 3D, reconfigurable, multimodal electronic whiskers via directed air assembly. Adv. Mater. 30(11), 1706733 (2018). https://doi.org/10.1002/adma.201706733
- N.A. Ahmad Ridzuan, N. Miki, Tooth-inspired tactile sensor for detection of multidirectional force. Micromachines 10(1), 18 (2018). https://doi.org/10.3390/mi10010018
- P. Xu, X. Wang, S. Wang, T. Chen, J. Liu et al., A triboelectric-based artificial whisker for reactive obstacle avoidance and local mapping. Research 2021, 9864967 (2021). https://doi.org/10.34133/2021/9864967
- S. Kim, C. Velez, D.K. Patel, S. Bergbreiter, A magnetically transduced whisker for angular displacement and moment sensing, in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2020), pp. 665–671. https://doi.org/10.1109/IROS40897.2019.8968518
- T. Yue, W. Si, A. Keller, C. Yang, H. Bloomfield-Gadêlha et al., Bioinspired multiscale adaptive suction on complex dry surfaces enhanced by regulated water secretion. Proc. Natl. Acad. Sci. 121, e2314359121 (2024). https://doi.org/10.1073/pnas.2314359121
- T. Yue, H. Bloomfield-Gadêlha, J. Rossiter, Snail-inspired water-enhanced soft sliding suction for climbing robots. Nat. Commun. 15(1), 4038 (2024). https://doi.org/10.1038/s41467-024-48293-2
- Y. Chen, Y. Hao, L. Feng, J. Meng, Z. Yang et al., A flexible multifunctional triboelectric nanogenerator based on bio-inspired nanocellulose/tannic acid@MXene-composited hydrogel for human healthcare. Int. J. Biol. Macromol. 306, 141261 (2025). https://doi.org/10.1016/j.ijbiomac.2025.141261
- P. Xu, J. Liu, X. Liu, X. Wang, J. Zheng et al., A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception. NPJ Flex. Electron. 6, 25 (2022). https://doi.org/10.1038/s41528-022-00160-0
- K. Shi, B. Chai, H. Zou, D. Min, S. Li et al., Dielectric manipulated charge dynamics in contact electrification. Research 2022, 2022/9862980 (2022). https://doi.org/10.34133/2022/9862980
- Y. Guo, Y. Han, Y. Cao, Y. Chen, J. Xie et al., Facile fabrication of tough super macroporous hydrogel via enhanced phase separation. Adv. Funct. Mater. 35(2), 2412412 (2025). https://doi.org/10.1002/adfm.202412412
- W. Lu, X. Li, Y. Wang, F. Yao, X. Wang et al., All-regional highly efficient moisture capturing and sunlight driven steam generation. Water Res. 279, 123398 (2025). https://doi.org/10.1016/j.watres.2025.123398
- X. Li, P. Wang, Q. Lu, H. Yao, C. Yang et al., A hierarchical porous aerohydrogel for enhanced water evaporation. Water Res. 244, 120447 (2023). https://doi.org/10.1016/j.watres.2023.120447
- H. Geng, C. Lv, M. Wu, H. Ma, H. Cheng et al., Biomimetic antigravity water transport and remote harvesting powered by sunlight. Glob. Chall. 4(11), 2000043 (2020). https://doi.org/10.1002/gch2.202000043
- L.A. Goetz, B. Jalvo, R. Rosal, A.P. Mathew, Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration. J. Membr. Sci. 510, 238–248 (2016). https://doi.org/10.1016/j.memsci.2016.02.069
- K. Manabe, C. Tanaka, Y. Moriyama, M. Tenjimbayashi, C. Nakamura et al., Chitin nanofibers extracted from crab shells in broadband visible antireflection coatings with controlling layer-by-layer deposition and the application for durable antifog surfaces. ACS Appl. Mater. Interfaces 8(46), 31951–31958 (2016). https://doi.org/10.1021/acsami.6b11786
