In situ Studies of Electrochemical Energy Conversion and Storage Technologies: From Materials, Intermediates, and Products to Surroundings
Corresponding Author: Jian‑Feng Li
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 170
Abstract
Escalating global energy demands and climate urgency necessitate advanced electrochemical energy conversion and storage technologies (EECSTs) like electrocatalysis and rechargeable batteries. Improving their performance relies on elucidating reaction mechanisms and structure-performance relationships via in situ studies. This review summarizes recent in situ studies of EECSTs through a variety of advanced characterization techniques aiming at mapping reaction pathways for the rational design of overall high-performance reaction systems. We outline the principles, capabilities, advantages, and limitations of various in situ techniques. Their applications in in situ studies of fuel cells, water/CO2 electrolysis, and lithium batteries are highlighted with representative examples. These studies enable dynamic tracking of chemical and structural evolution of overall reaction systems, including materials, intermediates, products, and surroundings during operation, providing insights critical to rational system design. Future advancements will involve integrating multimodal in situ/operando approaches with artificial intelligence to enable real-time monitoring at practical scales. Such integration promises precise mechanistic insights and robust structure-performance correlations, ultimately accelerating the development of high-performance EECSTs aligned with sustainability and market requirements.
Highlights:
1 An overview of the principles, capabilities, advantages, and limitations of various advanced in situ characterization techniques is provided.
2 In situ studies of fuel cells, water electrolysis, CO2 reduction reaction, and lithium batteries are reviewed across multiple scales, from materials to surroundings.
3 Challenges and prospects of in situ studies of electrochemical energy conversion and storage technologies are proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16(1), 16–22 (2017). https://doi.org/10.1038/nmat4834
- D.M. Kammen, D.A. Sunter, City-integrated renewable energy for urban sustainability. Science 352(6288), 922–928 (2016). https://doi.org/10.1126/science.aad9302
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
- M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang et al., Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37, 136–157 (2017). https://doi.org/10.1016/j.nanoen.2017.05.022
- H. Yang, X. Han, A.I. Douka, L. Huang, L. Gong et al., Advanced oxygen electrocatalysis in energy conversion and storage. Adv. Funct. Mater. 31(12), 2007602 (2021). https://doi.org/10.1002/adfm.202007602
- L. Zu, W. Zhang, L. Qu, L. Liu, W. Li et al., Mesoporous materials for electrochemical energy storage and conversion. Adv. Energy Mater. 10(38), 2002152 (2020). https://doi.org/10.1002/aenm.202002152
- L. Kong, M. Zhong, W. Shuang, Y. Xu, X.-H. Bu, Electrochemically active sites inside crystalline porous materials for energy storage and conversion. Chem. Soc. Rev. 49(8), 2378–2407 (2020). https://doi.org/10.1039/C9CS00880B
- C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15(1), 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
- J. Wang, H.-Y. Tan, M.-Y. Qi, J.-Y. Li, Z.-R. Tang et al., Spatially and temporally understanding dynamic solid–electrolyte interfaces in carbon dioxide electroreduction. Chem. Soc. Rev. 52(15), 5013–5050 (2023). https://doi.org/10.1039/D2CS00441K
- J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13(1), 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
- B. Rhimi, M. Zhou, Z. Yan, X. Cai, Z. Jiang, Cu-based materials for enhanced C(2+) product selectivity in photo-/ electro-catalytic CO2 reduction: challenges and prospects. Nano-Micro Lett. 16(1), 64 (2024). https://doi.org/10.1007/s40820-023-01276-2
- G. Zhou, L. Xu, G. Hu, L. Mai, Y. Cui, Nanowires for electrochemical energy storage. Chem. Rev. 119(20), 11042–11109 (2019). https://doi.org/10.1021/acs.chemrev.9b00326
- Y. Wang, F. Chu, J. Zeng, Q. Wang, T. Naren et al., Single atom catalysts for fuel cells and rechargeable batteries: principles, advances, and opportunities. ACS Nano 15(1), 210–239 (2021). https://doi.org/10.1021/acsnano.0c08652
- Z. Yan, J.L. Hitt, J.A. Turner, T.E. Mallouk, Renewable electricity storage using electrolysis. Proc. Natl. Acad. Sci. U. S. A. 117(23), 12558–12563 (2020). https://doi.org/10.1073/pnas.1821686116
- X.-M. Lin, X.-T. Yang, H.-N. Chen, Y.-L. Deng, W.-H. Chen et al., In situ characterizations of advanced electrode materials for sodium-ion batteries toward high electrochemical performances. J. Energy Chem. 76, 146–164 (2023). https://doi.org/10.1016/j.jechem.2022.09.016
- G.-X. Liu, J.-X. Tian, J. Wan, Y. Li, Z.-Z. Shen et al., Revealing the high salt concentration manipulated evolution mechanism on the lithium anode in quasi-solid-state lithium-sulfur batteries. Angew. Chem. Int. Ed. 61(52), e202212744 (2022). https://doi.org/10.1002/anie.202212744
- J. Theerthagiri, K. Karuppasamy, C. Justin Raj, M.L. Aruna Kumari, L. John Kennedy et al., In situ spectroscopy: delineating the mechanistic understanding of electrochemical energy reactions. Prog. Mater. Sci. 152, 101451 (2025). https://doi.org/10.1016/j.pmatsci.2025.101451
- C. Mu, C. Lv, X. Meng, J. Sun, Z. Tong et al., In situ characterization techniques applied in photocatalysis: a review. Adv. Mater. Interfaces 10(3), 2201842 (2023). https://doi.org/10.1002/admi.202201842
- J. Zhao, J. Lian, Z. Zhao, X. Wang, J. Zhang, A review of in situ techniques for probing active sites and mechanisms of electrocatalytic oxygen reduction reactions. Nano-Micro Lett. 15(1), 19 (2022). https://doi.org/10.1007/s40820-022-00984-5
- H. Lin, T. Yan, Q. Yang, L. Lin, L. Liu et al., Electrochemical in situ characterization techniques in the field of energy conversion. Small Methods 9(7), 2401701 (2025). https://doi.org/10.1002/smtd.202401701
- C. Chen, H. Jin, P. Wang, X. Sun, M. Jaroniec et al., Local reaction environment in electrocatalysis. Chem. Soc. Rev. 53(4), 2022–2055 (2024). https://doi.org/10.1039/d3cs00669g
- J. Li, G. Johnson, S. Zhang, D. Su, In situ transmission electron microscopy for energy applications. Joule 3(1), 4–8 (2019). https://doi.org/10.1016/j.joule.2018.12.007
- N. Hodnik, G. Dehm, K.J.J. Mayrhofer, Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research. Acc. Chem. Res. 49(9), 2015–2022 (2016). https://doi.org/10.1021/acs.accounts.6b00330
- E.A. Torres, A.J. Ramírez, In situ scanning electron microscopy. Sci. Technol. Weld. Join. 16(1), 68–78 (2011). https://doi.org/10.1179/136217110x12785889550028
- J. Liu, Scanning transmission electron microscopy and its application to the study of nanops and nanop systems. Microscopy 54(3), 251–278 (2005). https://doi.org/10.1093/jmicro/dfi034
- S.W. Paddock, Principles and practices of laser scanning confocal microscopy. Mol. Biotechnol. 16(2), 127–149 (2000). https://doi.org/10.1385/MB:16:2:127
- E. Albisetti, A. Calò, A. Zanut, X. Zheng, G.M. de Peppo et al., Thermal scanning probe lithography. Nat. Rev. Methods Prim. 2, 32 (2022). https://doi.org/10.1038/s43586-022-00110-0
- T. Schmid, L. Opilik, C. Blum, R. Zenobi, Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. Angew. Chem. Int. Ed. 52(23), 5940–5954 (2013). https://doi.org/10.1002/anie.201203849
- P. Bertoncello, Advances on scanning electrochemical microscopy (SECM) for energy. Energy Environ. Sci. 3(11), 1620–1633 (2010). https://doi.org/10.1039/C0EE00046A
- B. Gault, A. Chiaramonti, O. Cojocaru-Mirédin, P. Stender, R. Dubosq et al., Atom probe tomography. Nat. Rev. Methods Primers 1, 51 (2021). https://doi.org/10.1038/s43586-021-00047-w
- F.A. Stevie, C.L. Donley, Introduction to X-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A, Vac. Surf. Films 38(6), 063204 (2020). https://doi.org/10.1116/6.0000412
- D.N.G. Krishna, J. Philip, Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): recent developments and challenges. Appl. Surf. Sci. Adv. 12, 100332 (2022). https://doi.org/10.1016/j.apsadv.2022.100332
- E. Alizadeh, L. Sanche, Precursors of solvated electrons in radiobiological physics and chemistry. Chem. Rev. 112(11), 5578–5602 (2012). https://doi.org/10.1021/cr300063r
- A.A. Bunaciu, E.G. Udriştioiu, H.Y. Aboul-Enein, X-ray diffraction: instrumentation and applications. Crit. Rev. Anal. Chem. 45(4), 289–299 (2015). https://doi.org/10.1080/10408347.2014.949616
- W.H. Bragg, X-rays and crystalline structure. Science 40(1040), 795–802 (1914). https://doi.org/10.1126/science.40.1040.795
- W.L. Bragg, The structure of some crystals as indicated by their diffraction of X-rays. Proc. R. Soc. Lond. Ser. A 89(610), 248–277 (1913). https://doi.org/10.1098/rspa.1913.0083
- J. Fink, E. Schierle, E. Weschke, J. Geck, Resonant elastic soft X-ray scattering. Rep. Prog. Phys. 76(5), 056502 (2013). https://doi.org/10.1088/0034-4885/76/5/056502
- H.S. Magar, R.Y.A. Hassan, A. Mulchandani, Electrochemical impedance spectroscopy (EIS): principles, construction, and biosensing applications. Sensors 21(19), 6578 (2021). https://doi.org/10.3390/s21196578
- X. Zheng, B. Zhang, P. De Luna, Y. Liang, R. Comin et al., Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 10(2), 149–154 (2018). https://doi.org/10.1038/nchem.2886
- H. Huang, A.E. Russell, Approaches to achieve surface sensitivity in the in situ XAS of electrocatalysts. Curr. Opin. Electrochem. 27, 100681 (2021). https://doi.org/10.1016/j.coelec.2020.100681
- W. Kao-ian, P. Tangthuam, P. Kidkhunthod, W. Limphirat, J. Padchasri et al., Monitoring interfacial dynamics of a zinc-ion battery cathode using in situ grazing incidence X-ray absorption spectroscopy: a case study of manganese dioxide. Small Meth (2025). https://doi.org/10.1002/smtd.202500871
- J. Kozuch, K. Ataka, J. Heberle, Surface-enhanced infrared absorption spectroscopy. Nat. Rev. Methods Prim. 3, 70 (2023). https://doi.org/10.1038/s43586-023-00253-8
- J. Coates, Interpretation of infrared spectra, a practical approach. Encyclopedia Anal. Chem. 12, 10815–10837 (2000). https://doi.org/10.1002/9780470027318.a5606
- Z. Xu, Z. Liang, W. Guo, R. Zou, In situ/operando vibrational spectroscopy for the investigation of advanced nanostructured electrocatalysts. Coord. Chem. Rev. 436, 213824 (2021). https://doi.org/10.1016/j.ccr.2021.213824
- J. Langer, D. Jimenez de Aberasturi, J. Aizpurua, R.A. Alvarez-Puebla, B. Auguié et al., Present and future of surface-enhanced Raman scattering. ACS Nano 14(1), 28–117 (2020). https://doi.org/10.1021/acsnano.9b04224
- B.-Y. Wen, Q.-Q. Chen, P.M. Radjenovic, J.-C. Dong, Z.-Q. Tian et al., In situ surface-enhanced Raman spectroscopy characterization of electrocatalysis with different nanostructures. Annu. Rev. Phys. Chem. 72, 331–351 (2021). https://doi.org/10.1146/annurev-physchem-090519-034645
- M.M. Roessler, E. Salvadori, Principles and applications of EPR spectroscopy in the chemical sciences. Chem. Soc. Rev. 47(8), 2534–2553 (2018). https://doi.org/10.1039/c6cs00565a
- J. Mitchell, J. Webber, J. Strange, Nuclear magnetic resonance cryoporometry. Phys. Rep. 461(1), 1–36 (2008). https://doi.org/10.1016/j.physrep.2008.02.001
- B.B. Xu, Y. Liu, Y. Liu, X. You, H. Zhou et al., Operando electrochemical NMR spectroscopy reveals a water-assisted formate formation mechanism. Chem 10(10), 3114–3130 (2024). https://doi.org/10.1016/j.chempr.2024.06.001
- R.E. Majors, M. Przybyciel, Columns for reversed-phase LC separations in highly aqueous mobile phases. LCGC North A1m. 20, 584–593 (2002). https://doi.org/10.1016/S1044-0305(02)00800-0
- E. Matisová, M. Dömötörová, Fast gas chromatography and its use in trace analysis. J. Chromatogr. A 1000(1–2), 199–221 (2003). https://doi.org/10.1016/S0021-9673(03)00310-8
