In-Operando X-Ray Imaging for Sobering Examination of Aqueous Zinc Metal Batteries
Corresponding Author: Guanjie He
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 85
Abstract
Aqueous zinc metal batteries (AZMBs) face significant challenges in achieving reversibility and cycling stability, primarily due to hydrogen evolution reactions (HER) and zinc dendrite growth. In this study, by employing carefully designed cells that approximate the structural characteristics of practical batteries, we revisit this widely held view through in-operando X-ray radiography to examine zinc dendrite formation and HER under near-practical operating conditions. While conventional understanding emphasizes the severity of these processes, our findings suggest that zinc dendrites and HER are noticeably less pronounced in dense, real-operation configurations compared to modified cells, possibly due to a more uniform electric field and the suppression of triple-phase boundaries. This study indicates that other components, such as degradation at the cathode current collector interface and configuration mismatches within the full cell, may also represent important barriers to the practical application of AZMBs, particularly during the early stages of electrodeposition.
Highlights:
1 In-operando X-ray imaging reveals distinct behaviors between real-service-inspired and modified aqueous zinc metal batteries (AZMBs).
2 Densely packed setups show suppressed Zn dendrites and hydrogen evolution compared to modified cells.
3 Findings suggest cathode degradation may also critically impact AZMB failure, beyond the anode limitations
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong et al., Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 15(1), 81 (2023). https://doi.org/10.1007/s40820-023-01050-4
- V. Yufit, F. Tariq, D.S. Eastwood, M. Biton, B. Wu et al., Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule 3(2), 485–502 (2019). https://doi.org/10.1016/j.joule.2018.11.002
- X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117(15), 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
- Q. Zhao, X. Yu, J. Xue, M. Zhang, Z. Li et al., Competitive tradeoff between Zn deposition and hydrogen evolution reaction on Zn-metal anode. ACS Energy Lett. 9(8), 4102–4110 (2024). https://doi.org/10.1021/acsenergylett.4c01657
- X. Zhou, Y. Lu, Q. Zhang, L. Miao, K. Zhang et al., Exploring the interfacial chemistry between zinc anodes and aqueous electrolytes via an in situ visualized characterization system. ACS Appl. Mater. Interfaces 12(49), 55476–55482 (2020). https://doi.org/10.1021/acsami.0c17023
- S. Lee, I. Kang, J. Kim, S.H. Kim, K. Kang et al., Real-time visualization of Zn metal plating/stripping in aqueous batteries with high areal capacities. J. Power. Sources 472, 228334 (2020). https://doi.org/10.1016/j.jpowsour.2020.228334
- Y. Sasaki, K. Yoshida, T. Kawasaki, A. Kuwabara, Y. Ukyo et al., In situ electron microscopy analysis of electrochemical Zn deposition onto an electrode. J. Power. Sources 481, 228831 (2021). https://doi.org/10.1016/j.jpowsour.2020.228831
- T.M.M. Heenan, I. Mombrini, A. Llewellyn, S. Checchia, C. Tan et al., Mapping internal temperatures during high-rate battery applications. Nature 617(7961), 507–512 (2023). https://doi.org/10.1038/s41586-023-05913-z
- W. Du, Z. Zhang, F. Iacoviello, S. Zhou, R.E. Owen et al., Observation of Zn dendrite growth via operando digital microscopy and time-lapse tomography. ACS Appl. Mater. Interfaces 15(11), 14196–14205 (2023). https://doi.org/10.1021/acsami.2c19895
- R. Chen, Y. Zhong, P. Jiang, H. Tang, F. Guo et al., Untangling the role of capping agents in manipulating electrochemical behaviors toward practical aqueous zinc-ion batteries. Adv. Mater. 2412790 (2025). https://doi.org/10.1002/adma.202412790
