High-Performance Cu-Based Liquid Thermocells Enabled by Thermosensitive Crystallization and Etched Carbon Cloth Electrode
Corresponding Author: Kuan Sun
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 131
Abstract
Thermocells are garnering increasing attention as a promising thermoelectric technology for harvesting low-grade heat. However, their performance is often limited by the scarcity of high-performance redox couples that possess both high thermopower and rapid redox kinetics. This work addresses this challenge by leveraging our recently developed copper (I/II) (Cu+/Cu2+) redox couple. We significantly enhance the performance of Cu-based liquid thermocells by integrating a thermosensitive crystallization process with etched carbon cloth electrodes, achieving synergistic improvements in thermodynamic and kinetic performance. The thermosensitive crystallization process establishes a persistent Cu2+ concentration gradient, boosting the thermopower from 1.47 to 2.93 mV K−1. Moreover, the etched carbon cloth electrodes provide a larger electroactive surface area and demonstrate a higher current density. Consequently, the optimized Cu+/Cu2+ system achieved an exceptional normalized power density Pmax (ΔT)−2 of 3.97 mW m‒2 K−2. A thermocell module comprised of 20 cells directly power various electronic devices at a temperature difference of 40 K. This work successfully exhibits potential of Cu+/Cu2+ redox couple in thermoelectric conversion and introduces a valuable redox couple for high-performance thermocells.
Highlights:
1 A novel Cu+/Cu2+ redox couple was introduced to enable a thermosensitive crystallization process, significantly enhancing thermopower from 1.47 to 2.93 mV K‒1.
2 A readily fabricated etched carbon cloth electrode offered an enlarged electroactive surface area, demonstrating superior current density through improved kinetics.
3 The optimized Cu+/Cu2+ system, achieved through synergistic enhancements in thermodynamic and kinetic performance, delivered an outstanding normalized power density Pmax (ΔT)‒2 of 3.97 mW m‒2 K‒2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Kou, R. Wang, S. Du, Z. Xu, X. Zhu, Heat pump assists in energy transition: challenges and approaches. DeCarbon 3, 100033 (2024). https://doi.org/10.1016/j.decarb.2023.100033
- L. Hu, H. Zheng, S. Yang, X. Liu, Y.-M. Du et al., Thermal-to-electrical conversion based on salinity gradient driven by evaporation. Small 20(28), e2311129 (2024). https://doi.org/10.1002/smll.202311129
- M. Luberti, R. Gowans, P. Finn, G. Santori, An estimate of the ultralow waste heat available in the European Union. Energy 238, 121967 (2022). https://doi.org/10.1016/j.energy.2021.121967
- C. Forman, I.K. Muritala, R. Pardemann, B. Meyer, Estimating the global waste heat potential. Renew. Sustain. Energy Rev. 57, 1568–1579 (2016). https://doi.org/10.1016/j.rser.2015.12.192
- A. Tarancón, Powering the IoT revolution with heat. Nat. Electron. 2(7), 270–271 (2019). https://doi.org/10.1038/s41928-019-0276-4
- M. Massetti, F. Jiao, A.J. Ferguson, D. Zhao, K. Wijeratne et al., Unconventional thermoelectric materials for energy harvesting and sensing applications. Chem. Rev. 121(20), 12465–12547 (2021). https://doi.org/10.1021/acs.chemrev.1c00218
- Q. Le, H. Cheng, J. Ouyang, Flexible combinatorial ionic/electronic thermoelectric converters to efficiently harvest heat from both temperature gradient and temperature fluctuation. DeCarbon 1, 100003 (2023). https://doi.org/10.1016/j.decarb.2023.100003
- H. Im, T. Kim, H. Song, J. Choi, J.S. Park et al., High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes. Nat. Commun. 7, 10600 (2016). https://doi.org/10.1038/ncomms10600
