Decoding Hydrogen-Bond Network of Electrolyte for Cryogenic Durable Aqueous Zinc-Ion Batteries
Corresponding Author: Lin Zeng
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 127
Abstract
Aqueous zinc-ion batteries (AZIBs) hold great promise for next-generation energy storage but face challenges such as Zn dendrite growth, side reactions, and limited performance at low temperatures. Here, we propose an electrolyte design strategy that reconstructs the hydrogen-bond network through the synergistic effect of glycerol (GL) and methylsulfonamide (MSA), enabling the formation of a (100)-oriented Zn anode. This design significantly broadens the operating current and temperature windows of AZIBs. As a result, Zn||Zn symmetric cells exhibit remarkable cycling stability, achieving 4,000 h at 1 mA cm−2 and 600 h at 40 mA cm−2 (both at 1 mAh cm−2 capacity); even at −20 °C, Zn||Zn symmetric cells deliver ultra-stable cycling for over 5,400 h. Furthermore, Zn||VO2 full cells retain 77.3% of their capacity after 2,000 cycles at 30 °C with a current density of 0.5 A g−1 and 85.4% capacity retention after 2,000 cycles at −20 °C and 0.25 A g−1. These results demonstrate a robust pathway for enhancing the practicality and low-temperature adaptability of AZIBs.
Highlights:
1 The hydrogen-bond network structure and solvation structure of the electrolyte are reconstructed by glycerol (GL) and methylsulfonamide (MSA) to achieve low-temperature durability in aqueous zinc-ion batteries (AZIBs).
2 GL and MSA collaboratively construct (100)-oriented high-activity dendrite-free zinc anode to improve the rate performance of AZIBs.
3 The Zn||Zn symmetrical cell achieved stable operation for 4,000 h at 1 mA cm−2 and 1 mAh cm−2 (30 °C) and 5,400 h at 0.5 mA cm−2 and 0.5 mAh cm−2 (−20 °C).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Sun, L. Zhang, F. Li, F. Yang, M. Liu et al., Crystalline-amorphous phase and oxygen vacancies synergistically regulate vanadium electronic states for unleashing zinc-ion storage performance. Adv. Funct. Mater. 35(34), 2501181 (2025). https://doi.org/10.1002/adfm.202501181
- J. Ji, Z. Zhu, H. Du, X. Qi, J. Yao et al., Zinc-contained alloy as a robustly adhered interfacial lattice locking layer for planar and stable zinc electrodeposition. Adv. Mater. 35(20), 2211961 (2023). https://doi.org/10.1002/adma.202211961
- Y. Mu, Z. Li, B.-K. Wu, H. Huang, F. Wu et al., 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries. Nat. Commun. 14(1), 4205 (2023). https://doi.org/10.1038/s41467-023-39947-8
- Y. Geng, L. Pan, Z. Peng, Z. Sun, H. Lin et al., Electrolyte additive engineering for aqueous Zn ion batteries. Energy Storage Mater. 51, 733–755 (2022). https://doi.org/10.1016/j.ensm.2022.07.017
- J. Cao, M. Sun, D. Zhang, Y. Zhang, C. Yang et al., Tuning vertical electrodeposition for dendrites-free zinc-ion batteries. ACS Nano 18(26), 16610–16621 (2024). https://doi.org/10.1021/acsnano.4c00288
- B. Luo, Y. Wang, S. Zheng, L. Sun, G. Duan et al., Ion pumping synergy with atomic anchoring for dendrite-free Zn anodes. Energy Storage Mater. 51, 610–619 (2022). https://doi.org/10.1016/j.ensm.2022.07.010
- S. Gong, Y. Chao, F. Yang, S. Wu, Y. Wang et al., Bifunctional potential structure design breaks electrolyte limitations of zinc ion battery. Angew. Chem. Int. Ed. 63(18), e202401629 (2024). https://doi.org/10.1002/anie.202401629
- L. Sun, Y. Wang, G. Duan, B. Luo, S. Zheng et al., A zincophilic ion-conductive layer with the desolvation effect and oriented deposition behavior achieving superior reversibility of Zn metal anodes. J. Mater. Chem. A 11(32), 17188–17199 (2023). https://doi.org/10.1039/d3ta02502k
- Y. Wang, Z. Deng, B. Luo, G. Duan, S. Zheng et al., Highly reversible Zn metal anodes realized by synergistically enhancing ion migration kinetics and regulating surface energy. Adv. Funct. Mater. 32(52), 2209028 (2022). https://doi.org/10.1002/adfm.202209028
- N. Chang, T. Li, R. Li, S. Wang, Y. Yin et al., An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13(10), 3527–3535 (2020). https://doi.org/10.1039/d0ee01538e
- L. Sun, X. Cao, L. Gao, J. Li, C. Qian et al., Immobilizing zwitterionic molecular brush in functional organic interfacial layers for ultra-stable Zn-ion batteries. Nano-Micro Lett. 17(1), 262 (2025). https://doi.org/10.1007/s40820-025-01782-5
