Hydrogel Electrolytes for Zinc-Ion Batteries: Materials Design, Functional Strategies, and Future Perspectives
Corresponding Author: Jianhui Qiu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 139
Abstract
With the escalating demand for safe, sustainable, and high-performance energy storage systems, hydrogel electrolytes have emerged as promising alternatives to conventional liquid electrolytes in zinc-ion batteries. By integrating the high ionic conductivity of liquid electrolytes with the mechanical robustness of solid frameworks, hydrogel electrolytes offer distinct advantages in suppressing zinc dendrite formation, enhancing interfacial stability, and enabling reliable operation under extreme environmental conditions. This review systematically summarizes the fundamental characteristics and design criteria of hydrogel electrolytes, including mechanical flexibility, ionic transport capabilities, and environmental adaptability. It further explores various compositional design strategies involving natural polymers, synthetic polymers, and composite systems, as well as the incorporation of electrolyte salts and functional additives. In addition, recent advances in functional optimization, such as anti-freezing properties, self-healing abilities, thermal responsiveness, and biocompatibility, are comprehensively discussed. Finally, the review outlines the current challenges and proposes potential directions for future research.
Highlights:
1 Provides a comprehensive overview of the fundamental properties and structural components of hydrogel electrolytes, systematically summarizing key material elements and performance tuning strategies.
2 Focuses on the functional characteristics of hydrogel electrolytes, outlining mechanisms for enhanced performance and adaptability across diverse application scenarios.
3 Analyzes the core challenges currently facing hydrogel electrolytes and proposes future development pathways centered on green, safe, and multifunctional integrated optimization.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Liu, Z.L. Wang, K. Fukuda, T. Someya, Flexible self-charging power sources. Nat. Rev. Mater. 7(11), 870–886 (2022). https://doi.org/10.1038/s41578-022-00441-0
- S. Yao, P. Swetha, Y. Zhu, Nanomaterial-enabled wearable sensors for healthcare. Adv. Healthc. Mater. 7(1), 1700889 (2018). https://doi.org/10.1002/adhm.201700889
- Y. Nie, Y. Zhou, Y. Zhang, D. Sun, D. Wu et al., Sustainable synthesis of functional materials assisted by deep eutectic solvents for biomedical, environmental, and energy applications. Adv. Funct. Mater. 35(19), 2418957 (2025). https://doi.org/10.1002/adfm.202418957
- S. Passerini, L. Barelli, M. Baumann, J. Peters, M. Weil et al., Emerging Battery Technologies to Boost the Clean Energy Transition: Cost, Sustainability, and Performance Analysis (Springer, Cham, 2024), pp.29–52. https://doi.org/10.1007/978-3-031-48359-2
- F. Zhang, T. Liao, Q. Zhou, J. Bai, X. Li et al., Advancements in ion regulation strategies for enhancing the performance of aqueous Zn-ion batteries. Mater. Sci. Eng. R. Rep. 165, 101012 (2025). https://doi.org/10.1016/j.mser.2025.101012
- L. Li, S. Jia, S. Yue, C. Wang, H. Qiu et al., Hydrogel-stabilized zinc ion batteries: progress and outlook. Green Chem. 26(11), 6404–6422 (2024). https://doi.org/10.1039/d4gc01465k
- Y. Mu, L. Yang, Y. Feng, H. Gu, Z. Zou et al., Achieving superior critical current density and rate performance in solid-state lithium batteries via vertically aligned LATP arrays. Nano Energy 138, 110885 (2025). https://doi.org/10.1016/j.nanoen.2025.110885
- J. Zeng, H. Chen, L. Dong, X. Guo, Anti-polyelectrolyte effect of zwitterionic hydrogel electrolytes enabling high-voltage zinc-ion hybrid capacitors. Adv. Funct. Mater. 34(21), 2314651 (2024). https://doi.org/10.1002/adfm.202314651
- Z.-C. Zhang, Y.-B. Mu, L.-J. Xiao, X.-Y. Wei, M.-S. Han et al., Advancements in manganese-based cathodes for aqueous zinc-ion batteries: challenges and optimization strategies. cMat 2(1), e70000 (2025). https://doi.org/10.1002/cmt2.70000
- L. Wang, J. Guan, N. Li, J. Li, T. Duan et al., Amine-functionalized MIL-125 separator and MOF-derived carbon host for high-performance aqueous zinc-iodine batteries. Adv. Energy Mater. (2025). https://doi.org/10.1002/aenm.202504201
- T. Xue, Y. Mu, X. Wei, Z. Zhou, Y. Zhou et al., From fundamentals to practice: electrolyte strategies for zinc-ion batteries in extreme temperature. Carbon Neutr. 4(1), e183 (2025). https://doi.org/10.1002/cnl2.183
- H. Yan, X. Zhang, Z. Yang, M. Xia, C. Xu et al., Insight into the electrolyte strategies for aqueous zinc ion batteries. Coord. Chem. Rev. 452, 214297 (2022). https://doi.org/10.1016/j.ccr.2021.214297
- Y. Sun, L.-N. Song, X.-Y. Du, S. Liang, Y. Wang et al., In situ copolymerizing ZrO2 with hydrogel electrolytes toward high-rate and long-life quasi-solid-state Zn–ion batteries. Adv. Energy Mater. 15(21), 2404944 (2025). https://doi.org/10.1002/aenm.202404944
- D. Xu, Y. Wang, H. Tian, Y. Chen, X. Tian et al., Dynamic cross-linking network construction of flexible hydrogel electrolyte enabling dendrite-free zinc anode. Adv. Energy Mater. 15(31), 2502217 (2025). https://doi.org/10.1002/aenm.202502217
- J.-L. Yang, J. Li, J.-W. Zhao, K. Liu, P. Yang et al., Stable zinc anodes enabled by a zincophilic polyanionic hydrogel layer. Adv. Mater. 34(27), e2202382 (2022). https://doi.org/10.1002/adma.202202382
- M. Li, C. Xi, X. Wang, L. Li, Y. Xiao et al., Spontaneous desaturation of the solvation sheath for high-performance anti-freezing zinc-ion gel-electrolyte. Small 19(35), e2301569 (2023). https://doi.org/10.1002/smll.202301569
- T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan et al., Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ. Sci. 13(12), 4625–4665 (2020). https://doi.org/10.1039/d0ee02620d
- B. Niu, J. Wang, Y. Guo, Z. Li, C. Yuan et al., Polymers for aqueous zinc-ion batteries: from fundamental to applications across core components. Adv. Energy Mater. 14(12), 2303967 (2024). https://doi.org/10.1002/aenm.202303967
- X. Wei, Y. Mu, J. Chen, Y. Zhou, Y. Chu et al., Optimizing Zn (100) deposition via crystal plane shielding effect towards ultra-high rate and stable zinc anode. Energy Storage Mater. 75, 104026 (2025). https://doi.org/10.1016/j.ensm.2025.104026
- Z. Zhang, R. Zhang, Y. Gao, Y. Gao, F. Jia et al., Dendrite-free zinc anode enabled by zwitterionic organic hydrogel electrolytes for high-voltage zinc-ion hybrid capacitors. Chem. Eng. J. 484, 149759 (2024). https://doi.org/10.1016/j.cej.2024.149759
- Y. Gu, X. Zheng, Z. Zhou, G. Chen, S. Chen et al., Amphiphilic ionic liquid hydrogel electrolytes with high ionic conductivity towards dendrite-free ultra-stable aqueous zinc ion batteries. J. Energy Storage 89, 111892 (2024). https://doi.org/10.1016/j.est.2024.111892
- Z.-J. Chen, T.-Y. Shen, M.-H. Zhang, X. Xiao, H.-Q. Wang et al., Tough, anti-fatigue, self-adhesive, and anti-freezing hydrogel electrolytes for dendrite-free flexible zinc ion batteries and strain sensors. Adv. Funct. Mater. 34(26), 2314864 (2024). https://doi.org/10.1002/adfm.202314864
- Y. Zhou, Y. Zhang, Y. Nie, D. Sun, D. Wu et al., Recent advances and perspectives in functional chitosan-based composites for environmental remediation, energy, and biomedical applications. Prog. Mater. Sci. 152, 101460 (2025). https://doi.org/10.1016/j.pmatsci.2025.101460
- J. Liu, J. Long, Z. Shen, X. Jin, T. Han et al., A self-healing flexible quasi-solid zinc-ion battery using all-In-one electrodes. Adv. Sci. 8(8), 2004689 (2021). https://doi.org/10.1002/advs.202004689
- X. Li, D. Wang, F. Ran, Key approaches and challenges in fabricating advanced flexible zinc-ion batteries with functional hydrogel electrolytes. Energy Storage Mater. 56, 351–393 (2023). https://doi.org/10.1016/j.ensm.2023.01.034
- B. Zhang, X. Cai, J. Li, H. Zhang, D. Li et al., Biocompatible and stable quasi-solid-state zinc-ion batteries for real-time responsive wireless wearable electronics. Energy Environ. Sci. 17(11), 3878–3887 (2024). https://doi.org/10.1039/d4ee01212g
- J. Li, H. Zhang, Z. Liu, H. Du, H. Wan et al., Boosting dendrite-free zinc anode with strongly polar functional group terminated hydrogel electrolyte for high-safe aqueous zinc-ion batteries. Adv. Funct. Mater. 35(2), 2412865 (2025). https://doi.org/10.1002/adfm.202412865
- H. Ge, X. Xie, X. Xie, B. Zhang, S. Li et al., Critical challenges and solutions: quasi-solid-state electrolytes for zinc-based batteries. Energy Environ. Sci. 17(10), 3270–3306 (2024). https://doi.org/10.1039/d4ee00357h
- Z. Wang, H. Li, Z. Tang, Z. Liu, Z. Ruan et al., Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 28(48), 1804560 (2018). https://doi.org/10.1002/adfm.201804560
- Y. Wang, Y. Jia, C. Li, H. Cui, R. Zhang et al., Progress in developing polymer electrolytes for advanced Zn batteries. Small Methods 9(8), 2500031 (2025). https://doi.org/10.1002/smtd.202500031
- J. Li, P. Yu, S. Zhang, Z. Wen, Y. Wen et al., Mild synthesis of superadhesive hydrogel electrolyte with low interfacial resistance and enhanced ionic conductivity for flexible zinc ion battery. J. Colloid Interface Sci. 600, 586–593 (2021). https://doi.org/10.1016/j.jcis.2021.05.023
- A.C. Radjendirane, S. Ramasamy, S.P. Rajendra, G. Murali, I. In et al., Mechanically endurable Ti3C2Tx MXene incorporated P(AM-AA) hybrid hydrogel electrolyte with enhanced Zn2+ conductivity for flexible zinc-ion batteries. Electrochim. Acta 531, 146368 (2025). https://doi.org/10.1016/j.electacta.2025.146368
- H. Peng, D. Wang, F. Zhang, L. Yang, X. Jiang et al., Improvements and challenges of hydrogel polymer electrolytes for advanced zinc anodes in aqueous zinc-ion batteries. ACS Nano 18(33), 21779–21803 (2024). https://doi.org/10.1021/acsnano.4c06502
- R. Zhu, H. Yang, W. Cui, L. Fadillah, T. Huang et al., High strength hydrogels enable dendrite-free Zn metal anodes and high-capacity Zn–MnO2 batteries via a modified mechanical suppression effect. J. Mater. Chem. A 10(6), 3122–3133 (2022). https://doi.org/10.1039/d1ta10079c
- W. Li, F. Gao, X. Wang, N. Zhang, M. Ma, Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew. Chem. Int. Ed. 55(32), 9196–9201 (2016). https://doi.org/10.1002/anie.201603417
- J. Hüttl, C. Seidl, H. Auer, K. Nikolowski, A.L. Görne et al., Ultra-low LPS/LLZO interfacial resistance–towards stable hybrid solid-state batteries with Li-metal anodes. Energy Storage Mater. 40, 259–267 (2021). https://doi.org/10.1016/j.ensm.2021.05.020
- J.-Y. Sun, X. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh et al., Highly stretchable and tough hydrogels. Nature 489(7414), 133–136 (2012). https://doi.org/10.1038/nature11409