- J. Duan, G. Feng, B. Yu, J. Li, M. Chen et al., Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nat. Commun. 9(1), 5146 (2018). https://doi.org/10.1038/s41467-018-07625-9
- G. Li, D. Dong, G. Hong, L. Yan, X. Zhang et al., High-efficiency cryo-thermocells assembled with anisotropic holey graphene aerogel electrodes and a eutectic redox electrolyte. Adv. Mater. 31(25), 1901403 (2019). https://doi.org/10.1002/adma.201901403
- Y. Liu, Q. Zhang, G.O. Odunmbaku, Y. He, Y. Zheng et al., Solvent effect on the seebeck coefficient of Fe2+/Fe3+ hydrogel thermogalvanic cells. J. Mater. Chem. A 10(37), 19690–19698 (2022). https://doi.org/10.1039/d1ta10508f
- Y. Chen, Q. Huang, T.-H. Liu, X. Qian, R. Yang, Effect of solvation shell structure on thermopower of liquid redox pairs. EcoMat 5(9), e12385 (2023). https://doi.org/10.1002/eom2.12385
- B. Yu, H. Xiao, Y. Zeng, S. Liu, D. Wu et al., Cost-effective n-type thermocells enabled by thermosensitive crystallizations and 3D multi-structured electrodes. Nano Energy 93, 106795 (2022). https://doi.org/10.1016/j.nanoen.2021.106795
- I. Burmistrov, N. Kovyneva, N. Gorshkov, A. Gorokhovsky, A. Durakov et al., Development of new electrode materials for thermo-electrochemical cells for waste heat harvesting. Renew. Energy Focus 29, 42–48 (2019). https://doi.org/10.1016/j.ref.2019.02.003
- Y. Han, J. Zhang, R. Hu, D. Xu, High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting. Sci. Adv. 8(7), eabl5318 (2022). https://doi.org/10.1126/sciadv.abl5318
- J. Duan, B. Yu, K. Liu, J. Li, P. Yang et al., P–N conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting. Nano Energy 57, 473–479 (2019). https://doi.org/10.1016/j.nanoen.2018.12.073
- W. Fang, H. Luo, I. Mwamburi Mwakitawa, F. Yuan, X. Lin et al., Boosting thermogalvanic cell performance through synergistic redox and thermogalvanic corrosion. Chemsuschem 18(5), e202401749 (2025). https://doi.org/10.1002/cssc.202401749
- B. Guo, Y. Hoshino, F. Gao, K. Hayashi, Y. Miura et al., Thermocells driven by phase transition of hydrogel nanops. J. Am. Chem. Soc. 142(41), 17318–17322 (2020). https://doi.org/10.1021/jacs.0c08600
- Y. Liu, M. Cui, W. Ling, L. Cheng, H. Lei et al., Thermo-electrochemical cells for heat to electricity conversion: from mechanisms, materials, strategies to applications. Energy Environ. Sci. 15(9), 3670–3687 (2022). https://doi.org/10.1039/d2ee01457b
- J. Duan, B. Yu, L. Huang, B. Hu, M. Xu et al., Liquid-state thermocells: opportunities and challenges for low-grade heat harvesting. Joule 5(4), 768–779 (2021). https://doi.org/10.1016/j.joule.2021.02.009
- H. Zhou, T. Yamada, N. Kimizuka, Supramolecular thermo-electrochemical cells: enhanced thermoelectric performance by host–guest complexation and salt-induced crystallization. J. Am. Chem. Soc. 138(33), 10502–10507 (2016). https://doi.org/10.1021/jacs.6b04923
- P. Peng, J. Zhou, L. Liang, X. Huang, H. Lv et al., Regulating thermogalvanic effect and mechanical robustness via redox ions for flexible quasi-solid-state thermocells. Nano-Micro Lett. 14(1), 81 (2022). https://doi.org/10.1007/s40820-022-00824-6
- X. Lu, D. Xie, K. Zhu, S. Wei, Z. Mo et al., Swift assembly of adaptive thermocell arrays for device-level healable and energy-autonomous motion sensors. Nano-Micro Lett. 15(1), 196 (2023). https://doi.org/10.1007/s40820-023-01170-x
- B. Xie, Z. Chen, H. Li, Z. Liu, M. Li et al., Stratified triphasic thermocells with boosted thermopower enabled by entropy-concentration dual regulation strategy. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202519934