- F. Bu, Y. Gao, W. Zhao, Q. Cao, Y. Deng et al., Bio-inspired trace hydroxyl-rich electrolyte additives for high-rate and stable Zn-ion batteries at low temperatures. Angew. Chem. Int. Ed. 63(9), e202318496 (2024). https://doi.org/10.1002/anie.202318496
- Q. Zhang, K. Xia, Y. Ma, Y. Lu, L. Li et al., Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries. ACS Energy Lett. 6(8), 2704–2712 (2021). https://doi.org/10.1021/acsenergylett.1c01054
- K. Yan, Y. Fan, X. Yang, X. Wang, S. Chen et al., A single ion conductive “plasticine-like” solid electrolyte combined with a modulated d-band center of interfacial zinc atoms for highly reversible zinc metal anodes. Energy Environ. Sci. 18(11), 5333–5346 (2025). https://doi.org/10.1039/d5ee00737b
- Z. Liu, S. Chen, Z. Shi, P. Qiu, K. He et al., Multivalent dipole interactions-driven supramolecular polymer layer enables highly stable Zn anode under harsh conditions. Adv. Energy Mater. 15(29), 2502010 (2025). https://doi.org/10.1002/aenm.202502010
- M.-C. Liu, C.-Y. Tian, D.-T. Zhang, Y.-S. Zhang, B.-M. Zhang et al., Design on modified-zinc anode with dendrite- and side reactions-free by hydrophobic organic-inorganic hybrids for ultra-stable zinc ion batteries. Nano Energy 103, 107805 (2022). https://doi.org/10.1016/j.nanoen.2022.107805
- Y. Bai, H. Zhang, M. Usman Tahir, B. Xiang, Conductive copper glue constructs a reversible and stable zinc metal anode interface for advanced aqueous zinc ion battery. J. Colloid Interface Sci. 608, 22–29 (2022). https://doi.org/10.1016/j.jcis.2021.09.142
- Q. Cao, Y. Gao, J. Pu, X. Zhao, Y. Wang et al., Gradient design of imprinted anode for stable Zn-ion batteries. Nat. Commun. 14(1), 641 (2023). https://doi.org/10.1038/s41467-023-36386-3
- X. Yang, C. Li, Z. Sun, S. Yang, Z. Shi et al., Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv. Mater. 33(52), e2105951 (2021). https://doi.org/10.1002/adma.202105951
- Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Zinc-ion batteries: strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 11(1), 2170001 (2021). https://doi.org/10.1002/aenm.202170001
- L. Cheng, W. Li, M. Li, S. Zhou, J. Yang et al., Zwitterion modified polyacrylonitrile fiber separator for long-life zinc-ion batteries. Adv. Funct. Mater. 34(48), 2408863 (2024). https://doi.org/10.1002/adfm.202408863
- Y. Fang, X. Xie, B. Zhang, Y. Chai, B. Lu et al., Regulating zinc deposition behaviors by the conditioner of PAN separator for zinc-ion batteries. Adv. Funct. Mater. 32(14), 2109671 (2022). https://doi.org/10.1002/adfm.202109671
- Y. Su, B. Liu, Q. Zhang, J. Peng, C. Wei et al., Printing-scalable Ti3C2Tx MXene-decorated Janus separator with expedited Zn2+ flux toward stabilized Zn anodes. Adv. Funct. Mater. 32(32), 2204306 (2022). https://doi.org/10.1002/adfm.202204306
- H. Ren, S. Li, L. Xu, L. Wang, X. Liu et al., Tailoring water-in-DMSO electrolyte for ultra-stable rechargeable zinc batteries. Angew. Chem. Int. Ed. 64(13), e202423302 (2025). https://doi.org/10.1002/anie.202423302
- X. Bai, M. Sun, J. Yang, B. Deng, K. Yang et al., Eutectic-electrolyte-enabled zinc metal batteries towards wide temperature and voltage windows. Energy Environ. Sci. 17(19), 7330–7341 (2024). https://doi.org/10.1039/D4EE02816C
- L. Cao, D. Li, F.A. Soto, V. Ponce, B. Zhang et al., Highly reversible aqueous zinc batteries enabled by zincophilic–zincophobic interfacial layers and interrupted hydrogen-bond electrolytes. Angew. Chem. Int. Ed. 60(34), 18845–18851 (2021). https://doi.org/10.1002/anie.202107378
- Y. Li, H. Zhang, Y. Su, Y. Zou, W. Guo et al., Concurrent regulation of surface topography and interfacial physicochemistry via trace chelation acid additives toward durable Zn anodes. Adv. Funct. Mater. 35(12), 2417462 (2025). https://doi.org/10.1002/adfm.202417462
- J. Liu, Q. Dang, J. Yuwono, S. Zhang, Z. Tai et al., Regulating the coordination environment of H2O in hydrogel electrolyte for a high-environment-adaptable and high-stability flexible Zn devices. Nano-Micro Lett. 17(1), 292 (2025). https://doi.org/10.1007/s40820-025-01810-4
- S. Wang, G. Liu, W. Wan, X. Li, J. Li et al., Acetamide-caprolactam deep eutectic solvent-based electrolyte for stable Zn-metal batteries. Adv. Mater. 36(5), 2306546 (2024). https://doi.org/10.1002/adma.202306546
