Multiscale Theoretical Calculations Empower Robust Electric Double Layer Toward Highly Reversible Zinc Anode
Corresponding Author: Yinzhu Jiang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 90
Abstract
The electric double layer (EDL) at the electrochemical interface is crucial for ion transport, charge transfer, and surface reactions in aqueous rechargeable zinc batteries (ARZBs). However, Zn anodes routinely encounter persistent dendrite growth and parasitic reactions, driven by the inhomogeneous charge distribution and water-dominated environment within the EDL. Compounding this, classical EDL theory, rooted in mean-field approximations, further fails to resolve molecular-scale interfacial dynamics under battery-operating conditions, limiting mechanistic insights. Herein, we established a multiscale theoretical calculation framework from single molecular characteristics to interfacial ion distribution, revealing the EDL’s structure and interactions between different ions and molecules, which helps us understand the parasitic processes in depth. Simulations demonstrate that water dipole and sulfate ion adsorption at the inner Helmholtz plane drives severe hydrogen evolution and by-product formation. Guided by these insights, we engineered a “water-poor and anion-expelled” EDL using 4,1',6'-trichlorogalactosucrose (TGS) as an electrolyte additive. As a result, Zn||Zn symmetric cells with TGS exhibited stable cycling for over 4700 h under a current density of 1 mA cm−2, while NaV3O8·1.5H2O-based full cells kept 90.4% of the initial specific capacity after 800 cycles at 5 A g−1. This work highlights the power of multiscale theoretical frameworks to unravel EDL complexities and guide high-performance ARZB design through integrated theory-experiment approaches.
Highlights:
1 A multiscale theoretical framework deciphers the molecular-ionic dynamics of the electric double layer (EDL) in aqueous rechargeable zinc batteries, correlating interfacial water aggregation, anion-specific adsorption, and electric field inhomogeneity to parasitic reactions and dendrite growth, thereby establishing EDL-driven design principles for ultra-stable Zn anodes.
2 Molecular adsorption engineering creates a localized “water-poor and anion-expelled” EDL configuration that suppresses hydrogen evolution and by-product formation while enabling dense Zn electrodeposition through flattened interfacial potential gradients and reduced Zn2+ electrostatic repulsion.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Wan, Z. Wang, W. Zhang, X. He, C. Wang, Interface design for all-solid-state lithium batteries. Nature 623(7988), 739–744 (2023). https://doi.org/10.1038/s41586-023-06653-w
- V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Energy and fuels from electrochemical interfaces. Nat. Mater. 16(1), 57–69 (2016). https://doi.org/10.1038/nmat4738
- X. Wang, M. Salari, D.-E. Jiang, J. Chapman Varela, B. Anasori et al., Electrode material–ionic liquid coupling for electrochemical energy storage. Nat. Rev. Mater. 5(11), 787–808 (2020). https://doi.org/10.1038/s41578-020-0218-9
- C. Zhang, M.F. Calegari Andrade, Z.K. Goldsmith, A.S. Raman, Y. Li et al., Molecular-scale insights into the electrical double layer at oxide-electrolyte interfaces. Nat. Commun. 15(1), 10270 (2024). https://doi.org/10.1038/s41467-024-54631-1
- S.-J. Shin, D.H. Kim, G. Bae, S. Ringe, H. Choi et al., On the importance of the electric double layer structure in aqueous electrocatalysis. Nat. Commun. 13, 174 (2022). https://doi.org/10.1038/s41467-021-27909-x
- W. Schmickler, Double layer theory. J. Solid State Electrochem. 24(9), 2175–2176 (2020). https://doi.org/10.1007/s10008-020-04597-z
- N.M. Markovic, Interfacing electrochemistry. Nat. Mater. 12(2), 101–102 (2013). https://doi.org/10.1038/nmat3554
- P. Attard, Electrolytes and the electric double layer. Adv. Chem. Phys. 92, 1–159 (1996). https://doi.org/10.1002/9780470141519
- H. Helmholtz, Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Ann. Der Phys. 165(6), 211–233 (1853). https://doi.org/10.1002/andp.18531650603
- O. Stern, Zur theorie der elektrolytischen doppelschicht. Z. Für Elektrochem. Und Angew. Phys. Chem. 30(21–22), 508–516 (1924). https://doi.org/10.1002/bbpc.192400182
- N. Hu, W. Lv, W. Chen, H. Tang, X. Zhang et al., A double-charged organic molecule additive to customize electric double layer for super-stable and deep-rechargeable Zn metal pouch batteries. Adv. Funct. Mater. 34(8), 2311773 (2024). https://doi.org/10.1002/adfm.202311773
- J. Zhao, S. Ma, Z. Wang, Q. Gao, H. Xiao et al., Electrolyte-tailored heterostructured zinc metal anodes with tunable electric double layer for fast-cycling aqueous zinc batteries. Adv. Funct. Mater. 34(46), 2405656 (2024). https://doi.org/10.1002/adfm.202405656
- X. Shi, J. Xie, F. Yang, F. Wang, D. Zheng et al., Compacting electric double layer enables carbon electrode with ultrahigh Zn ion storage capability. Angew. Chem. Int. Ed. 61(51), e202214773 (2022). https://doi.org/10.1002/anie.202214773
- S. Li, J. Zhao, X. Xu, J. Shen, K. Zhang et al., Regulating interfacial behavior via reintegration the Helmholtz layer structure towards ultra-stable and wide-temperature-range aqueous zinc ion batteries. Mater. Today 80, 50–60 (2024). https://doi.org/10.1016/j.mattod.2024.08.003
- D.C. Grahame, The electrical double layer and the theory of electrocapillarity. Chem. Rev. 41(3), 441–501 (1947). https://doi.org/10.1021/cr60130a002
- J.O. Bockris, M.A.V. Devanathan, K. Müller, On the structure of charged interfaces. In: Electrochemistry. Elsevier, pp. 832–863 (1965). https://doi.org/10.1016/b978-1-4831-9831-6.50068-0
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- J. Zhu, Z. Tie, S. Bi, Z. Niu, Towards more sustainable aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 136(22), e202403712 (2024). https://doi.org/10.1002/ange.202403712