- Z. Liu, D. Wu, S. Wei, K. Xing, M. Li et al., MXene hollow microsphere-boosted nanocomposite electrodes for thermocells with enhanced thermal energy harvesting capability. ACS Nano 19(3), 3392–3402 (2025). https://doi.org/10.1021/acsnano.4c12294
- L. Zhang, T. Kim, N. Li, T.J. Kang, J. Chen et al., High power density electrochemical thermocells for inexpensively harvesting low-grade thermal energy. Adv. Mater. 29(12), 1605652 (2017). https://doi.org/10.1002/adma.201605652
- S. Wei, J. Ma, D. Wu, B. Chen, C. Du et al., Constructing flexible film electrode with porous layered structure by MXene/SWCNTs/PANI ternary composite for efficient low-grade thermal energy harvest. Adv. Funct. Mater. 33(13), 2209806 (2023). https://doi.org/10.1002/adfm.202209806
- B. Yu, J. Duan, H. Cong, W. Xie, R. Liu et al., Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science 370(6514), 342–346 (2020). https://doi.org/10.1126/science.abd6749
- J.H. Kim, Y. Han, G. Shin, J.G. Jeon, H.J. Kim et al., Separation-free planar interconnection for thermo-electrochemical cells. ACS Appl. Energy Mater. 5(10), 13053–13061 (2022). https://doi.org/10.1021/acsaem.2c02778
- X. Yu, Z. Shen, G. Qian, G. Lu, H. Liu et al., Synergistic improvement of Seebeck coefficient and power density of an aqueous thermocell using natural convection for low-grade heat utilization. Appl. Therm. Eng. 231, 121004 (2023). https://doi.org/10.1016/j.applthermaleng.2023.121004
- R. Hu, B.A. Cola, N. Haram, J.N. Barisci, S. Lee et al., Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett. 10(3), 838–846 (2010). https://doi.org/10.1021/nl903267n
- M.S. Romano, N. Li, D. Antiohos, J.M. Razal, A. Nattestad et al., Carbon nanotube—reduced graphene oxide composites for thermal energy harvesting applications. Adv. Mater. 25(45), 6602–6606 (2013). https://doi.org/10.1002/adma.201303295
- K. Kim, S. Hwang, H. Lee, Unravelling ionic speciation and hydration structure of Fe(III/II) redox couples for thermoelectrochemical cells. Electrochim. Acta 335, 135651 (2020). https://doi.org/10.1016/j.electacta.2020.135651
- M.A. Buckingham, F. Marken, L. Aldous, The thermoelectrochemistry of the aqueous iron(II)/iron(III) redox couple: significance of the anion and pH in thermogalvanic thermal-to-electrical energy conversion. Sustain. Energy Fuels 2(12), 2717–2726 (2018). https://doi.org/10.1039/c8se00416a
- S.-M. Jung, S.-Y. Kang, B.-J. Lee, J. Lee, J. Kwon et al., Fe─N─C electrocatalyst for enhancing Fe(II)/Fe(III) redox kinetics in thermo-electrochemical cells. Adv. Funct. Mater. 33(45), 2304067 (2023). https://doi.org/10.1002/adfm.202304067
- T. Kim, J.S. Lee, G. Lee, H. Yoon, J. Yoon et al., High thermopower of ferri/ferrocyanide redox couple in organic-water solutions. Nano Energy 31, 160–167 (2017). https://doi.org/10.1016/j.nanoen.2016.11.014
- K. Laws, M.A. Buckingham, M. Farleigh, M. Ma, L. Aldous, High seebeck coefficient thermogalvanic cells via the solvent-sensitive charge additivity of cobalt 1, 8-diaminosarcophagine. Chem. Commun. 59(16), 2323–2326 (2023). https://doi.org/10.1039/d2cc05413b
- M. He, Z. Wang, D. Xiang, D. Sun, Y.K. Chan et al., A H₂S-evolving alternately-catalytic enzyme bio-heterojunction with antibacterial and macrophage-reprogramming activity for all-stage infectious wound regeneration. Adv. Mater. 36(35), e2405659 (2024). https://doi.org/10.1002/adma.202405659
- R.S. Vilela, T.L. Oliveira, F.T. Martins, J.A. Ellena, F. Lloret et al., Synthesis, crystal structure and magnetic properties of the helical oxalate-bridged copper(II) chain{[(CH3)4N] 2 [Cu(C2O4)2] · H2O}n. Comptes Rendus Chim. 15(10), 856–865 (2012). https://doi.org/10.1016/j.crci.2012.04.006
- R.G. Pearson, Hard and soft acids and bases. J. Am. Chem. Soc. 85(22), 3533–3539 (1963). https://doi.org/10.1021/ja00905a001