- P. Cui, T. Wang, Z. Wang, H. Geng, P. Song et al., Co-solvent electrolyte-induced zinc anode surface reconstruction for high performance zinc ion batteries. Chem. Eng. J. 500, 156971 (2024). https://doi.org/10.1016/j.cej.2024.156971
- S. Cui, X. Wang, W. Miao, X. Wang, X. Li et al., Alleviating zinc dendrite growth by versatile sodium carboxymethyl cellulose electrolyte additive to boost long-life aqueous Zn ion capacitors. Energy Storage Mater. 68, 103356 (2024). https://doi.org/10.1016/j.ensm.2024.103356
- C. Lin, X. Yang, P. Xiong, H. Lin, L. He et al., High-rate, large capacity, and long life dendrite-free Zn metal anode enabled by trifunctional electrolyte additive with a wide temperature range. Adv. Sci. 9(21), 2201433 (2022). https://doi.org/10.1002/advs.202201433
- J. Wang, Q. Zhu, F. Li, J. Chen, H. Yuan et al., Low-temperature and high-rate Zn metal batteries enabled by mitigating Zn2+ concentration polarization. Chem. Eng. J. 433, 134589 (2022). https://doi.org/10.1016/j.cej.2022.134589
- R. Zhang, Z. Liao, Y. Fan, L. Song, J. Li et al., Multifunctional hydroxyurea additive enhances high stability and reversibility of zinc anodes. J. Mater. Chem. A 13(8), 5987–5999 (2025). https://doi.org/10.1039/d4ta09186h
- Z. Xie, N. Chen, M. Zhang, M. Wang, X. Zheng et al., Carbonate-assisted chaotropic electrolyte for zinc ion battery with wide temperature operation. ACS Energy Lett. 9(7), 3380–3390 (2024). https://doi.org/10.1021/acsenergylett.4c00833
- Q. Chen, K. Ouyang, Y. Wang, M. Chen, H. Mi et al., Built-in trimodal molecular interaction effect enables interface-compatible and temperature-tolerance aqueous zinc batteries. Adv. Funct. Mater. 34(41), 2406386 (2024). https://doi.org/10.1002/adfm.202406386
- D. Feng, F. Cao, L. Hou, T. Li, Y. Jiao et al., Immunizing aqueous Zn batteries against dendrite formation and side reactions at various temperatures via electrolyte additives. Small 17(42), 2103195 (2021). https://doi.org/10.1002/smll.202103195
- Y. Li, X. Dong, Z. Xu, M. Wang, R. Wang et al., Piezoelectric 1T phase MoSe2 nanoflowers and crystallographically textured electrodes for enhanced low-temperature zinc-ion storage. Adv. Mater. 35(6), e2208615 (2023). https://doi.org/10.1002/adma.202208615
- Y. Shi, Y. Liu, R. Chang, G. Zhang, Y. Rang et al., Aspartame endowed ZnO-based self-healing solid electrolyte interface film for long-cycling and wide-temperature aqueous Zn-ion batteries. Nano-Micro Lett. 17(1), 254 (2025). https://doi.org/10.1007/s40820-025-01765-6
- H. Ren, S. Li, B. Wang, Y. Gong, H. Zhang et al., Mapping the design of electrolyte additive for stabilizing zinc anode in aqueous zinc ion batteries. Energy Storage Mater. 68, 103364 (2024). https://doi.org/10.1016/j.ensm.2024.103364
- B. Xie, C. Zheng, H. Lang, M. Li, Q. Hu et al., Ultrastable electrolyte (>3500 hours at high current density) achieved by high-entropy solvation toward practical aqueous zinc metal batteries. Energy Environ. Sci. 17(19), 7281–7293 (2024). https://doi.org/10.1039/d4ee02896a
- X. Yang, W. Li, Z. Chen, M. Tian, J. Peng et al., Synchronous dual electrolyte additive sustains Zn metal anode with 5600 h lifespan. Angew. Chem. Int. Ed. 62(10), e202218454 (2023). https://doi.org/10.1002/anie.202218454
- B. Wang, C. Guan, Q. Zhou, Y. Wang, Y. Zhu et al., Screening anionic groups within zwitterionic additives for eliminating hydrogen evolution and dendrites in aqueous zinc ion batteries. Nano-Micro Lett. 17(1), 314 (2025). https://doi.org/10.1007/s40820-025-01826-w
- S. Ilic, M.J. Counihan, S.N. Lavan, Y. Yang, Y. Jiang et al., Effect of antisolvent additives in aqueous zinc sulfate electrolytes for zinc metal anodes: the case of acetonitrile. ACS Energy Lett. 9(1), 201–208 (2024). https://doi.org/10.1021/acsenergylett.3c02504
- J. Cao, D. Zhang, Y. Yue, R. Chanajaree, S. Wang et al., Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte. Nano Energy 93, 106839 (2022). https://doi.org/10.1016/j.nanoen.2021.106839
- T. Li, A. Naveed, J. Zheng, B. Chen, M. Jiang et al., Engineering aqueous electrolytes with vicinal S-based organic additives for highly reversible zinc-ion batteries. Angew. Chem. Int. Ed. 64(21), e202424095 (2025). https://doi.org/10.1002/anie.202424095
