Iron–Manganese Dual-Doping Tailors the Electronic Structure of Na3V2(PO4)2F3 for High-Performance Sodium-Ion Batteries
Corresponding Author: Zheng‑Long Xu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 176
Abstract
Sodium superionic conductor (NASICON)-type materials are promising cathodes for sodium-ion batteries due to their stable multi-channel frameworks and exceptional ionic conductivity. Among them, Na3V2(PO4)2F3 (NVPF) has attracted significant attention. However, the low electronic conductivity and phase impurities limit its sodium storage capability. Herein, we present a Fe and Mn dual-doped NVPF (FM-NVPF) cathode with improved phase purity, electronic conductivity, and electrochemical activities. Detailed ex-situ analyses and density functional theory calculations reveal that Fe and Mn dopants induce defect energy levels and modulate the electronic structure, resulting in a direct-to-indirect bandgap transition in NVPF, which in turn increases carrier concentration and lifetime, accelerates ionic/electronic transport, and improves structural stability. As a result, the FM-NVPF cathode delivers a high capacity of 126.6 mAh g⁻1 at 0.1 C (1 C = 128 mAh g⁻1) and outstanding high-rate capability of 67.6 mAh g⁻1 at 50 C, corresponding to 1.2 min per charge. Furthermore, Na ion full cells assembled with the FM-NVPF cathodes and hard carbon anodes exhibit a high energy density of about 175 Wh kg−1cathode+anode mass and appealing cyclic stability. This work provides an efficient strategy for developing high-purity and high-performance NVPF cathode materials for advanced sodium-ion batteries.
Highlights:
1 Regulation of the electronic structure of Na3V2(PO4)2F3 (NVPF) via iron–manganese dual-doping enhances electrical conductivity and ion diffusion kinetics.
2 Efficient charge transport and highly reversible Na+ de/intercalation in Fe-Mn dual-doped NVPF (FM-NVPF) enable exceptional rate capability and charge storage capacity.
3 The full cell with the FM-NVPF cathode and hard carbon anode displays superior rate performance and cycling stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Huang, X. Wu, Y. Gao, Z. Li, W. Wang et al., Polyanionic cathode materials: a comparison between Na-ion and K-ion batteries. Adv. Energy Mater. 14(14), 2304251 (2024). https://doi.org/10.1002/aenm.202304251
- Y. Gao, H. Zhang, J. Peng, L. Li, Y. Xiao et al., A 30-years overview of sodium-ion batteries. Carbon Energy 6(6), e464 (2024). https://doi.org/10.1002/cey2.464
- E. Goikolea, V. Palomares, S. Wang, I.R. de Larramendi, X. Guo et al., Na-ion batteries: approaching old and new challenges. Adv. Energy Mater. 10(44), 2002055 (2020). https://doi.org/10.1002/aenm.202002055
- M. He, S. Liu, J. Wu, J. Zhu, Review of cathode materials for sodium-ion batteries. Prog. Solid State Chem. 74, 100452 (2024). https://doi.org/10.1016/j.progsolidstchem.2024.100452
- E. Gabriel, C. Ma, K. Graff, A. Conrado, D. Hou et al., Heterostructure engineering in electrode materials for sodium-ion batteries: recent progress and perspectives. Escience 3(5), 100139 (2023). https://doi.org/10.1016/j.esci.2023.100139