- M. Sun, G. Ji, M. Li, J. Zheng, A robust hydrogel electrolyte with ultrahigh ion transference number derived from zincophilic “chain-gear” network structure for dendrite-free aqueous zinc ion battery. Adv. Funct. Mater. 34(37), 2402004 (2024). https://doi.org/10.1002/adfm.202402004
- Y. Zhang, G. Wen, J. Zhang, Y. Qin, W. Cui et al., A lignocellulose-based hydrogel polymer electrolytes with high conductivity and stability for rechargeable flexible zinc-air batteries. J. Energy Storage 95, 112644 (2024). https://doi.org/10.1016/j.est.2024.112644
- J. Yang, C. Weng, P. Sun, Y. Yin, M. Xu et al., Comprehensive regulation strategies for gel electrolytes in aqueous zinc-ion batteries. Coord. Chem. Rev. 530, 216475 (2025). https://doi.org/10.1016/j.ccr.2025.216475
- Z. Li, J. Fu, X. Zhou, S. Gui, L. Wei et al., Ionic conduction in polymer-based solid electrolytes. Adv. Sci. 10(10), 2201718 (2023). https://doi.org/10.1002/advs.202201718
- X. Xie, Z. Wang, S. He, K. Chen, Q. Huang et al., Influencing factors on Li-ion conductivity and interfacial stability of solid polymer electrolytes, exampled by polycarbonates, polyoxalates and polymalonates. Angew. Chem. Int. Ed. 62(13), e202218229 (2023). https://doi.org/10.1002/anie.202218229
- J. Yu, M. Li, X. Kong, T. Wang, H. Zhang et al., Polyanion hydrogel electrolyte with a high Zn2+ transference number for dendrite-free aqueous zinc-ion batteries. J. Mater. Chem. A 13(21), 16182–16192 (2025). https://doi.org/10.1039/d5ta00819k
- D. Lin, Y. Lin, R. Pan, J. Li, A. Zhu et al., Water-restrained hydrogel electrolytes with repulsion-driven cationic express pathways for durable zinc-ion batteries. Nano-Micro Lett. 17(1), 193 (2025). https://doi.org/10.1007/s40820-025-01704-5
- M. Sun, G. Ji, J. Zheng, A hydrogel electrolyte with ultrahigh ionic conductivity and transference number benefit from Zn2+ “highways” for dendrite-free Zn–MnO2 battery. Chem. Eng. J. 463, 142535 (2023). https://doi.org/10.1016/j.cej.2023.142535
- M. Cheng, D. Li, J. Cao, T. Sun, Q. Sun et al., “Anions-in-colloid” hydrated deep eutectic electrolyte for high reversible zinc metal anodes. Angew. Chem. Int. Ed. 63(42), e202410210 (2024). https://doi.org/10.1002/anie.202410210
- T. Xue, Y. Mu, Z. Zhang, J. Guan, J. Qiu et al., Enhanced zinc deposition and dendrite suppression in aqueous zinc-ion batteries via citric acid-aspartame electrolyte additives. Adv. Energy Mater. 15(26), 2500674 (2025). https://doi.org/10.1002/aenm.202500674
- R. Qin, Y. Wang, M. Zhang, Y. Wang, S. Ding et al., Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 80, 105478 (2021). https://doi.org/10.1016/j.nanoen.2020.105478
- K. Zhang, S. Xie, J. Liang, Z. Zheng, Y. Li et al., Functional ultrathin separators enabling stable zinc anodes for lean-electrolyte zinc-ion batteries. J. Membr. Sci. 722, 123876 (2025). https://doi.org/10.1016/j.memsci.2025.123876
- Q. Zheng, L. Liu, Z. Hu, Z. Tang, H. Lu et al., Altering the Zn2+ migration mechanism enables the composite hydrogel electrolytes with high Zn2+ conduction and superior anti-dehydration. Adv. Funct. Mater. 35(35), 2504782 (2025). https://doi.org/10.1002/adfm.202504782
- Z. Xiang, Y. Li, X. Cheng, C. Yang, K.-P. Wang et al., Lean-water hydrogel electrolyte with improved ion conductivity for dendrite-free zinc-ion batteries. Chem. Eng. J. 490, 151524 (2024). https://doi.org/10.1016/j.cej.2024.151524
- S. Cui, W. Miao, X. Wang, K. Sun, H. Peng et al., Multifunctional zincophilic hydrogel electrolyte with abundant hydrogen bonds for zinc-ion capacitors and supercapacitors. ACS Nano 18(19), 12355–12366 (2024). https://doi.org/10.1021/acsnano.4c01304
- Z.-J. Chen, T.-Y. Shen, X. Xiao, X.-C. He, Y.-L. Luo et al., An ultrahigh-modulus hydrogel electrolyte for dendrite-free zinc ion batteries. Adv. Mater. 36(52), e2413268 (2024). https://doi.org/10.1002/adma.202413268
- L. Hong, X. Wu, Y.-S. Liu, C. Yu, Y. Liu et al., Self-adapting and self-healing hydrogel interface with fast Zn2+ transport kinetics for highly reversible Zn anodes. Adv. Funct. Mater. 33(29), 2300952 (2023). https://doi.org/10.1002/adfm.202300952
- K. Yan, Y. Fan, F. Hu, G. Li, X. Yang et al., A “polymer-in-salt” solid electrolyte enabled by fast phase transition route for stable Zn batteries. Adv. Funct. Mater. 34(2), 2307740 (2024). https://doi.org/10.1002/adfm.202307740
- X. Wang, X. Li, H. Fan, L. Ma, Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 14(1), 205 (2022). https://doi.org/10.1007/s40820-022-00939-w
- C.-J. Lee, H. Wu, Y. Hu, M. Young, H. Wang et al., Ionic conductivity of polyelectrolyte hydrogels. ACS Appl. Mater. Interfaces 10(6), 5845–5852 (2018). https://doi.org/10.1021/acsami.7b15934
- M.-Y. Zhou, X.-Q. Ding, L.-P. Hou, J. Xie, B.-Q. Li et al., Protocol for quantitative nuclear magnetic resonance for deciphering electrolyte decomposition reactions in anode-free batteries. STAR Protoc. 3(4), 101867 (2022). https://doi.org/10.1016/j.xpro.2022.101867
- Y. Li, X. Wei, F. Jiang, Y. Wang, M. Xie et al., An ultrastretchable and highly conductive hydrogel electrolyte for all-in-one flexible supercapacitor with extreme tensile resistance. Energy Environ. Mater. 8(2), e12820 (2025). https://doi.org/10.1002/eem2.12820
- Q. Liu, Z. Yu, Q. Zhuang, J.-K. Kim, F. Kang et al., Anti-fatigue hydrogel electrolyte for all-flexible Zn-ion batteries. Adv. Mater. 35(36), e2300498 (2023). https://doi.org/10.1002/adma.202300498
- W. Ling, F. Mo, J. Wang, Q. Liu, Y. Liu et al., Self-healable hydrogel electrolyte for dendrite-free and self-healable zinc-based aqueous batteries. Mater. Today Phys. 20, 100458 (2021). https://doi.org/10.1016/j.mtphys.2021.100458
- C.-Y. Li, J.-L. Wang, D.-T. Zhang, M.-P. Li, H. Chen et al., In-situ physical/chemical cross-linked hydrogel electrolyte achieving ultra-stable zinc anode-electrolyte interface towards dendrite-free zinc ion battery. J. Energy Chem. 97, 342–351 (2024). https://doi.org/10.1016/j.jechem.2024.05.049
- Y. Wang, L. Yang, P. Xu, L. Liu, S. Li et al., An electrochemically initiated self-limiting hydrogel electrolyte for dendrite-free zinc anode. Small 20(12), e2307446 (2024). https://doi.org/10.1002/smll.202307446
- B. Peng, Q. Lyu, M. Li, S. Du, J. Zhu et al., Phase-separated polyzwitterionic hydrogels with tunable sponge-like structures for stable solar steam generation. Adv. Funct. Mater. 33(18), 2214045 (2023). https://doi.org/10.1002/adfm.202214045
- N. Wang, H. Liu, M. Sun, X. Ren, L. Hu et al., Achieving wide-temperature-range sustainable zinc-ion batteries via magnesium-doped cathodes and gel electrolytes. ACS Sustain. Chem. Eng. 12(9), 3527–3537 (2024). https://doi.org/10.1021/acssuschemeng.3c06291
- F. Mo, H. Li, Z. Pei, G. Liang, L. Ma et al., A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes. Sci. Bull. 63(16), 1077–1086 (2018). https://doi.org/10.1016/j.scib.2018.06.019
- Q. Nian, X. Zhang, Y. Feng, S. Liu, T. Sun et al., Designing electrolyte structure to suppress hydrogen evolution reaction in aqueous batteries. ACS Energy Lett. 6(6), 2174–2180 (2021). https://doi.org/10.1021/acsenergylett.1c00833
- Y. Tan, R. Liao, Y. Mu, L. Dong, X. Chen et al., Hierarchically-structured and mechanically-robust hydrogel electrolytes for flexible zinc-iodine batteries. Adv. Funct. Mater. 34(45), 2407050 (2024). https://doi.org/10.1002/adfm.202407050
- J. Zhang, C. Lin, L. Zeng, H. Lin, L. He et al., A hydrogel electrolyte with high adaptability over a wide temperature range and mechanical stress for long-life flexible zinc-ion batteries. Small 20(30), 2312116 (2024). https://doi.org/10.1002/smll.202312116
- Y. Yan, S. Duan, B. Liu, S. Wu, Y. Alsaid et al., Tough hydrogel electrolytes for anti-freezing zinc-ion batteries. Adv. Mater. 35(18), e2211673 (2023). https://doi.org/10.1002/adma.202211673
- Z. Shen, Y. Liu, Z. Li, Z. Tang, J. Pu et al., Highly-entangled hydrogel electrolyte for fast charging/discharging properties in aqueous zinc ion batteries. Adv. Funct. Mater. 35(21), 2406620 (2025). https://doi.org/10.1002/adfm.202406620
- Y. Wang, Q. Li, H. Hong, S. Yang, R. Zhang et al., Lean-water hydrogel electrolyte for zinc ion batteries. Nat. Commun. 14(1), 3890 (2023). https://doi.org/10.1038/s41467-023-39634-8
- A. Wang, W. Zhou, A. Huang, M. Chen, Q. Tian et al., Developing improved electrolytes for aqueous zinc-ion batteries to achieve excellent cyclability and antifreezing ability. J. Colloid Interface Sci. 586, 362–370 (2021). https://doi.org/10.1016/j.jcis.2020.10.099
- Y. Liu, A. Gao, J. Hao, X. Li, J. Ling et al., Soaking-free and self-healing hydrogel for wearable zinc-ion batteries. Chem. Eng. J. 452, 139605 (2023). https://doi.org/10.1016/j.cej.2022.139605
- M. Wu, C. Qiao, P.-F. Sui, J.-L. Luo, Z. Li et al., Stratum corneum-inspired zwitterionic hydrogels with intrinsic water retention and anti-freezing properties for intelligent flexible sensors. Adv. Funct. Mater. 35(31), 2422755 (2025). https://doi.org/10.1002/adfm.202422755
- C. Lu, H. Jiang, X. Cheng, J. He, Y. Long et al., High-performance fibre battery with polymer gel electrolyte. Nature 629(8010), 86–91 (2024). https://doi.org/10.1038/s41586-024-07343-x
- M. Sun, Z. Wang, J. Jiang, X. Wang, C. Yu, Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chin. Chem. Lett. 35(5), 109393 (2024). https://doi.org/10.1016/j.cclet.2023.109393
- X. Cheng, J. Pan, Y. Zhao, M. Liao, H. Peng, Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater. 8(7), 1702184 (2018). https://doi.org/10.1002/aenm.201702184
- X. Xu, J. Pei, Y. Xu, J. Wang, Soil organic carbon depletion in global Mollisols regions and restoration by management practices: a review. J. Soils Sediments 20(3), 1173–1181 (2020). https://doi.org/10.1007/s11368-019-02557-3
- K.Y. Lee, D.J. Mooney, Hydrogels for tissue engineering. Chem. Rev. 101(7), 1869–1880 (2001). https://doi.org/10.1021/cr000108x
- E. Armelin, M.M. Pérez-Madrigal, C. Alemán, D.D. Díaz, Current status and challenges of biohydrogels for applications as supercapacitors and secondary batteries. J. Mater. Chem. A 4(23), 8952–8968 (2016). https://doi.org/10.1039/c6ta01846g
- T. Xu, K. Liu, N. Sheng, M. Zhang, W. Liu et al., Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater. 48, 244–262 (2022). https://doi.org/10.1016/j.ensm.2022.03.013
- H. Ge, L. Qin, B. Zhang, L. Jiang, Y. Tang et al., An ionically cross-linked composite hydrogel electrolyte based on natural biomacromolecules for sustainable zinc-ion batteries. Nanoscale Horiz. 9(9), 1514–1521 (2024). https://doi.org/10.1039/d4nh00243a
- M. Wu, Y. Zhang, L. Xu, C. Yang, M. Hong et al., A sustainable chitosan-zinc electrolyte for high-rate zinc-metal batteries. Matter 5(10), 3402–3416 (2022). https://doi.org/10.1016/j.matt.2022.07.015
- H. Xia, W. Zhang, C. Miao, H. Chen, C. Yi et al., Ultra-thin amphiphilic hydrogel electrolyte for flexible zinc-ion paper batteries. Energy Environ. Sci. 17(18), 6507–6520 (2024). https://doi.org/10.1039/d4ee01993h