- M. Yao, J. Fang, Hydrophilic PEO-PDMS for microfluidic applications. J. Micromech. Microeng. 22(2), 025012 (2012). https://doi.org/10.1088/0960-1317/22/2/025012
- F. Chikweto, T. Okuyama, M. Tanaka, Evaluation of a robotic palpation sensor system for prostate cancer screening on silicone elastomers and prostate phantoms. J. Adv. Mech. Des. Syst. Manuf. 17(2), JAMDSM0021 (2023). https://doi.org/10.1299/jamdsm.2023jamdsm0021
- D. Wei, J. Guo, Y. Qiu, S. Liu, J. Mao et al., Monitoring the delicate operations of surgical robots via ultra-sensitive ionic electronic skin. Natl. Sci. Rev. 9(12), nwac227 (2022). https://doi.org/10.1093/nsr/nwac227
- S. Ifuku, M. Nogi, K. Abe, M. Yoshioka, M. Morimoto et al., Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Biomacromol 10(6), 1584–1588 (2009). https://doi.org/10.1021/bm900163d
- L. Liu, L. Bai, A. Tripathi, J. Yu, Z. Wang et al., High axial ratio nanochitins for ultrastrong and shape-recoverable hydrogels and cryogels via ice templating. ACS Nano 13(3), 2927–2935 (2019). https://doi.org/10.1021/acsnano.8b07235
- F. Liu, Y. Wu, M. Long, Y. Ma, M. Zheng et al., Activating adsorption sites of waste crayfish shells via chemical decalcification for efficient capturing of nanoplastics. ACS Nano 18(24), 15779–15789 (2024). https://doi.org/10.1021/acsnano.4c02511
References
M. Zhu, Z. Sun, Z. Zhang, Q. Shi, T. He et al., Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci. Adv. 6(19), eaaz8693 (2020). https://doi.org/10.1126/sciadv.aaz8693
Y. Wang, C. Zhao, L. Chen, Q. Wu, Z. Zhao et al., Flexible, multifunctional, ultra-light and high-efficiency liquid metal/polydimethylsiloxane sponge-based triboelectric nanogenerator for wearable power source and self-powered sensor. Nano Energy 127, 109808 (2024). https://doi.org/10.1016/j.nanoen.2024.109808
P. Wei, Z. Zhang, S. Cheng, Y. Meng, M. Tong et al., Biodegradable origami enables closed-loop sustainable robotic systems. Sci. Adv. 11(6), eads0217 (2025). https://doi.org/10.1126/sciadv.ads0217
K. Yao, J. Zhou, Q. Huang, M. Wu, C.K. Yiu et al., Encoding of tactile information in hand via skin-integrated wireless haptic interface. Nat. Mach. Intell. 4(10), 893–903 (2022). https://doi.org/10.1038/s42256-022-00543-y
H. Zhao, L. Ruan, Z. Wang, M. Shu, C. Lyu et al., Flexible nanogenerators for intelligent robotics: design, manufacturing, and applications. Int. J. Extrem. Manuf. 7(2), 022012 (2025). https://doi.org/10.1088/2631-7990/ad94b8
Y. Qiu, F. Wang, Z. Zhang, K. Shi, Y. Song et al., Quantitative softness and texture bimodal haptic sensors for robotic clinical feature identification and intelligent picking. Sci. Adv. 10(30), eadp0348 (2024). https://doi.org/10.1126/sciadv.adp0348
Z. Zhang, Z. Xu, L. Emu, P. Wei, S. Chen et al., Active mechanical haptics with high-fidelity perceptions for immersive virtual reality. Nat. Mach. Intell. 5(6), 643–655 (2023). https://doi.org/10.1038/s42256-023-00671-z
Q. Cheng, J. Li, Q. Zhang, Fibre computer enables more accurate recognition of human activity. Nano-Micro Lett. 17(1), 286 (2025). https://doi.org/10.1007/s40820-025-01809-x