- S. Liu, R. Zhang, C. Wang, J. Mao, D. Chao et al., Zinc ion batteries: bridging the gap from academia to industry for grid-scale energy storage. Angew. Chem. Int. Ed. 136(17), e202400045 (2024). https://doi.org/10.1002/ange.202400045
- C. Li, S. Jin, L.A. Archer, L.F. Nazar, Toward practical aqueous zinc-ion batteries for electrochemical energy storage. Joule 6(8), 1733–1738 (2022). https://doi.org/10.1016/j.joule.2022.06.002
- W. Zhang, M. Dong, K. Jiang, D. Yang, X. Tan et al., Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat. Commun. 13(1), 5348 (2022). https://doi.org/10.1038/s41467-022-32955-0
- J.X.K. Zheng, J. Yin, T. Tang, L.A. Archer, Moss-like growth of metal electrodes: on the role of competing faradaic reactions and fast charging. ACS Energy Lett. 8(5), 2113–2121 (2023). https://doi.org/10.1021/acsenergylett.3c00120
- L. Jiang, D. Li, X. Xie, D. Ji, L. Li et al., Electric double layer design for Zn-based batteries. Energy Storage Mater. 62, 102932 (2023). https://doi.org/10.1016/j.ensm.2023.102932
- Y. Li, B. Ping, J. Qu, J. Ren, C. Lin et al., Constructing autoregulative electric double layer through dielectric effect toward fast charging zinc metal anode. Adv. Energy Mater. 15(21), 2405804 (2025). https://doi.org/10.1002/aenm.202405804
- L. Jiang, Y. Ding, L. Li, Y. Tang, P. Zhou et al., Cationic adsorption-induced microlevelling effect: a pathway to dendrite-free zinc anodes. Nano-Micro Lett. 17(1), 202 (2025). https://doi.org/10.1007/s40820-025-01709-0
- H. Yang, Y. Yang, W. Yang, G. Wu, R. Zhu, Correlating hydrogen evolution and zinc deposition/dissolution kinetics to the cyclability of metallic zinc electrodes. Energy Environ. Sci. 17(5), 1975–1983 (2024). https://doi.org/10.1039/D3EE04515C
- L. Qian, H. Zhu, T. Qin, R. Yao, J. Zhao et al., Ultralow-salt-concentration electrolyte for high-voltage aqueous Zn metal batteries. Adv. Funct. Mater. 33(23), 2301118 (2023). https://doi.org/10.1002/adfm.202301118
- A.G. Ilgen, E. Borguet, F.M. Geiger, J.M. Gibbs, V.H. Grassian et al., Bridging molecular-scale interfacial science with continuum-scale models. Nat. Commun. 15(1), 5326 (2024). https://doi.org/10.1038/s41467-024-49598-y
- B. Rehl, E. Ma, S. Parshotam, E.L. DeWalt-Kerian, T. Liu et al., Water structure in the electrical double layer and the contributions to the total interfacial potential at different surface charge densities. J. Am. Chem. Soc. 144(36), 16338–16349 (2022). https://doi.org/10.1021/jacs.2c01830
- Q. Wang, Z. Qu, D. Tian, Electric double layer theory of interfacial ionic liquids for capturing ion hierarchical aggregation and anisotropic dynamics. Adv. Energy Mater. 15(13), 2402974 (2025). https://doi.org/10.1002/aenm.202402974
- J. Luo, L. Xu, Y. Zhou, T. Yan, Y. Shao et al., Regulating the inner Helmholtz plane with a high donor additive for efficient anode reversibility in aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 62(21), e202302302 (2023). https://doi.org/10.1002/anie.202302302
- Y. Yang, H. Hua, Z. Lv, M. Zhang, C. Liu et al., Reconstruction of electric double layer for long-life aqueous zinc metal batteries. Adv. Funct. Mater. 33(10), 2212446 (2023). https://doi.org/10.1002/adfm.202212446
- M. Zhang, H. Hua, P. Dai, Z. He, L. Han et al., Dynamically interfacial pH-buffering effect enabled by N-methylimidazole molecules as spontaneous proton pumps toward highly reversible zinc-metal anodes. Adv. Mater. 35(15), e2208630 (2023). https://doi.org/10.1002/adma.202208630
- Y. Zhu, G. Liang, X. Cui, X. Liu, H. Zhong et al., Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy Environ. Sci. 17(2), 369–385 (2024). https://doi.org/10.1039/d3ee03584k
- C. Shuang, L. Zhen, Y. Xia, X. Wu, K. Wang et al., Step-edge guided homoepitaxy enables highly reversible Zn plating/stripping. Angew. Chem. Int. Ed. 64(16), e202501176 (2025). https://doi.org/10.1002/anie.202501176
- Z. Chen, J. Zhao, Q. He, M. Li, S. Feng et al., Texture control of commercial Zn foils prolongs their reversibility as aqueous battery anodes. ACS Energy Lett. 7(10), 3564–3571 (2022). https://doi.org/10.1021/acsenergylett.2c01920
- C. Yuan, L. Yin, P. Du, Y. Yu, K. Zhang et al., Microgroove-patterned Zn metal anode enables ultra-stable and low-overpotential Zn deposition for long-cycling aqueous batteries. Chem. Eng. J. 442, 136231 (2022). https://doi.org/10.1016/j.cej.2022.136231
- C. Yuan, J. Xiao, C. Liu, X. Zhan, Elucidating synergistic mechanisms of an anion–cation electrolyte additive for ultra-stable zinc metal anodes. J. Mater. Chem. A 12(30), 19060–19068 (2024). https://doi.org/10.1039/D4TA03414G
- J. Huang, Y. Zhong, H. Fu, Y. Zhao, S. Li et al., Interfacial biomacromolecular engineering toward stable ah-level aqueous zinc batteries. Adv. Mater. 36(33), e2406257 (2024). https://doi.org/10.1002/adma.202406257
- Y. Lv, M. Zhao, Y. Du, Y. Kang, Y. Xiao et al., Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries. Energy Environ. Sci. 15(11), 4748–4760 (2022). https://doi.org/10.1039/D2EE02687B
- Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120(1), 215–241 (2008). https://doi.org/10.1007/s00214-007-0310-x
- F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7(18), 3297–3305 (2005). https://doi.org/10.1039/B508541A
- A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113(18), 6378–6396 (2009). https://doi.org/10.1021/jp810292n
- T. Lu, Q. Chen, Independent gradient model based on Hirshfeld partition: a new method for visual study of interactions in chemical systems. J. Comput. Chem. 43(8), 539–555 (2022). https://doi.org/10.1002/jcc.26812
- J. Zhang, T. Lu, Efficient evaluation of electrostatic potential with computerized optimized code. Phys. Chem. Chem. Phys. 23(36), 20323–20328 (2021). https://doi.org/10.1039/d1cp02805g