- J.V. Seeley, S.K. Seeley, Multidimensional gas chromatography: fundamental advances and new applications. Anal. Chem. 85(2), 557–578 (2013). https://doi.org/10.1021/ac303195u
- D. Tsikas, A.A. Zoerner, Analysis of eicosanoids by LC-MS/MS and GC-MS/MS: a historical retrospect and a discussion. J. Chromatogr. B 964, 79–88 (2014). https://doi.org/10.1016/j.jchromb.2014.03.017
- X. Cao, D. Tan, B. Wulan, K.S. Hui, K.N. Hui et al., In situ characterization for boosting electrocatalytic carbon dioxide reduction. Small Methods 5(10), 2100700 (2021). https://doi.org/10.1002/smtd.202100700
- H. Baltruschat, Differential electrochemical mass spectrometry. J. Am. Soc. Mass Spectrom. 15(12), 1693–1706 (2004). https://doi.org/10.1016/j.jasms.2004.09.011
- A.M. Azad, S.A. Akbar, S.G. Mhaisalkar, L.D. Birkefeld, K.S. Goto, Solid-state gas sensors: a review. J. Electrochem. Soc. 139(12), 3690–3704 (1992). https://doi.org/10.1149/1.2069145
- S.V. Kalinin, C. Ophus, P.M. Voyles, R. Erni, D. Kepaptsoglou et al., Machine learning in scanning transmission electron microscopy. Nat. Rev. Methods Primers 2, 11 (2022). https://doi.org/10.1038/s43586-022-00095-w
- R. Ding, J. Chen, Y. Chen, J. Liu, Y. Bando et al., Unlocking the potential: machine learning applications in electrocatalyst design for electrochemical hydrogen energy transformation. Chem. Soc. Rev. 53(23), 11390–11461 (2024). https://doi.org/10.1039/d4cs00844h
- J. Zhang, Y. Yuan, L. Gao, G. Zeng, M. Li et al., Stabilizing Pt-based electrocatalysts for oxygen reduction reaction: fundamental understanding and design strategies. Adv. Mater. 33(20), 2006494 (2021). https://doi.org/10.1002/adma.202006494
- Y.-L. Sun, Y.-L. Deng, H.-N. Chen, X.-T. Yang, X.-M. Lin et al., Design strategies and in situ infrared, Raman, and X-ray absorption spectroscopy techniques insight into the electrocatalysts of hydrogen energy system. Small Struct. 4(6), 2200201 (2023). https://doi.org/10.1002/sstr.202200201
- Z. Ma, Z.P. Cano, A. Yu, Z. Chen, G. Jiang et al., Enhancing oxygen reduction activity of Pt-based electrocatalysts: from theoretical mechanisms to practical methods. Angew. Chem. Int. Ed. 59(42), 18334–18348 (2020). https://doi.org/10.1002/anie.202003654
- A. Kulkarni, S. Siahrostami, A. Patel, J.K. Nørskov, Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118(5), 2302–2312 (2018). https://doi.org/10.1021/acs.chemrev.7b00488
- L. Zhang, S. Jiang, W. Ma, Z. Zhou, Oxygen reduction reaction on Pt-based electrocatalysts: four-electron vs. two-electron pathway. Chin. J. Catal. 43(6), 1433–1443 (2022). https://doi.org/10.1016/S1872-2067(21)63961-X
- Y. Cheng, H. Wang, H. Song, K. Zhang, G.I.N. Waterhouse et al., Design strategies towards transition metal single atom catalysts for the oxygen reduction reaction–a review. Nano Res. Energy 2, e9120082 (2023). https://doi.org/10.26599/nre.2023.9120082
- K. Sun, W. Xu, X. Lin, S. Tian, W.-F. Lin et al., Electrochemical oxygen reduction to hydrogen peroxide via a two-electron transfer pathway on carbon-based single-atom catalysts. Adv. Mater. Interfaces 8(8), 2001360 (2021). https://doi.org/10.1002/admi.202001360
- X. Guo, S. Lin, J. Gu, S. Zhang, Z. Chen et al., Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: the power of single-atom catalysts. ACS Catal. 9(12), 11042–11054 (2019). https://doi.org/10.1021/acscatal.9b02778
- S. Nayak, I.J. McPherson, K.A. Vincent, Adsorbed intermediates in oxygen reduction on platinum nanops observed by in situ IR spectroscopy. Angew. Chem. 130(39), 13037–13040 (2018). https://doi.org/10.1002/ange.201804978
- J.-C. Dong, X.-G. Zhang, V. Briega-Martos, X. Jin, J. Yang et al., In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4(1), 60–67 (2019). https://doi.org/10.1038/s41560-018-0292-z
- H. Ze, X. Chen, X.-T. Wang, Y.-H. Wang, Q.-Q. Chen et al., Molecular insight of the critical role of Ni in Pt-based nanocatalysts for improving the oxygen reduction reaction probed using an in situ SERS borrowing strategy. J. Am. Chem. Soc. 143(3), 1318–1322 (2021). https://doi.org/10.1021/jacs.0c12755
- Y.-L. Sun, Y.-L. A, M.-F. Yue, H.-Q. Chen, H. Ze et al., Exploring the effect of Pd on the oxygen reduction performance of Pt by in situ Raman spectroscopy. Anal. Chem. 94(11), 4779–4786 (2022). https://doi.org/10.1021/acs.analchem.1c05566
- H.-L. Zhong, H. Ze, X.-G. Zhang, H. Zhang, J.-C. Dong et al., In situ SERS probing the effect of additional metals on Pt-based ternary alloys toward improving ORR performance. ACS Catal. 13(10), 6781–6786 (2023). https://doi.org/10.1021/acscatal.3c01317
- V. Briega-Martos, E. Herrero, J.M. Feliu, Effect of pH and water structure on the oxygen reduction reaction on platinum electrodes. Electrochim. Acta 241, 497–509 (2017). https://doi.org/10.1016/j.electacta.2017.04.162
- W. Zhao, G. Xu, W. Dong, Y. Zhang, Z. Zhao et al., Progress and perspective for in situ studies of oxygen reduction reaction in proton exchange membrane fuel cells. Adv. Sci. 10(17), 2300550 (2023). https://doi.org/10.1002/advs.202300550
- A. Impagnatiello, C.F. Cerqueira, P.-E. Coulon, A. Morin, S. Escribano et al., Degradation mechanisms of supported Pt nanocatalysts in proton exchange membrane fuel cells: an operando study through liquid cell transmission electron microscopy. ACS Appl. Energy Mater. 3(3), 2360–2371 (2020). https://doi.org/10.1021/acsaem.9b02000
- L. Ran, Y. Zhang, W. Tong, L. Chen, M. Wang et al., Circumventing radical generation on Fe–V atomic pair catalyst for robust oxygen reduction and zinc–air batteries. Angew. Chem. Int. Ed. 64(45), e202514542 (2025). https://doi.org/10.1002/anie.202514542
- J.J. Huang, Y. Yang, D. Weinstock, C.R. Bundschu, Q. Li et al., Multimodal in situ X-ray mechanistic studies of a bimetallic oxide electrocatalyst in alkaline media. Nat. Catal. 8(2), 116–125 (2025). https://doi.org/10.1038/s41929-025-01289-7
- O.A. Baturina, B.D. Gould, A. Korovina, Y. Garsany, R. Stroman et al., Products of SO2 adsorption on fuel cell electrocatalysts by combination of sulfur K-edge XANES and electrochemistry. Langmuir 27(24), 14930–14939 (2011). https://doi.org/10.1021/la2033466
- Q. Wang, F. Tang, X. Li, J.P. Zheng, L. Hao et al., Revealing the dynamic temperature of the cathode catalyst layer inside proton exchange membrane fuel cell by experimental measurements and numerical analysis. Chem. Eng. J. 463, 142286 (2023). https://doi.org/10.1016/j.cej.2023.142286
- P. Ren, P. Pei, Y. Li, Z. Wu, D. Chen et al., Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions. Prog. Energy Combust. Sci. 80, 100859 (2020). https://doi.org/10.1016/j.pecs.2020.100859
- Q. Wang, B. Li, D. Yang, H. Dai, J.P. Zheng et al., Research progress of heat transfer inside proton exchange membrane fuel cells. J. Power. Sour. 492, 229613 (2021). https://doi.org/10.1016/j.jpowsour.2021.229613
- T. Lochner, R.M. Kluge, J. Fichtner, H.A. El-Sayed, B. Garlyyev et al., Temperature effects in polymer electrolyte membrane fuel cells. ChemElectroChem 7(17), 3545–3568 (2020). https://doi.org/10.1002/celc.202000588
- J. Zhang, C. Wang, A. Zhang, Experimental study on temperature and performance of an open-cathode PEMFC stack under thermal radiation environment. Appl. Energy 311, 118646 (2022). https://doi.org/10.1016/j.apenergy.2022.118646
- V.A. Raileanu Ilie, S. Martemianov, A. Thomas, Investigation of the local temperature and overheat inside the membrane electrode assembly of PEM fuel cell. Int. J. Hydrogen Energy 41(34), 15528–15537 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.103
- Q. Wang, F. Tang, B. Li, H. Dai, J.P. Zheng et al., Study on the thermal transient of cathode catalyst layer in proton exchange membrane fuel cell under dynamic loading with a two-dimensional model. Chem. Eng. J. 433, 133667 (2022). https://doi.org/10.1016/j.cej.2021.133667
- H.Y. Wang, W.J. Yang, Y.B. Kim, Analyzing in-plane temperature distribution via a micro-temperature sensor in a unit polymer electrolyte membrane fuel cell. Appl. Energy 124, 148–155 (2014). https://doi.org/10.1016/j.apenergy.2014.03.016
- X. Zhang, X. Xiao, J. Chen, Y. Liu, H. Pan et al., Toward the fast and durable alkaline hydrogen oxidation reaction on ruthenium. Energy Environ. Sci. 15(11), 4511–4526 (2022). https://doi.org/10.1039/D2EE02216H
- L. Han, P. Ou, W. Liu, X. Wang, H.-T. Wang et al., Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation. Sci. Adv. 8(22), eabm3779 (2022). https://doi.org/10.1126/sciadv.abm3779
- X. Mu, S. Liu, L. Chen, S. Mu, Alkaline hydrogen oxidation reaction catalysts: insight into catalytic mechanisms, classification, activity regulation and challenges. Small Struct. 4(4), 2200281 (2023). https://doi.org/10.1002/sstr.202200281
- W. Sheng, Z. Zhuang, M. Gao, J. Zheng, J.G. Chen et al., Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015). https://doi.org/10.1038/ncomms6848
- D. Strmcnik, M. Uchimura, C. Wang, R. Subbaraman, N. Danilovic et al., Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5(4), 300–306 (2013). https://doi.org/10.1038/nchem.1574
- S. Zhu, X. Qin, F. Xiao, S. Yang, Y. Xu et al., The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 4(8), 711–718 (2021). https://doi.org/10.1038/s41929-021-00663-5
- J. Li, S. Ghoshal, M.K. Bates, T.E. Miller, V. Davies et al., Experimental proof of the bifunctional mechanism for the hydrogen oxidation in alkaline media. Angew. Chem. Int. Ed. 56(49), 15594–15598 (2017). https://doi.org/10.1002/anie.201708484
- W. Guo, G. Zhao, Z. Sun, B. Zhang, D. Xin et al., Decoupling fast hydrogen oxidation reaction on a tandem electrocatalyst. Nat. Commun. 16(1), 6741 (2025). https://doi.org/10.1038/s41467-025-62160-8
- Y.-H. Wang, X.-T. Wang, H. Ze, X.-G. Zhang, P.M. Radjenovic et al., Spectroscopic verification of adsorbed hydroxy intermediates in the bifunctional mechanism of the hydrogen oxidation reaction. Angew. Chem. Int. Ed. 60(11), 5708–5711 (2021). https://doi.org/10.1002/anie.202015571
- X.-M. Lin, X.-T. Wang, Y.-L. Deng, X. Chen, H.-N. Chen et al., In situ probe of the hydrogen oxidation reaction intermediates on PtRu a bimetallic catalyst surface by core–shell nanop-enhanced Raman spectroscopy. Nano Lett. 22(13), 5544–5552 (2022). https://doi.org/10.1021/acs.nanolett.2c01744
- Q. Sun, N.J. Oliveira, S. Kwon, S. Tyukhtenko, J.J. Guo et al., Understanding hydrogen electrocatalysis by probing the hydrogen-bond network of water at the electrified Pt–solution interface. Nat. Energy 8(8), 859–869 (2023). https://doi.org/10.1038/s41560-023-01302-y
- J. Yue, Y. Li, C. Yang, W. Luo, Hydroxyl-binding induced hydrogen bond network connectivity on Ru-based catalysts for efficient alkaline hydrogen oxidation electrocatalysis. Angew. Chem. Int. Ed. 64(3), e202415447 (2025). https://doi.org/10.1002/anie.202415447
- C. Yang, J. Yue, G. Wang, W. Luo, Activating and identifying the active site of RuS(2) for alkaline hydrogen oxidation electrocatalysis. Angew. Chem. Int. Ed. 63(17), e202401453 (2024). https://doi.org/10.1002/anie.202401453
- Y. Men, X. Men, P. Li, L. Li, X. Wang et al., Cation-driven modulation of interfacial solvation structures for enhanced alkaline hydrogen oxidation kinetics. J. Am. Chem. Soc. 147(25), 21672–21685 (2025). https://doi.org/10.1021/jacs.5c03433
- F. Lin, H. Luo, L. Li, F. Lv, Y. Chen et al., Synthesis of isolated Ru–O3 sites on hexagonal close-packed intermetallic penta-metallene for hydrogen oxidation electrocatalysis. Nat. Synth. 4(3), 399–409 (2025). https://doi.org/10.1038/s44160-024-00685-4
- Y. Fang, C. Wei, Z. Bian, X. Yin, B. Liu et al., Unveiling the nature of Pt-induced anti-deactivation of Ru for alkaline hydrogen oxidation reaction. Nat. Commun. 15(1), 1614 (2024). https://doi.org/10.1038/s41467-024-45873-0
- X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44(15), 5148–5180 (2015). https://doi.org/10.1039/c4cs00448e