- B. Peng, G. Wan, N. Ahmad, L. Yu, X. Ma et al., Recent progress in the emerging modification strategies for layered oxide cathodes toward practicable sodium ion batteries. Adv. Energy Mater. 13(27), 2370117 (2023). https://doi.org/10.1002/aenm.202370117
- M.T. Ahsan, Z. Ali, M. Usman, Y. Hou, Unfolding the structural features of NASICON materials for sodium-ion full cells. Carbon Energy 4(5), 776–819 (2022). https://doi.org/10.1002/cey2.222
- Q. Zhou, L. Wang, W. Li, K. Zhao, M. Liu et al., Sodium superionic conductors (NASICONs) as cathode materials for sodium-ion batteries. Electrochem. Energy Rev. 4(4), 793–823 (2021). https://doi.org/10.1007/s41918-021-00120-8
- R. Thirupathi, V. Kumari, S. Chakrabarty, S. Omar, Recent progress and prospects of NASICON framework electrodes for Na-ion batteries. Prog. Mater. Sci. 137, 101128 (2023). https://doi.org/10.1016/j.pmatsci.2023.101128
- H. Xu, Q. Yan, W. Yao, C.-S. Lee, Y. Tang, Mainstream optimization strategies for cathode materials of sodium-ion batteries. Small Struct. 3(4), 2100217 (2022). https://doi.org/10.1002/sstr.202100217
- K. Liang, H. Zhao, J. Li, X. Huang, S. Jia et al., Engineering crystal growth and surface modification of Na3V2(PO4)2F3 cathode for high-energy-density sodium-ion batteries. Small 19(19), 2207562 (2023). https://doi.org/10.1002/smll.202207562
- X. Wang, C. Niu, J. Meng, P. Hu, X. Xu et al., Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability. Adv. Energy Mater. 5(17), 1500716 (2015). https://doi.org/10.1002/aenm.201500716
- Z.-Y. Gu, J.-Z. Guo, J.-M. Cao, X.-T. Wang, X.-X. Zhao et al., An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density. Adv. Mater. 34(14), 2110108 (2022). https://doi.org/10.1002/adma.202110108
- J.Y. Park, Y. Shim, Y.-I. Kim, Y. Choi, H.J. Lee et al., An iron-doped NASICON type sodium ion battery cathode for enhanced sodium storage performance and its full cell applications. J. Mater. Chem. A 8(39), 20436–20445 (2020). https://doi.org/10.1039/D0TA07766F
- L. Li, Y. Xu, R. Chang, C. Wang, S. He et al., Unraveling the mechanism of optimal concentration for Fe substitution in Na3V2(PO4)2F3/C for sodium-ion batteries. Energy Storage Mater. 37, 325–335 (2021). https://doi.org/10.1016/j.ensm.2021.01.029
- Y. Zhang, S. Guo, H. Xu, Synthesis of uniform hierarchical Na3V1.95Mn0.05(PO4)2F3@C hollow microspheres as a cathode material for sodiumion batteries. J Mater Chem A. 6, 4525–4534 (2018). https://doi.org/10.1039/C7TA11105C
- L. Zhu, M. Wang, S. Xiang, D. Sun, Y. Tang et al., A medium-entropy phosphate cathode with multielectron redox reaction for advanced sodium-ion batteries. Adv. Energy Mater. 13(36), 2302046 (2023). https://doi.org/10.1002/aenm.202302046
- Z. Wang, G. Cui, Q. Zheng, X. Ren, Q. Yang et al., Ultrafast charge-discharge capable and long-life Na3.9Mn0.95Zr0.05V(PO4)3/C cathode material for advanced sodium-ion batteries. Small 19(17), 2206987 (2023). https://doi.org/10.1002/smll.202206987
- Y. Subramanian, W. Oh, W. Choi, H. Lee, M. Jeong et al., Optimizing high voltage Na3V2(PO4)2F3 cathode for achieving high rate sodium-ion batteries with long cycle life. Chem. Eng. J. 403, 126291 (2021). https://doi.org/10.1016/j.cej.2020.126291
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