- T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012). https://doi.org/10.1002/jcc.22885
- W. Sun, F. Wang, B. Zhang, M. Zhang, V. Küpers et al., A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 371(6524), 46–51 (2021). https://doi.org/10.1126/science.abb9554
- B. Liu, C. Wei, Z. Zhu, Y. Fang, Z. Bian et al., Regulating surface reaction kinetics through ligand field effects for fast and reversible aqueous zinc batteries. Angew. Chem. Int. Ed. 61(44), e202212780 (2022). https://doi.org/10.1002/anie.202212780
- M. Gutowski, J.H. Van Lenthe, J. Verbeek, F.B. Van Duijneveldt, G. Chałasinski, The basis set superposition error in correlated electronic structure calculations. Chem. Phys. Lett. 124(4), 370–375 (1986). https://doi.org/10.1016/0009-2614(86)85036-9
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
- M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), e2100187 (2021). https://doi.org/10.1002/adma.202100187
- M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith et al., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015). https://doi.org/10.1016/j.softx.2015.06.001
- S. Izadi, A.V. Onufriev, Accuracy limit of rigid 3-point water models. J. Chem. Phys. 145(7), 074501 (2016). https://doi.org/10.1063/1.4960175
- Z. Li, L.F. Song, P. Li, K.M. Merz Jr., Systematic parametrization of divalent metal ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB water models. J. Chem. Theory Comput. 16(7), 4429–4442 (2020). https://doi.org/10.1021/acs.jctc.0c00194
- J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field. J. Comput. Chem. 25(9), 1157–1174 (2004). https://doi.org/10.1002/jcc.20035
- M. Schauperl, P.S. Nerenberg, H. Jang, L.-P. Wang, C.I. Bayly et al., Non-bonded force field model with advanced restrained electrostatic potential charges (RESP2). Commun. Chem. 3, 44 (2020). https://doi.org/10.1038/s42004-020-0291-4
- G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007). https://doi.org/10.1063/1.2408420
- H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684–3690 (1984). https://doi.org/10.1063/1.448118
- S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81(1), 511–519 (1984). https://doi.org/10.1063/1.447334
- W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695–1697 (1985). https://doi.org/10.1103/physreva.31.1695
- U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee et al., A smooth p mesh Ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995). https://doi.org/10.1063/1.470117
- D.M. York, T.A. Darden, L.G. Pedersen, The effect of long-range electrostatic interactions in simulations of macromolecular crystals: a comparison of the Ewald and truncated list methods. J. Chem. Phys. 99(10), 8345–8348 (1993). https://doi.org/10.1063/1.465608
- W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
- Q. Wu, M.T. McDowell, Y. Qi, Effect of the electric double layer (EDL) in multicomponent electrolyte reduction and solid electrolyte interphase (SEI) formation in lithium batteries. J. Am. Chem. Soc. 145(4), 2473–2484 (2023). https://doi.org/10.1021/jacs.2c11807
- L. Yu, N. Yao, Y.-C. Gao, Z.-H. Fu, B. Jiang et al., Probing the electric double layer structure at nitrogen-doped graphite electrodes by constant-potential molecular dynamics simulations. J. Energy Chem. 93, 299–305 (2024). https://doi.org/10.1016/j.jechem.2024.01.058
- Y. Wang, A. Kiziltas, P. Blanchard, T.R. Walsh, Calculation of 1D and 2D densities in VMD: a flexible and easy-to-use code. Comput. Phys. Commun. 266, 108032 (2021). https://doi.org/10.1016/j.cpc.2021.108032
- Z. Luo, Y. Xia, S. Chen, X. Wu, E. Akinlabi et al., A homogeneous plating/stripping mode with fine grains for highly reversible Zn anodes. Energy Environ. Sci. 17(18), 6787–6798 (2024). https://doi.org/10.1039/D4EE02264E
- S. Yang, A. Chen, Z. Tang, Z. Wu, P. Li et al., Regulating the electrochemical reduction kinetics by the steric hindrance effect for a robust Zn metal anode. Energy Environ. Sci. 17(3), 1095–1106 (2024). https://doi.org/10.1039/D3EE02164E
- H. Dou, X. Wu, M. Xu, R. Feng, Q. Ma et al., Steric-hindrance effect tuned ion solvation enabling high performance aqueous zinc ion batteries. Angew. Chem. Int. Ed. 63(21), e202401974 (2024). https://doi.org/10.1002/anie.202401974
- Q. Li, A. Chen, D. Wang, Z. Pei, C. Zhi, “Soft shorts” hidden in zinc metal anode research. Joule 6(2), 273–279 (2022). https://doi.org/10.1016/j.joule.2021.12.009
- H. Yang, D. Chen, R. Zhao, G. Li, H. Xu et al., Reunderstanding aqueous Zn electrochemistry from interfacial specific adsorption of solvation structures. Energy Environ. Sci. 16(7), 2910–2923 (2023). https://doi.org/10.1039/D3EE00658A
- J. Dong, L. Su, H. Peng, D. Wang, H. Zong et al., Spontaneous molecule aggregation for nearly single-ion conducting sol electrolyte to advance aqueous zinc metal batteries: the case of tetraphenylporphyrin. Angew. Chem. Int. Ed. 63(21), e202401441 (2024). https://doi.org/10.1002/anie.202401441
- Y. Xia, Z. Hong, L. Zhou, S. Chen, Z. Luo et al., Multiscale simulations of surface adsorption characteristics of amino acids on zinc metal anode. J. Energy Chem. 87, 153–161 (2023). https://doi.org/10.1016/j.jechem.2023.08.002
- Z. Luo, Y. Xia, S. Chen, X. Wu, R. Zeng et al., Synergistic “anchor-capture” enabled by amino and carboxyl for constructing robust interface of Zn anode. Nano-Micro Lett. 15(1), 205 (2023). https://doi.org/10.1007/s40820-023-01171-w
- Q. Zong, Y. Yu, C. Liu, Q. Zhang, G. Wei et al., Decoupling “cling-cover-capture” triple effects on stable Zn anode/electrolyte interface. ACS Nano 18(40), 27440–27450 (2024). https://doi.org/10.1021/acsnano.4c07803
- Q. Zhao, W. Liu, X. Ni, H. Yu, C. Zhang et al., Steering interfacial renovation with highly electronegative Cl modulated trinity effect for exceptional durable zinc anode. Adv. Funct. Mater. 34(41), 2404219 (2024). https://doi.org/10.1002/adfm.202404219