- A.H. Shah, Z. Zhang, Z. Huang, S. Wang, G. Zhong et al., The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction. Nat. Catal. 5(10), 923–933 (2022). https://doi.org/10.1038/s41929-022-00851-x
- Y. Sun, C. Huang, J. Shen, Y. Zhong, J. Ning et al., One-step construction of a transition-metal surface decorated with metal sulfide nanops: a high-efficiency electrocatalyst for hydrogen generation. J. Colloid Interface Sci. 558, 1–8 (2020). https://doi.org/10.1016/j.jcis.2019.09.090
- M. You, X. Du, X. Hou, Z. Wang, Y. Zhou et al., In-situ growth of ruthenium-based nanostructure on carbon cloth for superior electrocatalytic activity towards HER and OER. Appl. Catal. B Environ. 317, 121729 (2022). https://doi.org/10.1016/j.apcatb.2022.121729
- Y.-H. Wang, S. Zheng, W.-M. Yang, R.-Y. Zhou, Q.-F. He et al., In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600(7887), 81–85 (2021). https://doi.org/10.1038/s41586-021-04068-z
- X. Chen, X.-T. Wang, J.-B. Le, S.-M. Li, X. Wang et al., Revealing the role of interfacial water and key intermediates at ruthenium surfaces in the alkaline hydrogen evolution reaction. Nat. Commun. 14(1), 5289 (2023). https://doi.org/10.1038/s41467-023-41030-1
- G. Liu, W. Zhou, B. Chen, Q. Zhang, X. Cui et al., Synthesis of RuNi alloy nanostructures composed of multilayered nanosheets for highly efficient electrocatalytic hydrogen evolution. Nano Energy 66, 104173 (2019). https://doi.org/10.1016/j.nanoen.2019.104173
- Y. Liu, H. Shi, T.-Y. Dai, S.-P. Zeng, G.-F. Han et al., In situ engineering multifunctional active sites of ruthenium–nickel alloys for pH-universal ampere-level current-density hydrogen evolution. Small 20(34), 2311509 (2024). https://doi.org/10.1002/smll.202311509
- S. Shen, Z. Hu, H. Zhang, K. Song, Z. Wang et al., Highly active Si sites enabled by negative valent Ru for electrocatalytic hydrogen evolution in LaRuSi. Angew. Chem. Int. Ed. 61(32), e202206460 (2022). https://doi.org/10.1002/anie.202206460
- C. Yang, Y. Gao, Z. Xing, X. Shu, Z. Zhuang et al., Bioinspired sulfo oxygen bridges optimize interfacial water structure for enhanced hydrogen oxidation and evolution reactions. Nat. Commun. 16(1), 6459 (2025). https://doi.org/10.1038/s41467-025-61871-2
- S. Sarawutanukul, N. Phattharasupakun, M. Sawangphruk, 3D CVD graphene oxide-coated Ni foam as carbo- and electro-catalyst towards hydrogen evolution reaction in acidic solution: in situ electrochemical gas chromatography. Carbon 151, 109–119 (2019). https://doi.org/10.1016/j.carbon.2019.05.058
- X. Cao, Y. Ding, D. Chen, W. Ye, W. Yang et al., Cluster-level heterostructure of PMo12/Cu for efficient and selective electrocatalytic hydrogenation of high-concentration 5-hydroxymethylfurfural. J. Am. Chem. Soc. 146(36), 25125–25136 (2024). https://doi.org/10.1021/jacs.4c08205
- Y. Luo, Z. Zhang, F. Yang, J. Li, Z. Liu et al., Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media. Energy Environ. Sci. 14(8), 4610–4619 (2021). https://doi.org/10.1039/D1EE01487K
- H. Ze, Z.-L. Yang, M.-L. Li, X.-G. Zhang, Y.-L. A et al., In situ probing the structure change and interaction of interfacial water and hydroxyl intermediates on Ni(OH)2 surface over water splitting. J. Am. Chem. Soc. 146(18), 12538–12546 (2024). https://doi.org/10.1021/jacs.4c00948
- J. Dukovic, C.W. Tobias, The influence of attached bubbles on potential drop and current distribution at gas-evolving electrodes. J. Electrochem. Soc. 134(2), 331–343 (1987). https://doi.org/10.1149/1.2100456
- C. Zhang, Z. Guo, Y. Tian, C. Yu, K. Liu et al., Engineering electrode wettability to enhance mass transfer in hydrogen evolution reaction. Nano Res. Energy 2, e9120063 (2023). https://doi.org/10.26599/nre.2023.9120063
- C. Zhang, Z. Xu, N. Han, Y. Tian, T. Kallio et al., Superaerophilic/superaerophobic cooperative electrode for efficient hydrogen evolution reaction via enhanced mass transfer. Sci. Adv. 9(3), eadd6978 (2023). https://doi.org/10.1126/sciadv.add6978
- J. Wang, Y. Gao, H. Kong, J. Kim, S. Choi et al., Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 49(24), 9154–9196 (2020). https://doi.org/10.1039/D0CS00575D
- L. An, J. Li, Y. Sun, J. Zhu, J.Z.Y. Seow et al., Deciphering water oxidation catalysts: the dominant role of surface chemistry over reconstruction degree in activity promotion. Nano-Micro Lett. 17(1), 70 (2024). https://doi.org/10.1007/s40820-024-01562-7
- X. Wang, H. Zhong, S. Xi, W.S.V. Lee, J. Xue, Understanding of oxygen redox in the oxygen evolution reaction. Adv. Mater. 34(50), 2107956 (2022). https://doi.org/10.1002/adma.202107956
- D.W. Shaffer, Y. Xie, J.J. Concepcion, O-O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O-O radical coupling. Chem. Soc. Rev. 46(20), 6170–6193 (2017). https://doi.org/10.1039/c7cs00542c
- H. Zhong, Q. Zhang, J. Yu, X. Zhang, C. Wu et al., Fundamental understanding of structural reconstruction behaviors in oxygen evolution reaction electrocatalysts. Adv. Energy Mater. 13(31), 2301391 (2023). https://doi.org/10.1002/aenm.202301391
- Y.-L. Sun, X. Ji, X. Wang, Q.-F. He, J.-C. Dong et al., Visualization of electrooxidation on palladium single crystal surfaces via in situ Raman spectroscopy. Angew. Chem. Int. Ed. 63(44), e202408736 (2024). https://doi.org/10.1002/anie.202408736
- A. Moysiadou, S. Lee, C.-S. Hsu, H.M. Chen, X. Hu, Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step. J. Am. Chem. Soc. 142(27), 11901–11914 (2020). https://doi.org/10.1021/jacs.0c04867
- C. Lin, J.-L. Li, X. Li, S. Yang, W. Luo et al., In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 4(12), 1012–1023 (2021). https://doi.org/10.1038/s41929-021-00703-0
- Y. Wang, R. Yang, Y. Ding, B. Zhang, H. Li et al., Unraveling oxygen vacancy site mechanism of Rh-doped RuO(2) catalyst for long-lasting acidic water oxidation. Nat. Commun. 14(1), 1412 (2023). https://doi.org/10.1038/s41467-023-37008-8
- P. Ma, J. Xue, J. Li, H. Cao, R. Wang et al., Site-specific synergy in heterogeneous single atoms for efficient oxygen evolution. Nat. Commun. 16(1), 2573 (2025). https://doi.org/10.1038/s41467-025-57864-w
- L. Zhou, M. Yang, Y. Liu, F. Kang, R. Lv, Intrinsic metal-support interactions break the activity-stability dilemma in electrocatalysis. Nat. Commun. 16(1), 8739 (2025). https://doi.org/10.1038/s41467-025-63397-z
- R. Zhang, P.E. Pearce, Y. Duan, N. Dubouis, T. Marchandier et al., Importance of water structure and catalyst–electrolyte interface on the design of water splitting catalysts. Chem. Mater. 31(20), 8248–8259 (2019). https://doi.org/10.1021/acs.chemmater.9b02318
- Z. He, M. Ajmal, M. Zhang, X. Liu, Z.-F. Huang et al., Progress in manipulating dynamic surface reconstruction via anion modulation for electrocatalytic water oxidation. Adv. Sci. 10(29), 2304071 (2023). https://doi.org/10.1002/advs.202304071
- K. Feng, D. Zhang, F. Liu, H. Li, J. Xu et al., Highly efficient oxygen evolution by a thermocatalytic process cascaded electrocatalysis over sulfur-treated Fe-based metal–organic-frameworks. Adv. Energy Mater. 10(16), 2000184 (2020). https://doi.org/10.1002/aenm.202000184
- Y. Xue, J. Fang, X. Wang, Z. Xu, Y. Zhang et al., Sulfate-functionalized RuFeOx as highly efficient oxygen evolution reaction electrocatalyst in acid. Adv. Funct. Mater. 31(32), 2101405 (2021). https://doi.org/10.1002/adfm.202101405
- Y. Lin, B. Chen, D. Huang, Z. Yang, A. Lu et al., Solid-liquid interfacial hydrogen bond-mediated mass transfer toward industrial water electrolysis. Angew. Chem. Int. Ed. 64(26), e202502151 (2025). https://doi.org/10.1002/anie.202502151
- J. Wang, Controlling dynamic reconstruction chemistry for superior oxygen-evolving catalysts. Chem 9(7), 1645–1657 (2023). https://doi.org/10.1016/j.chempr.2023.06.001
- T. Li, O. Kasian, S. Cherevko, S. Zhang, S. Geiger et al., Atomic-scale insights into surface species of electrocatalysts in three dimensions. Nat. Catal. 1(4), 300–305 (2018). https://doi.org/10.1038/s41929-018-0043-3
- R. Mehmood, W. Fan, X. Hu, J. Li, P. Liu et al., Confirming high-valent iron as highly active species of water oxidation on the Fe, V-coupled bimetallic electrocatalyst: in situ analysis of X-ray absorption and mössbauer spectroscopy. J. Am. Chem. Soc. 145(22), 12206–12213 (2023). https://doi.org/10.1021/jacs.3c02288
- N. Xu, Y. Jin, Q. Liu, M. Yu, X. Wang et al., Rational design of diatomic active sites for elucidating oxygen evolution reaction performance trends. Angew. Chem. Int. Ed. 64(1), e202413749 (2025). https://doi.org/10.1002/anie.202413749
- J. Halldin Stenlid, M. Görlin, O. Diaz-Morales, B. Davies, V. Grigorev et al., Operando characterization of Fe in doped nix(Fe1–x)OyHz catalysts for electrochemical oxygen evolution. J. Am. Chem. Soc. 147(5), 4120–4134 (2025). https://doi.org/10.1021/jacs.4c13417
- G. Zhao, Y. Yao, W. Lu, G. Liu, X. Guo et al., Direct observation of oxygen evolution and surface restructuring on Mn2O3 nanocatalysts using in situ and ex situ transmission electron microscopy. Nano Lett. 21(16), 7012–7020 (2021). https://doi.org/10.1021/acs.nanolett.1c02378
- F. Cheng, Z. Li, L. Wang, B. Yang, J. Lu et al., In situ identification of the electrocatalytic water oxidation behavior of a nickel-based metal–organic framework nanoarray. Mater. Horiz. 8(2), 556–564 (2021). https://doi.org/10.1039/D0MH01757D
- Y.N. Xu, B. Mei, Q. Xu, H.Q. Fu, X.Y. Zhang et al., In situ/operando synchrotron radiation analytical techniques for CO2/CO reduction reaction: from atomic scales to mesoscales. Angew. Chem. Int. Ed. 63(25), e202404213 (2024). https://doi.org/10.1002/anie.202404213
- J. Li, H. Xiong, X. Liu, D. Wu, D. Su et al., Weak CO binding sites induced by Cu-Ag interfaces promote CO electroreduction to multi-carbon liquid products. Nat. Commun. 14(1), 698 (2023). https://doi.org/10.1038/s41467-023-36411-5
- J. Liu, P. Li, J. Bi, S. Jia, Y. Wang et al., Switching between C(2+) products and CH(4) in CO2 electrolysis by tuning the composition and structure of rare-earth/copper catalysts. J. Am. Chem. Soc. 145(42), 23037–23047 (2023). https://doi.org/10.1021/jacs.3c05562
- C.-S. Hsu, J. Wang, Y.-C. Chu, J.-H. Chen, C.-Y. Chien et al., Activating dynamic atomic-configuration for single-site electrocatalyst in electrochemical CO2 reduction. Nat. Commun. 14(1), 5245 (2023). https://doi.org/10.1038/s41467-023-40970-y
- H. Xiong, Q. Sun, K. Chen, Y. Xu, X. Chang et al., Correlating the experimentally determined CO adsorption enthalpy with the electrochemical CO reduction performance on Cu surfaces. Angew. Chem. Int. Ed. 62(10), e202218447 (2023). https://doi.org/10.1002/anie.202218447
- X. Ding, J. Zhang, Y. Li, CO electroreduction: what can we learn from its parent reaction, CO2 electroreduction? eScience 3(6), 100137 (2023). https://doi.org/10.1016/j.esci.2023.100137
- M. Chen, C. Guo, L. Qin, L. Wang, L. Qiao et al., Atomically precise Cu nanoclusters: recent advances, challenges, and perspectives in synthesis and catalytic applications. Nano-Micro Lett. 17(1), 83 (2024). https://doi.org/10.1007/s40820-024-01555-6
- C.-X. Cui, Y. Shen, J.-R. He, Y. Fu, X. Hong et al., Quantitative insight into the electric field effect on CO2 electrocatalysis via machine learning spectroscopy. J. Am. Chem. Soc. 146(50), 34551–34559 (2024). https://doi.org/10.1021/jacs.4c12174
- W. Gao, Y. Xu, L. Fu, X. Chang, B. Xu, Experimental evidence of distinct sites for CO2-to-CO and CO conversion on Cu in the electrochemical CO2 reduction reaction. Nat. Catal. 6(10), 885–894 (2023). https://doi.org/10.1038/s41929-023-01002-6
- Y. Zhao, X.-G. Zhang, N. Bodappa, W.-M. Yang, Q. Liang et al., Elucidating electrochemical CO2 reduction reaction processes on Cu(hkl) single-crystal surfaces by in situ Raman spectroscopy. Energy Environ. Sci. 15(9), 3968–3977 (2022). https://doi.org/10.1039/D2EE01334G
- Z.-Z. Wu, X.-L. Zhang, Z.-Z. Niu, F.-Y. Gao, P.-P. Yang et al., Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J. Am. Chem. Soc. 144(1), 259–269 (2022). https://doi.org/10.1021/jacs.1c09508