- S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
- J. Wang, H. Jing, X. Wang, Y. Xue, Q. Liang et al., Electrostatically shielded transportation enabling accelerated Na+ diffusivity in high-performance fluorophosphate cathode for sodium-ion batteries. Adv. Funct. Mater. 34(24), 2315318 (2024). https://doi.org/10.1002/adfm.202315318
- K. Burke, Perspective on density functional theory. J. Chem. Phys. 136(15), 150901 (2012). https://doi.org/10.1063/1.4704546
- L. Deng, F.-D. Yu, Y. Xia, Y.-S. Jiang, X.-L. Sui et al., Stabilizing fluorine to achieve high-voltage and ultra-stable Na3V2(PO4)2F3 cathode for sodium ion batteries. Nano Energy 82, 105659 (2021). https://doi.org/10.1016/j.nanoen.2020.105659
- L. Li, J. Zhao, H. Zhao, Y. Qin, X. Zhu et al., Structure, composition and electrochemical performance analysis of fluorophosphates from different synthetic methods: is really Na3V2(PO4)2F3 synthesized? J. Mater. Chem. A 10(16), 8877–8886 (2022). https://doi.org/10.1039/D2TA00565D
- H. Yu, H. Jing, Y. Gao, X. Wang, Z.-Y. Gu et al., Unlocking the sodium storage potential in fluorophosphate cathodes: electrostatic interaction lowering versus structural disordering. Adv. Mater. 37(24), 2400229 (2025). https://doi.org/10.1002/adma.202400229
- R. Su, W. Zhu, K. Liang, P. Wei, J. Li et al., Mnx+ substitution to improve Na3V2(PO4)2F3-based electrodes for sodium-ion battery cathode. Molecules 28(3), 1409 (2023). https://doi.org/10.3390/molecules28031409
- X. Ou, X. Liang, C. Yang, H. Dai, F. Zheng et al., Mn doped NaV3(PO4)3/C anode with high-rate and long cycle-life for sodium ion batteries. Energy Storage Mater. 12, 153–160 (2018). https://doi.org/10.1016/j.ensm.2017.12.007
- H. Li, Y. Wang, X. Zhao, J. Jin, Q. Shen et al., A multielectron-reaction and low-strain Na3.5Fe0.5VCr0.5(PO4)3 cathode for Na-ion batteries. ACS Energy Lett. 8(9), 3666–3675 (2023). https://doi.org/10.1021/acsenergylett.3c01183
- C. Xu, J. Zhao, E. Wang, X. Liu, X. Shen et al., A novel NASICON-typed Na4VMn0.5Fe0.5(PO4)3 cathode for high-performance Na-ion batteries. Adv. Energy Mater. 11(22), 2100729 (2021). https://doi.org/10.1002/aenm.202100729
- K. Liang, S. Wang, H. Zhao, X. Huang, Y. Ren et al., A facile strategy for developing uniform hierarchical Na3V2(PO4)2F3@carbonized polyacrylonitrile multi-clustered hollow microspheres for high-energy-density sodium-ion batteries. Chem. Eng. J. 428, 131780 (2022). https://doi.org/10.1016/j.cej.2021.131780
- Y. Zhang, T. Wang, Y. Tang, Y. Huang, D. Jia et al., In situ redox reaction induced firmly anchoring of Na3V2(PO4)2F3 on reduced graphene oxide and carbon nanosheets as cathodes for high stable sodium-ion batteries. J. Power. Sources 516, 230515 (2021). https://doi.org/10.1016/j.jpowsour.2021.230515
- H. Tan, J. Verbeeck, A. Abakumov, G. Van Tendeloo, Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy 116, 24–33 (2012). https://doi.org/10.1016/j.ultramic.2012.03.002
- X. Chen, Q. Wu, P. Guo, X. Liu, Rational design of two dimensional single crystalline Na3V2(PO4)2F3 nanosheets for boosting Na+ migration and mitigating grain pulverization. Chem. Eng. J. 439, 135533 (2022). https://doi.org/10.1016/j.cej.2022.135533