- X. Zhou, S. Huang, L. Gao, Z. Zhang, Q. Wang et al., Molecular bridging induced anti-salting-out effect enabling high ionic conductive ZnSO4-based hydrogel for quasi-solid-state zinc ion batteries. Angew. Chem. Int. Ed. 63(44), e202410434 (2024). https://doi.org/10.1002/anie.202410434
- W. Zeng, S. Zhang, J. Lan, Y. Lv, G. Zhu et al., Double network gel electrolyte with high ionic conductivity and mechanical strength for zinc-ion batteries. ACS Nano 18(38), 26391–26400 (2024). https://doi.org/10.1021/acsnano.4c09879
- C. Yang, T. Yin, Z. Suo, Polyacrylamide hydrogels. I. Network imperfection. J. Mech. Phys. Solids 131, 43–55 (2019). https://doi.org/10.1016/j.jmps.2019.06.018
- Y. Mu, Y. Zhou, Y. Chu, X. Wei, H. Gu et al., Robust piezoelectric-derived bilayer solid electrolyte interphase for Zn anodes operating from-60 to 60 °C. ACS Nano 19(14), 14161–14176 (2025). https://doi.org/10.1021/acsnano.5c00178
- R. Wu, S. Yang, R. Wang, Y. Guo, P. Du, Pullulan enhanced dual-network hydrogel electrolyte for high-performance flexible zinc-ion batteries. Chem. Eng. J. 509, 161223 (2025). https://doi.org/10.1016/j.cej.2025.161223
- M. Zhang, J.-H. Li, Y. Tang, D.-W. Wang, H. Hu et al., Selective Zn-ion channels enabled by a double-network protective layer for stable zinc anode. Energy Storage Mater. 65, 103113 (2024). https://doi.org/10.1016/j.ensm.2023.103113
- A. Somteds, P. Tayraukham, P. Pipattanachaiyanan, W. Kao-ian, S. Wannapaiboon et al., CO2-derived polymeric double-network hydrogel electrolyte for zinc-ion batteries. ACS Sustain. Chem. Eng. 13(26), 9974–9986 (2025). https://doi.org/10.1021/acssuschemeng.5c01749
- K. Wang, X. Zhang, C. Li, X. Sun, Q. Meng et al., Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance. Adv. Mater. 27(45), 7451–7457 (2015). https://doi.org/10.1002/adma.201503543
- G. Li, Z. Zhao, S. Zhang, L. Sun, M. Li et al., A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery. Nat. Commun. 14(1), 6526 (2023). https://doi.org/10.1038/s41467-023-42333-z
- W. Cai, X. Zhang, G. Li, L. Chen, Tailoring codirectional Zn2+ pathways with biomaterials for advanced hydrogel electrolytes in high-performance zinc metal batteries. Chem. Eng. J. 484, 149390 (2024). https://doi.org/10.1016/j.cej.2024.149390
- H. Tan, C. Meng, H. Chen, J.-L. Yang, J.-M. Cao et al., Breaking the ice: Hofmeister effect-inspired hydrogen bond network reconstruction in hydrogel electrolytes for high-performance zinc-ion batteries. Small 21(7), 2410746 (2025). https://doi.org/10.1002/smll.202410746
- Z. Li, G. Zhou, L. Ye, J. He, W. Xu et al., High-energy and dendrite-free solid-state zinc metal battery enabled by a dual-network and water-confinement hydrogel electrolyte. Chem. Eng. J. 472, 144992 (2023). https://doi.org/10.1016/j.cej.2023.144992
- P. Zou, R. Lin, T.P. Pollard, L. Yao, E. Hu et al., Localized hydrophobicity in aqueous zinc electrolytes improves zinc metal reversibility. Nano Lett. 22(18), 7535–7544 (2022). https://doi.org/10.1021/acs.nanolett.2c02514
- Y. Tang, C. Liu, H. Zhu, X. Xie, J. Gao et al., Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 27, 109–116 (2020). https://doi.org/10.1016/j.ensm.2020.01.023
- H. Ye, J.J. Xu, Zinc ion conducting polymer electrolytes based on oligomeric polyether/PVDF-HFP blends. J. Power. Sources 165(2), 500–508 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.042
- Y. Liu, H. Li, X. Wang, T. Lv, K. Dong et al., Flexible supercapacitors with high capacitance retention at temperatures from − 20 to 100 °C based on DMSO-doped polymer hydrogel electrolytes. J. Mater. Chem. A 9(20), 12051–12059 (2021). https://doi.org/10.1039/d1ta02397g
- J. Li, A. Azizi, S. Zhou, S. Liu, C. Han et al., Hydrogel polymer electrolytes toward better zinc-ion batteries: a comprehensive review. eScience 5(2), 100294 (2025). https://doi.org/10.1016/j.esci.2024.100294
- Z. Li, S. Ganapathy, Y. Xu, Z. Zhou, M. Sarilar et al., Mechanistic insight into the electrochemical performance of Zn/VO2 batteries with an aqueous ZnSO4 electrolyte. Adv. Energy Mater. 9(22), 1900237 (2019). https://doi.org/10.1002/aenm.201900237
- Y. Mu, Z. Liao, Y. Chu, Q. Zhang, L. Zou et al., Electron acceptor-driven solid electrolyte interphases with elevated LiF content for 4.7 V lithium metal batteries. Nano-Micro Lett. 17(1), 163 (2025). https://doi.org/10.1007/s40820-025-01663-x
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- X. Shi, Y. Zhong, Y. Yang, J. Zhou, X. Cao et al., Anion-anchored polymer-in-salt solid electrolyte for high-performance zinc batteries. Angew. Chem. Int. Ed. 64(2), e202414777 (2025). https://doi.org/10.1002/anie.202414777
- X. Zhao, B. Yang, Q. Xue, X. Yan, Fatty acid methyl ester ethoxylate additive for enhancing high-temperature aqueous zinc-ion battery performance. J. Chem. Phys. 162(13), 134706 (2025). https://doi.org/10.1063/5.0265189
- X. Dong, X. Ge, W. Chen, S. Li, Z. Xing et al., Ultra-stable zinc-ion hybrid capacitors empowered by hydrogel electrolyte programmed with chain-additive approach. Chem. Eng. J. 505, 159686 (2025). https://doi.org/10.1016/j.cej.2025.159686
- M. Liu, L. Zhang, J. Rostami, T. Zhang, K. Matthews et al., Tough MXene-cellulose nanofibril ionotronic dual-network hydrogel films for stable zinc anodes. ACS Nano 19(13), 13399–13413 (2025). https://doi.org/10.1021/acsnano.5c01497
- S. Ganguly, S. Puravankara, Sustainable, dendrite-suppressing, and robust citric acid cross-linked carboxymethyl cellulose-based quasi solid-state electrolyte for zinc-ion batteries. J. Power. Sources 642, 237005 (2025). https://doi.org/10.1016/j.jpowsour.2025.237005
- C. Wang, J. Jiao, J. Dai, L. Yu, Q. Chen et al., A functional hydrogel electrolyte doped with graphene oxide enabling ultra-long lifespan zinc metal batteries by inducing oriented deposition. J. Mater. Sci. Technol. 191, 209–219 (2024). https://doi.org/10.1016/j.jmst.2023.12.043
- Z. Zhang, Q. Liu, L. Xiao, L. Zang, X. Yu et al., Auricularia-like V2O5 anchored on NiTi alloy wire for quasi-solid-state fibrous zinc-ion batteries with shape memory function. J. Alloys Compd. 981, 173698 (2024). https://doi.org/10.1016/j.jallcom.2024.173698
- L. Xiao, Y. Li, Q. Chen, J. Li, F. Qin et al., Cauliflower-like polypyrrole@stainless steel yarn electrode for fibrous zinc-ion hybrid supercapacitor. J. Mater. Sci. Mater. Electron. 36(10), 574 (2025). https://doi.org/10.1007/s10854-025-14657-7
- J. Yang, Z. Xu, J. Wang, L. Gai, X. Ji et al., Antifreezing zwitterionic hydrogel electrolyte with high conductivity of 12.6 mS cm−1 at − 40 °C through hydrated lithium ion hopping migration. Adv. Funct. Mater. 31(18), 2009438 (2021). https://doi.org/10.1002/adfm.202009438
- S. Huang, L. Hou, T. Li, Y. Jiao, P. Wu, Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 34(14), 2110140 (2022). https://doi.org/10.1002/adma.202110140
- J. Zeng, H. Chen, L. Dong, L. Wei, X. Guo, Designing of zwitterionic proline hydrogel electrolytes for anti-freezing supercapacitors. J. Colloid Interface Sci. 652(Pt A), 856–865 (2023). https://doi.org/10.1016/j.jcis.2023.08.037
- M. Chen, J. Chen, W. Zhou, X. Han, Y. Yao et al., Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn–MnO2 batteries. Adv. Mater. 33(9), 2007559 (2021). https://doi.org/10.1002/adma.202007559
- J. Guan, Y. Mu, X. Wei, L. Yang, Z. Chen et al., Ternary gel electrolyte enabling wide-temperature and high-rate performance in aqueous zinc-ion batteries. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202508306
- Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11(1), 4463 (2020). https://doi.org/10.1038/s41467-020-18284-0
- C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. 14(1), 98 (2022). https://doi.org/10.1007/s40820-022-00836-2
- J. Wang, Y. Huang, B. Liu, Z. Li, J. Zhang et al., Flexible and anti-freezing zinc-ion batteries using a guar-gum/sodium-alginate/ethylene-glycol hydrogel electrolyte. Energy Storage Mater. 41, 599–605 (2021). https://doi.org/10.1016/j.ensm.2021.06.034
- K. Yan, Y. Fan, X. Yang, X. Wang, S. Chen et al., A single ion conductive “plasticine-like” solid electrolyte combined with a modulated d-band center of interfacial zinc atoms for highly reversible zinc metal anodes. Energy Environ. Sci. 18(11), 5333–5346 (2025). https://doi.org/10.1039/d5ee00737b
- R. Wang, M. Yao, S. Huang, J. Tian, Z. Niu, An anti-freezing and anti-drying multifunctional gel electrolyte for flexible aqueous zinc-ion batteries. Sci. China Mater. 65(8), 2189–2196 (2022). https://doi.org/10.1007/s40843-021-1924-2
- J. Ju, T. Zhang, H. Wang, Y. Liu, Y. Zhang et al., Nanofiber-reinforced composite hydrogel with flexibility and anti-freezing for high-performance zinc-ion batteries. Chem. Eng. J. 521, 166983 (2025). https://doi.org/10.1016/j.cej.2025.166983
- Y. Deng, Y. Wu, L. Wang, K. Zhang, Y. Wang et al., Polysaccharide hydrogel electrolytes with robust interfacial contact to electrodes for quasi-solid state flexible aqueous zinc ion batteries with efficient suppressing of dendrite growth. J. Colloid Interface Sci. 633, 142–154 (2023). https://doi.org/10.1016/j.jcis.2022.11.086
- X. Zhu, C. Ji, Q. Meng, H. Mi, Q. Yang et al., Freeze-tolerant hydrogel electrolyte with high strength for stable operation of flexible zinc-ion hybrid supercapacitors. Small 18(16), e2200055 (2022). https://doi.org/10.1002/smll.202200055
- Z. Wang, R. Xue, H. Zhang, Y. Zhang, X. Tang et al., A hydrogel electrolyte toward a flexible zinc-ion battery and multifunctional health monitoring electronics. ACS Nano 18(10), 7596–7609 (2024). https://doi.org/10.1021/acsnano.4c00085
- M. Zhang, Y. Wang, E.H. Ang, L. Yang, Y. Zheng et al., Hydrogel electrolyte with ultrahigh water-locking capability for quasi-solid zinc-ion batteries with extreme environmental safety. Small Methods (2025). https://doi.org/10.1002/smtd.202500576
- S. Huang, S. He, Y. Li, S. Wang, X. Hou, Hydrogen bond acceptor lined hydrogel electrolyte toward dendrite-free aqueous Zn ion batteries with low temperature adaptability. Chem. Eng. J. 464, 142607 (2023). https://doi.org/10.1016/j.cej.2023.142607
- J. Du, X. Zhan, Y. Xu, K. Diao, D. Zhang et al., High-performance zinc-ion hydrogel electrolytes based on molecular-level hybridization of PVA with polymer quantum dots. J. Mater. Sci. Technol. 212, 251–258 (2025). https://doi.org/10.1016/j.jmst.2024.06.023
- H. Wang, J. Liu, J. Wang, M. Hu, Y. Feng et al., Concentrated hydrogel electrolyte-enabled aqueous rechargeable NiCo// Zn battery working from −20 to 50 °C. ACS Appl. Mater. Interfaces 11(1), 49–55 (2019). https://doi.org/10.1021/acsami.8b18003
- L. Yang, L. Song, Y. Feng, M. Cao, P. Zhang et al., Zinc ion trapping in a cellulose hydrogel as a solid electrolyte for a safe and flexible supercapacitor. J. Mater. Chem. A 8(25), 12314–12318 (2020). https://doi.org/10.1039/d0ta04360e