- L. Lin, Z. Shao, S. Liu, P. Yang, K. Zhu et al., High-entropy aqueous electrolyte induced formation of water-poor Zn2+ solvation structures and gradient solid-electrolyte interphase for long-life Zn-metal anodes. Angew. Chem. Int. Ed. 64(15), e202425008 (2025). https://doi.org/10.1002/anie.202425008
- T. Xue, Y. Mu, Z. Zhang, J. Guan, J. Qiu et al., Enhanced zinc deposition and dendrite suppression in aqueous zinc-ion batteries via citric acid-aspartame electrolyte additives. Adv. Energy Mater. 15(26), 2500674 (2025). https://doi.org/10.1002/aenm.202500674
- H. Wang, S. Deng, S. Wang, W. Li, S. Yuan et al., High-entropy electrolytes with high disordered solvation structures for ultra-stable zinc metal anodes. Angew. Chem. Int. Ed. 64(12), e202422395 (2025). https://doi.org/10.1002/anie.202422395
- C. Huang, D. Zhu, X. Zhao, Y. Hao, Y. Yang et al., High-entropy-inspired multicomponent electrical double layer structure design for stable zinc metal anodes. Angew. Chem. Int. Ed. 63(46), e202411427 (2024). https://doi.org/10.1002/anie.202411427
- M. Qiu, Y. Liang, J. Hong, J. Li, P. Sun et al., Entropy-driven hydrated eutectic electrolytes with diverse solvation configurations for all-temperature Zn-ion batteries. Angew. Chem. Int. Ed. 63(38), e202407012 (2024). https://doi.org/10.1002/anie.202407012
- S. You, Q. Deng, Z. Wang, Y. Chu, Y. Xu et al., Achieving highly stable Zn metal anodes at low temperature via regulating electrolyte solvation structure. Adv. Mater. 36(26), 2402245 (2024). https://doi.org/10.1002/adma.202402245
- L. Chang, H. Cheng, J. Li, L. Zhang, B. Zhang et al., High-entropy solvation chemistry towards affordable and practical Ah-level zinc metal battery. Nat. Commun. 16(1), 6134 (2025). https://doi.org/10.1038/s41467-025-61456-z
- X. Lin, G. Zhou, M.J. Robson, J. Yu, S.C.T. Kwok et al., Hydrated deep eutectic electrolytes for high-performance Zn-ion batteries capable of low-temperature operation. Adv. Funct. Mater. 32(14), 2109322 (2022). https://doi.org/10.1002/adfm.202109322
- K. Qu, X. Lu, N. Jiang, J. Wang, Z. Tao et al., Eutectic electrolytes convoying low-temperature metal-ion batteries. ACS Energy Lett. 9(3), 1192–1209 (2024). https://doi.org/10.1021/acsenergylett.4c00113
- L. Jiang, S. Han, Y.-C. Hu, Y. Yang, Y. Lu et al., Rational design of anti-freezing electrolytes for extremely low-temperature aqueous batteries. Nat. Energy 9(7), 839–848 (2024). https://doi.org/10.1038/s41560-024-01527-5
- C. Fan, W. Meng, J. Ye, Towards advanced zinc anodes by interfacial modification strategies for efficient aqueous zinc metal batteries. J. Energy Chem. 93, 79–110 (2024). https://doi.org/10.1016/j.jechem.2023.12.054
- Z. Cheng, K. Wang, J. Fu, F. Mo, P. Lu et al., Texture exposure of unconventional (101) Zn facet: enabling dendrite-free Zn deposition on metallic zinc anodes. Adv. Energy Mater. 14(16), 2304003 (2024). https://doi.org/10.1002/aenm.202304003
- Y. Liang, M. Qiu, P. Sun, W. Mai, Janus interface enables reversible Zn-ion battery by regulating interfacial water structure and crystal-orientation. Chem. Sci. 15(4), 1488–1497 (2024). https://doi.org/10.1039/D3SC05334B
- Y. Zou, Y. Mu, L. Xu, C. Qiao, Z. Chen et al., Popularizing holistic high-index crystal plane via nonepitaxial electrodeposition toward hydrogen-embrittlement-relieved Zn anode. Adv. Mater. 37(6), 2413080 (2025). https://doi.org/10.1002/adma.202413080
- Z. Mai, Y. Lin, J. Sun, C. Wang, G. Yang et al., Breaking performance limits of Zn anodes in aqueous batteries by tailoring anion and cation additives. Nano-Micro Lett. 17(1), 259 (2025). https://doi.org/10.1007/s40820-025-01773-6
- H. Fu, L. Xiong, W. Han, M. Wang, Y.J. Kim et al., Highly active crystal planes-oriented texture for reversible high-performance Zn metal batteries. Energy Storage Mater. 51, 550–558 (2022). https://doi.org/10.1016/j.ensm.2022.06.057
- Y. Zou, X. Yang, L. Shen, Y. Su, Z. Chen et al., Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energy Environ. Sci. 15(12), 5017–5038 (2022). https://doi.org/10.1039/d2ee02416k
- L. Jiang, Y. Ding, L. Li, Y. Tang, P. Zhou et al., Cationic adsorption-induced microlevelling effect: a pathway to dendrite-free zinc anodes. Nano-Micro Lett. 17(1), 202 (2025). https://doi.org/10.1007/s40820-025-01709-0