- Q. He, G. Fang, Z. Chang, Y. Zhang, S. Zhou et al., Building ultra-stable and low-polarization composite Zn anode interface via hydrated polyzwitterionic electrolyte construction. Nano-Micro Lett. 14(1), 93 (2022). https://doi.org/10.1007/s40820-022-00835-3
- Q. Deng, S. You, W. Min, Y. Xu, W. Lin et al., Polymer molecules adsorption-induced zincophilic-hydrophobic protective layer enables highly stable Zn metal anodes. Adv. Mater. 36(16), 2312924 (2024). https://doi.org/10.1002/adma.202312924
- Y. Ding, L. Yin, T. Du, Y. Wang, Z. He et al., A trifunctional electrolyte enables aqueous zinc ion batteries with long cycling performance. Adv. Funct. Mater. 34(30), 2314388 (2024). https://doi.org/10.1002/adfm.202314388
- X. Wu, Y. Xia, S. Chen, Z. Luo, X. Zhang et al., Boosting the performance of aqueous zinc-ion battery by regulating the electrolyte solvation structure. EcoMat 6(3), e12438 (2024). https://doi.org/10.1002/eom2.12438
- K. Bao, M. Wang, Y. Zheng, P. Wang, L. Yang et al., Construction of low dielectric aqueous electrolyte with ethanol for highly stable Zn anode. Nano Energy 120, 109089 (2024). https://doi.org/10.1016/j.nanoen.2023.109089
- C. Huang, X. Zhao, S. Liu, Y. Hao, Q. Tang et al., Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 33(38), 2100445 (2021). https://doi.org/10.1002/adma.202100445
- H. Zhang, F. Ning, Y. Guo, S. Subhan, X. Liu et al., Unraveling the mechanisms of aqueous zinc ion batteries via first-principles calculations. ACS Energy Lett. 9(10), 4761–4784 (2024). https://doi.org/10.1021/acsenergylett.4c02014
- L. Zeng, T. Wu, T. Ye, T. Mo, R. Qiao et al., Modeling galvanostatic charge-discharge of nanoporous supercapacitors. Nat. Comput. Sci. 1(11), 725–731 (2021). https://doi.org/10.1038/s43588-021-00153-5
- T. Yan, B. Wu, S. Liu, M. Tao, J. Liang et al., Sieving-type electric double layer with hydrogen bond interlocking to stable zinc metal anode. Angew. Chem. Int. Ed. 63(47), e202411470 (2024). https://doi.org/10.1002/anie.202411470
- X. Fang, C. Hu, X. Sun, H. Wang, J. Li, Robust hybrid solid electrolyte interface induced by Zn-poor electric double layer for a highly reversible zinc anode. Adv. Energy Mater. 14(3), 2302499 (2024). https://doi.org/10.1002/aenm.202302499
- Z. Hu, F. Zhang, F. Wu, H. Wang, A. Zhou et al., Screening metal cation additives driven by differential capacitance for Zn batteries. Energy Environ. Sci. 17(13), 4794–4802 (2024). https://doi.org/10.1039/D4EE01127A
- X. Yu, M. Chen, Z. Li, X. Tan, H. Zhang et al., Unlocking dynamic solvation chemistry and hydrogen evolution mechanism in aqueous zinc batteries. J. Am. Chem. Soc. 146(25), 17103–17113 (2024). https://doi.org/10.1021/jacs.4c02558
- H.K. Christenson, DLVO (Derjaguin–Landau–Verwey–Overbeek) theory and solvation forces between mica surfaces in polar and hydrogen-bonding liquids. J. Chem. Soc., Faraday Trans. 1 80(7), 1933 (1984). https://doi.org/10.1039/f19848001933
- A.M. Smith, M. Borkovec, G. Trefalt, Forces between solid surfaces in aqueous electrolyte solutions. Adv. Colloid Interface Sci. 275, 102078 (2020). https://doi.org/10.1016/j.cis.2019.102078
- S.-Y. Lee, S.-H. Lee, J.-G. Park, Interaction forces between silica ps and wafer surfaces during chemical mechanical planarization of copper. J. Electrochem. Soc. 150(5), G327 (2003). https://doi.org/10.1149/1.1566417
- R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13(1), 3252 (2022). https://doi.org/10.1038/s41467-022-30939-8
- Z. Tian, W. Guo, Z. Shi, Z. Alhubail, Y. Wang et al., The role of hydrogen bonding in aqueous batteries: correlating molecular-scale interactions with battery performance. ACS Energy Lett. 9(10), 5179–5205 (2024). https://doi.org/10.1021/acsenergylett.4c02281
- J. Luo, L. Xu, Y. Yang, S. Huang, Y. Zhou et al., Stable zinc anode solid electrolyte interphase via inner Helmholtz plane engineering. Nat. Commun. 15(1), 6471 (2024). https://doi.org/10.1038/s41467-024-50890-0
- L. Ma, T.P. Pollard, Y. Zhang, M.A. Schroeder, M.S. Ding et al., Functionalized phosphonium cations enable zinc metal reversibility in aqueous electrolytes. Angew. Chem. Int. Ed. 60(22), 12438–12445 (2021). https://doi.org/10.1002/anie.202017020
- K. Letchworth-Weaver, T.A. Arias, Joint density functional theory of the electrode-electrolyte interface: application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge. Phys. Rev. B 86(7), 075140 (2012). https://doi.org/10.1103/physrevb.86.075140
- X. Wang, K. Liu, J. Wu, Demystifying the Stern layer at a metal-electrolyte interface: Local dielectric constant, specific ion adsorption, and partial charge transfer. J. Chem. Phys. 154(12), 124701 (2021). https://doi.org/10.1063/5.0043963
- R. Sundararaman, K. Letchworth-Weaver, K.A. Schwarz, D. Gunceler, Y. Ozhabes et al., JDFTx: software for joint density-functional theory. SoftwareX 6, 278–284 (2017). https://doi.org/10.1016/j.softx.2017.10.006
- J. Weng, W. Zhu, K. Yu, J. Luo, M. Chen et al., Enhancing Zn-metal anode stability: key effects of electrolyte additives on ion-shield-like electrical double layer and stable solid electrolyte interphase. Adv. Funct. Mater. 34(18), 2314347 (2024). https://doi.org/10.1002/adfm.202314347
- H. Yu, D. Chen, Q. Li, C. Yan, Z. Jiang et al., In situ construction of anode–molecule interface via lone-pair electrons in trace organic molecules additives to achieve stable zinc metal anodes. Adv. Energy Mater. 13(22), 2300550 (2023). https://doi.org/10.1002/aenm.202300550
- L. Wang, Y. Shao, Z. Fu, X. Zhang, J. Kang et al., Synergistically enhancing the selective adsorption for crystal planes to regulate the (002)-texture preferred Zn deposition via supramolecular host–guest units. Energy Environ. Sci. 18(10), 4859–4871 (2025). https://doi.org/10.1039/d5ee00763a