- Y. Shi, R. Wang, S. Bi, M. Yang, L. Liu et al., An anti-freezing hydrogel electrolyte for flexible zinc-ion batteries operating at − 70 °C. Adv. Funct. Mater. 33(24), 2214546 (2023). https://doi.org/10.1002/adfm.202214546
- M. Zhu, X. Wang, H. Tang, J. Wang, Q. Hao et al., Antifreezing hydrogel with high zinc reversibility for flexible and durable aqueous batteries by cooperative hydrated cations. Adv. Funct. Mater. 30(6), 1907218 (2020). https://doi.org/10.1002/adfm.201907218
- Y. Liu, X. Zhou, Y. Bai, R. Liu, X. Li et al., Engineering integrated structure for high-performance flexible zinc-ion batteries. Chem. Eng. J. 417, 127955 (2021). https://doi.org/10.1016/j.cej.2020.127955
- C. Yuan, X. Zhong, P. Tian, Z. Wang, G. Gao et al., Antifreezing zwitterionic-based hydrogel electrolyte for aqueous Zn ion batteries. ACS Appl. Energy Mater. 5(6), 7530–7537 (2022). https://doi.org/10.1021/acsaem.2c01008
- Q. Su, S. Huang, J. Liao, D. Song, W. Yuan et al., A flame retardant and flexible gel polymer electrolytes for high temperature lithium metal batteries. J. Electroanal. Chem. 945, 117712 (2023). https://doi.org/10.1016/j.jelechem.2023.117712
- S. Chen, P. Sun, J. Humphreys, P. Zou, M. Zhang et al., Acetate-based ‘oversaturated gel electrolyte’ enabling highly stable aqueous Zn–MnO2 battery. Energy Storage Mater. 42, 240–251 (2021). https://doi.org/10.1016/j.ensm.2021.07.033
- X. Li, H. Wang, X. Sun, J. Li, Y.-N. Liu, Flexible wide-temperature zinc-ion battery enabled by an ethylene glycol-based organohydrogel electrolyte. ACS Appl. Energy Mater. 4(11), 12718–12727 (2021). https://doi.org/10.1021/acsaem.1c02433
- T. Wei, Y. Ren, Z. Li, X. Zhang, D. Ji et al., Bonding interaction regulation in hydrogel electrolyte enable dendrite-free aqueous zinc-ion batteries from − 20 to 60 °C. Chem. Eng. J. 434, 134646 (2022). https://doi.org/10.1016/j.cej.2022.134646
- S. Huang, S. He, S. Huang, X. Zeng, Y. Li et al., Molecular crowding agent modified polyanionic gel electrolyte for zinc ion batteries operating at 100 °C. Adv. Funct. Mater. 35(14), 2419153 (2025). https://doi.org/10.1002/adfm.202419153
- W. Deng, Z. Zhou, Y. Li, M. Zhang, X. Yuan et al., High-capacity layered magnesium vanadate with concentrated gel electrolyte toward high-performance and wide-temperature zinc-ion battery. ACS Nano 14(11), 15776–15785 (2020). https://doi.org/10.1021/acsnano.0c06834
- H. Lu, J. Hu, L. Wang, J. Li, X. Ma et al., Multi-component crosslinked hydrogel electrolyte toward dendrite-free aqueous Zn ion batteries with high temperature adaptability. Adv. Funct. Mater. 32(19), 2112540 (2022). https://doi.org/10.1002/adfm.202112540
- R. Li, L. Li, R. Jia, K. Jiang, G. Shen et al., A flexible concentric circle structured zinc-ion micro-battery with electrodeposited electrodes. Small Methods 4(9), 2000363 (2020). https://doi.org/10.1002/smtd.202000363
- J. Huang, X. Chi, Y. Du, Q. Qiu, Y. Liu, Ultrastable zinc anodes enabled by anti-dehydration ionic liquid polymer electrolyte for aqueous Zn batteries. ACS Appl. Mater. Interfaces 13(3), 4008–4016 (2021). https://doi.org/10.1021/acsami.0c20241
- J. Du, X. Zhan, Y. Xu, D. Zhang, S. Qin, Heat-resistant covalent organic framework (COF) PVA-hybridized gel electrolyte for the preparation of dendrite-free zinc-ion batteries. Nano Lett. 24(43), 13592–13599 (2024). https://doi.org/10.1021/acs.nanolett.4c03227
- S. Tan, Z. Zhang, Y. Xue, J. Zhao, J. Ji et al., Ionic liquid cross-linked poly(N-isopropylacrylamide) hydrogel electrolytes for self-protective flexible separator-free supercapacitors. Ind. Eng. Chem. Res. 62(6), 2741–2751 (2023). https://doi.org/10.1021/acs.iecr.2c04363
- M. Keerl, V. Smirnovas, R. Winter, W. Richtering, Interplay between hydrogen bonding and macromolecular architecture leading to unusual phase behavior in thermosensitive microgels. Angew. Chem. Int. Ed. 47(2), 338–341 (2008). https://doi.org/10.1002/anie.200703728
- J. Zhu, M. Yao, S. Huang, J. Tian, Z. Niu, Thermal-gated polymer electrolytes for smart zinc-ion batteries. Angew. Chem. Int. Ed. 59(38), 16480–16484 (2020). https://doi.org/10.1002/anie.202007274
- Z. Zhuang, Z. Yu, J. Yang, L. Chen, T. Xiao et al., Thermal-gated polyanionic hydrogel films for stable and smart aqueous batteries. Energy Storage Mater. 65, 103136 (2024). https://doi.org/10.1016/j.ensm.2023.103136
- P. Yang, C. Feng, Y. Liu, T. Cheng, X. Yang et al., Thermal self-protection of zinc-ion batteries enabled by smart hygroscopic hydrogel electrolytes. Adv. Energy Mater. 10(48), 2002898 (2020). https://doi.org/10.1002/aenm.202002898
- H. Zhan, Y. Chen, L. Huang, C. Yang, Y. Zhong et al., Synthesis and characterization of reversible thermosensitive methylated chitin and its application in zinc-ion battery thermal runaway. J. Polym. Sci. 62(2), 353–363 (2024). https://doi.org/10.1002/pol.20230189
- X. Tong, Z. Tian, J. Sun, V. Tung, R.B. Kaner et al., Self-healing flexible/stretchable energy storage devices. Mater. Today 44, 78–104 (2021). https://doi.org/10.1016/j.mattod.2020.10.026
- Z. Wei, J.H. Yang, J. Zhou, F. Xu, M. Zrínyi et al., Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem. Soc. Rev. 43(23), 8114–8131 (2014). https://doi.org/10.1039/c4cs00219a
- L. Fan, X. Ge, Y. Qian, M. Wei, Z. Zhang et al., Advances in synthesis and applications of self-healing hydrogels. Front. Bioeng. Biotechnol. 8, 654 (2020). https://doi.org/10.3389/fbioe.2020.00654
- S. Utrera-Barrios, R. Verdejo, M.A. López-Manchado, M. Hernández Santana, Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: a review. Mater. Horiz. 7(11), 2882–2902 (2020). https://doi.org/10.1039/d0mh00535e
- Z. Ji, H. Wang, Z. Chen, P. Wang, J. Liu et al., A both microscopically and macroscopically intrinsic self-healing long lifespan yarn battery. Energy Storage Mater. 28, 334–341 (2020). https://doi.org/10.1016/j.ensm.2020.03.020
- C. Shao, H. Chang, M. Wang, F. Xu, J. Yang, High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl. Mater. Interfaces 9(34), 28305–28318 (2017). https://doi.org/10.1021/acsami.7b09614
- S. Huang, F. Wan, S. Bi, J. Zhu, Z. Niu et al., A self-healing integrated all-in-one zinc-ion battery. Angew. Chem. Int. Ed. 58(13), 4313–4317 (2019). https://doi.org/10.1002/anie.201814653
- Q. Li, X. Cui, Q. Pan, Self-healable hydrogel electrolyte toward high-performance and reliable quasi-solid-state Zn-MnO2 batteries. ACS Appl. Mater. Interfaces 11(42), 38762–38770 (2019). https://doi.org/10.1021/acsami.9b13553
- Y. Huang, J. Liu, J. Wang, M. Hu, F. Mo et al., An intrinsically self-healing NiCo||Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew. Chem. Int. Ed. 57(31), 9810–9813 (2018). https://doi.org/10.1002/anie.201805618
- Q. Liu, R. Chen, L. Xu, Y. Liu, Y. Dai et al., Steric molecular combing effect enables ultrafast self-healing electrolyte in quasi-solid-state zinc-ion batteries. ACS Energy Lett. 7(8), 2825–2832 (2022). https://doi.org/10.1021/acsenergylett.2c01459
- Z. Zeng, S. Liao, G. Ma, J. Qu, High-conductivity and ultrastretchable self-healing hydrogels for flexible zinc-ion batteries. ACS Appl. Mater. Interfaces 16(43), 58961–58972 (2024). https://doi.org/10.1021/acsami.4c13058
- J. Liu, N. Nie, H. Wang, Z. Chen, Z. Ji et al., A zinc ion yarn battery with high capacity and fire retardancy based on a SiO2 nanop doped ionogel electrolyte. Soft Matter 16(32), 7432–7437 (2020). https://doi.org/10.1039/D0SM00996B
- H. Dong, J. Li, S. Zhao, F. Zhao, S. Xiong et al., An anti-aging polymer electrolyte for flexible rechargeable zinc-ion batteries. J. Mater. Chem. A 8(43), 22637–22644 (2020). https://doi.org/10.1039/d0ta07086f
- X. Xie, J. Li, Z. Xing, B. Lu, S. Liang et al., Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 10(3), nwac281 (2022). https://doi.org/10.1093/nsr/nwac281
- L. Sun, Y. Yao, L. Dai, M. Jiao, B. Ding et al., Sustainable and high-performance Zn dual-ion batteries with a hydrogel-based water-in-salt electrolyte. Energy Storage Mater. 47, 187–194 (2022). https://doi.org/10.1016/j.ensm.2022.02.012
- Q. Fu, S. Hao, X. Zhang, H. Zhao, F. Xu et al., All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors. Energy Environ. Sci. 16(3), 1291–1311 (2023). https://doi.org/10.1039/d2ee03793a
- X. Cheng, X. Yang, Y. Zhang, P. Lv, J. Yang et al., Sulfur vacancies tune the charge distribution of NiCo2S4 for boosting the energy density of stretchable yarn-based Zn ion batteries. Adv. Fiber Mater. 5(2), 650–661 (2023). https://doi.org/10.1007/s42765-022-00250-8
- X. Zheng, J. Tang, B. Ding, W. Cao, Z. Liu et al., Boosting interfacial reaction kinetics in yarn-shaped zinc-V2O5·nH2O batteries through carbon nanotube intermediate layer integration. J. Power. Sources 608, 234618 (2024). https://doi.org/10.1016/j.jpowsour.2024.234618
- J. Pu, Y. Gao, Z. Geng, Y. Zhang, Q. Cao et al., Grafted MXene assisted bifunctional hydrogel for stable and highly sensitive self-powered fibrous system. Adv. Funct. Mater. 34(24), 2304453 (2024). https://doi.org/10.1002/adfm.202304453
- Q. Liu, Z. Ji, F. Mo, W. Ling, J. Wang et al., Stable thermochromic hydrogel for a flexible and wearable zinc-ion yarn battery with high-temperature warning function. ACS Appl. Energy Mater. 5(10), 12448–12455 (2022). https://doi.org/10.1021/acsaem.2c02072
- F. Liu, S. Xu, W. Gong, K. Zhao, Z. Wang et al., Fluorescent fiber-shaped aqueous zinc-ion batteries for bifunctional multicolor-emission/energy-storage textiles. ACS Nano 17(18), 18494–18506 (2023). https://doi.org/10.1021/acsnano.3c06245
- P. Xie, Y. Zhang, Z. Man, J. Zhou, Y. Zhang et al., Wearable, recoverable, and implantable energy storage devices with heterostructure porous COF-5/Ti3C2Tx cathode for high-performance aqueous Zn-ion hybrid capacitor. Adv. Funct. Mater. 35(19), 2421517 (2025). https://doi.org/10.1002/adfm.202421517
- F. Zhang, Y. Zheng, L. Wang, Y. Kang, H. Dong et al., Implantable zinc ion battery and osteogenesis-immunoregulation bifunction of its catabolite. ACS Nano 18(32), 21246–21257 (2024). https://doi.org/10.1021/acsnano.4c04705
- R. Li, H. Xiang, Q. Liang, Y. Zhou, X. Ma et al., Engineering the electrochemistry of a therapeutic Zn battery toward biofilm microenvironment for diabetic wound healing. Nano Energy 128, 109946 (2024). https://doi.org/10.1016/j.nanoen.2024.109946
- X. Huang, H. Hou, B. Yu, J. Bai, Y. Guan et al., Fully biodegradable and long-term operational primary zinc batteries as power sources for electronic medicine. ACS Nano 17(6), 5727–5739 (2023). https://doi.org/10.1021/acsnano.2c12125
- K. Chen, L. Yan, Y. Sheng, Y. Ma, L. Qu et al., An edible and nutritive zinc-ion micro-supercapacitor in the stomach with ultrahigh energy density. ACS Nano 16(9), 15261–15272 (2022). https://doi.org/10.1021/acsnano.2c06656