- L. Miao, Z. Xiao, D. Shi, M. Wu, D. Liu et al., A universal descriptor in determining H2 evolution activity for dilute aqueous Zn batteries. Adv. Funct. Mater. 33(47), 2306952 (2023). https://doi.org/10.1002/adfm.202306952
- Y. Ren, S. Chen, M. Odziomek, J. Guo, P. Xu et al., Mixing functionality in polymer electrolytes: a new horizon for achieving high-performance all-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 64(18), e202422169 (2025). https://doi.org/10.1002/anie.202422169
- G. Zeng, Q. Sun, S. Horta, P.R. Martínez-Alanis, P. Wu et al., Modulating the solvation structure to enhance amorphous solid electrolyte interface formation for ultra-stable aqueous zinc anode. Energy Environ. Sci. 18(4), 1683–1695 (2025). https://doi.org/10.1039/D4EE03750B
- R. Luo, X. Zheng, T. Jiang, D. Shen, M. Wang et al., Reshaping electrical double layer via synergistic dual additives for Ah-level zinc battery. Adv. Energy Mater. (2025). https://doi.org/10.1002/aenm.202501658
References
J. Sun, L. Zhang, F. Li, F. Yang, M. Liu et al., Crystalline-amorphous phase and oxygen vacancies synergistically regulate vanadium electronic states for unleashing zinc-ion storage performance. Adv. Funct. Mater. 35(34), 2501181 (2025). https://doi.org/10.1002/adfm.202501181
J. Ji, Z. Zhu, H. Du, X. Qi, J. Yao et al., Zinc-contained alloy as a robustly adhered interfacial lattice locking layer for planar and stable zinc electrodeposition. Adv. Mater. 35(20), 2211961 (2023). https://doi.org/10.1002/adma.202211961
Y. Mu, Z. Li, B.-K. Wu, H. Huang, F. Wu et al., 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries. Nat. Commun. 14(1), 4205 (2023). https://doi.org/10.1038/s41467-023-39947-8
Y. Geng, L. Pan, Z. Peng, Z. Sun, H. Lin et al., Electrolyte additive engineering for aqueous Zn ion batteries. Energy Storage Mater. 51, 733–755 (2022). https://doi.org/10.1016/j.ensm.2022.07.017
J. Cao, M. Sun, D. Zhang, Y. Zhang, C. Yang et al., Tuning vertical electrodeposition for dendrites-free zinc-ion batteries. ACS Nano 18(26), 16610–16621 (2024). https://doi.org/10.1021/acsnano.4c00288
B. Luo, Y. Wang, S. Zheng, L. Sun, G. Duan et al., Ion pumping synergy with atomic anchoring for dendrite-free Zn anodes. Energy Storage Mater. 51, 610–619 (2022). https://doi.org/10.1016/j.ensm.2022.07.010
S. Gong, Y. Chao, F. Yang, S. Wu, Y. Wang et al., Bifunctional potential structure design breaks electrolyte limitations of zinc ion battery. Angew. Chem. Int. Ed. 63(18), e202401629 (2024). https://doi.org/10.1002/anie.202401629
L. Sun, Y. Wang, G. Duan, B. Luo, S. Zheng et al., A zincophilic ion-conductive layer with the desolvation effect and oriented deposition behavior achieving superior reversibility of Zn metal anodes. J. Mater. Chem. A 11(32), 17188–17199 (2023). https://doi.org/10.1039/d3ta02502k
Y. Wang, Z. Deng, B. Luo, G. Duan, S. Zheng et al., Highly reversible Zn metal anodes realized by synergistically enhancing ion migration kinetics and regulating surface energy. Adv. Funct. Mater. 32(52), 2209028 (2022). https://doi.org/10.1002/adfm.202209028
N. Chang, T. Li, R. Li, S. Wang, Y. Yin et al., An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13(10), 3527–3535 (2020). https://doi.org/10.1039/d0ee01538e
L. Sun, X. Cao, L. Gao, J. Li, C. Qian et al., Immobilizing zwitterionic molecular brush in functional organic interfacial layers for ultra-stable Zn-ion batteries. Nano-Micro Lett. 17(1), 262 (2025). https://doi.org/10.1007/s40820-025-01782-5
F. Bu, Y. Gao, W. Zhao, Q. Cao, Y. Deng et al., Bio-inspired trace hydroxyl-rich electrolyte additives for high-rate and stable Zn-ion batteries at low temperatures. Angew. Chem. Int. Ed. 63(9), e202318496 (2024). https://doi.org/10.1002/anie.202318496
Q. Zhang, K. Xia, Y. Ma, Y. Lu, L. Li et al., Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries. ACS Energy Lett. 6(8), 2704–2712 (2021). https://doi.org/10.1021/acsenergylett.1c01054
K. Yan, Y. Fan, X. Yang, X. Wang, S. Chen et al., A single ion conductive “plasticine-like” solid electrolyte combined with a modulated d-band center of interfacial zinc atoms for highly reversible zinc metal anodes. Energy Environ. Sci. 18(11), 5333–5346 (2025). https://doi.org/10.1039/d5ee00737b