- L. Wang, J. Wang, H. Chen, H. Dong, H. Wang et al., Fast screening suitable doping transition metals to Na3V2(PO4)2F3 for sodium-ion batteries with high energy density in wide-temperature range. Adv. Mater. 37, 2505093 (2025). https://doi.org/10.1002/adma.202505093
- M. Sun, Y. Sun, H. Ma, S. Wang, Q. Liu et al., High-entropy doping enabling ultrahigh power density for advanced sodium-ion batteries. ACS Nano 19(19), 18386–18396 (2025). https://doi.org/10.1021/acsnano.5c01312
- Y. Zhou, G. Xu, J. Lin, Y. Zhang, G. Fang et al., Reversible multielectron redox chemistry in a NASICON-type cathode toward high-energy-density and long-life sodium-ion full batteries. Adv. Mater. 35(44), 2304428 (2023). https://doi.org/10.1002/adma.202304428
- J. Zhang, Y. Lai, P. Li, Y. Wang, F. Zhong et al., Boosting rate and cycling performance of K-doped Na3V2(PO4)2F3 cathode for high-energy-density sodium-ion batteries. Green Energy Environ. 7(6), 1253–1262 (2022). https://doi.org/10.1016/j.gee.2021.01.001
- A.R. Iarchuk, D.V. Sheptyakov, A.M. Abakumov, Hydrothermal microwave-assisted synthesis of Na3+xV2–yMny(PO4)2F3 solid solutions as potential positive electrodes for Na-ion batteries. ACS Appl. Energy Mater. 4(5), 5007–5014 (2021). https://doi.org/10.1021/acsaem.1c00579
- Z.-Y. Gu, J.-Z. Guo, X.-X. Zhao, X.-T. Wang, D. Xie et al., High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries. InfoMat 3(6), 694–704 (2021). https://doi.org/10.1002/inf2.12184
- N. Huang, Y. Sun, S. Liu, X. Wang, J. Zhang et al., Microwave-assisted rational designed CNT-Mn3 O4)/CoWO4 hybrid nanocomposites for high performance battery-supercapacitor hybrid device. Small 19(35), e2300696 (2023). https://doi.org/10.1002/smll.202300696
- G. Li, Y. Su, S. Zhou, J. Shen, D. Liu et al., From 0D to 3D: Controllable synthesis of ammonium vanadate materials for Zn2+ storage with superior rate performance and cycling stability. Chem. Eng. J. 469, 143816 (2023). https://doi.org/10.1016/j.cej.2023.143816
- Z.-F. Wu, P.-F. Gao, L. Guo, J. Kang, D.-Q. Fang et al., Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene. Phys. Chem. Chem. Phys. 19(47), 31796–31803 (2017). https://doi.org/10.1039/C7CP05404A
- A. Chaves, J.G. Azadani, H. Alsalman, D.R. da Costa, R. Frisenda et al., Bandgap engineering of two-dimensional semiconductor materials. NPJ 2D Mater Appl. 4, 29 (2020). https://doi.org/10.1038/s41699-020-00162-4
- S. Zhang, G. Wang, J. Jin, L. Zhang, Z. Wen et al., Robust and conductive red MoSe2 for stable and fast lithium storage. ACS Nano 12(4), 4010–4018 (2018). https://doi.org/10.1021/acsnano.8b01703
- Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32(7), 1905923 (2020). https://doi.org/10.1002/adma.201905923
- D. Zhu, Q. Zhou, Nitrogen doped g-C3N4 with the extremely narrow band gap for excellent photocatalytic activities under visible light. Appl. Catal. B Environ. 281, 119474 (2021). https://doi.org/10.1016/j.apcatb.2020.119474
- J. Zhang, F. Shi, J. Lin, D. Chen, J. Gao et al., Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst. Chem. Mater. 20(9), 2937–2941 (2008). https://doi.org/10.1021/cm7031898