- S.-J. Zhang, J. Hao, D. Luo, P.-F. Zhang, B. Zhang et al., Dual-function electrolyte additive for highly reversible Zn anode. Adv. Energy Mater. 11(37), 2102010 (2021). https://doi.org/10.1002/aenm.202102010
- S. Chen, Y. Xia, R. Zeng, Z. Luo, X. Wu et al., Ordered planar plating/stripping enables deep cycling zinc metal batteries. Sci. Adv. 10(10), eadn2265 (2024). https://doi.org/10.1126/sciadv.adn2265
- R. Luo, X. Zheng, T. Jiang, D. Shen, M. Wang et al., Reshaping electrical double layer via synergistic dual additives for ah-level zinc battery. Adv. Energy Mater. (2025). https://doi.org/10.1002/aenm.202501658
- M. Zhou, X. Luo, H. Li, S. Guo, Z. Tong et al., Interfacial Zn2+-solvation regulator towards reversible and stable Zn anode. J. Energy Chem. 100, 684–692 (2025). https://doi.org/10.1016/j.jechem.2024.08.061
- J. Zhang, L.N.Y. Cao, R. Li, J. Yang, L. Li et al., Breaking mass transport limit for hydrogen evolution-inhibited and dendrite-free aqueous Zn batteries. Adv. Mater. 37(1), e2410244 (2025). https://doi.org/10.1002/adma.202410244
- F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9(1), 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
- X. Dou, X. Xie, S. Liang, G. Fang, Low-current-density stability of vanadium-based cathodes for aqueous zinc-ion batteries. Sci. Bull. 69(6), 833–845 (2024). https://doi.org/10.1016/j.scib.2024.01.029
References
H. Wan, Z. Wang, W. Zhang, X. He, C. Wang, Interface design for all-solid-state lithium batteries. Nature 623(7988), 739–744 (2023). https://doi.org/10.1038/s41586-023-06653-w
V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Energy and fuels from electrochemical interfaces. Nat. Mater. 16(1), 57–69 (2016). https://doi.org/10.1038/nmat4738
X. Wang, M. Salari, D.-E. Jiang, J. Chapman Varela, B. Anasori et al., Electrode material–ionic liquid coupling for electrochemical energy storage. Nat. Rev. Mater. 5(11), 787–808 (2020). https://doi.org/10.1038/s41578-020-0218-9
C. Zhang, M.F. Calegari Andrade, Z.K. Goldsmith, A.S. Raman, Y. Li et al., Molecular-scale insights into the electrical double layer at oxide-electrolyte interfaces. Nat. Commun. 15(1), 10270 (2024). https://doi.org/10.1038/s41467-024-54631-1
S.-J. Shin, D.H. Kim, G. Bae, S. Ringe, H. Choi et al., On the importance of the electric double layer structure in aqueous electrocatalysis. Nat. Commun. 13, 174 (2022). https://doi.org/10.1038/s41467-021-27909-x
W. Schmickler, Double layer theory. J. Solid State Electrochem. 24(9), 2175–2176 (2020). https://doi.org/10.1007/s10008-020-04597-z
N.M. Markovic, Interfacing electrochemistry. Nat. Mater. 12(2), 101–102 (2013). https://doi.org/10.1038/nmat3554
P. Attard, Electrolytes and the electric double layer. Adv. Chem. Phys. 92, 1–159 (1996). https://doi.org/10.1002/9780470141519
H. Helmholtz, Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Ann. Der Phys. 165(6), 211–233 (1853). https://doi.org/10.1002/andp.18531650603
O. Stern, Zur theorie der elektrolytischen doppelschicht. Z. Für Elektrochem. Und Angew. Phys. Chem. 30(21–22), 508–516 (1924). https://doi.org/10.1002/bbpc.192400182
N. Hu, W. Lv, W. Chen, H. Tang, X. Zhang et al., A double-charged organic molecule additive to customize electric double layer for super-stable and deep-rechargeable Zn metal pouch batteries. Adv. Funct. Mater. 34(8), 2311773 (2024). https://doi.org/10.1002/adfm.202311773
J. Zhao, S. Ma, Z. Wang, Q. Gao, H. Xiao et al., Electrolyte-tailored heterostructured zinc metal anodes with tunable electric double layer for fast-cycling aqueous zinc batteries. Adv. Funct. Mater. 34(46), 2405656 (2024). https://doi.org/10.1002/adfm.202405656
X. Shi, J. Xie, F. Yang, F. Wang, D. Zheng et al., Compacting electric double layer enables carbon electrode with ultrahigh Zn ion storage capability. Angew. Chem. Int. Ed. 61(51), e202214773 (2022). https://doi.org/10.1002/anie.202214773
S. Li, J. Zhao, X. Xu, J. Shen, K. Zhang et al., Regulating interfacial behavior via reintegration the Helmholtz layer structure towards ultra-stable and wide-temperature-range aqueous zinc ion batteries. Mater. Today 80, 50–60 (2024). https://doi.org/10.1016/j.mattod.2024.08.003
D.C. Grahame, The electrical double layer and the theory of electrocapillarity. Chem. Rev. 41(3), 441–501 (1947). https://doi.org/10.1021/cr60130a002
J.O. Bockris, M.A.V. Devanathan, K. Müller, On the structure of charged interfaces. In: Electrochemistry. Elsevier, pp. 832–863 (1965). https://doi.org/10.1016/b978-1-4831-9831-6.50068-0
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
J. Zhu, Z. Tie, S. Bi, Z. Niu, Towards more sustainable aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 136(22), e202403712 (2024). https://doi.org/10.1002/ange.202403712
S. Liu, R. Zhang, C. Wang, J. Mao, D. Chao et al., Zinc ion batteries: bridging the gap from academia to industry for grid-scale energy storage. Angew. Chem. Int. Ed. 136(17), e202400045 (2024). https://doi.org/10.1002/ange.202400045
C. Li, S. Jin, L.A. Archer, L.F. Nazar, Toward practical aqueous zinc-ion batteries for electrochemical energy storage. Joule 6(8), 1733–1738 (2022). https://doi.org/10.1016/j.joule.2022.06.002
W. Zhang, M. Dong, K. Jiang, D. Yang, X. Tan et al., Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat. Commun. 13(1), 5348 (2022). https://doi.org/10.1038/s41467-022-32955-0
J.X.K. Zheng, J. Yin, T. Tang, L.A. Archer, Moss-like growth of metal electrodes: on the role of competing faradaic reactions and fast charging. ACS Energy Lett. 8(5), 2113–2121 (2023). https://doi.org/10.1021/acsenergylett.3c00120
L. Jiang, D. Li, X. Xie, D. Ji, L. Li et al., Electric double layer design for Zn-based batteries. Energy Storage Mater. 62, 102932 (2023). https://doi.org/10.1016/j.ensm.2023.102932