J. Guo, T. Zhang, X. Hao, S. Liu, Y. Zou et al., Aramid nanofiber/MXene-reinforced polyelectrolyte hydrogels for absorption-dominated electromagnetic interference shielding and wearable sensing. Nano-Micro Lett. 17(1), 271 (2025). https://doi.org/10.1007/s40820-025-01791-4
Z. Shen, Z. Zhang, N. Zhang, J. Li, P. Zhou et al., High-stretchability, ultralow-hysteresis ConductingPolymer hydrogel strain sensors for soft machines. Adv. Mater. 34(32), e2203650 (2022). https://doi.org/10.1002/adma.202203650
C. Zhao, Z. Wang, Y. Wang, Z. Qian, Z. Tan et al., MXene-composite-enabled ultra-long-distance detection and highly sensitive self-powered noncontact triboelectric sensors and their applications in intelligent vehicle perception. Adv. Funct. Mater. 33(52), 2306381 (2023). https://doi.org/10.1002/adfm.202306381
J. Zhao, T. Lu, Y. Zhang, C. Zhang, C. Pan et al., Magnetically actuated adhesives with switchable adhesion. Adv. Funct. Mater. 33(52), 2305484 (2023). https://doi.org/10.1002/adfm.202305484
J. Zhao, X. Li, Y. Tan, X. Liu, T. Lu et al., Smart adhesives via magnetic actuation. Adv. Mater. 34(8), 2107748 (2022). https://doi.org/10.1002/adma.202107748
Q. Hu, E. Dong, G. Cheng, H. Jin, J. Yang et al., Inchworm-inspired soft climbing robot using microspine arrays, in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2020), pp. 5800–5805. https://doi.org/10.1109/IROS40897.2019.8967601
E.W. Hawkes, D.L. Christensen, M.R. Cutkosky, Vertical dry adhesive climbing with a 100 × bodyweight payload, in 2015 IEEE International Conference on Robotics and Automation (ICRA). (IEEE, 2015), pp. 3762–3769. https://doi.org/10.1109/ICRA.2015.7139722
G. Gu, J. Zou, R. Zhao, X. Zhao, X. Zhu, Soft wall-climbing robots. Sci. Robot. 3(25), eaat2874 (2018). https://doi.org/10.1126/scirobotics.aat2874
B. Liao, H. Zang, M. Chen, Y. Wang, X. Lang et al., Soft rod-climbing robot inspired by winding locomotion of snake. Soft Robot. 7(4), 500–511 (2020). https://doi.org/10.1089/soro.2019.0070
M.A. Robertson, J. Paik, New soft robots really suck: vacuum-powered systems empower diverse capabilities. Sci. Robot. 2(9), eaan6357 (2017). https://doi.org/10.1126/scirobotics.aan6357
D. Wang, H. Hu, S. Li, H. Tian, W. Fan et al., Sensing-triggered stiffness-tunable smart adhesives. Sci. Adv. 9(11), eadf4051 (2023). https://doi.org/10.1126/sciadv.adf4051
K. Shi, X. Li, Vacuum suction unit based on the zero pressure difference method. Phys. Fluids 32, 017104 (2020). https://doi.org/10.1063/1.5129958
G. Du, Y. Shao, B. Luo, T. Liu, J. Zhao et al., Compliant iontronic triboelectric gels with phase-locked structure enabled by competitive hydrogen bonding. Nano-Micro Lett. 16(1), 170 (2024). https://doi.org/10.1007/s40820-024-01387-4
Y. Wang, Z. Hu, J. Wang, X. Liu, Q. Shi et al., Deep learning-assisted triboelectric smart mats for personnel comprehensive monitoring toward maritime safety. ACS Appl. Mater. Interfaces 14(21), 24832–24839 (2022). https://doi.org/10.1021/acsami.2c05734