- T.-L. Ho, Hard soft acids bases (HSAB) principle and organic chemistry. Chem. Rev. 75(1), 1–20 (1975). https://doi.org/10.1021/cr60293a001
- R. Duhlev, I.D. Brown, C. Balarew, Divalent metal halide double salts in equilibrium with their aqueous solutions I. Factors determining their composition. J. Solid State Chem. 95(1), 39–50 (1991). https://doi.org/10.1016/0022-4596(91)90374-Q
- M. Uchikoshi, Determination of the distribution of cupric chloro-complexes in hydrochloric acid solutions at 298K. J. Solut. Chem. 46(3), 704–719 (2017). https://doi.org/10.1007/s10953-017-0597-8
- J. Sohr, H. Schmidt, W. Voigt, Higher hydrates of lithium chloride, lithium bromide and lithium iodide. Acta Crystallogr. C Struct. Chem. 74(Pt 2), 194–202 (2018). https://doi.org/10.1107/S2053229618001183
- K. Hyeon, K. June, Diffusion and current generation in porous electrodes for thermo-electrochemical cells. ACS Appl. Mater. Interfaces 11(32), 28894–28899 (2019). https://doi.org/10.1021/acsami.9b08381
- L. Hwan, Y. Jung, K. Hyeon, Y. Jae, K. June, Stacked double-walled carbon nanotube sheet electrodes for electrochemically harvesting thermal energy. Carbon 147, 559–565 (2019). https://doi.org/10.1016/j.carbon.2019.03.033
- W. Li, C. Gao, J. Ma, J. Qiu, S. Wang, Simultaneous enhancement of thermopower and ionic conductivity for N-type Fe(III/II) thermocell. Mater. Today Energy 30, 101147 (2022). https://doi.org/10.1016/j.mtener.2022.101147
- L.Y. Yang, H.Z. Li, L.Z. Cheng, S.T. Li, J. Liu et al., A three-dimensional surface modified carbon cloth designed as flexible current collector for high-performance lithium and sodium batteries. J. Alloys Compd. 726, 837–845 (2017). https://doi.org/10.1016/j.jallcom.2017.08.054
- S. Pang, L. Lin, Y. Shen, S. Chen, W. Chen et al., Surface activated commercial carbon cloth as superior electrodes for symmetric supercapacitors. Mater. Lett. 315, 131985 (2022). https://doi.org/10.1016/j.matlet.2022.131985
- X. Li, D. Lou, H. Wang, X. Sun, J. Li et al., Flexible supercapacitor based on organohydrogel electrolyte with long-term anti-freezing and anti-drying property. Adv. Funct. Mater. 30(52), 2007291 (2020). https://doi.org/10.1002/adfm.202007291
- C. Qiu, L. Jiang, Y. Gao, L. Sheng, Effects of oxygen-containing functional groups on carbon materials in supercapacitors: a review. Mater. Des. 230, 111952 (2023). https://doi.org/10.1016/j.matdes.2023.111952
- J. Sun, C. Hu, Z. Liu, H. Liu, J. Qu, Surface charge and hydrophilicity improvement of graphene membranes via modification of pore surface oxygen-containing groups to enhance permeability and selectivity. Carbon 145, 140–148 (2019). https://doi.org/10.1016/j.carbon.2018.12.098
- Z. Zhang, J. Xi, H. Zhou, X. Qiu, KOH etched graphite felt with improved wettability and activity for vanadium flow batteries. Electrochim. Acta 218, 15–23 (2016). https://doi.org/10.1016/j.electacta.2016.09.099
- P. Zhu, Y. Zhao, Effects of electrochemical reaction and surface morphology on electroactive surface area of porous copper manufactured by lost carbonate sintering. RSC Adv. 7(42), 26392–26400 (2017). https://doi.org/10.1039/c7ra04204c
- P. Papakonstantinou, R. Kern, L. Robinson, H. Murphy, J. Irvine et al., Fundamental electrochemical properties of carbon nanotube electrodes. Fullerenes Nanotubes Carbon Nanostruct. 13(2), 91–108 (2005). https://doi.org/10.1081/FST-200050684
- S. Wang, Y. Li, M. Yu, Q. Li, H. Li et al., High-performance cryo-temperature ionic thermoelectric liquid cell developed through a eutectic solvent strategy. Nat. Commun. 15(1), 1172 (2024). https://doi.org/10.1038/s41467-024-45432-7