- D. Zhong, Z.-J. Zhao, Q. Zhao, D. Cheng, B. Liu et al., Coupling of Cu(100) and (110) facets promotes carbon dioxide conversion to hydrocarbons and alcohols. Angew. Chem. Int. Ed. 60(9), 4879–4885 (2021). https://doi.org/10.1002/anie.202015159
- Y. Yang, S. Louisia, S. Yu, J. Jin, I. Roh et al., Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614(7947), 262–269 (2023). https://doi.org/10.1038/s41586-022-05540-0
- Q. Zhang, Z. Song, X. Sun, Y. Liu, J. Wan et al., Atomic dynamics of electrified solid-liquid interfaces in liquid-cell TEM. Nature 630(8017), 643–647 (2024). https://doi.org/10.1038/s41586-024-07479-w
- Q. Lei, L. Huang, J. Yin, B. Davaasuren, Y. Yuan et al., Structural evolution and strain generation of derived-Cu catalysts during CO2 electroreduction. Nat. Commun. 13(1), 4857 (2022). https://doi.org/10.1038/s41467-022-32601-9
- X. Su, Z. Jiang, J. Zhou, H. Liu, D. Zhou et al., Complementary operando spectroscopy identification of in situ generated metastable charge-asymmetry Cu(2)-CuN(3) clusters for CO2 reduction to ethanol. Nat. Commun. 13(1), 1322 (2022). https://doi.org/10.1038/s41467-022-29035-8
- H. Li, X. Li, P. Wang, Z. Zhang, K. Davey et al., Machine learning big data set analysis reveals C-C electro-coupling mechanism. J. Am. Chem. Soc. 146(32), 22850–22858 (2024). https://doi.org/10.1021/jacs.4c09079
- G.H. Simon, C.S. Kley, B. Roldan Cuenya, Potential-dependent morphology of copper catalysts during CO2 electroreduction revealed by in situ atomic force microscopy. Angew. Chem. Int. Ed. 60(5), 2561–2568 (2021). https://doi.org/10.1002/anie.202010449
- F. Scholten, K.C. Nguyen, J.P. Bruce, M. Heyde, B. Roldan Cuenya, Identifying structure–selectivity correlations in the electrochemical reduction of CO2: a comparison of well-ordered atomically clean and chemically etched copper single-crystal surfaces. Angew. Chem. Int. Ed. 60(35), 19169–19175 (2021). https://doi.org/10.1002/anie.202103102
- R. Amirbeigiarab, J. Tian, A. Herzog, C. Qiu, A. Bergmann et al., Atomic-scale surface restructuring of copper electrodes under CO2 electroreduction conditions. Nat. Catal. 6(9), 837–846 (2023). https://doi.org/10.1038/s41929-023-01009-z
- M.C.O. Monteiro, F. Dattila, B. Hagedoorn, R. García-Muelas, N. López et al., Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4(8), 654–662 (2021). https://doi.org/10.1038/s41929-021-00655-5
- Q. Liu, W. Yang, Resolving non-covalent interactions between surface hydroxyl on Cu and interfacial water in alkaline CO electroreduction. Nat. Catal. 8(8), 843–852 (2025). https://doi.org/10.1038/s41929-025-01396-5
- Y. Xu, Z. Xia, W. Gao, H. Xiao, B. Xu, Cation effect on the elementary steps of the electrochemical CO reduction reaction on Cu. Nat. Catal. 7(10), 1120–1129 (2024). https://doi.org/10.1038/s41929-024-01227-z
- J.-M. McGregor, J.T. Bender, A.S. Petersen, L. Cañada, J. Rossmeisl et al., Organic electrolyte cations promote non-aqueous CO2 reduction by mediating interfacial electric fields. Nat. Catal. 8(1), 79–91 (2025). https://doi.org/10.1038/s41929-024-01278-2
- Y. Wang, S. Zhou, Y. Zheng, Y. Wang, Y. Hou et al., Measurements of local pH gradients for electrocatalysts in the oxygen evolution reaction by electrochemiluminescence. J. Am. Chem. Soc. 147(22), 19380–19390 (2025). https://doi.org/10.1021/jacs.5c04896
- K.J.P. Schouten, Z. Qin, E. Pérez Gallent, M.T.M. Koper, Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134(24), 9864–9867 (2012). https://doi.org/10.1021/ja302668n
- X. Wang, K. Klingan, M. Klingenhof, T. Möller, J. Ferreira de Araújo et al., Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction. Nat. Commun. 12(1), 794 (2021). https://doi.org/10.1038/s41467-021-20961-7
- J.-P. Grote, A.R. Zeradjanin, S. Cherevko, A. Savan, B. Breitbach et al., Screening of material libraries for electrochemical CO2 reduction catalysts–improving selectivity of Cu by mixing with Co. J. Catal. 343, 248–256 (2016). https://doi.org/10.1016/j.jcat.2016.02.026
- M. Choi, S. Bae, Y. Kim, Y. Lee, M. Cho et al., Selective formaldehyde condensation on phosphorus-rich copper catalyst to produce liquid C3+ chemicals in electrocatalytic CO2 reduction. Nat. Catal. 8(5), 476–486 (2025). https://doi.org/10.1038/s41929-025-01341-6
- X. Wang, S. Jiang, W. Hu, S. Ye, T. Wang et al., Quantitatively determining surface–adsorbate properties from vibrational spectroscopy with interpretable machine learning. J. Am. Chem. Soc. 144(35), 16069–16076 (2022). https://doi.org/10.1021/jacs.2c06288
- C. Bozal-Ginesta, S. Pablo-García, C. Choi, A. Tarancón, A. Aspuru-Guzik, Developing machine learning for heterogeneous catalysis with experimental and computational data. Nat. Rev. Chem. 9(9), 601–616 (2025). https://doi.org/10.1038/s41570-025-00740-4
- M. Rüscher, A. Herzog, J. Timoshenko, H.S. Jeon, W. Frandsen et al., Tracking heterogeneous structural motifs and the redox behaviour of copper–zinc nanocatalysts for the electrocatalytic CO2 reduction using operando time resolved spectroscopy and machine learning. Catal. Sci. Technol. 12(9), 3028–3043 (2022). https://doi.org/10.1039/d2cy00227b
- Y. Yang, J. Feijóo, M. Figueras-Valls, C. Chen, C. Shi et al., Operando probing dynamic migration of copper carbonyl during electrocatalytic CO2 reduction. Nat. Catal. 8(6), 579–594 (2025). https://doi.org/10.1038/s41929-025-01359-w
- M.-J. Xiao, H. Zhang, B. Ma, Z.-Q. Zhang, X.-Y. Li et al., Template-free synthesis of a yolk–shell Co3O4/nitrogen-doped carbon microstructure for excellent lithium ion storage. J. Mater. Chem. A 9(43), 24548–24559 (2021). https://doi.org/10.1039/d1ta07221h
- M.-J. Xiao, B. Ma, Z.-Q. Zhang, Q. Xiao, X.-Y. Li et al., Carbon nano-onion encapsulated cobalt nanops for oxygen reduction and lithium-ion batteries. J. Mater. Chem. A 9(11), 7227–7237 (2021). https://doi.org/10.1039/D0TA12504K
- M.-J. Xiao, B. Ma, H. Zhang, X.-Y. Li, Q. Wang et al., Hollow NiO/carbon pompons for efficient lithium ion storage. J. Mater. Chem. A 10(40), 21492–21502 (2022). https://doi.org/10.1039/d2ta05746h
- S. Kaboli, H. Demers, A. Paolella, A. Darwiche, M. Dontigny et al., Behavior of solid electrolyte in Li-polymer battery with NMC cathode via in situ scanning electron microscopy. Nano Lett. 20(3), 1607–1613 (2020). https://doi.org/10.1021/acs.nanolett.9b04452
- S. Qin, Y. Yu, J. Zhang, Y. Ren, C. Sun et al., Separator-free in situ dual-curing solid polymer electrolytes with enhanced interfacial contact for achieving ultrastable lithium-metal batteries. Adv. Energy Mater. 13(34), 2301470 (2023). https://doi.org/10.1002/aenm.202301470
- L. Zhang, T. Yang, C. Du, Q. Liu, Y. Tang et al., Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up. Nat. Nanotechnol. 15(2), 94–98 (2020). https://doi.org/10.1038/s41565-019-0604-x
- X. Meng, Z. Bi, X. Wang, G. Shang, A novel design for the combination of electrochemical atomic force microscopy and Raman spectroscopy in reflection mode for in situ study of battery materials. Rev. Sci. Instrum. 93(7), 073707 (2022). https://doi.org/10.1063/5.0096766
- D. Zhang, J. Lu, C. Pei, S. Ni, Electrochemical activation, sintering, and reconstruction in energy-storage technologies: origin, development, and prospects. Adv. Energy Mater. 12(19), 2103689 (2022). https://doi.org/10.1002/aenm.202103689
- C. Xu, K. Märker, J. Lee, A. Mahadevegowda, P.J. Reeves et al., Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20(1), 84–92 (2021). https://doi.org/10.1038/s41563-020-0767-8
- R. Endo, T. Ohnishi, K. Takada, T. Masuda, In situ observation of lithiation and delithiation reactions of a silicon thin film electrode for all-solid-state lithium-ion batteries by X-ray photoelectron spectroscopy. J. Phys. Chem. Lett. 11(16), 6649–6654 (2020). https://doi.org/10.1021/acs.jpclett.0c01906
- X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu et al., Size-dependent fracture of silicon nanops during lithiation. ACS Nano 6(2), 1522–1531 (2012). https://doi.org/10.1021/nn204476h
- J. Wan, Y. Hao, Y. Shi, Y.-X. Song, H.-J. Yan et al., Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries. Nat. Commun. 10(1), 3265 (2019). https://doi.org/10.1038/s41467-019-11197-7
- Y. Gu, E.-M. You, J.-D. Lin, J.-H. Wang, S.-H. Luo et al., Resolving nanostructure and chemistry of solid-electrolyte interphase on lithium anodes by depth-sensitive plasmon-enhanced Raman spectroscopy. Nat. Commun. 14(1), 3536 (2023). https://doi.org/10.1038/s41467-023-39192-z
- Y. Lu, Q. Cao, W. Zhang, T. Zeng, Y. Ou et al., Breaking the molecular symmetricity of sulfonimide anions for high-performance lithium metal batteries under extreme cycling conditions. Nat. Energy 10(2), 191–204 (2025). https://doi.org/10.1038/s41560-024-01679-4
- Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15(5), 1711–1759 (2022). https://doi.org/10.1039/d1ee03292e
- W. Wang, Y. Zhang, B. Xie, L. Huang, S. Dong et al., Deciphering advanced sensors for life and safety monitoring of lithium batteries. Adv. Energy Mater. 14(24), 2304173 (2024). https://doi.org/10.1002/aenm.202304173
- S. Huang, Z. Du, Q. Zhou, K. Snyder, S. Liu et al., In situ measurement of temperature distributions in a Li-ion cell during internal short circuit and thermal runaway. J. Electrochem. Soc. 168(9), 090510 (2021). https://doi.org/10.1149/1945-7111/ac1d7b
- M. Nascimento, M.S. Ferreira, J.L. Pinto, Real time thermal monitoring of lithium batteries with fiber sensors and thermocouples: a comparative study. Measurement 111, 260–263 (2017). https://doi.org/10.1016/j.measurement.2017.07.049
- M. Nascimento, T. Paixão, M.S. Ferreira, J.L. Pinto, Thermal mapping of a lithium polymer batteries pack with FBGs network. Batteries 4(4), 67 (2018). https://doi.org/10.3390/batteries4040067
- W. Zhang, D. Schröder, T. Arlt, I. Manke, R. Koerver et al., (Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. J. Mater. Chem. A 5(20), 9929–9936 (2017). https://doi.org/10.1039/C7TA02730C
- J. Zhang, M. Xiao, T. Liu, Y. Meng, F. Zhu et al., Conductive V2O3 electrocatalyst on carbon hollow spheres to accelerate polysulfide conversion for long-cycle and high-rate lithium sulfur batteries. Green Chem. 26(9), 5546–5555 (2024). https://doi.org/10.1039/d3gc05055f
- S. Zhou, J. Shi, S. Liu, G. Li, F. Pei et al., Visualizing interfacial collective reaction behaviour of Li-S batteries. Nature 621(7977), 75–81 (2023). https://doi.org/10.1038/s41586-023-06326-8
- Y. Li, Q. Liu, S. Wu, L. Geng, J. Popovic et al., Unraveling the reaction mystery of Li and Na with dry air. J. Am. Chem. Soc. 145(19), 10576–10583 (2023). https://doi.org/10.1021/jacs.2c13589
- B. Choi, K.-G. Kim, M. Lim, B. Kim, J. Seo et al., Surface adaptive dual-layer protection of Li-metal anode for extending cycle-life of Li–sulfur batteries with lean electrolyte. Adv. Funct. Mater. 34(28), 2316838 (2024). https://doi.org/10.1002/adfm.202316838
- Z.-Z. Shen, S.-Y. Lang, C. Zhou, R. Wen, L.-J. Wan, In situ realization of water-mediated interfacial processes at nanoscale in aprotic Li–O2 batteries. Adv. Energy Mater. 10(46), 2002339 (2020). https://doi.org/10.1002/aenm.202002339
- M.M. Rahman, A. Ronne, N. Wang, Y. Du, E. Hu, Spatial progression of polysulfide reactivity with lithium nitrate in Li–sulfur batteries. ACS Energy Lett. 9(5), 2024–2030 (2024). https://doi.org/10.1021/acsenergylett.4c00453
- Z. Ning, D.S. Jolly, G. Li, R. De Meyere, S.D. Pu et al., Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater. 20(8), 1121–1129 (2021). https://doi.org/10.1038/s41563-021-00967-8
- R. Liu, Z. Wei, L. Peng, L. Zhang, A. Zohar et al., Establishing reaction networks in the 16-electron sulfur reduction reaction. Nature 626(7997), 98–104 (2024). https://doi.org/10.1038/s41586-023-06918-4
- W. Zhang, J. Zhu, Y. Ye, J. She, X. Kong et al., Suppressing shuttle effect via cobalt phthalocyanine mediated dissociation of lithium polysulfides for enhanced Li-S battery performance. Adv. Funct. Mater. 34(40), 2403888 (2024). https://doi.org/10.1002/adfm.202403888