- L. Zheng, S. Zhang, H. Huang, R. Liu, M. Cai et al., Artificial intelligence-driven rechargeable batteries in multiple fields of development and application towards energy storage. J. Energy Storage 73, 108926 (2023). https://doi.org/10.1016/j.est.2023.108926
- B. Eshete, Making machine learning trustworthy. Science 373(6556), 743–744 (2021). https://doi.org/10.1126/science.abi5052
- Y. Cui, Y. Ma, Z. Zhao, J. Yu, Y. Chen et al., Ionic buffer layer design for stabilizing Zn electrodes in aqueous Zn-based batteries. Mater. Rep. Energy 4(4), 100292 (2024). https://doi.org/10.1016/j.matre.2024.100292
- J.-L. Yang, T. Xiao, T. Xiao, J. Li, Z. Yu et al., Cation-conduction dominated hydrogels for durable zinc-iodine batteries. Adv. Mater. 36(21), e2313610 (2024). https://doi.org/10.1002/adma.202313610
- Z. Wang, T. Ji, Q. Zhang, P. Wang, X. Yang et al., Biodegradable starch-based hydrogel as a multifunctional SEI for ultra-stable and flexible zinc-ion batteries. J. Mater. Chem. A 13(31), 25815–25828 (2025). https://doi.org/10.1039/D5TA03299G
- H. Wang, A. Zhou, Z. Hu, X. Hu, F. Zhang et al., Toward simultaneous dense zinc deposition and broken side-reaction loops in the Zn//V2O5 system. Angew. Chem. Int. Ed. 63(11), e202318928 (2024). https://doi.org/10.1002/anie.202318928
References
R. Liu, Z.L. Wang, K. Fukuda, T. Someya, Flexible self-charging power sources. Nat. Rev. Mater. 7(11), 870–886 (2022). https://doi.org/10.1038/s41578-022-00441-0
S. Yao, P. Swetha, Y. Zhu, Nanomaterial-enabled wearable sensors for healthcare. Adv. Healthc. Mater. 7(1), 1700889 (2018). https://doi.org/10.1002/adhm.201700889
Y. Nie, Y. Zhou, Y. Zhang, D. Sun, D. Wu et al., Sustainable synthesis of functional materials assisted by deep eutectic solvents for biomedical, environmental, and energy applications. Adv. Funct. Mater. 35(19), 2418957 (2025). https://doi.org/10.1002/adfm.202418957
S. Passerini, L. Barelli, M. Baumann, J. Peters, M. Weil et al., Emerging Battery Technologies to Boost the Clean Energy Transition: Cost, Sustainability, and Performance Analysis (Springer, Cham, 2024), pp.29–52. https://doi.org/10.1007/978-3-031-48359-2
F. Zhang, T. Liao, Q. Zhou, J. Bai, X. Li et al., Advancements in ion regulation strategies for enhancing the performance of aqueous Zn-ion batteries. Mater. Sci. Eng. R. Rep. 165, 101012 (2025). https://doi.org/10.1016/j.mser.2025.101012
L. Li, S. Jia, S. Yue, C. Wang, H. Qiu et al., Hydrogel-stabilized zinc ion batteries: progress and outlook. Green Chem. 26(11), 6404–6422 (2024). https://doi.org/10.1039/d4gc01465k
Y. Mu, L. Yang, Y. Feng, H. Gu, Z. Zou et al., Achieving superior critical current density and rate performance in solid-state lithium batteries via vertically aligned LATP arrays. Nano Energy 138, 110885 (2025). https://doi.org/10.1016/j.nanoen.2025.110885
J. Zeng, H. Chen, L. Dong, X. Guo, Anti-polyelectrolyte effect of zwitterionic hydrogel electrolytes enabling high-voltage zinc-ion hybrid capacitors. Adv. Funct. Mater. 34(21), 2314651 (2024). https://doi.org/10.1002/adfm.202314651
Z.-C. Zhang, Y.-B. Mu, L.-J. Xiao, X.-Y. Wei, M.-S. Han et al., Advancements in manganese-based cathodes for aqueous zinc-ion batteries: challenges and optimization strategies. cMat 2(1), e70000 (2025). https://doi.org/10.1002/cmt2.70000
L. Wang, J. Guan, N. Li, J. Li, T. Duan et al., Amine-functionalized MIL-125 separator and MOF-derived carbon host for high-performance aqueous zinc-iodine batteries. Adv. Energy Mater. (2025). https://doi.org/10.1002/aenm.202504201
T. Xue, Y. Mu, X. Wei, Z. Zhou, Y. Zhou et al., From fundamentals to practice: electrolyte strategies for zinc-ion batteries in extreme temperature. Carbon Neutr. 4(1), e183 (2025). https://doi.org/10.1002/cnl2.183
H. Yan, X. Zhang, Z. Yang, M. Xia, C. Xu et al., Insight into the electrolyte strategies for aqueous zinc ion batteries. Coord. Chem. Rev. 452, 214297 (2022). https://doi.org/10.1016/j.ccr.2021.214297
Y. Sun, L.-N. Song, X.-Y. Du, S. Liang, Y. Wang et al., In situ copolymerizing ZrO2 with hydrogel electrolytes toward high-rate and long-life quasi-solid-state Zn–ion batteries. Adv. Energy Mater. 15(21), 2404944 (2025). https://doi.org/10.1002/aenm.202404944
D. Xu, Y. Wang, H. Tian, Y. Chen, X. Tian et al., Dynamic cross-linking network construction of flexible hydrogel electrolyte enabling dendrite-free zinc anode. Adv. Energy Mater. 15(31), 2502217 (2025). https://doi.org/10.1002/aenm.202502217
J.-L. Yang, J. Li, J.-W. Zhao, K. Liu, P. Yang et al., Stable zinc anodes enabled by a zincophilic polyanionic hydrogel layer. Adv. Mater. 34(27), e2202382 (2022). https://doi.org/10.1002/adma.202202382
M. Li, C. Xi, X. Wang, L. Li, Y. Xiao et al., Spontaneous desaturation of the solvation sheath for high-performance anti-freezing zinc-ion gel-electrolyte. Small 19(35), e2301569 (2023). https://doi.org/10.1002/smll.202301569
T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan et al., Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ. Sci. 13(12), 4625–4665 (2020). https://doi.org/10.1039/d0ee02620d
B. Niu, J. Wang, Y. Guo, Z. Li, C. Yuan et al., Polymers for aqueous zinc-ion batteries: from fundamental to applications across core components. Adv. Energy Mater. 14(12), 2303967 (2024). https://doi.org/10.1002/aenm.202303967
X. Wei, Y. Mu, J. Chen, Y. Zhou, Y. Chu et al., Optimizing Zn (100) deposition via crystal plane shielding effect towards ultra-high rate and stable zinc anode. Energy Storage Mater. 75, 104026 (2025). https://doi.org/10.1016/j.ensm.2025.104026
Z. Zhang, R. Zhang, Y. Gao, Y. Gao, F. Jia et al., Dendrite-free zinc anode enabled by zwitterionic organic hydrogel electrolytes for high-voltage zinc-ion hybrid capacitors. Chem. Eng. J. 484, 149759 (2024). https://doi.org/10.1016/j.cej.2024.149759
Y. Gu, X. Zheng, Z. Zhou, G. Chen, S. Chen et al., Amphiphilic ionic liquid hydrogel electrolytes with high ionic conductivity towards dendrite-free ultra-stable aqueous zinc ion batteries. J. Energy Storage 89, 111892 (2024). https://doi.org/10.1016/j.est.2024.111892
Z.-J. Chen, T.-Y. Shen, M.-H. Zhang, X. Xiao, H.-Q. Wang et al., Tough, anti-fatigue, self-adhesive, and anti-freezing hydrogel electrolytes for dendrite-free flexible zinc ion batteries and strain sensors. Adv. Funct. Mater. 34(26), 2314864 (2024). https://doi.org/10.1002/adfm.202314864
Y. Zhou, Y. Zhang, Y. Nie, D. Sun, D. Wu et al., Recent advances and perspectives in functional chitosan-based composites for environmental remediation, energy, and biomedical applications. Prog. Mater. Sci. 152, 101460 (2025). https://doi.org/10.1016/j.pmatsci.2025.101460
J. Liu, J. Long, Z. Shen, X. Jin, T. Han et al., A self-healing flexible quasi-solid zinc-ion battery using all-In-one electrodes. Adv. Sci. 8(8), 2004689 (2021). https://doi.org/10.1002/advs.202004689
X. Li, D. Wang, F. Ran, Key approaches and challenges in fabricating advanced flexible zinc-ion batteries with functional hydrogel electrolytes. Energy Storage Mater. 56, 351–393 (2023). https://doi.org/10.1016/j.ensm.2023.01.034
B. Zhang, X. Cai, J. Li, H. Zhang, D. Li et al., Biocompatible and stable quasi-solid-state zinc-ion batteries for real-time responsive wireless wearable electronics. Energy Environ. Sci. 17(11), 3878–3887 (2024). https://doi.org/10.1039/d4ee01212g
J. Li, H. Zhang, Z. Liu, H. Du, H. Wan et al., Boosting dendrite-free zinc anode with strongly polar functional group terminated hydrogel electrolyte for high-safe aqueous zinc-ion batteries. Adv. Funct. Mater. 35(2), 2412865 (2025). https://doi.org/10.1002/adfm.202412865
H. Ge, X. Xie, X. Xie, B. Zhang, S. Li et al., Critical challenges and solutions: quasi-solid-state electrolytes for zinc-based batteries. Energy Environ. Sci. 17(10), 3270–3306 (2024). https://doi.org/10.1039/d4ee00357h
Z. Wang, H. Li, Z. Tang, Z. Liu, Z. Ruan et al., Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 28(48), 1804560 (2018). https://doi.org/10.1002/adfm.201804560
Y. Wang, Y. Jia, C. Li, H. Cui, R. Zhang et al., Progress in developing polymer electrolytes for advanced Zn batteries. Small Methods 9(8), 2500031 (2025). https://doi.org/10.1002/smtd.202500031
J. Li, P. Yu, S. Zhang, Z. Wen, Y. Wen et al., Mild synthesis of superadhesive hydrogel electrolyte with low interfacial resistance and enhanced ionic conductivity for flexible zinc ion battery. J. Colloid Interface Sci. 600, 586–593 (2021). https://doi.org/10.1016/j.jcis.2021.05.023
A.C. Radjendirane, S. Ramasamy, S.P. Rajendra, G. Murali, I. In et al., Mechanically endurable Ti3C2Tx MXene incorporated P(AM-AA) hybrid hydrogel electrolyte with enhanced Zn2+ conductivity for flexible zinc-ion batteries. Electrochim. Acta 531, 146368 (2025). https://doi.org/10.1016/j.electacta.2025.146368
H. Peng, D. Wang, F. Zhang, L. Yang, X. Jiang et al., Improvements and challenges of hydrogel polymer electrolytes for advanced zinc anodes in aqueous zinc-ion batteries. ACS Nano 18(33), 21779–21803 (2024). https://doi.org/10.1021/acsnano.4c06502
R. Zhu, H. Yang, W. Cui, L. Fadillah, T. Huang et al., High strength hydrogels enable dendrite-free Zn metal anodes and high-capacity Zn–MnO2 batteries via a modified mechanical suppression effect. J. Mater. Chem. A 10(6), 3122–3133 (2022). https://doi.org/10.1039/d1ta10079c
W. Li, F. Gao, X. Wang, N. Zhang, M. Ma, Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew. Chem. Int. Ed. 55(32), 9196–9201 (2016). https://doi.org/10.1002/anie.201603417
J. Hüttl, C. Seidl, H. Auer, K. Nikolowski, A.L. Görne et al., Ultra-low LPS/LLZO interfacial resistance–towards stable hybrid solid-state batteries with Li-metal anodes. Energy Storage Mater. 40, 259–267 (2021). https://doi.org/10.1016/j.ensm.2021.05.020
J.-Y. Sun, X. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh et al., Highly stretchable and tough hydrogels. Nature 489(7414), 133–136 (2012). https://doi.org/10.1038/nature11409
M. Sun, G. Ji, M. Li, J. Zheng, A robust hydrogel electrolyte with ultrahigh ion transference number derived from zincophilic “chain-gear” network structure for dendrite-free aqueous zinc ion battery. Adv. Funct. Mater. 34(37), 2402004 (2024). https://doi.org/10.1002/adfm.202402004
Y. Zhang, G. Wen, J. Zhang, Y. Qin, W. Cui et al., A lignocellulose-based hydrogel polymer electrolytes with high conductivity and stability for rechargeable flexible zinc-air batteries. J. Energy Storage 95, 112644 (2024). https://doi.org/10.1016/j.est.2024.112644
J. Yang, C. Weng, P. Sun, Y. Yin, M. Xu et al., Comprehensive regulation strategies for gel electrolytes in aqueous zinc-ion batteries. Coord. Chem. Rev. 530, 216475 (2025). https://doi.org/10.1016/j.ccr.2025.216475
Z. Li, J. Fu, X. Zhou, S. Gui, L. Wei et al., Ionic conduction in polymer-based solid electrolytes. Adv. Sci. 10(10), 2201718 (2023). https://doi.org/10.1002/advs.202201718