- T.J. Abraham, D.R. MacFarlane, J.M. Pringle, High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting. Energy Environ. Sci. 6(9), 2639–2645 (2013). https://doi.org/10.1039/c3ee41608a
- P.F. Salazar, S.T. Stephens, A.H. Kazim, J.M. Pringle, B.A. Cola, Enhanced thermo-electrochemical power using carbon nanotube additives in ionic liquid redox electrolytes. J. Mater. Chem. A 2(48), 20676–20682 (2014). https://doi.org/10.1039/c4ta04749d
- A.M. Bates, B. Zickel, S. Krebs, S. Mukherjee, N.D. Schuppert et al., Analytical study and experimental validation of copper II sulfate and potassium ferri/ferrocyanide thermocells using Onsager flux equations. J. Energy Resour. Technol. 139(4), 042003 (2017). https://doi.org/10.1115/1.4036045
- M. Wu, S. Hao, L. Qi, Y. Shi, W. Yang et al., An N-type thermogalvanic cell with a high temperature coefficient based on the Cu/Cu(en)22+ redox couple. ACS Appl. Mater. Interfaces 17(18), 26775–26783 (2025). https://doi.org/10.1021/acsami.5c03375
- H. Wang, X. Zhuang, W. Xie, H. Jin, R. Liu et al., Thermosensitive-CsI3-crystal-driven high-power I−/I3− thermocells. Cell Rep. Phys. Sci. 3(3), 100737 (2022). https://doi.org/10.1016/j.xcrp.2022.100737
References
X. Kou, R. Wang, S. Du, Z. Xu, X. Zhu, Heat pump assists in energy transition: challenges and approaches. DeCarbon 3, 100033 (2024). https://doi.org/10.1016/j.decarb.2023.100033
L. Hu, H. Zheng, S. Yang, X. Liu, Y.-M. Du et al., Thermal-to-electrical conversion based on salinity gradient driven by evaporation. Small 20(28), e2311129 (2024). https://doi.org/10.1002/smll.202311129
M. Luberti, R. Gowans, P. Finn, G. Santori, An estimate of the ultralow waste heat available in the European Union. Energy 238, 121967 (2022). https://doi.org/10.1016/j.energy.2021.121967
C. Forman, I.K. Muritala, R. Pardemann, B. Meyer, Estimating the global waste heat potential. Renew. Sustain. Energy Rev. 57, 1568–1579 (2016). https://doi.org/10.1016/j.rser.2015.12.192
A. Tarancón, Powering the IoT revolution with heat. Nat. Electron. 2(7), 270–271 (2019). https://doi.org/10.1038/s41928-019-0276-4
M. Massetti, F. Jiao, A.J. Ferguson, D. Zhao, K. Wijeratne et al., Unconventional thermoelectric materials for energy harvesting and sensing applications. Chem. Rev. 121(20), 12465–12547 (2021). https://doi.org/10.1021/acs.chemrev.1c00218
Q. Le, H. Cheng, J. Ouyang, Flexible combinatorial ionic/electronic thermoelectric converters to efficiently harvest heat from both temperature gradient and temperature fluctuation. DeCarbon 1, 100003 (2023). https://doi.org/10.1016/j.decarb.2023.100003
H. Im, T. Kim, H. Song, J. Choi, J.S. Park et al., High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes. Nat. Commun. 7, 10600 (2016). https://doi.org/10.1038/ncomms10600
J. Duan, G. Feng, B. Yu, J. Li, M. Chen et al., Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nat. Commun. 9(1), 5146 (2018). https://doi.org/10.1038/s41467-018-07625-9
G. Li, D. Dong, G. Hong, L. Yan, X. Zhang et al., High-efficiency cryo-thermocells assembled with anisotropic holey graphene aerogel electrodes and a eutectic redox electrolyte. Adv. Mater. 31(25), 1901403 (2019). https://doi.org/10.1002/adma.201901403
Y. Liu, Q. Zhang, G.O. Odunmbaku, Y. He, Y. Zheng et al., Solvent effect on the seebeck coefficient of Fe2+/Fe3+ hydrogel thermogalvanic cells. J. Mater. Chem. A 10(37), 19690–19698 (2022). https://doi.org/10.1039/d1ta10508f
Y. Chen, Q. Huang, T.-H. Liu, X. Qian, R. Yang, Effect of solvation shell structure on thermopower of liquid redox pairs. EcoMat 5(9), e12385 (2023). https://doi.org/10.1002/eom2.12385
B. Yu, H. Xiao, Y. Zeng, S. Liu, D. Wu et al., Cost-effective n-type thermocells enabled by thermosensitive crystallizations and 3D multi-structured electrodes. Nano Energy 93, 106795 (2022). https://doi.org/10.1016/j.nanoen.2021.106795