- Z. Yu, B. Wang, X. Liao, K. Zhao, Z. Yang et al., Boosting polysulfide redox kinetics by graphene-supported Ni nanops with carbon coating. Adv. Energy Mater. 10(25), 2000907 (2020). https://doi.org/10.1002/aenm.202000907
- L. Jia, J. Wang, S. Ren, G. Ren, X. Jin et al., Unraveling shuttle effect and suppression strategy in lithium/sulfur cells by in situ/operando X-ray absorption spectroscopic characterization. Energy Environ. Mater. 4(2), 222–228 (2021). https://doi.org/10.1002/eem2.12152
- Z. Liang, Y. Xiang, K. Wang, J. Zhu, Y. Jin et al., Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy. Nat. Commun. 14(1), 259 (2023). https://doi.org/10.1038/s41467-023-35920-7
- Z. Zhao, L. Pang, Y. Wu, Y. Chen, Z. Peng, In situ spectroscopic probing of oxygen crossover effects on solid electrolyte interphase in aprotic lithium-oxygen batteries. Adv. Energy Mater. 13(29), 2301127 (2023). https://doi.org/10.1002/aenm.202301127
- C. Xu, A. Ge, K. Kannari, B. Peng, M. Xue et al., The decisive role of Li2O2 desorption for oxygen reduction reaction in Li–O2 batteries. ACS Energy Lett. 8(3), 1289–1299 (2023). https://doi.org/10.1021/acsenergylett.2c02714
References
S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16(1), 16–22 (2017). https://doi.org/10.1038/nmat4834
D.M. Kammen, D.A. Sunter, City-integrated renewable energy for urban sustainability. Science 352(6288), 922–928 (2016). https://doi.org/10.1126/science.aad9302
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang et al., Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37, 136–157 (2017). https://doi.org/10.1016/j.nanoen.2017.05.022
H. Yang, X. Han, A.I. Douka, L. Huang, L. Gong et al., Advanced oxygen electrocatalysis in energy conversion and storage. Adv. Funct. Mater. 31(12), 2007602 (2021). https://doi.org/10.1002/adfm.202007602
L. Zu, W. Zhang, L. Qu, L. Liu, W. Li et al., Mesoporous materials for electrochemical energy storage and conversion. Adv. Energy Mater. 10(38), 2002152 (2020). https://doi.org/10.1002/aenm.202002152
L. Kong, M. Zhong, W. Shuang, Y. Xu, X.-H. Bu, Electrochemically active sites inside crystalline porous materials for energy storage and conversion. Chem. Soc. Rev. 49(8), 2378–2407 (2020). https://doi.org/10.1039/C9CS00880B
C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15(1), 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
J. Wang, H.-Y. Tan, M.-Y. Qi, J.-Y. Li, Z.-R. Tang et al., Spatially and temporally understanding dynamic solid–electrolyte interfaces in carbon dioxide electroreduction. Chem. Soc. Rev. 52(15), 5013–5050 (2023). https://doi.org/10.1039/D2CS00441K
J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13(1), 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
B. Rhimi, M. Zhou, Z. Yan, X. Cai, Z. Jiang, Cu-based materials for enhanced C(2+) product selectivity in photo-/ electro-catalytic CO2 reduction: challenges and prospects. Nano-Micro Lett. 16(1), 64 (2024). https://doi.org/10.1007/s40820-023-01276-2
G. Zhou, L. Xu, G. Hu, L. Mai, Y. Cui, Nanowires for electrochemical energy storage. Chem. Rev. 119(20), 11042–11109 (2019). https://doi.org/10.1021/acs.chemrev.9b00326
Y. Wang, F. Chu, J. Zeng, Q. Wang, T. Naren et al., Single atom catalysts for fuel cells and rechargeable batteries: principles, advances, and opportunities. ACS Nano 15(1), 210–239 (2021). https://doi.org/10.1021/acsnano.0c08652
Z. Yan, J.L. Hitt, J.A. Turner, T.E. Mallouk, Renewable electricity storage using electrolysis. Proc. Natl. Acad. Sci. U. S. A. 117(23), 12558–12563 (2020). https://doi.org/10.1073/pnas.1821686116
X.-M. Lin, X.-T. Yang, H.-N. Chen, Y.-L. Deng, W.-H. Chen et al., In situ characterizations of advanced electrode materials for sodium-ion batteries toward high electrochemical performances. J. Energy Chem. 76, 146–164 (2023). https://doi.org/10.1016/j.jechem.2022.09.016
G.-X. Liu, J.-X. Tian, J. Wan, Y. Li, Z.-Z. Shen et al., Revealing the high salt concentration manipulated evolution mechanism on the lithium anode in quasi-solid-state lithium-sulfur batteries. Angew. Chem. Int. Ed. 61(52), e202212744 (2022). https://doi.org/10.1002/anie.202212744
J. Theerthagiri, K. Karuppasamy, C. Justin Raj, M.L. Aruna Kumari, L. John Kennedy et al., In situ spectroscopy: delineating the mechanistic understanding of electrochemical energy reactions. Prog. Mater. Sci. 152, 101451 (2025). https://doi.org/10.1016/j.pmatsci.2025.101451
C. Mu, C. Lv, X. Meng, J. Sun, Z. Tong et al., In situ characterization techniques applied in photocatalysis: a review. Adv. Mater. Interfaces 10(3), 2201842 (2023). https://doi.org/10.1002/admi.202201842
J. Zhao, J. Lian, Z. Zhao, X. Wang, J. Zhang, A review of in situ techniques for probing active sites and mechanisms of electrocatalytic oxygen reduction reactions. Nano-Micro Lett. 15(1), 19 (2022). https://doi.org/10.1007/s40820-022-00984-5
H. Lin, T. Yan, Q. Yang, L. Lin, L. Liu et al., Electrochemical in situ characterization techniques in the field of energy conversion. Small Methods 9(7), 2401701 (2025). https://doi.org/10.1002/smtd.202401701
C. Chen, H. Jin, P. Wang, X. Sun, M. Jaroniec et al., Local reaction environment in electrocatalysis. Chem. Soc. Rev. 53(4), 2022–2055 (2024). https://doi.org/10.1039/d3cs00669g
J. Li, G. Johnson, S. Zhang, D. Su, In situ transmission electron microscopy for energy applications. Joule 3(1), 4–8 (2019). https://doi.org/10.1016/j.joule.2018.12.007
N. Hodnik, G. Dehm, K.J.J. Mayrhofer, Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research. Acc. Chem. Res. 49(9), 2015–2022 (2016). https://doi.org/10.1021/acs.accounts.6b00330
E.A. Torres, A.J. Ramírez, In situ scanning electron microscopy. Sci. Technol. Weld. Join. 16(1), 68–78 (2011). https://doi.org/10.1179/136217110x12785889550028
J. Liu, Scanning transmission electron microscopy and its application to the study of nanops and nanop systems. Microscopy 54(3), 251–278 (2005). https://doi.org/10.1093/jmicro/dfi034
S.W. Paddock, Principles and practices of laser scanning confocal microscopy. Mol. Biotechnol. 16(2), 127–149 (2000). https://doi.org/10.1385/MB:16:2:127
E. Albisetti, A. Calò, A. Zanut, X. Zheng, G.M. de Peppo et al., Thermal scanning probe lithography. Nat. Rev. Methods Prim. 2, 32 (2022). https://doi.org/10.1038/s43586-022-00110-0
T. Schmid, L. Opilik, C. Blum, R. Zenobi, Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. Angew. Chem. Int. Ed. 52(23), 5940–5954 (2013). https://doi.org/10.1002/anie.201203849
P. Bertoncello, Advances on scanning electrochemical microscopy (SECM) for energy. Energy Environ. Sci. 3(11), 1620–1633 (2010). https://doi.org/10.1039/C0EE00046A
B. Gault, A. Chiaramonti, O. Cojocaru-Mirédin, P. Stender, R. Dubosq et al., Atom probe tomography. Nat. Rev. Methods Primers 1, 51 (2021). https://doi.org/10.1038/s43586-021-00047-w
F.A. Stevie, C.L. Donley, Introduction to X-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A, Vac. Surf. Films 38(6), 063204 (2020). https://doi.org/10.1116/6.0000412
D.N.G. Krishna, J. Philip, Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): recent developments and challenges. Appl. Surf. Sci. Adv. 12, 100332 (2022). https://doi.org/10.1016/j.apsadv.2022.100332
E. Alizadeh, L. Sanche, Precursors of solvated electrons in radiobiological physics and chemistry. Chem. Rev. 112(11), 5578–5602 (2012). https://doi.org/10.1021/cr300063r
A.A. Bunaciu, E.G. Udriştioiu, H.Y. Aboul-Enein, X-ray diffraction: instrumentation and applications. Crit. Rev. Anal. Chem. 45(4), 289–299 (2015). https://doi.org/10.1080/10408347.2014.949616
W.H. Bragg, X-rays and crystalline structure. Science 40(1040), 795–802 (1914). https://doi.org/10.1126/science.40.1040.795
W.L. Bragg, The structure of some crystals as indicated by their diffraction of X-rays. Proc. R. Soc. Lond. Ser. A 89(610), 248–277 (1913). https://doi.org/10.1098/rspa.1913.0083
J. Fink, E. Schierle, E. Weschke, J. Geck, Resonant elastic soft X-ray scattering. Rep. Prog. Phys. 76(5), 056502 (2013). https://doi.org/10.1088/0034-4885/76/5/056502
H.S. Magar, R.Y.A. Hassan, A. Mulchandani, Electrochemical impedance spectroscopy (EIS): principles, construction, and biosensing applications. Sensors 21(19), 6578 (2021). https://doi.org/10.3390/s21196578
X. Zheng, B. Zhang, P. De Luna, Y. Liang, R. Comin et al., Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 10(2), 149–154 (2018). https://doi.org/10.1038/nchem.2886
H. Huang, A.E. Russell, Approaches to achieve surface sensitivity in the in situ XAS of electrocatalysts. Curr. Opin. Electrochem. 27, 100681 (2021). https://doi.org/10.1016/j.coelec.2020.100681
W. Kao-ian, P. Tangthuam, P. Kidkhunthod, W. Limphirat, J. Padchasri et al., Monitoring interfacial dynamics of a zinc-ion battery cathode using in situ grazing incidence X-ray absorption spectroscopy: a case study of manganese dioxide. Small Meth (2025). https://doi.org/10.1002/smtd.202500871
J. Kozuch, K. Ataka, J. Heberle, Surface-enhanced infrared absorption spectroscopy. Nat. Rev. Methods Prim. 3, 70 (2023). https://doi.org/10.1038/s43586-023-00253-8
J. Coates, Interpretation of infrared spectra, a practical approach. Encyclopedia Anal. Chem. 12, 10815–10837 (2000). https://doi.org/10.1002/9780470027318.a5606
Z. Xu, Z. Liang, W. Guo, R. Zou, In situ/operando vibrational spectroscopy for the investigation of advanced nanostructured electrocatalysts. Coord. Chem. Rev. 436, 213824 (2021). https://doi.org/10.1016/j.ccr.2021.213824
J. Langer, D. Jimenez de Aberasturi, J. Aizpurua, R.A. Alvarez-Puebla, B. Auguié et al., Present and future of surface-enhanced Raman scattering. ACS Nano 14(1), 28–117 (2020). https://doi.org/10.1021/acsnano.9b04224
B.-Y. Wen, Q.-Q. Chen, P.M. Radjenovic, J.-C. Dong, Z.-Q. Tian et al., In situ surface-enhanced Raman spectroscopy characterization of electrocatalysis with different nanostructures. Annu. Rev. Phys. Chem. 72, 331–351 (2021). https://doi.org/10.1146/annurev-physchem-090519-034645
M.M. Roessler, E. Salvadori, Principles and applications of EPR spectroscopy in the chemical sciences. Chem. Soc. Rev. 47(8), 2534–2553 (2018). https://doi.org/10.1039/c6cs00565a
J. Mitchell, J. Webber, J. Strange, Nuclear magnetic resonance cryoporometry. Phys. Rep. 461(1), 1–36 (2008). https://doi.org/10.1016/j.physrep.2008.02.001
B.B. Xu, Y. Liu, Y. Liu, X. You, H. Zhou et al., Operando electrochemical NMR spectroscopy reveals a water-assisted formate formation mechanism. Chem 10(10), 3114–3130 (2024). https://doi.org/10.1016/j.chempr.2024.06.001
R.E. Majors, M. Przybyciel, Columns for reversed-phase LC separations in highly aqueous mobile phases. LCGC North A1m. 20, 584–593 (2002). https://doi.org/10.1016/S1044-0305(02)00800-0
E. Matisová, M. Dömötörová, Fast gas chromatography and its use in trace analysis. J. Chromatogr. A 1000(1–2), 199–221 (2003). https://doi.org/10.1016/S0021-9673(03)00310-8
J.V. Seeley, S.K. Seeley, Multidimensional gas chromatography: fundamental advances and new applications. Anal. Chem. 85(2), 557–578 (2013). https://doi.org/10.1021/ac303195u
D. Tsikas, A.A. Zoerner, Analysis of eicosanoids by LC-MS/MS and GC-MS/MS: a historical retrospect and a discussion. J. Chromatogr. B 964, 79–88 (2014). https://doi.org/10.1016/j.jchromb.2014.03.017
X. Cao, D. Tan, B. Wulan, K.S. Hui, K.N. Hui et al., In situ characterization for boosting electrocatalytic carbon dioxide reduction. Small Methods 5(10), 2100700 (2021). https://doi.org/10.1002/smtd.202100700
H. Baltruschat, Differential electrochemical mass spectrometry. J. Am. Soc. Mass Spectrom. 15(12), 1693–1706 (2004). https://doi.org/10.1016/j.jasms.2004.09.011
A.M. Azad, S.A. Akbar, S.G. Mhaisalkar, L.D. Birkefeld, K.S. Goto, Solid-state gas sensors: a review. J. Electrochem. Soc. 139(12), 3690–3704 (1992). https://doi.org/10.1149/1.2069145