X. Xie, Z. Wang, S. He, K. Chen, Q. Huang et al., Influencing factors on Li-ion conductivity and interfacial stability of solid polymer electrolytes, exampled by polycarbonates, polyoxalates and polymalonates. Angew. Chem. Int. Ed. 62(13), e202218229 (2023). https://doi.org/10.1002/anie.202218229
J. Yu, M. Li, X. Kong, T. Wang, H. Zhang et al., Polyanion hydrogel electrolyte with a high Zn2+ transference number for dendrite-free aqueous zinc-ion batteries. J. Mater. Chem. A 13(21), 16182–16192 (2025). https://doi.org/10.1039/d5ta00819k
D. Lin, Y. Lin, R. Pan, J. Li, A. Zhu et al., Water-restrained hydrogel electrolytes with repulsion-driven cationic express pathways for durable zinc-ion batteries. Nano-Micro Lett. 17(1), 193 (2025). https://doi.org/10.1007/s40820-025-01704-5
M. Sun, G. Ji, J. Zheng, A hydrogel electrolyte with ultrahigh ionic conductivity and transference number benefit from Zn2+ “highways” for dendrite-free Zn–MnO2 battery. Chem. Eng. J. 463, 142535 (2023). https://doi.org/10.1016/j.cej.2023.142535
M. Cheng, D. Li, J. Cao, T. Sun, Q. Sun et al., “Anions-in-colloid” hydrated deep eutectic electrolyte for high reversible zinc metal anodes. Angew. Chem. Int. Ed. 63(42), e202410210 (2024). https://doi.org/10.1002/anie.202410210
T. Xue, Y. Mu, Z. Zhang, J. Guan, J. Qiu et al., Enhanced zinc deposition and dendrite suppression in aqueous zinc-ion batteries via citric acid-aspartame electrolyte additives. Adv. Energy Mater. 15(26), 2500674 (2025). https://doi.org/10.1002/aenm.202500674
R. Qin, Y. Wang, M. Zhang, Y. Wang, S. Ding et al., Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 80, 105478 (2021). https://doi.org/10.1016/j.nanoen.2020.105478
K. Zhang, S. Xie, J. Liang, Z. Zheng, Y. Li et al., Functional ultrathin separators enabling stable zinc anodes for lean-electrolyte zinc-ion batteries. J. Membr. Sci. 722, 123876 (2025). https://doi.org/10.1016/j.memsci.2025.123876
Q. Zheng, L. Liu, Z. Hu, Z. Tang, H. Lu et al., Altering the Zn2+ migration mechanism enables the composite hydrogel electrolytes with high Zn2+ conduction and superior anti-dehydration. Adv. Funct. Mater. 35(35), 2504782 (2025). https://doi.org/10.1002/adfm.202504782
Z. Xiang, Y. Li, X. Cheng, C. Yang, K.-P. Wang et al., Lean-water hydrogel electrolyte with improved ion conductivity for dendrite-free zinc-ion batteries. Chem. Eng. J. 490, 151524 (2024). https://doi.org/10.1016/j.cej.2024.151524
S. Cui, W. Miao, X. Wang, K. Sun, H. Peng et al., Multifunctional zincophilic hydrogel electrolyte with abundant hydrogen bonds for zinc-ion capacitors and supercapacitors. ACS Nano 18(19), 12355–12366 (2024). https://doi.org/10.1021/acsnano.4c01304
Z.-J. Chen, T.-Y. Shen, X. Xiao, X.-C. He, Y.-L. Luo et al., An ultrahigh-modulus hydrogel electrolyte for dendrite-free zinc ion batteries. Adv. Mater. 36(52), e2413268 (2024). https://doi.org/10.1002/adma.202413268
L. Hong, X. Wu, Y.-S. Liu, C. Yu, Y. Liu et al., Self-adapting and self-healing hydrogel interface with fast Zn2+ transport kinetics for highly reversible Zn anodes. Adv. Funct. Mater. 33(29), 2300952 (2023). https://doi.org/10.1002/adfm.202300952
K. Yan, Y. Fan, F. Hu, G. Li, X. Yang et al., A “polymer-in-salt” solid electrolyte enabled by fast phase transition route for stable Zn batteries. Adv. Funct. Mater. 34(2), 2307740 (2024). https://doi.org/10.1002/adfm.202307740
X. Wang, X. Li, H. Fan, L. Ma, Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 14(1), 205 (2022). https://doi.org/10.1007/s40820-022-00939-w
C.-J. Lee, H. Wu, Y. Hu, M. Young, H. Wang et al., Ionic conductivity of polyelectrolyte hydrogels. ACS Appl. Mater. Interfaces 10(6), 5845–5852 (2018). https://doi.org/10.1021/acsami.7b15934
M.-Y. Zhou, X.-Q. Ding, L.-P. Hou, J. Xie, B.-Q. Li et al., Protocol for quantitative nuclear magnetic resonance for deciphering electrolyte decomposition reactions in anode-free batteries. STAR Protoc. 3(4), 101867 (2022). https://doi.org/10.1016/j.xpro.2022.101867
Y. Li, X. Wei, F. Jiang, Y. Wang, M. Xie et al., An ultrastretchable and highly conductive hydrogel electrolyte for all-in-one flexible supercapacitor with extreme tensile resistance. Energy Environ. Mater. 8(2), e12820 (2025). https://doi.org/10.1002/eem2.12820
Q. Liu, Z. Yu, Q. Zhuang, J.-K. Kim, F. Kang et al., Anti-fatigue hydrogel electrolyte for all-flexible Zn-ion batteries. Adv. Mater. 35(36), e2300498 (2023). https://doi.org/10.1002/adma.202300498
W. Ling, F. Mo, J. Wang, Q. Liu, Y. Liu et al., Self-healable hydrogel electrolyte for dendrite-free and self-healable zinc-based aqueous batteries. Mater. Today Phys. 20, 100458 (2021). https://doi.org/10.1016/j.mtphys.2021.100458
C.-Y. Li, J.-L. Wang, D.-T. Zhang, M.-P. Li, H. Chen et al., In-situ physical/chemical cross-linked hydrogel electrolyte achieving ultra-stable zinc anode-electrolyte interface towards dendrite-free zinc ion battery. J. Energy Chem. 97, 342–351 (2024). https://doi.org/10.1016/j.jechem.2024.05.049
Y. Wang, L. Yang, P. Xu, L. Liu, S. Li et al., An electrochemically initiated self-limiting hydrogel electrolyte for dendrite-free zinc anode. Small 20(12), e2307446 (2024). https://doi.org/10.1002/smll.202307446
B. Peng, Q. Lyu, M. Li, S. Du, J. Zhu et al., Phase-separated polyzwitterionic hydrogels with tunable sponge-like structures for stable solar steam generation. Adv. Funct. Mater. 33(18), 2214045 (2023). https://doi.org/10.1002/adfm.202214045
N. Wang, H. Liu, M. Sun, X. Ren, L. Hu et al., Achieving wide-temperature-range sustainable zinc-ion batteries via magnesium-doped cathodes and gel electrolytes. ACS Sustain. Chem. Eng. 12(9), 3527–3537 (2024). https://doi.org/10.1021/acssuschemeng.3c06291
F. Mo, H. Li, Z. Pei, G. Liang, L. Ma et al., A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes. Sci. Bull. 63(16), 1077–1086 (2018). https://doi.org/10.1016/j.scib.2018.06.019
Q. Nian, X. Zhang, Y. Feng, S. Liu, T. Sun et al., Designing electrolyte structure to suppress hydrogen evolution reaction in aqueous batteries. ACS Energy Lett. 6(6), 2174–2180 (2021). https://doi.org/10.1021/acsenergylett.1c00833
Y. Tan, R. Liao, Y. Mu, L. Dong, X. Chen et al., Hierarchically-structured and mechanically-robust hydrogel electrolytes for flexible zinc-iodine batteries. Adv. Funct. Mater. 34(45), 2407050 (2024). https://doi.org/10.1002/adfm.202407050
J. Zhang, C. Lin, L. Zeng, H. Lin, L. He et al., A hydrogel electrolyte with high adaptability over a wide temperature range and mechanical stress for long-life flexible zinc-ion batteries. Small 20(30), 2312116 (2024). https://doi.org/10.1002/smll.202312116
Y. Yan, S. Duan, B. Liu, S. Wu, Y. Alsaid et al., Tough hydrogel electrolytes for anti-freezing zinc-ion batteries. Adv. Mater. 35(18), e2211673 (2023). https://doi.org/10.1002/adma.202211673
Z. Shen, Y. Liu, Z. Li, Z. Tang, J. Pu et al., Highly-entangled hydrogel electrolyte for fast charging/discharging properties in aqueous zinc ion batteries. Adv. Funct. Mater. 35(21), 2406620 (2025). https://doi.org/10.1002/adfm.202406620
Y. Wang, Q. Li, H. Hong, S. Yang, R. Zhang et al., Lean-water hydrogel electrolyte for zinc ion batteries. Nat. Commun. 14(1), 3890 (2023). https://doi.org/10.1038/s41467-023-39634-8
A. Wang, W. Zhou, A. Huang, M. Chen, Q. Tian et al., Developing improved electrolytes for aqueous zinc-ion batteries to achieve excellent cyclability and antifreezing ability. J. Colloid Interface Sci. 586, 362–370 (2021). https://doi.org/10.1016/j.jcis.2020.10.099
Y. Liu, A. Gao, J. Hao, X. Li, J. Ling et al., Soaking-free and self-healing hydrogel for wearable zinc-ion batteries. Chem. Eng. J. 452, 139605 (2023). https://doi.org/10.1016/j.cej.2022.139605
M. Wu, C. Qiao, P.-F. Sui, J.-L. Luo, Z. Li et al., Stratum corneum-inspired zwitterionic hydrogels with intrinsic water retention and anti-freezing properties for intelligent flexible sensors. Adv. Funct. Mater. 35(31), 2422755 (2025). https://doi.org/10.1002/adfm.202422755
C. Lu, H. Jiang, X. Cheng, J. He, Y. Long et al., High-performance fibre battery with polymer gel electrolyte. Nature 629(8010), 86–91 (2024). https://doi.org/10.1038/s41586-024-07343-x
M. Sun, Z. Wang, J. Jiang, X. Wang, C. Yu, Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chin. Chem. Lett. 35(5), 109393 (2024). https://doi.org/10.1016/j.cclet.2023.109393
X. Cheng, J. Pan, Y. Zhao, M. Liao, H. Peng, Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater. 8(7), 1702184 (2018). https://doi.org/10.1002/aenm.201702184
X. Xu, J. Pei, Y. Xu, J. Wang, Soil organic carbon depletion in global Mollisols regions and restoration by management practices: a review. J. Soils Sediments 20(3), 1173–1181 (2020). https://doi.org/10.1007/s11368-019-02557-3
K.Y. Lee, D.J. Mooney, Hydrogels for tissue engineering. Chem. Rev. 101(7), 1869–1880 (2001). https://doi.org/10.1021/cr000108x
E. Armelin, M.M. Pérez-Madrigal, C. Alemán, D.D. Díaz, Current status and challenges of biohydrogels for applications as supercapacitors and secondary batteries. J. Mater. Chem. A 4(23), 8952–8968 (2016). https://doi.org/10.1039/c6ta01846g
T. Xu, K. Liu, N. Sheng, M. Zhang, W. Liu et al., Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater. 48, 244–262 (2022). https://doi.org/10.1016/j.ensm.2022.03.013
H. Ge, L. Qin, B. Zhang, L. Jiang, Y. Tang et al., An ionically cross-linked composite hydrogel electrolyte based on natural biomacromolecules for sustainable zinc-ion batteries. Nanoscale Horiz. 9(9), 1514–1521 (2024). https://doi.org/10.1039/d4nh00243a
M. Wu, Y. Zhang, L. Xu, C. Yang, M. Hong et al., A sustainable chitosan-zinc electrolyte for high-rate zinc-metal batteries. Matter 5(10), 3402–3416 (2022). https://doi.org/10.1016/j.matt.2022.07.015
H. Xia, W. Zhang, C. Miao, H. Chen, C. Yi et al., Ultra-thin amphiphilic hydrogel electrolyte for flexible zinc-ion paper batteries. Energy Environ. Sci. 17(18), 6507–6520 (2024). https://doi.org/10.1039/d4ee01993h
X. Zhou, S. Huang, L. Gao, Z. Zhang, Q. Wang et al., Molecular bridging induced anti-salting-out effect enabling high ionic conductive ZnSO4-based hydrogel for quasi-solid-state zinc ion batteries. Angew. Chem. Int. Ed. 63(44), e202410434 (2024). https://doi.org/10.1002/anie.202410434
W. Zeng, S. Zhang, J. Lan, Y. Lv, G. Zhu et al., Double network gel electrolyte with high ionic conductivity and mechanical strength for zinc-ion batteries. ACS Nano 18(38), 26391–26400 (2024). https://doi.org/10.1021/acsnano.4c09879
C. Yang, T. Yin, Z. Suo, Polyacrylamide hydrogels. I. Network imperfection. J. Mech. Phys. Solids 131, 43–55 (2019). https://doi.org/10.1016/j.jmps.2019.06.018
Y. Mu, Y. Zhou, Y. Chu, X. Wei, H. Gu et al., Robust piezoelectric-derived bilayer solid electrolyte interphase for Zn anodes operating from-60 to 60 °C. ACS Nano 19(14), 14161–14176 (2025). https://doi.org/10.1021/acsnano.5c00178