I. Burmistrov, N. Kovyneva, N. Gorshkov, A. Gorokhovsky, A. Durakov et al., Development of new electrode materials for thermo-electrochemical cells for waste heat harvesting. Renew. Energy Focus 29, 42–48 (2019). https://doi.org/10.1016/j.ref.2019.02.003
Y. Han, J. Zhang, R. Hu, D. Xu, High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting. Sci. Adv. 8(7), eabl5318 (2022). https://doi.org/10.1126/sciadv.abl5318
J. Duan, B. Yu, K. Liu, J. Li, P. Yang et al., P–N conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting. Nano Energy 57, 473–479 (2019). https://doi.org/10.1016/j.nanoen.2018.12.073
W. Fang, H. Luo, I. Mwamburi Mwakitawa, F. Yuan, X. Lin et al., Boosting thermogalvanic cell performance through synergistic redox and thermogalvanic corrosion. Chemsuschem 18(5), e202401749 (2025). https://doi.org/10.1002/cssc.202401749
B. Guo, Y. Hoshino, F. Gao, K. Hayashi, Y. Miura et al., Thermocells driven by phase transition of hydrogel nanops. J. Am. Chem. Soc. 142(41), 17318–17322 (2020). https://doi.org/10.1021/jacs.0c08600
Y. Liu, M. Cui, W. Ling, L. Cheng, H. Lei et al., Thermo-electrochemical cells for heat to electricity conversion: from mechanisms, materials, strategies to applications. Energy Environ. Sci. 15(9), 3670–3687 (2022). https://doi.org/10.1039/d2ee01457b
J. Duan, B. Yu, L. Huang, B. Hu, M. Xu et al., Liquid-state thermocells: opportunities and challenges for low-grade heat harvesting. Joule 5(4), 768–779 (2021). https://doi.org/10.1016/j.joule.2021.02.009
H. Zhou, T. Yamada, N. Kimizuka, Supramolecular thermo-electrochemical cells: enhanced thermoelectric performance by host–guest complexation and salt-induced crystallization. J. Am. Chem. Soc. 138(33), 10502–10507 (2016). https://doi.org/10.1021/jacs.6b04923
P. Peng, J. Zhou, L. Liang, X. Huang, H. Lv et al., Regulating thermogalvanic effect and mechanical robustness via redox ions for flexible quasi-solid-state thermocells. Nano-Micro Lett. 14(1), 81 (2022). https://doi.org/10.1007/s40820-022-00824-6
X. Lu, D. Xie, K. Zhu, S. Wei, Z. Mo et al., Swift assembly of adaptive thermocell arrays for device-level healable and energy-autonomous motion sensors. Nano-Micro Lett. 15(1), 196 (2023). https://doi.org/10.1007/s40820-023-01170-x
B. Xie, Z. Chen, H. Li, Z. Liu, M. Li et al., Stratified triphasic thermocells with boosted thermopower enabled by entropy-concentration dual regulation strategy. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202519934
Z. Liu, D. Wu, S. Wei, K. Xing, M. Li et al., MXene hollow microsphere-boosted nanocomposite electrodes for thermocells with enhanced thermal energy harvesting capability. ACS Nano 19(3), 3392–3402 (2025). https://doi.org/10.1021/acsnano.4c12294
L. Zhang, T. Kim, N. Li, T.J. Kang, J. Chen et al., High power density electrochemical thermocells for inexpensively harvesting low-grade thermal energy. Adv. Mater. 29(12), 1605652 (2017). https://doi.org/10.1002/adma.201605652
S. Wei, J. Ma, D. Wu, B. Chen, C. Du et al., Constructing flexible film electrode with porous layered structure by MXene/SWCNTs/PANI ternary composite for efficient low-grade thermal energy harvest. Adv. Funct. Mater. 33(13), 2209806 (2023). https://doi.org/10.1002/adfm.202209806
B. Yu, J. Duan, H. Cong, W. Xie, R. Liu et al., Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science 370(6514), 342–346 (2020). https://doi.org/10.1126/science.abd6749
J.H. Kim, Y. Han, G. Shin, J.G. Jeon, H.J. Kim et al., Separation-free planar interconnection for thermo-electrochemical cells. ACS Appl. Energy Mater. 5(10), 13053–13061 (2022). https://doi.org/10.1021/acsaem.2c02778