Y. Li, B. Ping, J. Qu, J. Ren, C. Lin et al., Constructing autoregulative electric double layer through dielectric effect toward fast charging zinc metal anode. Adv. Energy Mater. 15(21), 2405804 (2025). https://doi.org/10.1002/aenm.202405804
L. Jiang, Y. Ding, L. Li, Y. Tang, P. Zhou et al., Cationic adsorption-induced microlevelling effect: a pathway to dendrite-free zinc anodes. Nano-Micro Lett. 17(1), 202 (2025). https://doi.org/10.1007/s40820-025-01709-0
H. Yang, Y. Yang, W. Yang, G. Wu, R. Zhu, Correlating hydrogen evolution and zinc deposition/dissolution kinetics to the cyclability of metallic zinc electrodes. Energy Environ. Sci. 17(5), 1975–1983 (2024). https://doi.org/10.1039/D3EE04515C
L. Qian, H. Zhu, T. Qin, R. Yao, J. Zhao et al., Ultralow-salt-concentration electrolyte for high-voltage aqueous Zn metal batteries. Adv. Funct. Mater. 33(23), 2301118 (2023). https://doi.org/10.1002/adfm.202301118
A.G. Ilgen, E. Borguet, F.M. Geiger, J.M. Gibbs, V.H. Grassian et al., Bridging molecular-scale interfacial science with continuum-scale models. Nat. Commun. 15(1), 5326 (2024). https://doi.org/10.1038/s41467-024-49598-y
B. Rehl, E. Ma, S. Parshotam, E.L. DeWalt-Kerian, T. Liu et al., Water structure in the electrical double layer and the contributions to the total interfacial potential at different surface charge densities. J. Am. Chem. Soc. 144(36), 16338–16349 (2022). https://doi.org/10.1021/jacs.2c01830
Q. Wang, Z. Qu, D. Tian, Electric double layer theory of interfacial ionic liquids for capturing ion hierarchical aggregation and anisotropic dynamics. Adv. Energy Mater. 15(13), 2402974 (2025). https://doi.org/10.1002/aenm.202402974
J. Luo, L. Xu, Y. Zhou, T. Yan, Y. Shao et al., Regulating the inner Helmholtz plane with a high donor additive for efficient anode reversibility in aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 62(21), e202302302 (2023). https://doi.org/10.1002/anie.202302302
Y. Yang, H. Hua, Z. Lv, M. Zhang, C. Liu et al., Reconstruction of electric double layer for long-life aqueous zinc metal batteries. Adv. Funct. Mater. 33(10), 2212446 (2023). https://doi.org/10.1002/adfm.202212446
M. Zhang, H. Hua, P. Dai, Z. He, L. Han et al., Dynamically interfacial pH-buffering effect enabled by N-methylimidazole molecules as spontaneous proton pumps toward highly reversible zinc-metal anodes. Adv. Mater. 35(15), e2208630 (2023). https://doi.org/10.1002/adma.202208630
Y. Zhu, G. Liang, X. Cui, X. Liu, H. Zhong et al., Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy Environ. Sci. 17(2), 369–385 (2024). https://doi.org/10.1039/d3ee03584k
C. Shuang, L. Zhen, Y. Xia, X. Wu, K. Wang et al., Step-edge guided homoepitaxy enables highly reversible Zn plating/stripping. Angew. Chem. Int. Ed. 64(16), e202501176 (2025). https://doi.org/10.1002/anie.202501176
Z. Chen, J. Zhao, Q. He, M. Li, S. Feng et al., Texture control of commercial Zn foils prolongs their reversibility as aqueous battery anodes. ACS Energy Lett. 7(10), 3564–3571 (2022). https://doi.org/10.1021/acsenergylett.2c01920
C. Yuan, L. Yin, P. Du, Y. Yu, K. Zhang et al., Microgroove-patterned Zn metal anode enables ultra-stable and low-overpotential Zn deposition for long-cycling aqueous batteries. Chem. Eng. J. 442, 136231 (2022). https://doi.org/10.1016/j.cej.2022.136231
C. Yuan, J. Xiao, C. Liu, X. Zhan, Elucidating synergistic mechanisms of an anion–cation electrolyte additive for ultra-stable zinc metal anodes. J. Mater. Chem. A 12(30), 19060–19068 (2024). https://doi.org/10.1039/D4TA03414G
J. Huang, Y. Zhong, H. Fu, Y. Zhao, S. Li et al., Interfacial biomacromolecular engineering toward stable ah-level aqueous zinc batteries. Adv. Mater. 36(33), e2406257 (2024). https://doi.org/10.1002/adma.202406257
Y. Lv, M. Zhao, Y. Du, Y. Kang, Y. Xiao et al., Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries. Energy Environ. Sci. 15(11), 4748–4760 (2022). https://doi.org/10.1039/D2EE02687B
Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120(1), 215–241 (2008). https://doi.org/10.1007/s00214-007-0310-x
F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7(18), 3297–3305 (2005). https://doi.org/10.1039/B508541A
A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113(18), 6378–6396 (2009). https://doi.org/10.1021/jp810292n
T. Lu, Q. Chen, Independent gradient model based on Hirshfeld partition: a new method for visual study of interactions in chemical systems. J. Comput. Chem. 43(8), 539–555 (2022). https://doi.org/10.1002/jcc.26812
J. Zhang, T. Lu, Efficient evaluation of electrostatic potential with computerized optimized code. Phys. Chem. Chem. Phys. 23(36), 20323–20328 (2021). https://doi.org/10.1039/d1cp02805g
T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012). https://doi.org/10.1002/jcc.22885
W. Sun, F. Wang, B. Zhang, M. Zhang, V. Küpers et al., A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 371(6524), 46–51 (2021). https://doi.org/10.1126/science.abb9554
B. Liu, C. Wei, Z. Zhu, Y. Fang, Z. Bian et al., Regulating surface reaction kinetics through ligand field effects for fast and reversible aqueous zinc batteries. Angew. Chem. Int. Ed. 61(44), e202212780 (2022). https://doi.org/10.1002/anie.202212780
M. Gutowski, J.H. Van Lenthe, J. Verbeek, F.B. Van Duijneveldt, G. Chałasinski, The basis set superposition error in correlated electronic structure calculations. Chem. Phys. Lett. 124(4), 370–375 (1986). https://doi.org/10.1016/0009-2614(86)85036-9
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), e2100187 (2021). https://doi.org/10.1002/adma.202100187
M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith et al., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015). https://doi.org/10.1016/j.softx.2015.06.001
S. Izadi, A.V. Onufriev, Accuracy limit of rigid 3-point water models. J. Chem. Phys. 145(7), 074501 (2016). https://doi.org/10.1063/1.4960175