R. Wu, S. Yang, R. Wang, Y. Guo, P. Du, Pullulan enhanced dual-network hydrogel electrolyte for high-performance flexible zinc-ion batteries. Chem. Eng. J. 509, 161223 (2025). https://doi.org/10.1016/j.cej.2025.161223
M. Zhang, J.-H. Li, Y. Tang, D.-W. Wang, H. Hu et al., Selective Zn-ion channels enabled by a double-network protective layer for stable zinc anode. Energy Storage Mater. 65, 103113 (2024). https://doi.org/10.1016/j.ensm.2023.103113
A. Somteds, P. Tayraukham, P. Pipattanachaiyanan, W. Kao-ian, S. Wannapaiboon et al., CO2-derived polymeric double-network hydrogel electrolyte for zinc-ion batteries. ACS Sustain. Chem. Eng. 13(26), 9974–9986 (2025). https://doi.org/10.1021/acssuschemeng.5c01749
K. Wang, X. Zhang, C. Li, X. Sun, Q. Meng et al., Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance. Adv. Mater. 27(45), 7451–7457 (2015). https://doi.org/10.1002/adma.201503543
G. Li, Z. Zhao, S. Zhang, L. Sun, M. Li et al., A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery. Nat. Commun. 14(1), 6526 (2023). https://doi.org/10.1038/s41467-023-42333-z
W. Cai, X. Zhang, G. Li, L. Chen, Tailoring codirectional Zn2+ pathways with biomaterials for advanced hydrogel electrolytes in high-performance zinc metal batteries. Chem. Eng. J. 484, 149390 (2024). https://doi.org/10.1016/j.cej.2024.149390
H. Tan, C. Meng, H. Chen, J.-L. Yang, J.-M. Cao et al., Breaking the ice: Hofmeister effect-inspired hydrogen bond network reconstruction in hydrogel electrolytes for high-performance zinc-ion batteries. Small 21(7), 2410746 (2025). https://doi.org/10.1002/smll.202410746
Z. Li, G. Zhou, L. Ye, J. He, W. Xu et al., High-energy and dendrite-free solid-state zinc metal battery enabled by a dual-network and water-confinement hydrogel electrolyte. Chem. Eng. J. 472, 144992 (2023). https://doi.org/10.1016/j.cej.2023.144992
P. Zou, R. Lin, T.P. Pollard, L. Yao, E. Hu et al., Localized hydrophobicity in aqueous zinc electrolytes improves zinc metal reversibility. Nano Lett. 22(18), 7535–7544 (2022). https://doi.org/10.1021/acs.nanolett.2c02514
Y. Tang, C. Liu, H. Zhu, X. Xie, J. Gao et al., Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 27, 109–116 (2020). https://doi.org/10.1016/j.ensm.2020.01.023
H. Ye, J.J. Xu, Zinc ion conducting polymer electrolytes based on oligomeric polyether/PVDF-HFP blends. J. Power. Sources 165(2), 500–508 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.042
Y. Liu, H. Li, X. Wang, T. Lv, K. Dong et al., Flexible supercapacitors with high capacitance retention at temperatures from − 20 to 100 °C based on DMSO-doped polymer hydrogel electrolytes. J. Mater. Chem. A 9(20), 12051–12059 (2021). https://doi.org/10.1039/d1ta02397g
J. Li, A. Azizi, S. Zhou, S. Liu, C. Han et al., Hydrogel polymer electrolytes toward better zinc-ion batteries: a comprehensive review. eScience 5(2), 100294 (2025). https://doi.org/10.1016/j.esci.2024.100294
Z. Li, S. Ganapathy, Y. Xu, Z. Zhou, M. Sarilar et al., Mechanistic insight into the electrochemical performance of Zn/VO2 batteries with an aqueous ZnSO4 electrolyte. Adv. Energy Mater. 9(22), 1900237 (2019). https://doi.org/10.1002/aenm.201900237
Y. Mu, Z. Liao, Y. Chu, Q. Zhang, L. Zou et al., Electron acceptor-driven solid electrolyte interphases with elevated LiF content for 4.7 V lithium metal batteries. Nano-Micro Lett. 17(1), 163 (2025). https://doi.org/10.1007/s40820-025-01663-x
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
X. Shi, Y. Zhong, Y. Yang, J. Zhou, X. Cao et al., Anion-anchored polymer-in-salt solid electrolyte for high-performance zinc batteries. Angew. Chem. Int. Ed. 64(2), e202414777 (2025). https://doi.org/10.1002/anie.202414777
X. Zhao, B. Yang, Q. Xue, X. Yan, Fatty acid methyl ester ethoxylate additive for enhancing high-temperature aqueous zinc-ion battery performance. J. Chem. Phys. 162(13), 134706 (2025). https://doi.org/10.1063/5.0265189
X. Dong, X. Ge, W. Chen, S. Li, Z. Xing et al., Ultra-stable zinc-ion hybrid capacitors empowered by hydrogel electrolyte programmed with chain-additive approach. Chem. Eng. J. 505, 159686 (2025). https://doi.org/10.1016/j.cej.2025.159686
M. Liu, L. Zhang, J. Rostami, T. Zhang, K. Matthews et al., Tough MXene-cellulose nanofibril ionotronic dual-network hydrogel films for stable zinc anodes. ACS Nano 19(13), 13399–13413 (2025). https://doi.org/10.1021/acsnano.5c01497
S. Ganguly, S. Puravankara, Sustainable, dendrite-suppressing, and robust citric acid cross-linked carboxymethyl cellulose-based quasi solid-state electrolyte for zinc-ion batteries. J. Power. Sources 642, 237005 (2025). https://doi.org/10.1016/j.jpowsour.2025.237005
C. Wang, J. Jiao, J. Dai, L. Yu, Q. Chen et al., A functional hydrogel electrolyte doped with graphene oxide enabling ultra-long lifespan zinc metal batteries by inducing oriented deposition. J. Mater. Sci. Technol. 191, 209–219 (2024). https://doi.org/10.1016/j.jmst.2023.12.043
Z. Zhang, Q. Liu, L. Xiao, L. Zang, X. Yu et al., Auricularia-like V2O5 anchored on NiTi alloy wire for quasi-solid-state fibrous zinc-ion batteries with shape memory function. J. Alloys Compd. 981, 173698 (2024). https://doi.org/10.1016/j.jallcom.2024.173698
L. Xiao, Y. Li, Q. Chen, J. Li, F. Qin et al., Cauliflower-like polypyrrole@stainless steel yarn electrode for fibrous zinc-ion hybrid supercapacitor. J. Mater. Sci. Mater. Electron. 36(10), 574 (2025). https://doi.org/10.1007/s10854-025-14657-7
J. Yang, Z. Xu, J. Wang, L. Gai, X. Ji et al., Antifreezing zwitterionic hydrogel electrolyte with high conductivity of 12.6 mS cm−1 at − 40 °C through hydrated lithium ion hopping migration. Adv. Funct. Mater. 31(18), 2009438 (2021). https://doi.org/10.1002/adfm.202009438
S. Huang, L. Hou, T. Li, Y. Jiao, P. Wu, Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 34(14), 2110140 (2022). https://doi.org/10.1002/adma.202110140
J. Zeng, H. Chen, L. Dong, L. Wei, X. Guo, Designing of zwitterionic proline hydrogel electrolytes for anti-freezing supercapacitors. J. Colloid Interface Sci. 652(Pt A), 856–865 (2023). https://doi.org/10.1016/j.jcis.2023.08.037
M. Chen, J. Chen, W. Zhou, X. Han, Y. Yao et al., Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn–MnO2 batteries. Adv. Mater. 33(9), 2007559 (2021). https://doi.org/10.1002/adma.202007559
J. Guan, Y. Mu, X. Wei, L. Yang, Z. Chen et al., Ternary gel electrolyte enabling wide-temperature and high-rate performance in aqueous zinc-ion batteries. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202508306
Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11(1), 4463 (2020). https://doi.org/10.1038/s41467-020-18284-0
C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. 14(1), 98 (2022). https://doi.org/10.1007/s40820-022-00836-2
J. Wang, Y. Huang, B. Liu, Z. Li, J. Zhang et al., Flexible and anti-freezing zinc-ion batteries using a guar-gum/sodium-alginate/ethylene-glycol hydrogel electrolyte. Energy Storage Mater. 41, 599–605 (2021). https://doi.org/10.1016/j.ensm.2021.06.034
K. Yan, Y. Fan, X. Yang, X. Wang, S. Chen et al., A single ion conductive “plasticine-like” solid electrolyte combined with a modulated d-band center of interfacial zinc atoms for highly reversible zinc metal anodes. Energy Environ. Sci. 18(11), 5333–5346 (2025). https://doi.org/10.1039/d5ee00737b
R. Wang, M. Yao, S. Huang, J. Tian, Z. Niu, An anti-freezing and anti-drying multifunctional gel electrolyte for flexible aqueous zinc-ion batteries. Sci. China Mater. 65(8), 2189–2196 (2022). https://doi.org/10.1007/s40843-021-1924-2
J. Ju, T. Zhang, H. Wang, Y. Liu, Y. Zhang et al., Nanofiber-reinforced composite hydrogel with flexibility and anti-freezing for high-performance zinc-ion batteries. Chem. Eng. J. 521, 166983 (2025). https://doi.org/10.1016/j.cej.2025.166983
Y. Deng, Y. Wu, L. Wang, K. Zhang, Y. Wang et al., Polysaccharide hydrogel electrolytes with robust interfacial contact to electrodes for quasi-solid state flexible aqueous zinc ion batteries with efficient suppressing of dendrite growth. J. Colloid Interface Sci. 633, 142–154 (2023). https://doi.org/10.1016/j.jcis.2022.11.086
X. Zhu, C. Ji, Q. Meng, H. Mi, Q. Yang et al., Freeze-tolerant hydrogel electrolyte with high strength for stable operation of flexible zinc-ion hybrid supercapacitors. Small 18(16), e2200055 (2022). https://doi.org/10.1002/smll.202200055
Z. Wang, R. Xue, H. Zhang, Y. Zhang, X. Tang et al., A hydrogel electrolyte toward a flexible zinc-ion battery and multifunctional health monitoring electronics. ACS Nano 18(10), 7596–7609 (2024). https://doi.org/10.1021/acsnano.4c00085
M. Zhang, Y. Wang, E.H. Ang, L. Yang, Y. Zheng et al., Hydrogel electrolyte with ultrahigh water-locking capability for quasi-solid zinc-ion batteries with extreme environmental safety. Small Methods (2025). https://doi.org/10.1002/smtd.202500576
S. Huang, S. He, Y. Li, S. Wang, X. Hou, Hydrogen bond acceptor lined hydrogel electrolyte toward dendrite-free aqueous Zn ion batteries with low temperature adaptability. Chem. Eng. J. 464, 142607 (2023). https://doi.org/10.1016/j.cej.2023.142607
J. Du, X. Zhan, Y. Xu, K. Diao, D. Zhang et al., High-performance zinc-ion hydrogel electrolytes based on molecular-level hybridization of PVA with polymer quantum dots. J. Mater. Sci. Technol. 212, 251–258 (2025). https://doi.org/10.1016/j.jmst.2024.06.023
H. Wang, J. Liu, J. Wang, M. Hu, Y. Feng et al., Concentrated hydrogel electrolyte-enabled aqueous rechargeable NiCo// Zn battery working from −20 to 50 °C. ACS Appl. Mater. Interfaces 11(1), 49–55 (2019). https://doi.org/10.1021/acsami.8b18003
L. Yang, L. Song, Y. Feng, M. Cao, P. Zhang et al., Zinc ion trapping in a cellulose hydrogel as a solid electrolyte for a safe and flexible supercapacitor. J. Mater. Chem. A 8(25), 12314–12318 (2020). https://doi.org/10.1039/d0ta04360e
Y. Shi, R. Wang, S. Bi, M. Yang, L. Liu et al., An anti-freezing hydrogel electrolyte for flexible zinc-ion batteries operating at − 70 °C. Adv. Funct. Mater. 33(24), 2214546 (2023). https://doi.org/10.1002/adfm.202214546
M. Zhu, X. Wang, H. Tang, J. Wang, Q. Hao et al., Antifreezing hydrogel with high zinc reversibility for flexible and durable aqueous batteries by cooperative hydrated cations. Adv. Funct. Mater. 30(6), 1907218 (2020). https://doi.org/10.1002/adfm.201907218
Y. Liu, X. Zhou, Y. Bai, R. Liu, X. Li et al., Engineering integrated structure for high-performance flexible zinc-ion batteries. Chem. Eng. J. 417, 127955 (2021). https://doi.org/10.1016/j.cej.2020.127955
C. Yuan, X. Zhong, P. Tian, Z. Wang, G. Gao et al., Antifreezing zwitterionic-based hydrogel electrolyte for aqueous Zn ion batteries. ACS Appl. Energy Mater. 5(6), 7530–7537 (2022). https://doi.org/10.1021/acsaem.2c01008
Q. Su, S. Huang, J. Liao, D. Song, W. Yuan et al., A flame retardant and flexible gel polymer electrolytes for high temperature lithium metal batteries. J. Electroanal. Chem. 945, 117712 (2023). https://doi.org/10.1016/j.jelechem.2023.117712