X. Yu, Z. Shen, G. Qian, G. Lu, H. Liu et al., Synergistic improvement of Seebeck coefficient and power density of an aqueous thermocell using natural convection for low-grade heat utilization. Appl. Therm. Eng. 231, 121004 (2023). https://doi.org/10.1016/j.applthermaleng.2023.121004
R. Hu, B.A. Cola, N. Haram, J.N. Barisci, S. Lee et al., Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett. 10(3), 838–846 (2010). https://doi.org/10.1021/nl903267n
M.S. Romano, N. Li, D. Antiohos, J.M. Razal, A. Nattestad et al., Carbon nanotube—reduced graphene oxide composites for thermal energy harvesting applications. Adv. Mater. 25(45), 6602–6606 (2013). https://doi.org/10.1002/adma.201303295
K. Kim, S. Hwang, H. Lee, Unravelling ionic speciation and hydration structure of Fe(III/II) redox couples for thermoelectrochemical cells. Electrochim. Acta 335, 135651 (2020). https://doi.org/10.1016/j.electacta.2020.135651
M.A. Buckingham, F. Marken, L. Aldous, The thermoelectrochemistry of the aqueous iron(II)/iron(III) redox couple: significance of the anion and pH in thermogalvanic thermal-to-electrical energy conversion. Sustain. Energy Fuels 2(12), 2717–2726 (2018). https://doi.org/10.1039/c8se00416a
S.-M. Jung, S.-Y. Kang, B.-J. Lee, J. Lee, J. Kwon et al., Fe─N─C electrocatalyst for enhancing Fe(II)/Fe(III) redox kinetics in thermo-electrochemical cells. Adv. Funct. Mater. 33(45), 2304067 (2023). https://doi.org/10.1002/adfm.202304067
T. Kim, J.S. Lee, G. Lee, H. Yoon, J. Yoon et al., High thermopower of ferri/ferrocyanide redox couple in organic-water solutions. Nano Energy 31, 160–167 (2017). https://doi.org/10.1016/j.nanoen.2016.11.014
K. Laws, M.A. Buckingham, M. Farleigh, M. Ma, L. Aldous, High seebeck coefficient thermogalvanic cells via the solvent-sensitive charge additivity of cobalt 1, 8-diaminosarcophagine. Chem. Commun. 59(16), 2323–2326 (2023). https://doi.org/10.1039/d2cc05413b
M. He, Z. Wang, D. Xiang, D. Sun, Y.K. Chan et al., A H₂S-evolving alternately-catalytic enzyme bio-heterojunction with antibacterial and macrophage-reprogramming activity for all-stage infectious wound regeneration. Adv. Mater. 36(35), e2405659 (2024). https://doi.org/10.1002/adma.202405659
R.S. Vilela, T.L. Oliveira, F.T. Martins, J.A. Ellena, F. Lloret et al., Synthesis, crystal structure and magnetic properties of the helical oxalate-bridged copper(II) chain{[(CH3)4N] 2 [Cu(C2O4)2] · H2O}n. Comptes Rendus Chim. 15(10), 856–865 (2012). https://doi.org/10.1016/j.crci.2012.04.006
R.G. Pearson, Hard and soft acids and bases. J. Am. Chem. Soc. 85(22), 3533–3539 (1963). https://doi.org/10.1021/ja00905a001
T.-L. Ho, Hard soft acids bases (HSAB) principle and organic chemistry. Chem. Rev. 75(1), 1–20 (1975). https://doi.org/10.1021/cr60293a001
R. Duhlev, I.D. Brown, C. Balarew, Divalent metal halide double salts in equilibrium with their aqueous solutions I. Factors determining their composition. J. Solid State Chem. 95(1), 39–50 (1991). https://doi.org/10.1016/0022-4596(91)90374-Q
M. Uchikoshi, Determination of the distribution of cupric chloro-complexes in hydrochloric acid solutions at 298K. J. Solut. Chem. 46(3), 704–719 (2017). https://doi.org/10.1007/s10953-017-0597-8
J. Sohr, H. Schmidt, W. Voigt, Higher hydrates of lithium chloride, lithium bromide and lithium iodide. Acta Crystallogr. C Struct. Chem. 74(Pt 2), 194–202 (2018). https://doi.org/10.1107/S2053229618001183
K. Hyeon, K. June, Diffusion and current generation in porous electrodes for thermo-electrochemical cells. ACS Appl. Mater. Interfaces 11(32), 28894–28899 (2019). https://doi.org/10.1021/acsami.9b08381