Z. Liu, S. Chen, Z. Shi, P. Qiu, K. He et al., Multivalent dipole interactions-driven supramolecular polymer layer enables highly stable Zn anode under harsh conditions. Adv. Energy Mater. 15(29), 2502010 (2025). https://doi.org/10.1002/aenm.202502010
M.-C. Liu, C.-Y. Tian, D.-T. Zhang, Y.-S. Zhang, B.-M. Zhang et al., Design on modified-zinc anode with dendrite- and side reactions-free by hydrophobic organic-inorganic hybrids for ultra-stable zinc ion batteries. Nano Energy 103, 107805 (2022). https://doi.org/10.1016/j.nanoen.2022.107805
Y. Bai, H. Zhang, M. Usman Tahir, B. Xiang, Conductive copper glue constructs a reversible and stable zinc metal anode interface for advanced aqueous zinc ion battery. J. Colloid Interface Sci. 608, 22–29 (2022). https://doi.org/10.1016/j.jcis.2021.09.142
Q. Cao, Y. Gao, J. Pu, X. Zhao, Y. Wang et al., Gradient design of imprinted anode for stable Zn-ion batteries. Nat. Commun. 14(1), 641 (2023). https://doi.org/10.1038/s41467-023-36386-3
X. Yang, C. Li, Z. Sun, S. Yang, Z. Shi et al., Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv. Mater. 33(52), e2105951 (2021). https://doi.org/10.1002/adma.202105951
Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Zinc-ion batteries: strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 11(1), 2170001 (2021). https://doi.org/10.1002/aenm.202170001
L. Cheng, W. Li, M. Li, S. Zhou, J. Yang et al., Zwitterion modified polyacrylonitrile fiber separator for long-life zinc-ion batteries. Adv. Funct. Mater. 34(48), 2408863 (2024). https://doi.org/10.1002/adfm.202408863
Y. Fang, X. Xie, B. Zhang, Y. Chai, B. Lu et al., Regulating zinc deposition behaviors by the conditioner of PAN separator for zinc-ion batteries. Adv. Funct. Mater. 32(14), 2109671 (2022). https://doi.org/10.1002/adfm.202109671
Y. Su, B. Liu, Q. Zhang, J. Peng, C. Wei et al., Printing-scalable Ti3C2Tx MXene-decorated Janus separator with expedited Zn2+ flux toward stabilized Zn anodes. Adv. Funct. Mater. 32(32), 2204306 (2022). https://doi.org/10.1002/adfm.202204306
H. Ren, S. Li, L. Xu, L. Wang, X. Liu et al., Tailoring water-in-DMSO electrolyte for ultra-stable rechargeable zinc batteries. Angew. Chem. Int. Ed. 64(13), e202423302 (2025). https://doi.org/10.1002/anie.202423302
X. Bai, M. Sun, J. Yang, B. Deng, K. Yang et al., Eutectic-electrolyte-enabled zinc metal batteries towards wide temperature and voltage windows. Energy Environ. Sci. 17(19), 7330–7341 (2024). https://doi.org/10.1039/D4EE02816C
L. Cao, D. Li, F.A. Soto, V. Ponce, B. Zhang et al., Highly reversible aqueous zinc batteries enabled by zincophilic–zincophobic interfacial layers and interrupted hydrogen-bond electrolytes. Angew. Chem. Int. Ed. 60(34), 18845–18851 (2021). https://doi.org/10.1002/anie.202107378
Y. Li, H. Zhang, Y. Su, Y. Zou, W. Guo et al., Concurrent regulation of surface topography and interfacial physicochemistry via trace chelation acid additives toward durable Zn anodes. Adv. Funct. Mater. 35(12), 2417462 (2025). https://doi.org/10.1002/adfm.202417462
J. Liu, Q. Dang, J. Yuwono, S. Zhang, Z. Tai et al., Regulating the coordination environment of H2O in hydrogel electrolyte for a high-environment-adaptable and high-stability flexible Zn devices. Nano-Micro Lett. 17(1), 292 (2025). https://doi.org/10.1007/s40820-025-01810-4
S. Wang, G. Liu, W. Wan, X. Li, J. Li et al., Acetamide-caprolactam deep eutectic solvent-based electrolyte for stable Zn-metal batteries. Adv. Mater. 36(5), 2306546 (2024). https://doi.org/10.1002/adma.202306546
P. Cui, T. Wang, Z. Wang, H. Geng, P. Song et al., Co-solvent electrolyte-induced zinc anode surface reconstruction for high performance zinc ion batteries. Chem. Eng. J. 500, 156971 (2024). https://doi.org/10.1016/j.cej.2024.156971
S. Cui, X. Wang, W. Miao, X. Wang, X. Li et al., Alleviating zinc dendrite growth by versatile sodium carboxymethyl cellulose electrolyte additive to boost long-life aqueous Zn ion capacitors. Energy Storage Mater. 68, 103356 (2024). https://doi.org/10.1016/j.ensm.2024.103356
C. Lin, X. Yang, P. Xiong, H. Lin, L. He et al., High-rate, large capacity, and long life dendrite-free Zn metal anode enabled by trifunctional electrolyte additive with a wide temperature range. Adv. Sci. 9(21), 2201433 (2022). https://doi.org/10.1002/advs.202201433