Y. Luo, Z. Wang, J. Wang, X. Xiao, Q. Li et al., Triboelectric bending sensor based smart glove towards intuitive multi-dimensional human-machine interfaces. Nano Energy 89, 106330 (2021). https://doi.org/10.1016/j.nanoen.2021.106330
Y. Li, B. Liu, P. Xu, J. Liu, X. Dai et al., A palm-like 3d tactile sensor based on liquid-metal triboelectric nanogenerator for underwater robot gripper. Nano Res. 17(11), 10008–10016 (2024). https://doi.org/10.1007/s12274-024-6903-3
C. Xu, Y. Wang, J. Zhang, J. Wan, Z. Xiang et al., Three-dimensional micro strain gauges as flexible, modular tactile sensors for versatile integration with micro- and macroelectronics. Sci. Adv. 10(34), eadp6094 (2024). https://doi.org/10.1126/sciadv.adp6094
Z. Yu, P.R.N. Childs, Y. Ge, T. Nanayakkara, Whisker sensor for robot environments perception: a review. IEEE Sens. J. 24(18), 28504–28521 (2024). https://doi.org/10.1109/JSEN.2024.3429373
J. An, P. Chen, Z. Wang, A. Berbille, H. Pang et al., Biomimetic hairy whiskers for robotic skin tactility. Adv. Mater. 33(24), e2101891 (2021). https://doi.org/10.1002/adma.202101891
J. Liu, P. Xu, J. Zheng, X. Liu, X. Wang et al., Whisker-inspired and self-powered triboelectric sensor for underwater obstacle detection and collision avoidance. Nano Energy 101, 107633 (2022). https://doi.org/10.1016/j.nanoen.2022.107633
X. Liang, Z. Liu, K. Han, S. Liu, Y. Xie et al., Triboelectric nanogenerators using recycled disposable medical masks for water wave energy harvesting. Adv. Funct. Mater. 34(49), 2409422 (2024). https://doi.org/10.1002/adfm.202409422
J. Wang, X. Meng, L. Fu, J. Ding, J. Li et al., Implantable and wearable triboelectric nanogenerators as a novel platform for biomedical antibacterial applications. Mater. Today 87, 378–402 (2025). https://doi.org/10.1016/j.mattod.2025.05.005
Y. Tian, Y. An, B. Xu, MXene-based materials for advanced nanogenerators. Nano Energy 101, 107556 (2022). https://doi.org/10.1016/j.nanoen.2022.107556
M. Salauddin, S.M. Sohel Rana, M. Sharifuzzaman, M.T. Rahman, C. Park et al., A novel MXene/Ecoflex nanocomposite-coated fabric as a highly negative and stable friction layer for high-output triboelectric nanogenerators. Adv. Energy Mater. 11(1), 2002832 (2021). https://doi.org/10.1002/aenm.202002832
W.-T. Cao, H. Ouyang, W. Xin, S. Chao, C. Ma et al., A stretchable highoutput triboelectric nanogenerator improved by MXene liquid electrode with high electronegativity. Adv. Funct. Mater. 30(50), 2004181 (2020). https://doi.org/10.1002/adfm.202004181
M. Salauddin, S.M. Sohel Rana, M.T. Rahman, M. Sharifuzzaman, P. Maharjan et al., Fabric-assisted MXene/silicone nanocomposite-based triboelectric nanogenerators for self-powered sensors and wearable electronics. Adv. Funct. Mater. 32(5), 2107143 (2022). https://doi.org/10.1002/adfm.202107143
J. Fan, G. Zhang, J. Yang, A. Zhou, MXenes in triboelectric nanogenerators (TENGs): present status and the future. J. Adv. Ceram. 14(6), 9221087 (2025). https://doi.org/10.26599/jac.2025.9221087
J. Wu, X. Wang, H. Li, F. Wang, W. Yang et al., Insights into the mechanism of metal-polymer contact electrification for triboelectric nanogenerator via first-principles investigations. Nano Energy 48, 607–616 (2018). https://doi.org/10.1016/j.nanoen.2018.04.025