Z. Li, L.F. Song, P. Li, K.M. Merz Jr., Systematic parametrization of divalent metal ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB water models. J. Chem. Theory Comput. 16(7), 4429–4442 (2020). https://doi.org/10.1021/acs.jctc.0c00194
J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field. J. Comput. Chem. 25(9), 1157–1174 (2004). https://doi.org/10.1002/jcc.20035
M. Schauperl, P.S. Nerenberg, H. Jang, L.-P. Wang, C.I. Bayly et al., Non-bonded force field model with advanced restrained electrostatic potential charges (RESP2). Commun. Chem. 3, 44 (2020). https://doi.org/10.1038/s42004-020-0291-4
G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007). https://doi.org/10.1063/1.2408420
H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684–3690 (1984). https://doi.org/10.1063/1.448118
S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81(1), 511–519 (1984). https://doi.org/10.1063/1.447334
W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695–1697 (1985). https://doi.org/10.1103/physreva.31.1695
U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee et al., A smooth p mesh Ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995). https://doi.org/10.1063/1.470117
D.M. York, T.A. Darden, L.G. Pedersen, The effect of long-range electrostatic interactions in simulations of macromolecular crystals: a comparison of the Ewald and truncated list methods. J. Chem. Phys. 99(10), 8345–8348 (1993). https://doi.org/10.1063/1.465608
W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
Q. Wu, M.T. McDowell, Y. Qi, Effect of the electric double layer (EDL) in multicomponent electrolyte reduction and solid electrolyte interphase (SEI) formation in lithium batteries. J. Am. Chem. Soc. 145(4), 2473–2484 (2023). https://doi.org/10.1021/jacs.2c11807
L. Yu, N. Yao, Y.-C. Gao, Z.-H. Fu, B. Jiang et al., Probing the electric double layer structure at nitrogen-doped graphite electrodes by constant-potential molecular dynamics simulations. J. Energy Chem. 93, 299–305 (2024). https://doi.org/10.1016/j.jechem.2024.01.058
Y. Wang, A. Kiziltas, P. Blanchard, T.R. Walsh, Calculation of 1D and 2D densities in VMD: a flexible and easy-to-use code. Comput. Phys. Commun. 266, 108032 (2021). https://doi.org/10.1016/j.cpc.2021.108032
Z. Luo, Y. Xia, S. Chen, X. Wu, E. Akinlabi et al., A homogeneous plating/stripping mode with fine grains for highly reversible Zn anodes. Energy Environ. Sci. 17(18), 6787–6798 (2024). https://doi.org/10.1039/D4EE02264E
S. Yang, A. Chen, Z. Tang, Z. Wu, P. Li et al., Regulating the electrochemical reduction kinetics by the steric hindrance effect for a robust Zn metal anode. Energy Environ. Sci. 17(3), 1095–1106 (2024). https://doi.org/10.1039/D3EE02164E
H. Dou, X. Wu, M. Xu, R. Feng, Q. Ma et al., Steric-hindrance effect tuned ion solvation enabling high performance aqueous zinc ion batteries. Angew. Chem. Int. Ed. 63(21), e202401974 (2024). https://doi.org/10.1002/anie.202401974
Q. Li, A. Chen, D. Wang, Z. Pei, C. Zhi, “Soft shorts” hidden in zinc metal anode research. Joule 6(2), 273–279 (2022). https://doi.org/10.1016/j.joule.2021.12.009
H. Yang, D. Chen, R. Zhao, G. Li, H. Xu et al., Reunderstanding aqueous Zn electrochemistry from interfacial specific adsorption of solvation structures. Energy Environ. Sci. 16(7), 2910–2923 (2023). https://doi.org/10.1039/D3EE00658A
J. Dong, L. Su, H. Peng, D. Wang, H. Zong et al., Spontaneous molecule aggregation for nearly single-ion conducting sol electrolyte to advance aqueous zinc metal batteries: the case of tetraphenylporphyrin. Angew. Chem. Int. Ed. 63(21), e202401441 (2024). https://doi.org/10.1002/anie.202401441
Y. Xia, Z. Hong, L. Zhou, S. Chen, Z. Luo et al., Multiscale simulations of surface adsorption characteristics of amino acids on zinc metal anode. J. Energy Chem. 87, 153–161 (2023). https://doi.org/10.1016/j.jechem.2023.08.002
Z. Luo, Y. Xia, S. Chen, X. Wu, R. Zeng et al., Synergistic “anchor-capture” enabled by amino and carboxyl for constructing robust interface of Zn anode. Nano-Micro Lett. 15(1), 205 (2023). https://doi.org/10.1007/s40820-023-01171-w
Q. Zong, Y. Yu, C. Liu, Q. Zhang, G. Wei et al., Decoupling “cling-cover-capture” triple effects on stable Zn anode/electrolyte interface. ACS Nano 18(40), 27440–27450 (2024). https://doi.org/10.1021/acsnano.4c07803
Q. Zhao, W. Liu, X. Ni, H. Yu, C. Zhang et al., Steering interfacial renovation with highly electronegative Cl modulated trinity effect for exceptional durable zinc anode. Adv. Funct. Mater. 34(41), 2404219 (2024). https://doi.org/10.1002/adfm.202404219
Q. He, G. Fang, Z. Chang, Y. Zhang, S. Zhou et al., Building ultra-stable and low-polarization composite Zn anode interface via hydrated polyzwitterionic electrolyte construction. Nano-Micro Lett. 14(1), 93 (2022). https://doi.org/10.1007/s40820-022-00835-3
Q. Deng, S. You, W. Min, Y. Xu, W. Lin et al., Polymer molecules adsorption-induced zincophilic-hydrophobic protective layer enables highly stable Zn metal anodes. Adv. Mater. 36(16), 2312924 (2024). https://doi.org/10.1002/adma.202312924
Y. Ding, L. Yin, T. Du, Y. Wang, Z. He et al., A trifunctional electrolyte enables aqueous zinc ion batteries with long cycling performance. Adv. Funct. Mater. 34(30), 2314388 (2024). https://doi.org/10.1002/adfm.202314388
X. Wu, Y. Xia, S. Chen, Z. Luo, X. Zhang et al., Boosting the performance of aqueous zinc-ion battery by regulating the electrolyte solvation structure. EcoMat 6(3), e12438 (2024). https://doi.org/10.1002/eom2.12438
K. Bao, M. Wang, Y. Zheng, P. Wang, L. Yang et al., Construction of low dielectric aqueous electrolyte with ethanol for highly stable Zn anode. Nano Energy 120, 109089 (2024). https://doi.org/10.1016/j.nanoen.2023.109089
C. Huang, X. Zhao, S. Liu, Y. Hao, Q. Tang et al., Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 33(38), 2100445 (2021). https://doi.org/10.1002/adma.202100445