J. Wang, Q. Zhu, F. Li, J. Chen, H. Yuan et al., Low-temperature and high-rate Zn metal batteries enabled by mitigating Zn2+ concentration polarization. Chem. Eng. J. 433, 134589 (2022). https://doi.org/10.1016/j.cej.2022.134589
R. Zhang, Z. Liao, Y. Fan, L. Song, J. Li et al., Multifunctional hydroxyurea additive enhances high stability and reversibility of zinc anodes. J. Mater. Chem. A 13(8), 5987–5999 (2025). https://doi.org/10.1039/d4ta09186h
Z. Xie, N. Chen, M. Zhang, M. Wang, X. Zheng et al., Carbonate-assisted chaotropic electrolyte for zinc ion battery with wide temperature operation. ACS Energy Lett. 9(7), 3380–3390 (2024). https://doi.org/10.1021/acsenergylett.4c00833
Q. Chen, K. Ouyang, Y. Wang, M. Chen, H. Mi et al., Built-in trimodal molecular interaction effect enables interface-compatible and temperature-tolerance aqueous zinc batteries. Adv. Funct. Mater. 34(41), 2406386 (2024). https://doi.org/10.1002/adfm.202406386
D. Feng, F. Cao, L. Hou, T. Li, Y. Jiao et al., Immunizing aqueous Zn batteries against dendrite formation and side reactions at various temperatures via electrolyte additives. Small 17(42), 2103195 (2021). https://doi.org/10.1002/smll.202103195
Y. Li, X. Dong, Z. Xu, M. Wang, R. Wang et al., Piezoelectric 1T phase MoSe2 nanoflowers and crystallographically textured electrodes for enhanced low-temperature zinc-ion storage. Adv. Mater. 35(6), e2208615 (2023). https://doi.org/10.1002/adma.202208615
Y. Shi, Y. Liu, R. Chang, G. Zhang, Y. Rang et al., Aspartame endowed ZnO-based self-healing solid electrolyte interface film for long-cycling and wide-temperature aqueous Zn-ion batteries. Nano-Micro Lett. 17(1), 254 (2025). https://doi.org/10.1007/s40820-025-01765-6
H. Ren, S. Li, B. Wang, Y. Gong, H. Zhang et al., Mapping the design of electrolyte additive for stabilizing zinc anode in aqueous zinc ion batteries. Energy Storage Mater. 68, 103364 (2024). https://doi.org/10.1016/j.ensm.2024.103364
B. Xie, C. Zheng, H. Lang, M. Li, Q. Hu et al., Ultrastable electrolyte (>3500 hours at high current density) achieved by high-entropy solvation toward practical aqueous zinc metal batteries. Energy Environ. Sci. 17(19), 7281–7293 (2024). https://doi.org/10.1039/d4ee02896a
X. Yang, W. Li, Z. Chen, M. Tian, J. Peng et al., Synchronous dual electrolyte additive sustains Zn metal anode with 5600 h lifespan. Angew. Chem. Int. Ed. 62(10), e202218454 (2023). https://doi.org/10.1002/anie.202218454
B. Wang, C. Guan, Q. Zhou, Y. Wang, Y. Zhu et al., Screening anionic groups within zwitterionic additives for eliminating hydrogen evolution and dendrites in aqueous zinc ion batteries. Nano-Micro Lett. 17(1), 314 (2025). https://doi.org/10.1007/s40820-025-01826-w
S. Ilic, M.J. Counihan, S.N. Lavan, Y. Yang, Y. Jiang et al., Effect of antisolvent additives in aqueous zinc sulfate electrolytes for zinc metal anodes: the case of acetonitrile. ACS Energy Lett. 9(1), 201–208 (2024). https://doi.org/10.1021/acsenergylett.3c02504
J. Cao, D. Zhang, Y. Yue, R. Chanajaree, S. Wang et al., Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte. Nano Energy 93, 106839 (2022). https://doi.org/10.1016/j.nanoen.2021.106839
T. Li, A. Naveed, J. Zheng, B. Chen, M. Jiang et al., Engineering aqueous electrolytes with vicinal S-based organic additives for highly reversible zinc-ion batteries. Angew. Chem. Int. Ed. 64(21), e202424095 (2025). https://doi.org/10.1002/anie.202424095
L. Lin, Z. Shao, S. Liu, P. Yang, K. Zhu et al., High-entropy aqueous electrolyte induced formation of water-poor Zn2+ solvation structures and gradient solid-electrolyte interphase for long-life Zn-metal anodes. Angew. Chem. Int. Ed. 64(15), e202425008 (2025). https://doi.org/10.1002/anie.202425008
T. Xue, Y. Mu, Z. Zhang, J. Guan, J. Qiu et al., Enhanced zinc deposition and dendrite suppression in aqueous zinc-ion batteries via citric acid-aspartame electrolyte additives. Adv. Energy Mater. 15(26), 2500674 (2025). https://doi.org/10.1002/aenm.202500674
H. Wang, S. Deng, S. Wang, W. Li, S. Yuan et al., High-entropy electrolytes with high disordered solvation structures for ultra-stable zinc metal anodes. Angew. Chem. Int. Ed. 64(12), e202422395 (2025). https://doi.org/10.1002/anie.202422395