S.V. Kalinin, C. Ophus, P.M. Voyles, R. Erni, D. Kepaptsoglou et al., Machine learning in scanning transmission electron microscopy. Nat. Rev. Methods Primers 2, 11 (2022). https://doi.org/10.1038/s43586-022-00095-w
R. Ding, J. Chen, Y. Chen, J. Liu, Y. Bando et al., Unlocking the potential: machine learning applications in electrocatalyst design for electrochemical hydrogen energy transformation. Chem. Soc. Rev. 53(23), 11390–11461 (2024). https://doi.org/10.1039/d4cs00844h
J. Zhang, Y. Yuan, L. Gao, G. Zeng, M. Li et al., Stabilizing Pt-based electrocatalysts for oxygen reduction reaction: fundamental understanding and design strategies. Adv. Mater. 33(20), 2006494 (2021). https://doi.org/10.1002/adma.202006494
Y.-L. Sun, Y.-L. Deng, H.-N. Chen, X.-T. Yang, X.-M. Lin et al., Design strategies and in situ infrared, Raman, and X-ray absorption spectroscopy techniques insight into the electrocatalysts of hydrogen energy system. Small Struct. 4(6), 2200201 (2023). https://doi.org/10.1002/sstr.202200201
Z. Ma, Z.P. Cano, A. Yu, Z. Chen, G. Jiang et al., Enhancing oxygen reduction activity of Pt-based electrocatalysts: from theoretical mechanisms to practical methods. Angew. Chem. Int. Ed. 59(42), 18334–18348 (2020). https://doi.org/10.1002/anie.202003654
A. Kulkarni, S. Siahrostami, A. Patel, J.K. Nørskov, Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118(5), 2302–2312 (2018). https://doi.org/10.1021/acs.chemrev.7b00488
L. Zhang, S. Jiang, W. Ma, Z. Zhou, Oxygen reduction reaction on Pt-based electrocatalysts: four-electron vs. two-electron pathway. Chin. J. Catal. 43(6), 1433–1443 (2022). https://doi.org/10.1016/S1872-2067(21)63961-X
Y. Cheng, H. Wang, H. Song, K. Zhang, G.I.N. Waterhouse et al., Design strategies towards transition metal single atom catalysts for the oxygen reduction reaction–a review. Nano Res. Energy 2, e9120082 (2023). https://doi.org/10.26599/nre.2023.9120082
K. Sun, W. Xu, X. Lin, S. Tian, W.-F. Lin et al., Electrochemical oxygen reduction to hydrogen peroxide via a two-electron transfer pathway on carbon-based single-atom catalysts. Adv. Mater. Interfaces 8(8), 2001360 (2021). https://doi.org/10.1002/admi.202001360
X. Guo, S. Lin, J. Gu, S. Zhang, Z. Chen et al., Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: the power of single-atom catalysts. ACS Catal. 9(12), 11042–11054 (2019). https://doi.org/10.1021/acscatal.9b02778
S. Nayak, I.J. McPherson, K.A. Vincent, Adsorbed intermediates in oxygen reduction on platinum nanops observed by in situ IR spectroscopy. Angew. Chem. 130(39), 13037–13040 (2018). https://doi.org/10.1002/ange.201804978
J.-C. Dong, X.-G. Zhang, V. Briega-Martos, X. Jin, J. Yang et al., In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4(1), 60–67 (2019). https://doi.org/10.1038/s41560-018-0292-z
H. Ze, X. Chen, X.-T. Wang, Y.-H. Wang, Q.-Q. Chen et al., Molecular insight of the critical role of Ni in Pt-based nanocatalysts for improving the oxygen reduction reaction probed using an in situ SERS borrowing strategy. J. Am. Chem. Soc. 143(3), 1318–1322 (2021). https://doi.org/10.1021/jacs.0c12755
Y.-L. Sun, Y.-L. A, M.-F. Yue, H.-Q. Chen, H. Ze et al., Exploring the effect of Pd on the oxygen reduction performance of Pt by in situ Raman spectroscopy. Anal. Chem. 94(11), 4779–4786 (2022). https://doi.org/10.1021/acs.analchem.1c05566
H.-L. Zhong, H. Ze, X.-G. Zhang, H. Zhang, J.-C. Dong et al., In situ SERS probing the effect of additional metals on Pt-based ternary alloys toward improving ORR performance. ACS Catal. 13(10), 6781–6786 (2023). https://doi.org/10.1021/acscatal.3c01317
V. Briega-Martos, E. Herrero, J.M. Feliu, Effect of pH and water structure on the oxygen reduction reaction on platinum electrodes. Electrochim. Acta 241, 497–509 (2017). https://doi.org/10.1016/j.electacta.2017.04.162
W. Zhao, G. Xu, W. Dong, Y. Zhang, Z. Zhao et al., Progress and perspective for in situ studies of oxygen reduction reaction in proton exchange membrane fuel cells. Adv. Sci. 10(17), 2300550 (2023). https://doi.org/10.1002/advs.202300550
A. Impagnatiello, C.F. Cerqueira, P.-E. Coulon, A. Morin, S. Escribano et al., Degradation mechanisms of supported Pt nanocatalysts in proton exchange membrane fuel cells: an operando study through liquid cell transmission electron microscopy. ACS Appl. Energy Mater. 3(3), 2360–2371 (2020). https://doi.org/10.1021/acsaem.9b02000
L. Ran, Y. Zhang, W. Tong, L. Chen, M. Wang et al., Circumventing radical generation on Fe–V atomic pair catalyst for robust oxygen reduction and zinc–air batteries. Angew. Chem. Int. Ed. 64(45), e202514542 (2025). https://doi.org/10.1002/anie.202514542
J.J. Huang, Y. Yang, D. Weinstock, C.R. Bundschu, Q. Li et al., Multimodal in situ X-ray mechanistic studies of a bimetallic oxide electrocatalyst in alkaline media. Nat. Catal. 8(2), 116–125 (2025). https://doi.org/10.1038/s41929-025-01289-7
O.A. Baturina, B.D. Gould, A. Korovina, Y. Garsany, R. Stroman et al., Products of SO2 adsorption on fuel cell electrocatalysts by combination of sulfur K-edge XANES and electrochemistry. Langmuir 27(24), 14930–14939 (2011). https://doi.org/10.1021/la2033466
Q. Wang, F. Tang, X. Li, J.P. Zheng, L. Hao et al., Revealing the dynamic temperature of the cathode catalyst layer inside proton exchange membrane fuel cell by experimental measurements and numerical analysis. Chem. Eng. J. 463, 142286 (2023). https://doi.org/10.1016/j.cej.2023.142286
P. Ren, P. Pei, Y. Li, Z. Wu, D. Chen et al., Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions. Prog. Energy Combust. Sci. 80, 100859 (2020). https://doi.org/10.1016/j.pecs.2020.100859
Q. Wang, B. Li, D. Yang, H. Dai, J.P. Zheng et al., Research progress of heat transfer inside proton exchange membrane fuel cells. J. Power. Sour. 492, 229613 (2021). https://doi.org/10.1016/j.jpowsour.2021.229613
T. Lochner, R.M. Kluge, J. Fichtner, H.A. El-Sayed, B. Garlyyev et al., Temperature effects in polymer electrolyte membrane fuel cells. ChemElectroChem 7(17), 3545–3568 (2020). https://doi.org/10.1002/celc.202000588
J. Zhang, C. Wang, A. Zhang, Experimental study on temperature and performance of an open-cathode PEMFC stack under thermal radiation environment. Appl. Energy 311, 118646 (2022). https://doi.org/10.1016/j.apenergy.2022.118646
V.A. Raileanu Ilie, S. Martemianov, A. Thomas, Investigation of the local temperature and overheat inside the membrane electrode assembly of PEM fuel cell. Int. J. Hydrogen Energy 41(34), 15528–15537 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.103
Q. Wang, F. Tang, B. Li, H. Dai, J.P. Zheng et al., Study on the thermal transient of cathode catalyst layer in proton exchange membrane fuel cell under dynamic loading with a two-dimensional model. Chem. Eng. J. 433, 133667 (2022). https://doi.org/10.1016/j.cej.2021.133667
H.Y. Wang, W.J. Yang, Y.B. Kim, Analyzing in-plane temperature distribution via a micro-temperature sensor in a unit polymer electrolyte membrane fuel cell. Appl. Energy 124, 148–155 (2014). https://doi.org/10.1016/j.apenergy.2014.03.016
X. Zhang, X. Xiao, J. Chen, Y. Liu, H. Pan et al., Toward the fast and durable alkaline hydrogen oxidation reaction on ruthenium. Energy Environ. Sci. 15(11), 4511–4526 (2022). https://doi.org/10.1039/D2EE02216H
L. Han, P. Ou, W. Liu, X. Wang, H.-T. Wang et al., Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation. Sci. Adv. 8(22), eabm3779 (2022). https://doi.org/10.1126/sciadv.abm3779
X. Mu, S. Liu, L. Chen, S. Mu, Alkaline hydrogen oxidation reaction catalysts: insight into catalytic mechanisms, classification, activity regulation and challenges. Small Struct. 4(4), 2200281 (2023). https://doi.org/10.1002/sstr.202200281
W. Sheng, Z. Zhuang, M. Gao, J. Zheng, J.G. Chen et al., Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015). https://doi.org/10.1038/ncomms6848
D. Strmcnik, M. Uchimura, C. Wang, R. Subbaraman, N. Danilovic et al., Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5(4), 300–306 (2013). https://doi.org/10.1038/nchem.1574
S. Zhu, X. Qin, F. Xiao, S. Yang, Y. Xu et al., The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 4(8), 711–718 (2021). https://doi.org/10.1038/s41929-021-00663-5
J. Li, S. Ghoshal, M.K. Bates, T.E. Miller, V. Davies et al., Experimental proof of the bifunctional mechanism for the hydrogen oxidation in alkaline media. Angew. Chem. Int. Ed. 56(49), 15594–15598 (2017). https://doi.org/10.1002/anie.201708484
W. Guo, G. Zhao, Z. Sun, B. Zhang, D. Xin et al., Decoupling fast hydrogen oxidation reaction on a tandem electrocatalyst. Nat. Commun. 16(1), 6741 (2025). https://doi.org/10.1038/s41467-025-62160-8
Y.-H. Wang, X.-T. Wang, H. Ze, X.-G. Zhang, P.M. Radjenovic et al., Spectroscopic verification of adsorbed hydroxy intermediates in the bifunctional mechanism of the hydrogen oxidation reaction. Angew. Chem. Int. Ed. 60(11), 5708–5711 (2021). https://doi.org/10.1002/anie.202015571
X.-M. Lin, X.-T. Wang, Y.-L. Deng, X. Chen, H.-N. Chen et al., In situ probe of the hydrogen oxidation reaction intermediates on PtRu a bimetallic catalyst surface by core–shell nanop-enhanced Raman spectroscopy. Nano Lett. 22(13), 5544–5552 (2022). https://doi.org/10.1021/acs.nanolett.2c01744
Q. Sun, N.J. Oliveira, S. Kwon, S. Tyukhtenko, J.J. Guo et al., Understanding hydrogen electrocatalysis by probing the hydrogen-bond network of water at the electrified Pt–solution interface. Nat. Energy 8(8), 859–869 (2023). https://doi.org/10.1038/s41560-023-01302-y
J. Yue, Y. Li, C. Yang, W. Luo, Hydroxyl-binding induced hydrogen bond network connectivity on Ru-based catalysts for efficient alkaline hydrogen oxidation electrocatalysis. Angew. Chem. Int. Ed. 64(3), e202415447 (2025). https://doi.org/10.1002/anie.202415447
C. Yang, J. Yue, G. Wang, W. Luo, Activating and identifying the active site of RuS(2) for alkaline hydrogen oxidation electrocatalysis. Angew. Chem. Int. Ed. 63(17), e202401453 (2024). https://doi.org/10.1002/anie.202401453
Y. Men, X. Men, P. Li, L. Li, X. Wang et al., Cation-driven modulation of interfacial solvation structures for enhanced alkaline hydrogen oxidation kinetics. J. Am. Chem. Soc. 147(25), 21672–21685 (2025). https://doi.org/10.1021/jacs.5c03433
F. Lin, H. Luo, L. Li, F. Lv, Y. Chen et al., Synthesis of isolated Ru–O3 sites on hexagonal close-packed intermetallic penta-metallene for hydrogen oxidation electrocatalysis. Nat. Synth. 4(3), 399–409 (2025). https://doi.org/10.1038/s44160-024-00685-4
Y. Fang, C. Wei, Z. Bian, X. Yin, B. Liu et al., Unveiling the nature of Pt-induced anti-deactivation of Ru for alkaline hydrogen oxidation reaction. Nat. Commun. 15(1), 1614 (2024). https://doi.org/10.1038/s41467-024-45873-0
X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44(15), 5148–5180 (2015). https://doi.org/10.1039/c4cs00448e
A.H. Shah, Z. Zhang, Z. Huang, S. Wang, G. Zhong et al., The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction. Nat. Catal. 5(10), 923–933 (2022). https://doi.org/10.1038/s41929-022-00851-x
Y. Sun, C. Huang, J. Shen, Y. Zhong, J. Ning et al., One-step construction of a transition-metal surface decorated with metal sulfide nanops: a high-efficiency electrocatalyst for hydrogen generation. J. Colloid Interface Sci. 558, 1–8 (2020). https://doi.org/10.1016/j.jcis.2019.09.090
M. You, X. Du, X. Hou, Z. Wang, Y. Zhou et al., In-situ growth of ruthenium-based nanostructure on carbon cloth for superior electrocatalytic activity towards HER and OER. Appl. Catal. B Environ. 317, 121729 (2022). https://doi.org/10.1016/j.apcatb.2022.121729
Y.-H. Wang, S. Zheng, W.-M. Yang, R.-Y. Zhou, Q.-F. He et al., In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600(7887), 81–85 (2021). https://doi.org/10.1038/s41586-021-04068-z
X. Chen, X.-T. Wang, J.-B. Le, S.-M. Li, X. Wang et al., Revealing the role of interfacial water and key intermediates at ruthenium surfaces in the alkaline hydrogen evolution reaction. Nat. Commun. 14(1), 5289 (2023). https://doi.org/10.1038/s41467-023-41030-1