- X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao et al., Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 7(6), 1145–1175 (2023). https://doi.org/10.1016/j.joule.2023.05.004
- L. Mai, Y. Dong, L. Xu, C. Han, Single nanowire electrochemical devices. Nano Lett. 10(10), 4273–4278 (2010). https://doi.org/10.1021/nl102845r
- C. Li, A. Shyamsunder, A.G. Hoane, D.M. Long, C.Y. Kwok et al., Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule 6(5), 1103–1120 (2022). https://doi.org/10.1016/j.joule.2022.04.017
- H. Tian, G. Feng, Q. Wang, Z. Li, W. Zhang et al., Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dual-cation electrolytes. Nat. Commun. 13(1), 7922 (2022). https://doi.org/10.1038/s41467-022-35618-2
- Y. Mu, Z. Li, B.-K. Wu, H. Huang, F. Wu et al., 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries. Nat. Commun. 14(1), 4205 (2023). https://doi.org/10.1038/s41467-023-39947-8
- X. Zhang, J. Li, Y. Liu, B. Lu, S. Liang et al., Single [0001]-oriented zinc metal anode enables sustainable zinc batteries. Nat. Commun. 15, 2735 (2024). https://doi.org/10.1038/s41467-024-47101-1
- K. Guan, W. Chen, Y. Yang, F. Ye, Y. Hong et al., A dual salt/dual solvent electrolyte enables ultrahigh utilization of zinc metal anode for aqueous batteries. Adv. Mater. 36(38), e2405889 (2024). https://doi.org/10.1002/adma.202405889
- Y. Li, X. Zheng, E.Z. Carlson, X. Xiao, X. Chi et al., In situ formation of liquid crystal interphase in electrolytes with soft templating effects for aqueous dual-electrode-free batteries. Nat. Energy 9(11), 1350–1359 (2024). https://doi.org/10.1038/s41560-024-01638-z
- X. Zhou, B. Wen, Y. Cai, X. Chen, L. Li et al., Interfacial engineering for oriented crystal growth toward dendrite-free Zn anode for aqueous zinc metal battery. Angew. Chem. Int. Ed. 63(21), e202402342 (2024). https://doi.org/10.1002/anie.202402342
- W. Yuan, X. Nie, G. Ma, M. Liu, Y. Wang et al., Realizing textured zinc metal anodes through regulating electrodeposition current for aqueous zinc batteries. Angew. Chem. Int. Ed. 62(10), e202218386 (2023). https://doi.org/10.1002/anie.202218386
- Y. Huang, Q. Gu, Z. Guo, W. Liu, Z. Chang et al., Unraveling dynamical behaviors of zinc metal electrodes in aqueous electrolytes through an operando study. Energy Storage Mater. 46, 243–251 (2022). https://doi.org/10.1016/j.ensm.2022.01.012
- M. Grzeszczuk, J. Kalenik, A. Kępas-Suwara, Phase boundaries in layer-by-layer electrodeposited polypyrrole resulted from 2D–3D growths of polymer sublayers. J. Electroanal. Chem. 626(1–2), 47–58 (2009). https://doi.org/10.1016/j.jelechem.2008.11.002
References
R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong et al., Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 15(1), 81 (2023). https://doi.org/10.1007/s40820-023-01050-4
V. Yufit, F. Tariq, D.S. Eastwood, M. Biton, B. Wu et al., Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule 3(2), 485–502 (2019). https://doi.org/10.1016/j.joule.2018.11.002
X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117(15), 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
Q. Zhao, X. Yu, J. Xue, M. Zhang, Z. Li et al., Competitive tradeoff between Zn deposition and hydrogen evolution reaction on Zn-metal anode. ACS Energy Lett. 9(8), 4102–4110 (2024). https://doi.org/10.1021/acsenergylett.4c01657
X. Zhou, Y. Lu, Q. Zhang, L. Miao, K. Zhang et al., Exploring the interfacial chemistry between zinc anodes and aqueous electrolytes via an in situ visualized characterization system. ACS Appl. Mater. Interfaces 12(49), 55476–55482 (2020). https://doi.org/10.1021/acsami.0c17023