H. Zhang, F. Ning, Y. Guo, S. Subhan, X. Liu et al., Unraveling the mechanisms of aqueous zinc ion batteries via first-principles calculations. ACS Energy Lett. 9(10), 4761–4784 (2024). https://doi.org/10.1021/acsenergylett.4c02014
L. Zeng, T. Wu, T. Ye, T. Mo, R. Qiao et al., Modeling galvanostatic charge-discharge of nanoporous supercapacitors. Nat. Comput. Sci. 1(11), 725–731 (2021). https://doi.org/10.1038/s43588-021-00153-5
T. Yan, B. Wu, S. Liu, M. Tao, J. Liang et al., Sieving-type electric double layer with hydrogen bond interlocking to stable zinc metal anode. Angew. Chem. Int. Ed. 63(47), e202411470 (2024). https://doi.org/10.1002/anie.202411470
X. Fang, C. Hu, X. Sun, H. Wang, J. Li, Robust hybrid solid electrolyte interface induced by Zn-poor electric double layer for a highly reversible zinc anode. Adv. Energy Mater. 14(3), 2302499 (2024). https://doi.org/10.1002/aenm.202302499
Z. Hu, F. Zhang, F. Wu, H. Wang, A. Zhou et al., Screening metal cation additives driven by differential capacitance for Zn batteries. Energy Environ. Sci. 17(13), 4794–4802 (2024). https://doi.org/10.1039/D4EE01127A
X. Yu, M. Chen, Z. Li, X. Tan, H. Zhang et al., Unlocking dynamic solvation chemistry and hydrogen evolution mechanism in aqueous zinc batteries. J. Am. Chem. Soc. 146(25), 17103–17113 (2024). https://doi.org/10.1021/jacs.4c02558
H.K. Christenson, DLVO (Derjaguin–Landau–Verwey–Overbeek) theory and solvation forces between mica surfaces in polar and hydrogen-bonding liquids. J. Chem. Soc., Faraday Trans. 1 80(7), 1933 (1984). https://doi.org/10.1039/f19848001933
A.M. Smith, M. Borkovec, G. Trefalt, Forces between solid surfaces in aqueous electrolyte solutions. Adv. Colloid Interface Sci. 275, 102078 (2020). https://doi.org/10.1016/j.cis.2019.102078
S.-Y. Lee, S.-H. Lee, J.-G. Park, Interaction forces between silica ps and wafer surfaces during chemical mechanical planarization of copper. J. Electrochem. Soc. 150(5), G327 (2003). https://doi.org/10.1149/1.1566417
R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13(1), 3252 (2022). https://doi.org/10.1038/s41467-022-30939-8
Z. Tian, W. Guo, Z. Shi, Z. Alhubail, Y. Wang et al., The role of hydrogen bonding in aqueous batteries: correlating molecular-scale interactions with battery performance. ACS Energy Lett. 9(10), 5179–5205 (2024). https://doi.org/10.1021/acsenergylett.4c02281
J. Luo, L. Xu, Y. Yang, S. Huang, Y. Zhou et al., Stable zinc anode solid electrolyte interphase via inner Helmholtz plane engineering. Nat. Commun. 15(1), 6471 (2024). https://doi.org/10.1038/s41467-024-50890-0
L. Ma, T.P. Pollard, Y. Zhang, M.A. Schroeder, M.S. Ding et al., Functionalized phosphonium cations enable zinc metal reversibility in aqueous electrolytes. Angew. Chem. Int. Ed. 60(22), 12438–12445 (2021). https://doi.org/10.1002/anie.202017020
K. Letchworth-Weaver, T.A. Arias, Joint density functional theory of the electrode-electrolyte interface: application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge. Phys. Rev. B 86(7), 075140 (2012). https://doi.org/10.1103/physrevb.86.075140
X. Wang, K. Liu, J. Wu, Demystifying the Stern layer at a metal-electrolyte interface: Local dielectric constant, specific ion adsorption, and partial charge transfer. J. Chem. Phys. 154(12), 124701 (2021). https://doi.org/10.1063/5.0043963
R. Sundararaman, K. Letchworth-Weaver, K.A. Schwarz, D. Gunceler, Y. Ozhabes et al., JDFTx: software for joint density-functional theory. SoftwareX 6, 278–284 (2017). https://doi.org/10.1016/j.softx.2017.10.006
J. Weng, W. Zhu, K. Yu, J. Luo, M. Chen et al., Enhancing Zn-metal anode stability: key effects of electrolyte additives on ion-shield-like electrical double layer and stable solid electrolyte interphase. Adv. Funct. Mater. 34(18), 2314347 (2024). https://doi.org/10.1002/adfm.202314347
H. Yu, D. Chen, Q. Li, C. Yan, Z. Jiang et al., In situ construction of anode–molecule interface via lone-pair electrons in trace organic molecules additives to achieve stable zinc metal anodes. Adv. Energy Mater. 13(22), 2300550 (2023). https://doi.org/10.1002/aenm.202300550
L. Wang, Y. Shao, Z. Fu, X. Zhang, J. Kang et al., Synergistically enhancing the selective adsorption for crystal planes to regulate the (002)-texture preferred Zn deposition via supramolecular host–guest units. Energy Environ. Sci. 18(10), 4859–4871 (2025). https://doi.org/10.1039/d5ee00763a
S.-J. Zhang, J. Hao, D. Luo, P.-F. Zhang, B. Zhang et al., Dual-function electrolyte additive for highly reversible Zn anode. Adv. Energy Mater. 11(37), 2102010 (2021). https://doi.org/10.1002/aenm.202102010
S. Chen, Y. Xia, R. Zeng, Z. Luo, X. Wu et al., Ordered planar plating/stripping enables deep cycling zinc metal batteries. Sci. Adv. 10(10), eadn2265 (2024). https://doi.org/10.1126/sciadv.adn2265
R. Luo, X. Zheng, T. Jiang, D. Shen, M. Wang et al., Reshaping electrical double layer via synergistic dual additives for ah-level zinc battery. Adv. Energy Mater. (2025). https://doi.org/10.1002/aenm.202501658
M. Zhou, X. Luo, H. Li, S. Guo, Z. Tong et al., Interfacial Zn2+-solvation regulator towards reversible and stable Zn anode. J. Energy Chem. 100, 684–692 (2025). https://doi.org/10.1016/j.jechem.2024.08.061
J. Zhang, L.N.Y. Cao, R. Li, J. Yang, L. Li et al., Breaking mass transport limit for hydrogen evolution-inhibited and dendrite-free aqueous Zn batteries. Adv. Mater. 37(1), e2410244 (2025). https://doi.org/10.1002/adma.202410244
F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9(1), 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
X. Dou, X. Xie, S. Liang, G. Fang, Low-current-density stability of vanadium-based cathodes for aqueous zinc-ion batteries. Sci. Bull. 69(6), 833–845 (2024). https://doi.org/10.1016/j.scib.2024.01.029