C. Huang, D. Zhu, X. Zhao, Y. Hao, Y. Yang et al., High-entropy-inspired multicomponent electrical double layer structure design for stable zinc metal anodes. Angew. Chem. Int. Ed. 63(46), e202411427 (2024). https://doi.org/10.1002/anie.202411427
M. Qiu, Y. Liang, J. Hong, J. Li, P. Sun et al., Entropy-driven hydrated eutectic electrolytes with diverse solvation configurations for all-temperature Zn-ion batteries. Angew. Chem. Int. Ed. 63(38), e202407012 (2024). https://doi.org/10.1002/anie.202407012
S. You, Q. Deng, Z. Wang, Y. Chu, Y. Xu et al., Achieving highly stable Zn metal anodes at low temperature via regulating electrolyte solvation structure. Adv. Mater. 36(26), 2402245 (2024). https://doi.org/10.1002/adma.202402245
L. Chang, H. Cheng, J. Li, L. Zhang, B. Zhang et al., High-entropy solvation chemistry towards affordable and practical Ah-level zinc metal battery. Nat. Commun. 16(1), 6134 (2025). https://doi.org/10.1038/s41467-025-61456-z
X. Lin, G. Zhou, M.J. Robson, J. Yu, S.C.T. Kwok et al., Hydrated deep eutectic electrolytes for high-performance Zn-ion batteries capable of low-temperature operation. Adv. Funct. Mater. 32(14), 2109322 (2022). https://doi.org/10.1002/adfm.202109322
K. Qu, X. Lu, N. Jiang, J. Wang, Z. Tao et al., Eutectic electrolytes convoying low-temperature metal-ion batteries. ACS Energy Lett. 9(3), 1192–1209 (2024). https://doi.org/10.1021/acsenergylett.4c00113
L. Jiang, S. Han, Y.-C. Hu, Y. Yang, Y. Lu et al., Rational design of anti-freezing electrolytes for extremely low-temperature aqueous batteries. Nat. Energy 9(7), 839–848 (2024). https://doi.org/10.1038/s41560-024-01527-5
C. Fan, W. Meng, J. Ye, Towards advanced zinc anodes by interfacial modification strategies for efficient aqueous zinc metal batteries. J. Energy Chem. 93, 79–110 (2024). https://doi.org/10.1016/j.jechem.2023.12.054
Z. Cheng, K. Wang, J. Fu, F. Mo, P. Lu et al., Texture exposure of unconventional (101) Zn facet: enabling dendrite-free Zn deposition on metallic zinc anodes. Adv. Energy Mater. 14(16), 2304003 (2024). https://doi.org/10.1002/aenm.202304003
Y. Liang, M. Qiu, P. Sun, W. Mai, Janus interface enables reversible Zn-ion battery by regulating interfacial water structure and crystal-orientation. Chem. Sci. 15(4), 1488–1497 (2024). https://doi.org/10.1039/D3SC05334B
Y. Zou, Y. Mu, L. Xu, C. Qiao, Z. Chen et al., Popularizing holistic high-index crystal plane via nonepitaxial electrodeposition toward hydrogen-embrittlement-relieved Zn anode. Adv. Mater. 37(6), 2413080 (2025). https://doi.org/10.1002/adma.202413080
Z. Mai, Y. Lin, J. Sun, C. Wang, G. Yang et al., Breaking performance limits of Zn anodes in aqueous batteries by tailoring anion and cation additives. Nano-Micro Lett. 17(1), 259 (2025). https://doi.org/10.1007/s40820-025-01773-6
H. Fu, L. Xiong, W. Han, M. Wang, Y.J. Kim et al., Highly active crystal planes-oriented texture for reversible high-performance Zn metal batteries. Energy Storage Mater. 51, 550–558 (2022). https://doi.org/10.1016/j.ensm.2022.06.057
Y. Zou, X. Yang, L. Shen, Y. Su, Z. Chen et al., Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energy Environ. Sci. 15(12), 5017–5038 (2022). https://doi.org/10.1039/d2ee02416k
L. Jiang, Y. Ding, L. Li, Y. Tang, P. Zhou et al., Cationic adsorption-induced microlevelling effect: a pathway to dendrite-free zinc anodes. Nano-Micro Lett. 17(1), 202 (2025). https://doi.org/10.1007/s40820-025-01709-0
L. Miao, Z. Xiao, D. Shi, M. Wu, D. Liu et al., A universal descriptor in determining H2 evolution activity for dilute aqueous Zn batteries. Adv. Funct. Mater. 33(47), 2306952 (2023). https://doi.org/10.1002/adfm.202306952
Y. Ren, S. Chen, M. Odziomek, J. Guo, P. Xu et al., Mixing functionality in polymer electrolytes: a new horizon for achieving high-performance all-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 64(18), e202422169 (2025). https://doi.org/10.1002/anie.202422169
G. Zeng, Q. Sun, S. Horta, P.R. Martínez-Alanis, P. Wu et al., Modulating the solvation structure to enhance amorphous solid electrolyte interface formation for ultra-stable aqueous zinc anode. Energy Environ. Sci. 18(4), 1683–1695 (2025). https://doi.org/10.1039/D4EE03750B
R. Luo, X. Zheng, T. Jiang, D. Shen, M. Wang et al., Reshaping electrical double layer via synergistic dual additives for Ah-level zinc battery. Adv. Energy Mater. (2025). https://doi.org/10.1002/aenm.202501658