S. Lee, I. Kang, J. Kim, S.H. Kim, K. Kang et al., Real-time visualization of Zn metal plating/stripping in aqueous batteries with high areal capacities. J. Power. Sources 472, 228334 (2020). https://doi.org/10.1016/j.jpowsour.2020.228334
Y. Sasaki, K. Yoshida, T. Kawasaki, A. Kuwabara, Y. Ukyo et al., In situ electron microscopy analysis of electrochemical Zn deposition onto an electrode. J. Power. Sources 481, 228831 (2021). https://doi.org/10.1016/j.jpowsour.2020.228831
T.M.M. Heenan, I. Mombrini, A. Llewellyn, S. Checchia, C. Tan et al., Mapping internal temperatures during high-rate battery applications. Nature 617(7961), 507–512 (2023). https://doi.org/10.1038/s41586-023-05913-z
W. Du, Z. Zhang, F. Iacoviello, S. Zhou, R.E. Owen et al., Observation of Zn dendrite growth via operando digital microscopy and time-lapse tomography. ACS Appl. Mater. Interfaces 15(11), 14196–14205 (2023). https://doi.org/10.1021/acsami.2c19895
R. Chen, Y. Zhong, P. Jiang, H. Tang, F. Guo et al., Untangling the role of capping agents in manipulating electrochemical behaviors toward practical aqueous zinc-ion batteries. Adv. Mater. 2412790 (2025). https://doi.org/10.1002/adma.202412790
X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao et al., Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 7(6), 1145–1175 (2023). https://doi.org/10.1016/j.joule.2023.05.004
L. Mai, Y. Dong, L. Xu, C. Han, Single nanowire electrochemical devices. Nano Lett. 10(10), 4273–4278 (2010). https://doi.org/10.1021/nl102845r
C. Li, A. Shyamsunder, A.G. Hoane, D.M. Long, C.Y. Kwok et al., Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule 6(5), 1103–1120 (2022). https://doi.org/10.1016/j.joule.2022.04.017
H. Tian, G. Feng, Q. Wang, Z. Li, W. Zhang et al., Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dual-cation electrolytes. Nat. Commun. 13(1), 7922 (2022). https://doi.org/10.1038/s41467-022-35618-2
Y. Mu, Z. Li, B.-K. Wu, H. Huang, F. Wu et al., 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries. Nat. Commun. 14(1), 4205 (2023). https://doi.org/10.1038/s41467-023-39947-8
X. Zhang, J. Li, Y. Liu, B. Lu, S. Liang et al., Single [0001]-oriented zinc metal anode enables sustainable zinc batteries. Nat. Commun. 15, 2735 (2024). https://doi.org/10.1038/s41467-024-47101-1
K. Guan, W. Chen, Y. Yang, F. Ye, Y. Hong et al., A dual salt/dual solvent electrolyte enables ultrahigh utilization of zinc metal anode for aqueous batteries. Adv. Mater. 36(38), e2405889 (2024). https://doi.org/10.1002/adma.202405889
Y. Li, X. Zheng, E.Z. Carlson, X. Xiao, X. Chi et al., In situ formation of liquid crystal interphase in electrolytes with soft templating effects for aqueous dual-electrode-free batteries. Nat. Energy 9(11), 1350–1359 (2024). https://doi.org/10.1038/s41560-024-01638-z
X. Zhou, B. Wen, Y. Cai, X. Chen, L. Li et al., Interfacial engineering for oriented crystal growth toward dendrite-free Zn anode for aqueous zinc metal battery. Angew. Chem. Int. Ed. 63(21), e202402342 (2024). https://doi.org/10.1002/anie.202402342
W. Yuan, X. Nie, G. Ma, M. Liu, Y. Wang et al., Realizing textured zinc metal anodes through regulating electrodeposition current for aqueous zinc batteries. Angew. Chem. Int. Ed. 62(10), e202218386 (2023). https://doi.org/10.1002/anie.202218386
Y. Huang, Q. Gu, Z. Guo, W. Liu, Z. Chang et al., Unraveling dynamical behaviors of zinc metal electrodes in aqueous electrolytes through an operando study. Energy Storage Mater. 46, 243–251 (2022). https://doi.org/10.1016/j.ensm.2022.01.012
M. Grzeszczuk, J. Kalenik, A. Kępas-Suwara, Phase boundaries in layer-by-layer electrodeposited polypyrrole resulted from 2D–3D growths of polymer sublayers. J. Electroanal. Chem. 626(1–2), 47–58 (2009). https://doi.org/10.1016/j.jelechem.2008.11.002