L. Hwan, Y. Jung, K. Hyeon, Y. Jae, K. June, Stacked double-walled carbon nanotube sheet electrodes for electrochemically harvesting thermal energy. Carbon 147, 559–565 (2019). https://doi.org/10.1016/j.carbon.2019.03.033
W. Li, C. Gao, J. Ma, J. Qiu, S. Wang, Simultaneous enhancement of thermopower and ionic conductivity for N-type Fe(III/II) thermocell. Mater. Today Energy 30, 101147 (2022). https://doi.org/10.1016/j.mtener.2022.101147
L.Y. Yang, H.Z. Li, L.Z. Cheng, S.T. Li, J. Liu et al., A three-dimensional surface modified carbon cloth designed as flexible current collector for high-performance lithium and sodium batteries. J. Alloys Compd. 726, 837–845 (2017). https://doi.org/10.1016/j.jallcom.2017.08.054
S. Pang, L. Lin, Y. Shen, S. Chen, W. Chen et al., Surface activated commercial carbon cloth as superior electrodes for symmetric supercapacitors. Mater. Lett. 315, 131985 (2022). https://doi.org/10.1016/j.matlet.2022.131985
X. Li, D. Lou, H. Wang, X. Sun, J. Li et al., Flexible supercapacitor based on organohydrogel electrolyte with long-term anti-freezing and anti-drying property. Adv. Funct. Mater. 30(52), 2007291 (2020). https://doi.org/10.1002/adfm.202007291
C. Qiu, L. Jiang, Y. Gao, L. Sheng, Effects of oxygen-containing functional groups on carbon materials in supercapacitors: a review. Mater. Des. 230, 111952 (2023). https://doi.org/10.1016/j.matdes.2023.111952
J. Sun, C. Hu, Z. Liu, H. Liu, J. Qu, Surface charge and hydrophilicity improvement of graphene membranes via modification of pore surface oxygen-containing groups to enhance permeability and selectivity. Carbon 145, 140–148 (2019). https://doi.org/10.1016/j.carbon.2018.12.098
Z. Zhang, J. Xi, H. Zhou, X. Qiu, KOH etched graphite felt with improved wettability and activity for vanadium flow batteries. Electrochim. Acta 218, 15–23 (2016). https://doi.org/10.1016/j.electacta.2016.09.099
P. Zhu, Y. Zhao, Effects of electrochemical reaction and surface morphology on electroactive surface area of porous copper manufactured by lost carbonate sintering. RSC Adv. 7(42), 26392–26400 (2017). https://doi.org/10.1039/c7ra04204c
P. Papakonstantinou, R. Kern, L. Robinson, H. Murphy, J. Irvine et al., Fundamental electrochemical properties of carbon nanotube electrodes. Fullerenes Nanotubes Carbon Nanostruct. 13(2), 91–108 (2005). https://doi.org/10.1081/FST-200050684
S. Wang, Y. Li, M. Yu, Q. Li, H. Li et al., High-performance cryo-temperature ionic thermoelectric liquid cell developed through a eutectic solvent strategy. Nat. Commun. 15(1), 1172 (2024). https://doi.org/10.1038/s41467-024-45432-7
T.J. Abraham, D.R. MacFarlane, J.M. Pringle, High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting. Energy Environ. Sci. 6(9), 2639–2645 (2013). https://doi.org/10.1039/c3ee41608a
P.F. Salazar, S.T. Stephens, A.H. Kazim, J.M. Pringle, B.A. Cola, Enhanced thermo-electrochemical power using carbon nanotube additives in ionic liquid redox electrolytes. J. Mater. Chem. A 2(48), 20676–20682 (2014). https://doi.org/10.1039/c4ta04749d
A.M. Bates, B. Zickel, S. Krebs, S. Mukherjee, N.D. Schuppert et al., Analytical study and experimental validation of copper II sulfate and potassium ferri/ferrocyanide thermocells using Onsager flux equations. J. Energy Resour. Technol. 139(4), 042003 (2017). https://doi.org/10.1115/1.4036045
M. Wu, S. Hao, L. Qi, Y. Shi, W. Yang et al., An N-type thermogalvanic cell with a high temperature coefficient based on the Cu/Cu(en)22+ redox couple. ACS Appl. Mater. Interfaces 17(18), 26775–26783 (2025). https://doi.org/10.1021/acsami.5c03375
H. Wang, X. Zhuang, W. Xie, H. Jin, R. Liu et al., Thermosensitive-CsI3-crystal-driven high-power I−/I3− thermocells. Cell Rep. Phys. Sci. 3(3), 100737 (2022). https://doi.org/10.1016/j.xcrp.2022.100737