- M. Li, C. Sun, Q. Ni, Z. Sun, Y. Liu et al., High entropy enabling the reversible redox reaction of V4+/V5+ couple in NASICON-type sodium ion cathode. Adv. Energy Mater. 13(12), 2203971 (2023). https://doi.org/10.1002/aenm.202203971
References
H. Huang, X. Wu, Y. Gao, Z. Li, W. Wang et al., Polyanionic cathode materials: a comparison between Na-ion and K-ion batteries. Adv. Energy Mater. 14(14), 2304251 (2024). https://doi.org/10.1002/aenm.202304251
Y. Gao, H. Zhang, J. Peng, L. Li, Y. Xiao et al., A 30-years overview of sodium-ion batteries. Carbon Energy 6(6), e464 (2024). https://doi.org/10.1002/cey2.464
E. Goikolea, V. Palomares, S. Wang, I.R. de Larramendi, X. Guo et al., Na-ion batteries: approaching old and new challenges. Adv. Energy Mater. 10(44), 2002055 (2020). https://doi.org/10.1002/aenm.202002055
M. He, S. Liu, J. Wu, J. Zhu, Review of cathode materials for sodium-ion batteries. Prog. Solid State Chem. 74, 100452 (2024). https://doi.org/10.1016/j.progsolidstchem.2024.100452
E. Gabriel, C. Ma, K. Graff, A. Conrado, D. Hou et al., Heterostructure engineering in electrode materials for sodium-ion batteries: recent progress and perspectives. Escience 3(5), 100139 (2023). https://doi.org/10.1016/j.esci.2023.100139
B. Peng, G. Wan, N. Ahmad, L. Yu, X. Ma et al., Recent progress in the emerging modification strategies for layered oxide cathodes toward practicable sodium ion batteries. Adv. Energy Mater. 13(27), 2370117 (2023). https://doi.org/10.1002/aenm.202370117
M.T. Ahsan, Z. Ali, M. Usman, Y. Hou, Unfolding the structural features of NASICON materials for sodium-ion full cells. Carbon Energy 4(5), 776–819 (2022). https://doi.org/10.1002/cey2.222
Q. Zhou, L. Wang, W. Li, K. Zhao, M. Liu et al., Sodium superionic conductors (NASICONs) as cathode materials for sodium-ion batteries. Electrochem. Energy Rev. 4(4), 793–823 (2021). https://doi.org/10.1007/s41918-021-00120-8
R. Thirupathi, V. Kumari, S. Chakrabarty, S. Omar, Recent progress and prospects of NASICON framework electrodes for Na-ion batteries. Prog. Mater. Sci. 137, 101128 (2023). https://doi.org/10.1016/j.pmatsci.2023.101128
H. Xu, Q. Yan, W. Yao, C.-S. Lee, Y. Tang, Mainstream optimization strategies for cathode materials of sodium-ion batteries. Small Struct. 3(4), 2100217 (2022). https://doi.org/10.1002/sstr.202100217
K. Liang, H. Zhao, J. Li, X. Huang, S. Jia et al., Engineering crystal growth and surface modification of Na3V2(PO4)2F3 cathode for high-energy-density sodium-ion batteries. Small 19(19), 2207562 (2023). https://doi.org/10.1002/smll.202207562
X. Wang, C. Niu, J. Meng, P. Hu, X. Xu et al., Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability. Adv. Energy Mater. 5(17), 1500716 (2015). https://doi.org/10.1002/aenm.201500716
Z.-Y. Gu, J.-Z. Guo, J.-M. Cao, X.-T. Wang, X.-X. Zhao et al., An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density. Adv. Mater. 34(14), 2110108 (2022). https://doi.org/10.1002/adma.202110108
J.Y. Park, Y. Shim, Y.-I. Kim, Y. Choi, H.J. Lee et al., An iron-doped NASICON type sodium ion battery cathode for enhanced sodium storage performance and its full cell applications. J. Mater. Chem. A 8(39), 20436–20445 (2020). https://doi.org/10.1039/D0TA07766F