Z.L. Wang, A.C. Wang, On the origin of contact-electrification. Mater. Today 30, 34–51 (2019). https://doi.org/10.1016/j.mattod.2019.05.016
S. Wang, P. Xu, X. Wang, J. Zheng, X. Liu et al., Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception. Nano Energy 97, 107210 (2022). https://doi.org/10.1016/j.nanoen.2022.107210
C. Chen, X.-L. Li, S. Zhao, Y. Song, Y. Zhu et al., A biomimetic e-whisker sensor with multimodal perception and stimuli discrimination. Device 1(5), 100148 (2023). https://doi.org/10.1016/j.device.2023.100148
H. Varghese, V. Priya K, U.N.S. Hareesh, A. Chandran, Nanofibrous PAN-PDMS films-based high-performance triboelectric artificial whisker for self-powered obstacle detection. Macromol. Rapid Commun. 45(2), 2300462 (2024). https://doi.org/10.1002/marc.202300462
D. Zhu, J. Lu, M. Zheng, D. Wang, J. Wang et al., Self-powered bionic antenna based on triboelectric nanogenerator for micro-robotic tactile sensing. Nano Energy 114, 108644 (2023). https://doi.org/10.1016/j.nanoen.2023.108644
X. Liu, K. Li, S. Qian, L. Niu, W. Chen et al., A high-sensitivity flexible bionic tentacle sensor for multidimensional force sensing and autonomous obstacle avoidance applications. Microsyst. Nanoeng. 10(1), 149 (2024). https://doi.org/10.1038/s41378-024-00749-7
H. Zhang, L. Weng, G. Lin, Z. Li, S. Jiang et al., Development and application of magnetic tentacles array for sensing tiny forces. Measurement 240, 115533 (2025). https://doi.org/10.1016/j.measurement.2024.115533
C. Jiang, H. Xu, L. Yang, J. Liu, Y. Li et al., Neuromorphic antennal sensory system. Nat. Commun. 15, 2109 (2024). https://doi.org/10.1038/s41467-024-46393-7
J.T. Reeder, T. Kang, S. Rains, W. Voit, 3D, reconfigurable, multimodal electronic whiskers via directed air assembly. Adv. Mater. 30(11), 1706733 (2018). https://doi.org/10.1002/adma.201706733
N.A. Ahmad Ridzuan, N. Miki, Tooth-inspired tactile sensor for detection of multidirectional force. Micromachines 10(1), 18 (2018). https://doi.org/10.3390/mi10010018
P. Xu, X. Wang, S. Wang, T. Chen, J. Liu et al., A triboelectric-based artificial whisker for reactive obstacle avoidance and local mapping. Research 2021, 9864967 (2021). https://doi.org/10.34133/2021/9864967
S. Kim, C. Velez, D.K. Patel, S. Bergbreiter, A magnetically transduced whisker for angular displacement and moment sensing, in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2020), pp. 665–671. https://doi.org/10.1109/IROS40897.2019.8968518
T. Yue, W. Si, A. Keller, C. Yang, H. Bloomfield-Gadêlha et al., Bioinspired multiscale adaptive suction on complex dry surfaces enhanced by regulated water secretion. Proc. Natl. Acad. Sci. 121, e2314359121 (2024). https://doi.org/10.1073/pnas.2314359121
T. Yue, H. Bloomfield-Gadêlha, J. Rossiter, Snail-inspired water-enhanced soft sliding suction for climbing robots. Nat. Commun. 15(1), 4038 (2024). https://doi.org/10.1038/s41467-024-48293-2
Y. Chen, Y. Hao, L. Feng, J. Meng, Z. Yang et al., A flexible multifunctional triboelectric nanogenerator based on bio-inspired nanocellulose/tannic acid@MXene-composited hydrogel for human healthcare. Int. J. Biol. Macromol. 306, 141261 (2025). https://doi.org/10.1016/j.ijbiomac.2025.141261