G. Liu, W. Zhou, B. Chen, Q. Zhang, X. Cui et al., Synthesis of RuNi alloy nanostructures composed of multilayered nanosheets for highly efficient electrocatalytic hydrogen evolution. Nano Energy 66, 104173 (2019). https://doi.org/10.1016/j.nanoen.2019.104173
Y. Liu, H. Shi, T.-Y. Dai, S.-P. Zeng, G.-F. Han et al., In situ engineering multifunctional active sites of ruthenium–nickel alloys for pH-universal ampere-level current-density hydrogen evolution. Small 20(34), 2311509 (2024). https://doi.org/10.1002/smll.202311509
S. Shen, Z. Hu, H. Zhang, K. Song, Z. Wang et al., Highly active Si sites enabled by negative valent Ru for electrocatalytic hydrogen evolution in LaRuSi. Angew. Chem. Int. Ed. 61(32), e202206460 (2022). https://doi.org/10.1002/anie.202206460
C. Yang, Y. Gao, Z. Xing, X. Shu, Z. Zhuang et al., Bioinspired sulfo oxygen bridges optimize interfacial water structure for enhanced hydrogen oxidation and evolution reactions. Nat. Commun. 16(1), 6459 (2025). https://doi.org/10.1038/s41467-025-61871-2
S. Sarawutanukul, N. Phattharasupakun, M. Sawangphruk, 3D CVD graphene oxide-coated Ni foam as carbo- and electro-catalyst towards hydrogen evolution reaction in acidic solution: in situ electrochemical gas chromatography. Carbon 151, 109–119 (2019). https://doi.org/10.1016/j.carbon.2019.05.058
X. Cao, Y. Ding, D. Chen, W. Ye, W. Yang et al., Cluster-level heterostructure of PMo12/Cu for efficient and selective electrocatalytic hydrogenation of high-concentration 5-hydroxymethylfurfural. J. Am. Chem. Soc. 146(36), 25125–25136 (2024). https://doi.org/10.1021/jacs.4c08205
Y. Luo, Z. Zhang, F. Yang, J. Li, Z. Liu et al., Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media. Energy Environ. Sci. 14(8), 4610–4619 (2021). https://doi.org/10.1039/D1EE01487K
H. Ze, Z.-L. Yang, M.-L. Li, X.-G. Zhang, Y.-L. A et al., In situ probing the structure change and interaction of interfacial water and hydroxyl intermediates on Ni(OH)2 surface over water splitting. J. Am. Chem. Soc. 146(18), 12538–12546 (2024). https://doi.org/10.1021/jacs.4c00948
J. Dukovic, C.W. Tobias, The influence of attached bubbles on potential drop and current distribution at gas-evolving electrodes. J. Electrochem. Soc. 134(2), 331–343 (1987). https://doi.org/10.1149/1.2100456
C. Zhang, Z. Guo, Y. Tian, C. Yu, K. Liu et al., Engineering electrode wettability to enhance mass transfer in hydrogen evolution reaction. Nano Res. Energy 2, e9120063 (2023). https://doi.org/10.26599/nre.2023.9120063
C. Zhang, Z. Xu, N. Han, Y. Tian, T. Kallio et al., Superaerophilic/superaerophobic cooperative electrode for efficient hydrogen evolution reaction via enhanced mass transfer. Sci. Adv. 9(3), eadd6978 (2023). https://doi.org/10.1126/sciadv.add6978
J. Wang, Y. Gao, H. Kong, J. Kim, S. Choi et al., Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 49(24), 9154–9196 (2020). https://doi.org/10.1039/D0CS00575D
L. An, J. Li, Y. Sun, J. Zhu, J.Z.Y. Seow et al., Deciphering water oxidation catalysts: the dominant role of surface chemistry over reconstruction degree in activity promotion. Nano-Micro Lett. 17(1), 70 (2024). https://doi.org/10.1007/s40820-024-01562-7
X. Wang, H. Zhong, S. Xi, W.S.V. Lee, J. Xue, Understanding of oxygen redox in the oxygen evolution reaction. Adv. Mater. 34(50), 2107956 (2022). https://doi.org/10.1002/adma.202107956
D.W. Shaffer, Y. Xie, J.J. Concepcion, O-O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O-O radical coupling. Chem. Soc. Rev. 46(20), 6170–6193 (2017). https://doi.org/10.1039/c7cs00542c
H. Zhong, Q. Zhang, J. Yu, X. Zhang, C. Wu et al., Fundamental understanding of structural reconstruction behaviors in oxygen evolution reaction electrocatalysts. Adv. Energy Mater. 13(31), 2301391 (2023). https://doi.org/10.1002/aenm.202301391
Y.-L. Sun, X. Ji, X. Wang, Q.-F. He, J.-C. Dong et al., Visualization of electrooxidation on palladium single crystal surfaces via in situ Raman spectroscopy. Angew. Chem. Int. Ed. 63(44), e202408736 (2024). https://doi.org/10.1002/anie.202408736
A. Moysiadou, S. Lee, C.-S. Hsu, H.M. Chen, X. Hu, Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step. J. Am. Chem. Soc. 142(27), 11901–11914 (2020). https://doi.org/10.1021/jacs.0c04867
C. Lin, J.-L. Li, X. Li, S. Yang, W. Luo et al., In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 4(12), 1012–1023 (2021). https://doi.org/10.1038/s41929-021-00703-0
Y. Wang, R. Yang, Y. Ding, B. Zhang, H. Li et al., Unraveling oxygen vacancy site mechanism of Rh-doped RuO(2) catalyst for long-lasting acidic water oxidation. Nat. Commun. 14(1), 1412 (2023). https://doi.org/10.1038/s41467-023-37008-8
P. Ma, J. Xue, J. Li, H. Cao, R. Wang et al., Site-specific synergy in heterogeneous single atoms for efficient oxygen evolution. Nat. Commun. 16(1), 2573 (2025). https://doi.org/10.1038/s41467-025-57864-w
L. Zhou, M. Yang, Y. Liu, F. Kang, R. Lv, Intrinsic metal-support interactions break the activity-stability dilemma in electrocatalysis. Nat. Commun. 16(1), 8739 (2025). https://doi.org/10.1038/s41467-025-63397-z
R. Zhang, P.E. Pearce, Y. Duan, N. Dubouis, T. Marchandier et al., Importance of water structure and catalyst–electrolyte interface on the design of water splitting catalysts. Chem. Mater. 31(20), 8248–8259 (2019). https://doi.org/10.1021/acs.chemmater.9b02318
Z. He, M. Ajmal, M. Zhang, X. Liu, Z.-F. Huang et al., Progress in manipulating dynamic surface reconstruction via anion modulation for electrocatalytic water oxidation. Adv. Sci. 10(29), 2304071 (2023). https://doi.org/10.1002/advs.202304071
K. Feng, D. Zhang, F. Liu, H. Li, J. Xu et al., Highly efficient oxygen evolution by a thermocatalytic process cascaded electrocatalysis over sulfur-treated Fe-based metal–organic-frameworks. Adv. Energy Mater. 10(16), 2000184 (2020). https://doi.org/10.1002/aenm.202000184
Y. Xue, J. Fang, X. Wang, Z. Xu, Y. Zhang et al., Sulfate-functionalized RuFeOx as highly efficient oxygen evolution reaction electrocatalyst in acid. Adv. Funct. Mater. 31(32), 2101405 (2021). https://doi.org/10.1002/adfm.202101405
Y. Lin, B. Chen, D. Huang, Z. Yang, A. Lu et al., Solid-liquid interfacial hydrogen bond-mediated mass transfer toward industrial water electrolysis. Angew. Chem. Int. Ed. 64(26), e202502151 (2025). https://doi.org/10.1002/anie.202502151
J. Wang, Controlling dynamic reconstruction chemistry for superior oxygen-evolving catalysts. Chem 9(7), 1645–1657 (2023). https://doi.org/10.1016/j.chempr.2023.06.001
T. Li, O. Kasian, S. Cherevko, S. Zhang, S. Geiger et al., Atomic-scale insights into surface species of electrocatalysts in three dimensions. Nat. Catal. 1(4), 300–305 (2018). https://doi.org/10.1038/s41929-018-0043-3
R. Mehmood, W. Fan, X. Hu, J. Li, P. Liu et al., Confirming high-valent iron as highly active species of water oxidation on the Fe, V-coupled bimetallic electrocatalyst: in situ analysis of X-ray absorption and mössbauer spectroscopy. J. Am. Chem. Soc. 145(22), 12206–12213 (2023). https://doi.org/10.1021/jacs.3c02288
N. Xu, Y. Jin, Q. Liu, M. Yu, X. Wang et al., Rational design of diatomic active sites for elucidating oxygen evolution reaction performance trends. Angew. Chem. Int. Ed. 64(1), e202413749 (2025). https://doi.org/10.1002/anie.202413749
J. Halldin Stenlid, M. Görlin, O. Diaz-Morales, B. Davies, V. Grigorev et al., Operando characterization of Fe in doped nix(Fe1–x)OyHz catalysts for electrochemical oxygen evolution. J. Am. Chem. Soc. 147(5), 4120–4134 (2025). https://doi.org/10.1021/jacs.4c13417
G. Zhao, Y. Yao, W. Lu, G. Liu, X. Guo et al., Direct observation of oxygen evolution and surface restructuring on Mn2O3 nanocatalysts using in situ and ex situ transmission electron microscopy. Nano Lett. 21(16), 7012–7020 (2021). https://doi.org/10.1021/acs.nanolett.1c02378
F. Cheng, Z. Li, L. Wang, B. Yang, J. Lu et al., In situ identification of the electrocatalytic water oxidation behavior of a nickel-based metal–organic framework nanoarray. Mater. Horiz. 8(2), 556–564 (2021). https://doi.org/10.1039/D0MH01757D
Y.N. Xu, B. Mei, Q. Xu, H.Q. Fu, X.Y. Zhang et al., In situ/operando synchrotron radiation analytical techniques for CO2/CO reduction reaction: from atomic scales to mesoscales. Angew. Chem. Int. Ed. 63(25), e202404213 (2024). https://doi.org/10.1002/anie.202404213
J. Li, H. Xiong, X. Liu, D. Wu, D. Su et al., Weak CO binding sites induced by Cu-Ag interfaces promote CO electroreduction to multi-carbon liquid products. Nat. Commun. 14(1), 698 (2023). https://doi.org/10.1038/s41467-023-36411-5
J. Liu, P. Li, J. Bi, S. Jia, Y. Wang et al., Switching between C(2+) products and CH(4) in CO2 electrolysis by tuning the composition and structure of rare-earth/copper catalysts. J. Am. Chem. Soc. 145(42), 23037–23047 (2023). https://doi.org/10.1021/jacs.3c05562
C.-S. Hsu, J. Wang, Y.-C. Chu, J.-H. Chen, C.-Y. Chien et al., Activating dynamic atomic-configuration for single-site electrocatalyst in electrochemical CO2 reduction. Nat. Commun. 14(1), 5245 (2023). https://doi.org/10.1038/s41467-023-40970-y
H. Xiong, Q. Sun, K. Chen, Y. Xu, X. Chang et al., Correlating the experimentally determined CO adsorption enthalpy with the electrochemical CO reduction performance on Cu surfaces. Angew. Chem. Int. Ed. 62(10), e202218447 (2023). https://doi.org/10.1002/anie.202218447
X. Ding, J. Zhang, Y. Li, CO electroreduction: what can we learn from its parent reaction, CO2 electroreduction? eScience 3(6), 100137 (2023). https://doi.org/10.1016/j.esci.2023.100137
M. Chen, C. Guo, L. Qin, L. Wang, L. Qiao et al., Atomically precise Cu nanoclusters: recent advances, challenges, and perspectives in synthesis and catalytic applications. Nano-Micro Lett. 17(1), 83 (2024). https://doi.org/10.1007/s40820-024-01555-6
C.-X. Cui, Y. Shen, J.-R. He, Y. Fu, X. Hong et al., Quantitative insight into the electric field effect on CO2 electrocatalysis via machine learning spectroscopy. J. Am. Chem. Soc. 146(50), 34551–34559 (2024). https://doi.org/10.1021/jacs.4c12174
W. Gao, Y. Xu, L. Fu, X. Chang, B. Xu, Experimental evidence of distinct sites for CO2-to-CO and CO conversion on Cu in the electrochemical CO2 reduction reaction. Nat. Catal. 6(10), 885–894 (2023). https://doi.org/10.1038/s41929-023-01002-6
Y. Zhao, X.-G. Zhang, N. Bodappa, W.-M. Yang, Q. Liang et al., Elucidating electrochemical CO2 reduction reaction processes on Cu(hkl) single-crystal surfaces by in situ Raman spectroscopy. Energy Environ. Sci. 15(9), 3968–3977 (2022). https://doi.org/10.1039/D2EE01334G
Z.-Z. Wu, X.-L. Zhang, Z.-Z. Niu, F.-Y. Gao, P.-P. Yang et al., Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J. Am. Chem. Soc. 144(1), 259–269 (2022). https://doi.org/10.1021/jacs.1c09508
D. Zhong, Z.-J. Zhao, Q. Zhao, D. Cheng, B. Liu et al., Coupling of Cu(100) and (110) facets promotes carbon dioxide conversion to hydrocarbons and alcohols. Angew. Chem. Int. Ed. 60(9), 4879–4885 (2021). https://doi.org/10.1002/anie.202015159
Y. Yang, S. Louisia, S. Yu, J. Jin, I. Roh et al., Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614(7947), 262–269 (2023). https://doi.org/10.1038/s41586-022-05540-0
Q. Zhang, Z. Song, X. Sun, Y. Liu, J. Wan et al., Atomic dynamics of electrified solid-liquid interfaces in liquid-cell TEM. Nature 630(8017), 643–647 (2024). https://doi.org/10.1038/s41586-024-07479-w
Q. Lei, L. Huang, J. Yin, B. Davaasuren, Y. Yuan et al., Structural evolution and strain generation of derived-Cu catalysts during CO2 electroreduction. Nat. Commun. 13(1), 4857 (2022). https://doi.org/10.1038/s41467-022-32601-9
X. Su, Z. Jiang, J. Zhou, H. Liu, D. Zhou et al., Complementary operando spectroscopy identification of in situ generated metastable charge-asymmetry Cu(2)-CuN(3) clusters for CO2 reduction to ethanol. Nat. Commun. 13(1), 1322 (2022). https://doi.org/10.1038/s41467-022-29035-8