S. Chen, P. Sun, J. Humphreys, P. Zou, M. Zhang et al., Acetate-based ‘oversaturated gel electrolyte’ enabling highly stable aqueous Zn–MnO2 battery. Energy Storage Mater. 42, 240–251 (2021). https://doi.org/10.1016/j.ensm.2021.07.033
X. Li, H. Wang, X. Sun, J. Li, Y.-N. Liu, Flexible wide-temperature zinc-ion battery enabled by an ethylene glycol-based organohydrogel electrolyte. ACS Appl. Energy Mater. 4(11), 12718–12727 (2021). https://doi.org/10.1021/acsaem.1c02433
T. Wei, Y. Ren, Z. Li, X. Zhang, D. Ji et al., Bonding interaction regulation in hydrogel electrolyte enable dendrite-free aqueous zinc-ion batteries from − 20 to 60 °C. Chem. Eng. J. 434, 134646 (2022). https://doi.org/10.1016/j.cej.2022.134646
S. Huang, S. He, S. Huang, X. Zeng, Y. Li et al., Molecular crowding agent modified polyanionic gel electrolyte for zinc ion batteries operating at 100 °C. Adv. Funct. Mater. 35(14), 2419153 (2025). https://doi.org/10.1002/adfm.202419153
W. Deng, Z. Zhou, Y. Li, M. Zhang, X. Yuan et al., High-capacity layered magnesium vanadate with concentrated gel electrolyte toward high-performance and wide-temperature zinc-ion battery. ACS Nano 14(11), 15776–15785 (2020). https://doi.org/10.1021/acsnano.0c06834
H. Lu, J. Hu, L. Wang, J. Li, X. Ma et al., Multi-component crosslinked hydrogel electrolyte toward dendrite-free aqueous Zn ion batteries with high temperature adaptability. Adv. Funct. Mater. 32(19), 2112540 (2022). https://doi.org/10.1002/adfm.202112540
R. Li, L. Li, R. Jia, K. Jiang, G. Shen et al., A flexible concentric circle structured zinc-ion micro-battery with electrodeposited electrodes. Small Methods 4(9), 2000363 (2020). https://doi.org/10.1002/smtd.202000363
J. Huang, X. Chi, Y. Du, Q. Qiu, Y. Liu, Ultrastable zinc anodes enabled by anti-dehydration ionic liquid polymer electrolyte for aqueous Zn batteries. ACS Appl. Mater. Interfaces 13(3), 4008–4016 (2021). https://doi.org/10.1021/acsami.0c20241
J. Du, X. Zhan, Y. Xu, D. Zhang, S. Qin, Heat-resistant covalent organic framework (COF) PVA-hybridized gel electrolyte for the preparation of dendrite-free zinc-ion batteries. Nano Lett. 24(43), 13592–13599 (2024). https://doi.org/10.1021/acs.nanolett.4c03227
S. Tan, Z. Zhang, Y. Xue, J. Zhao, J. Ji et al., Ionic liquid cross-linked poly(N-isopropylacrylamide) hydrogel electrolytes for self-protective flexible separator-free supercapacitors. Ind. Eng. Chem. Res. 62(6), 2741–2751 (2023). https://doi.org/10.1021/acs.iecr.2c04363
M. Keerl, V. Smirnovas, R. Winter, W. Richtering, Interplay between hydrogen bonding and macromolecular architecture leading to unusual phase behavior in thermosensitive microgels. Angew. Chem. Int. Ed. 47(2), 338–341 (2008). https://doi.org/10.1002/anie.200703728
J. Zhu, M. Yao, S. Huang, J. Tian, Z. Niu, Thermal-gated polymer electrolytes for smart zinc-ion batteries. Angew. Chem. Int. Ed. 59(38), 16480–16484 (2020). https://doi.org/10.1002/anie.202007274
Z. Zhuang, Z. Yu, J. Yang, L. Chen, T. Xiao et al., Thermal-gated polyanionic hydrogel films for stable and smart aqueous batteries. Energy Storage Mater. 65, 103136 (2024). https://doi.org/10.1016/j.ensm.2023.103136
P. Yang, C. Feng, Y. Liu, T. Cheng, X. Yang et al., Thermal self-protection of zinc-ion batteries enabled by smart hygroscopic hydrogel electrolytes. Adv. Energy Mater. 10(48), 2002898 (2020). https://doi.org/10.1002/aenm.202002898
H. Zhan, Y. Chen, L. Huang, C. Yang, Y. Zhong et al., Synthesis and characterization of reversible thermosensitive methylated chitin and its application in zinc-ion battery thermal runaway. J. Polym. Sci. 62(2), 353–363 (2024). https://doi.org/10.1002/pol.20230189
X. Tong, Z. Tian, J. Sun, V. Tung, R.B. Kaner et al., Self-healing flexible/stretchable energy storage devices. Mater. Today 44, 78–104 (2021). https://doi.org/10.1016/j.mattod.2020.10.026
Z. Wei, J.H. Yang, J. Zhou, F. Xu, M. Zrínyi et al., Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem. Soc. Rev. 43(23), 8114–8131 (2014). https://doi.org/10.1039/c4cs00219a
L. Fan, X. Ge, Y. Qian, M. Wei, Z. Zhang et al., Advances in synthesis and applications of self-healing hydrogels. Front. Bioeng. Biotechnol. 8, 654 (2020). https://doi.org/10.3389/fbioe.2020.00654
S. Utrera-Barrios, R. Verdejo, M.A. López-Manchado, M. Hernández Santana, Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: a review. Mater. Horiz. 7(11), 2882–2902 (2020). https://doi.org/10.1039/d0mh00535e
Z. Ji, H. Wang, Z. Chen, P. Wang, J. Liu et al., A both microscopically and macroscopically intrinsic self-healing long lifespan yarn battery. Energy Storage Mater. 28, 334–341 (2020). https://doi.org/10.1016/j.ensm.2020.03.020
C. Shao, H. Chang, M. Wang, F. Xu, J. Yang, High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl. Mater. Interfaces 9(34), 28305–28318 (2017). https://doi.org/10.1021/acsami.7b09614
S. Huang, F. Wan, S. Bi, J. Zhu, Z. Niu et al., A self-healing integrated all-in-one zinc-ion battery. Angew. Chem. Int. Ed. 58(13), 4313–4317 (2019). https://doi.org/10.1002/anie.201814653
Q. Li, X. Cui, Q. Pan, Self-healable hydrogel electrolyte toward high-performance and reliable quasi-solid-state Zn-MnO2 batteries. ACS Appl. Mater. Interfaces 11(42), 38762–38770 (2019). https://doi.org/10.1021/acsami.9b13553
Y. Huang, J. Liu, J. Wang, M. Hu, F. Mo et al., An intrinsically self-healing NiCo||Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew. Chem. Int. Ed. 57(31), 9810–9813 (2018). https://doi.org/10.1002/anie.201805618
Q. Liu, R. Chen, L. Xu, Y. Liu, Y. Dai et al., Steric molecular combing effect enables ultrafast self-healing electrolyte in quasi-solid-state zinc-ion batteries. ACS Energy Lett. 7(8), 2825–2832 (2022). https://doi.org/10.1021/acsenergylett.2c01459
Z. Zeng, S. Liao, G. Ma, J. Qu, High-conductivity and ultrastretchable self-healing hydrogels for flexible zinc-ion batteries. ACS Appl. Mater. Interfaces 16(43), 58961–58972 (2024). https://doi.org/10.1021/acsami.4c13058
J. Liu, N. Nie, H. Wang, Z. Chen, Z. Ji et al., A zinc ion yarn battery with high capacity and fire retardancy based on a SiO2 nanop doped ionogel electrolyte. Soft Matter 16(32), 7432–7437 (2020). https://doi.org/10.1039/D0SM00996B
H. Dong, J. Li, S. Zhao, F. Zhao, S. Xiong et al., An anti-aging polymer electrolyte for flexible rechargeable zinc-ion batteries. J. Mater. Chem. A 8(43), 22637–22644 (2020). https://doi.org/10.1039/d0ta07086f
X. Xie, J. Li, Z. Xing, B. Lu, S. Liang et al., Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 10(3), nwac281 (2022). https://doi.org/10.1093/nsr/nwac281
L. Sun, Y. Yao, L. Dai, M. Jiao, B. Ding et al., Sustainable and high-performance Zn dual-ion batteries with a hydrogel-based water-in-salt electrolyte. Energy Storage Mater. 47, 187–194 (2022). https://doi.org/10.1016/j.ensm.2022.02.012
Q. Fu, S. Hao, X. Zhang, H. Zhao, F. Xu et al., All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors. Energy Environ. Sci. 16(3), 1291–1311 (2023). https://doi.org/10.1039/d2ee03793a
X. Cheng, X. Yang, Y. Zhang, P. Lv, J. Yang et al., Sulfur vacancies tune the charge distribution of NiCo2S4 for boosting the energy density of stretchable yarn-based Zn ion batteries. Adv. Fiber Mater. 5(2), 650–661 (2023). https://doi.org/10.1007/s42765-022-00250-8
X. Zheng, J. Tang, B. Ding, W. Cao, Z. Liu et al., Boosting interfacial reaction kinetics in yarn-shaped zinc-V2O5·nH2O batteries through carbon nanotube intermediate layer integration. J. Power. Sources 608, 234618 (2024). https://doi.org/10.1016/j.jpowsour.2024.234618
J. Pu, Y. Gao, Z. Geng, Y. Zhang, Q. Cao et al., Grafted MXene assisted bifunctional hydrogel for stable and highly sensitive self-powered fibrous system. Adv. Funct. Mater. 34(24), 2304453 (2024). https://doi.org/10.1002/adfm.202304453
Q. Liu, Z. Ji, F. Mo, W. Ling, J. Wang et al., Stable thermochromic hydrogel for a flexible and wearable zinc-ion yarn battery with high-temperature warning function. ACS Appl. Energy Mater. 5(10), 12448–12455 (2022). https://doi.org/10.1021/acsaem.2c02072
F. Liu, S. Xu, W. Gong, K. Zhao, Z. Wang et al., Fluorescent fiber-shaped aqueous zinc-ion batteries for bifunctional multicolor-emission/energy-storage textiles. ACS Nano 17(18), 18494–18506 (2023). https://doi.org/10.1021/acsnano.3c06245
P. Xie, Y. Zhang, Z. Man, J. Zhou, Y. Zhang et al., Wearable, recoverable, and implantable energy storage devices with heterostructure porous COF-5/Ti3C2Tx cathode for high-performance aqueous Zn-ion hybrid capacitor. Adv. Funct. Mater. 35(19), 2421517 (2025). https://doi.org/10.1002/adfm.202421517
F. Zhang, Y. Zheng, L. Wang, Y. Kang, H. Dong et al., Implantable zinc ion battery and osteogenesis-immunoregulation bifunction of its catabolite. ACS Nano 18(32), 21246–21257 (2024). https://doi.org/10.1021/acsnano.4c04705
R. Li, H. Xiang, Q. Liang, Y. Zhou, X. Ma et al., Engineering the electrochemistry of a therapeutic Zn battery toward biofilm microenvironment for diabetic wound healing. Nano Energy 128, 109946 (2024). https://doi.org/10.1016/j.nanoen.2024.109946
X. Huang, H. Hou, B. Yu, J. Bai, Y. Guan et al., Fully biodegradable and long-term operational primary zinc batteries as power sources for electronic medicine. ACS Nano 17(6), 5727–5739 (2023). https://doi.org/10.1021/acsnano.2c12125
K. Chen, L. Yan, Y. Sheng, Y. Ma, L. Qu et al., An edible and nutritive zinc-ion micro-supercapacitor in the stomach with ultrahigh energy density. ACS Nano 16(9), 15261–15272 (2022). https://doi.org/10.1021/acsnano.2c06656
L. Zheng, S. Zhang, H. Huang, R. Liu, M. Cai et al., Artificial intelligence-driven rechargeable batteries in multiple fields of development and application towards energy storage. J. Energy Storage 73, 108926 (2023). https://doi.org/10.1016/j.est.2023.108926
B. Eshete, Making machine learning trustworthy. Science 373(6556), 743–744 (2021). https://doi.org/10.1126/science.abi5052
Y. Cui, Y. Ma, Z. Zhao, J. Yu, Y. Chen et al., Ionic buffer layer design for stabilizing Zn electrodes in aqueous Zn-based batteries. Mater. Rep. Energy 4(4), 100292 (2024). https://doi.org/10.1016/j.matre.2024.100292
J.-L. Yang, T. Xiao, T. Xiao, J. Li, Z. Yu et al., Cation-conduction dominated hydrogels for durable zinc-iodine batteries. Adv. Mater. 36(21), e2313610 (2024). https://doi.org/10.1002/adma.202313610
Z. Wang, T. Ji, Q. Zhang, P. Wang, X. Yang et al., Biodegradable starch-based hydrogel as a multifunctional SEI for ultra-stable and flexible zinc-ion batteries. J. Mater. Chem. A 13(31), 25815–25828 (2025). https://doi.org/10.1039/D5TA03299G
H. Wang, A. Zhou, Z. Hu, X. Hu, F. Zhang et al., Toward simultaneous dense zinc deposition and broken side-reaction loops in the Zn//V2O5 system. Angew. Chem. Int. Ed. 63(11), e202318928 (2024). https://doi.org/10.1002/anie.202318928