P. Xu, J. Liu, X. Liu, X. Wang, J. Zheng et al., A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception. NPJ Flex. Electron. 6, 25 (2022). https://doi.org/10.1038/s41528-022-00160-0
K. Shi, B. Chai, H. Zou, D. Min, S. Li et al., Dielectric manipulated charge dynamics in contact electrification. Research 2022, 2022/9862980 (2022). https://doi.org/10.34133/2022/9862980
Y. Guo, Y. Han, Y. Cao, Y. Chen, J. Xie et al., Facile fabrication of tough super macroporous hydrogel via enhanced phase separation. Adv. Funct. Mater. 35(2), 2412412 (2025). https://doi.org/10.1002/adfm.202412412
W. Lu, X. Li, Y. Wang, F. Yao, X. Wang et al., All-regional highly efficient moisture capturing and sunlight driven steam generation. Water Res. 279, 123398 (2025). https://doi.org/10.1016/j.watres.2025.123398
X. Li, P. Wang, Q. Lu, H. Yao, C. Yang et al., A hierarchical porous aerohydrogel for enhanced water evaporation. Water Res. 244, 120447 (2023). https://doi.org/10.1016/j.watres.2023.120447
H. Geng, C. Lv, M. Wu, H. Ma, H. Cheng et al., Biomimetic antigravity water transport and remote harvesting powered by sunlight. Glob. Chall. 4(11), 2000043 (2020). https://doi.org/10.1002/gch2.202000043
L.A. Goetz, B. Jalvo, R. Rosal, A.P. Mathew, Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration. J. Membr. Sci. 510, 238–248 (2016). https://doi.org/10.1016/j.memsci.2016.02.069
K. Manabe, C. Tanaka, Y. Moriyama, M. Tenjimbayashi, C. Nakamura et al., Chitin nanofibers extracted from crab shells in broadband visible antireflection coatings with controlling layer-by-layer deposition and the application for durable antifog surfaces. ACS Appl. Mater. Interfaces 8(46), 31951–31958 (2016). https://doi.org/10.1021/acsami.6b11786
M. Yao, J. Fang, Hydrophilic PEO-PDMS for microfluidic applications. J. Micromech. Microeng. 22(2), 025012 (2012). https://doi.org/10.1088/0960-1317/22/2/025012
F. Chikweto, T. Okuyama, M. Tanaka, Evaluation of a robotic palpation sensor system for prostate cancer screening on silicone elastomers and prostate phantoms. J. Adv. Mech. Des. Syst. Manuf. 17(2), JAMDSM0021 (2023). https://doi.org/10.1299/jamdsm.2023jamdsm0021
D. Wei, J. Guo, Y. Qiu, S. Liu, J. Mao et al., Monitoring the delicate operations of surgical robots via ultra-sensitive ionic electronic skin. Natl. Sci. Rev. 9(12), nwac227 (2022). https://doi.org/10.1093/nsr/nwac227
S. Ifuku, M. Nogi, K. Abe, M. Yoshioka, M. Morimoto et al., Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Biomacromol 10(6), 1584–1588 (2009). https://doi.org/10.1021/bm900163d
L. Liu, L. Bai, A. Tripathi, J. Yu, Z. Wang et al., High axial ratio nanochitins for ultrastrong and shape-recoverable hydrogels and cryogels via ice templating. ACS Nano 13(3), 2927–2935 (2019). https://doi.org/10.1021/acsnano.8b07235
F. Liu, Y. Wu, M. Long, Y. Ma, M. Zheng et al., Activating adsorption sites of waste crayfish shells via chemical decalcification for efficient capturing of nanoplastics. ACS Nano 18(24), 15779–15789 (2024). https://doi.org/10.1021/acsnano.4c02511