H. Li, X. Li, P. Wang, Z. Zhang, K. Davey et al., Machine learning big data set analysis reveals C-C electro-coupling mechanism. J. Am. Chem. Soc. 146(32), 22850–22858 (2024). https://doi.org/10.1021/jacs.4c09079
G.H. Simon, C.S. Kley, B. Roldan Cuenya, Potential-dependent morphology of copper catalysts during CO2 electroreduction revealed by in situ atomic force microscopy. Angew. Chem. Int. Ed. 60(5), 2561–2568 (2021). https://doi.org/10.1002/anie.202010449
F. Scholten, K.C. Nguyen, J.P. Bruce, M. Heyde, B. Roldan Cuenya, Identifying structure–selectivity correlations in the electrochemical reduction of CO2: a comparison of well-ordered atomically clean and chemically etched copper single-crystal surfaces. Angew. Chem. Int. Ed. 60(35), 19169–19175 (2021). https://doi.org/10.1002/anie.202103102
R. Amirbeigiarab, J. Tian, A. Herzog, C. Qiu, A. Bergmann et al., Atomic-scale surface restructuring of copper electrodes under CO2 electroreduction conditions. Nat. Catal. 6(9), 837–846 (2023). https://doi.org/10.1038/s41929-023-01009-z
M.C.O. Monteiro, F. Dattila, B. Hagedoorn, R. García-Muelas, N. López et al., Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4(8), 654–662 (2021). https://doi.org/10.1038/s41929-021-00655-5
Q. Liu, W. Yang, Resolving non-covalent interactions between surface hydroxyl on Cu and interfacial water in alkaline CO electroreduction. Nat. Catal. 8(8), 843–852 (2025). https://doi.org/10.1038/s41929-025-01396-5
Y. Xu, Z. Xia, W. Gao, H. Xiao, B. Xu, Cation effect on the elementary steps of the electrochemical CO reduction reaction on Cu. Nat. Catal. 7(10), 1120–1129 (2024). https://doi.org/10.1038/s41929-024-01227-z
J.-M. McGregor, J.T. Bender, A.S. Petersen, L. Cañada, J. Rossmeisl et al., Organic electrolyte cations promote non-aqueous CO2 reduction by mediating interfacial electric fields. Nat. Catal. 8(1), 79–91 (2025). https://doi.org/10.1038/s41929-024-01278-2
Y. Wang, S. Zhou, Y. Zheng, Y. Wang, Y. Hou et al., Measurements of local pH gradients for electrocatalysts in the oxygen evolution reaction by electrochemiluminescence. J. Am. Chem. Soc. 147(22), 19380–19390 (2025). https://doi.org/10.1021/jacs.5c04896
K.J.P. Schouten, Z. Qin, E. Pérez Gallent, M.T.M. Koper, Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134(24), 9864–9867 (2012). https://doi.org/10.1021/ja302668n
X. Wang, K. Klingan, M. Klingenhof, T. Möller, J. Ferreira de Araújo et al., Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction. Nat. Commun. 12(1), 794 (2021). https://doi.org/10.1038/s41467-021-20961-7
J.-P. Grote, A.R. Zeradjanin, S. Cherevko, A. Savan, B. Breitbach et al., Screening of material libraries for electrochemical CO2 reduction catalysts–improving selectivity of Cu by mixing with Co. J. Catal. 343, 248–256 (2016). https://doi.org/10.1016/j.jcat.2016.02.026
M. Choi, S. Bae, Y. Kim, Y. Lee, M. Cho et al., Selective formaldehyde condensation on phosphorus-rich copper catalyst to produce liquid C3+ chemicals in electrocatalytic CO2 reduction. Nat. Catal. 8(5), 476–486 (2025). https://doi.org/10.1038/s41929-025-01341-6
X. Wang, S. Jiang, W. Hu, S. Ye, T. Wang et al., Quantitatively determining surface–adsorbate properties from vibrational spectroscopy with interpretable machine learning. J. Am. Chem. Soc. 144(35), 16069–16076 (2022). https://doi.org/10.1021/jacs.2c06288
C. Bozal-Ginesta, S. Pablo-García, C. Choi, A. Tarancón, A. Aspuru-Guzik, Developing machine learning for heterogeneous catalysis with experimental and computational data. Nat. Rev. Chem. 9(9), 601–616 (2025). https://doi.org/10.1038/s41570-025-00740-4
M. Rüscher, A. Herzog, J. Timoshenko, H.S. Jeon, W. Frandsen et al., Tracking heterogeneous structural motifs and the redox behaviour of copper–zinc nanocatalysts for the electrocatalytic CO2 reduction using operando time resolved spectroscopy and machine learning. Catal. Sci. Technol. 12(9), 3028–3043 (2022). https://doi.org/10.1039/d2cy00227b
Y. Yang, J. Feijóo, M. Figueras-Valls, C. Chen, C. Shi et al., Operando probing dynamic migration of copper carbonyl during electrocatalytic CO2 reduction. Nat. Catal. 8(6), 579–594 (2025). https://doi.org/10.1038/s41929-025-01359-w
M.-J. Xiao, H. Zhang, B. Ma, Z.-Q. Zhang, X.-Y. Li et al., Template-free synthesis of a yolk–shell Co3O4/nitrogen-doped carbon microstructure for excellent lithium ion storage. J. Mater. Chem. A 9(43), 24548–24559 (2021). https://doi.org/10.1039/d1ta07221h
M.-J. Xiao, B. Ma, Z.-Q. Zhang, Q. Xiao, X.-Y. Li et al., Carbon nano-onion encapsulated cobalt nanops for oxygen reduction and lithium-ion batteries. J. Mater. Chem. A 9(11), 7227–7237 (2021). https://doi.org/10.1039/D0TA12504K
M.-J. Xiao, B. Ma, H. Zhang, X.-Y. Li, Q. Wang et al., Hollow NiO/carbon pompons for efficient lithium ion storage. J. Mater. Chem. A 10(40), 21492–21502 (2022). https://doi.org/10.1039/d2ta05746h
S. Kaboli, H. Demers, A. Paolella, A. Darwiche, M. Dontigny et al., Behavior of solid electrolyte in Li-polymer battery with NMC cathode via in situ scanning electron microscopy. Nano Lett. 20(3), 1607–1613 (2020). https://doi.org/10.1021/acs.nanolett.9b04452
S. Qin, Y. Yu, J. Zhang, Y. Ren, C. Sun et al., Separator-free in situ dual-curing solid polymer electrolytes with enhanced interfacial contact for achieving ultrastable lithium-metal batteries. Adv. Energy Mater. 13(34), 2301470 (2023). https://doi.org/10.1002/aenm.202301470
L. Zhang, T. Yang, C. Du, Q. Liu, Y. Tang et al., Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up. Nat. Nanotechnol. 15(2), 94–98 (2020). https://doi.org/10.1038/s41565-019-0604-x
X. Meng, Z. Bi, X. Wang, G. Shang, A novel design for the combination of electrochemical atomic force microscopy and Raman spectroscopy in reflection mode for in situ study of battery materials. Rev. Sci. Instrum. 93(7), 073707 (2022). https://doi.org/10.1063/5.0096766
D. Zhang, J. Lu, C. Pei, S. Ni, Electrochemical activation, sintering, and reconstruction in energy-storage technologies: origin, development, and prospects. Adv. Energy Mater. 12(19), 2103689 (2022). https://doi.org/10.1002/aenm.202103689
C. Xu, K. Märker, J. Lee, A. Mahadevegowda, P.J. Reeves et al., Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20(1), 84–92 (2021). https://doi.org/10.1038/s41563-020-0767-8
R. Endo, T. Ohnishi, K. Takada, T. Masuda, In situ observation of lithiation and delithiation reactions of a silicon thin film electrode for all-solid-state lithium-ion batteries by X-ray photoelectron spectroscopy. J. Phys. Chem. Lett. 11(16), 6649–6654 (2020). https://doi.org/10.1021/acs.jpclett.0c01906
X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu et al., Size-dependent fracture of silicon nanops during lithiation. ACS Nano 6(2), 1522–1531 (2012). https://doi.org/10.1021/nn204476h
J. Wan, Y. Hao, Y. Shi, Y.-X. Song, H.-J. Yan et al., Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries. Nat. Commun. 10(1), 3265 (2019). https://doi.org/10.1038/s41467-019-11197-7
Y. Gu, E.-M. You, J.-D. Lin, J.-H. Wang, S.-H. Luo et al., Resolving nanostructure and chemistry of solid-electrolyte interphase on lithium anodes by depth-sensitive plasmon-enhanced Raman spectroscopy. Nat. Commun. 14(1), 3536 (2023). https://doi.org/10.1038/s41467-023-39192-z
Y. Lu, Q. Cao, W. Zhang, T. Zeng, Y. Ou et al., Breaking the molecular symmetricity of sulfonimide anions for high-performance lithium metal batteries under extreme cycling conditions. Nat. Energy 10(2), 191–204 (2025). https://doi.org/10.1038/s41560-024-01679-4
Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15(5), 1711–1759 (2022). https://doi.org/10.1039/d1ee03292e
W. Wang, Y. Zhang, B. Xie, L. Huang, S. Dong et al., Deciphering advanced sensors for life and safety monitoring of lithium batteries. Adv. Energy Mater. 14(24), 2304173 (2024). https://doi.org/10.1002/aenm.202304173
S. Huang, Z. Du, Q. Zhou, K. Snyder, S. Liu et al., In situ measurement of temperature distributions in a Li-ion cell during internal short circuit and thermal runaway. J. Electrochem. Soc. 168(9), 090510 (2021). https://doi.org/10.1149/1945-7111/ac1d7b
M. Nascimento, M.S. Ferreira, J.L. Pinto, Real time thermal monitoring of lithium batteries with fiber sensors and thermocouples: a comparative study. Measurement 111, 260–263 (2017). https://doi.org/10.1016/j.measurement.2017.07.049
M. Nascimento, T. Paixão, M.S. Ferreira, J.L. Pinto, Thermal mapping of a lithium polymer batteries pack with FBGs network. Batteries 4(4), 67 (2018). https://doi.org/10.3390/batteries4040067
W. Zhang, D. Schröder, T. Arlt, I. Manke, R. Koerver et al., (Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. J. Mater. Chem. A 5(20), 9929–9936 (2017). https://doi.org/10.1039/C7TA02730C
J. Zhang, M. Xiao, T. Liu, Y. Meng, F. Zhu et al., Conductive V2O3 electrocatalyst on carbon hollow spheres to accelerate polysulfide conversion for long-cycle and high-rate lithium sulfur batteries. Green Chem. 26(9), 5546–5555 (2024). https://doi.org/10.1039/d3gc05055f
S. Zhou, J. Shi, S. Liu, G. Li, F. Pei et al., Visualizing interfacial collective reaction behaviour of Li-S batteries. Nature 621(7977), 75–81 (2023). https://doi.org/10.1038/s41586-023-06326-8
Y. Li, Q. Liu, S. Wu, L. Geng, J. Popovic et al., Unraveling the reaction mystery of Li and Na with dry air. J. Am. Chem. Soc. 145(19), 10576–10583 (2023). https://doi.org/10.1021/jacs.2c13589
B. Choi, K.-G. Kim, M. Lim, B. Kim, J. Seo et al., Surface adaptive dual-layer protection of Li-metal anode for extending cycle-life of Li–sulfur batteries with lean electrolyte. Adv. Funct. Mater. 34(28), 2316838 (2024). https://doi.org/10.1002/adfm.202316838
Z.-Z. Shen, S.-Y. Lang, C. Zhou, R. Wen, L.-J. Wan, In situ realization of water-mediated interfacial processes at nanoscale in aprotic Li–O2 batteries. Adv. Energy Mater. 10(46), 2002339 (2020). https://doi.org/10.1002/aenm.202002339
M.M. Rahman, A. Ronne, N. Wang, Y. Du, E. Hu, Spatial progression of polysulfide reactivity with lithium nitrate in Li–sulfur batteries. ACS Energy Lett. 9(5), 2024–2030 (2024). https://doi.org/10.1021/acsenergylett.4c00453
Z. Ning, D.S. Jolly, G. Li, R. De Meyere, S.D. Pu et al., Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater. 20(8), 1121–1129 (2021). https://doi.org/10.1038/s41563-021-00967-8
R. Liu, Z. Wei, L. Peng, L. Zhang, A. Zohar et al., Establishing reaction networks in the 16-electron sulfur reduction reaction. Nature 626(7997), 98–104 (2024). https://doi.org/10.1038/s41586-023-06918-4
W. Zhang, J. Zhu, Y. Ye, J. She, X. Kong et al., Suppressing shuttle effect via cobalt phthalocyanine mediated dissociation of lithium polysulfides for enhanced Li-S battery performance. Adv. Funct. Mater. 34(40), 2403888 (2024). https://doi.org/10.1002/adfm.202403888
Z. Yu, B. Wang, X. Liao, K. Zhao, Z. Yang et al., Boosting polysulfide redox kinetics by graphene-supported Ni nanops with carbon coating. Adv. Energy Mater. 10(25), 2000907 (2020). https://doi.org/10.1002/aenm.202000907
L. Jia, J. Wang, S. Ren, G. Ren, X. Jin et al., Unraveling shuttle effect and suppression strategy in lithium/sulfur cells by in situ/operando X-ray absorption spectroscopic characterization. Energy Environ. Mater. 4(2), 222–228 (2021). https://doi.org/10.1002/eem2.12152
Z. Liang, Y. Xiang, K. Wang, J. Zhu, Y. Jin et al., Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy. Nat. Commun. 14(1), 259 (2023). https://doi.org/10.1038/s41467-023-35920-7
Z. Zhao, L. Pang, Y. Wu, Y. Chen, Z. Peng, In situ spectroscopic probing of oxygen crossover effects on solid electrolyte interphase in aprotic lithium-oxygen batteries. Adv. Energy Mater. 13(29), 2301127 (2023). https://doi.org/10.1002/aenm.202301127
C. Xu, A. Ge, K. Kannari, B. Peng, M. Xue et al., The decisive role of Li2O2 desorption for oxygen reduction reaction in Li–O2 batteries. ACS Energy Lett. 8(3), 1289–1299 (2023). https://doi.org/10.1021/acsenergylett.2c02714