L. Li, Y. Xu, R. Chang, C. Wang, S. He et al., Unraveling the mechanism of optimal concentration for Fe substitution in Na3V2(PO4)2F3/C for sodium-ion batteries. Energy Storage Mater. 37, 325–335 (2021). https://doi.org/10.1016/j.ensm.2021.01.029
Y. Zhang, S. Guo, H. Xu, Synthesis of uniform hierarchical Na3V1.95Mn0.05(PO4)2F3@C hollow microspheres as a cathode material for sodiumion batteries. J Mater Chem A. 6, 4525–4534 (2018). https://doi.org/10.1039/C7TA11105C
L. Zhu, M. Wang, S. Xiang, D. Sun, Y. Tang et al., A medium-entropy phosphate cathode with multielectron redox reaction for advanced sodium-ion batteries. Adv. Energy Mater. 13(36), 2302046 (2023). https://doi.org/10.1002/aenm.202302046
Z. Wang, G. Cui, Q. Zheng, X. Ren, Q. Yang et al., Ultrafast charge-discharge capable and long-life Na3.9Mn0.95Zr0.05V(PO4)3/C cathode material for advanced sodium-ion batteries. Small 19(17), 2206987 (2023). https://doi.org/10.1002/smll.202206987
Y. Subramanian, W. Oh, W. Choi, H. Lee, M. Jeong et al., Optimizing high voltage Na3V2(PO4)2F3 cathode for achieving high rate sodium-ion batteries with long cycle life. Chem. Eng. J. 403, 126291 (2021). https://doi.org/10.1016/j.cej.2020.126291
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
J. Wang, H. Jing, X. Wang, Y. Xue, Q. Liang et al., Electrostatically shielded transportation enabling accelerated Na+ diffusivity in high-performance fluorophosphate cathode for sodium-ion batteries. Adv. Funct. Mater. 34(24), 2315318 (2024). https://doi.org/10.1002/adfm.202315318
K. Burke, Perspective on density functional theory. J. Chem. Phys. 136(15), 150901 (2012). https://doi.org/10.1063/1.4704546
L. Deng, F.-D. Yu, Y. Xia, Y.-S. Jiang, X.-L. Sui et al., Stabilizing fluorine to achieve high-voltage and ultra-stable Na3V2(PO4)2F3 cathode for sodium ion batteries. Nano Energy 82, 105659 (2021). https://doi.org/10.1016/j.nanoen.2020.105659
L. Li, J. Zhao, H. Zhao, Y. Qin, X. Zhu et al., Structure, composition and electrochemical performance analysis of fluorophosphates from different synthetic methods: is really Na3V2(PO4)2F3 synthesized? J. Mater. Chem. A 10(16), 8877–8886 (2022). https://doi.org/10.1039/D2TA00565D
H. Yu, H. Jing, Y. Gao, X. Wang, Z.-Y. Gu et al., Unlocking the sodium storage potential in fluorophosphate cathodes: electrostatic interaction lowering versus structural disordering. Adv. Mater. 37(24), 2400229 (2025). https://doi.org/10.1002/adma.202400229
R. Su, W. Zhu, K. Liang, P. Wei, J. Li et al., Mnx+ substitution to improve Na3V2(PO4)2F3-based electrodes for sodium-ion battery cathode. Molecules 28(3), 1409 (2023). https://doi.org/10.3390/molecules28031409
X. Ou, X. Liang, C. Yang, H. Dai, F. Zheng et al., Mn doped NaV3(PO4)3/C anode with high-rate and long cycle-life for sodium ion batteries. Energy Storage Mater. 12, 153–160 (2018). https://doi.org/10.1016/j.ensm.2017.12.007
H. Li, Y. Wang, X. Zhao, J. Jin, Q. Shen et al., A multielectron-reaction and low-strain Na3.5Fe0.5VCr0.5(PO4)3 cathode for Na-ion batteries. ACS Energy Lett. 8(9), 3666–3675 (2023). https://doi.org/10.1021/acsenergylett.3c01183
C. Xu, J. Zhao, E. Wang, X. Liu, X. Shen et al., A novel NASICON-typed Na4VMn0.5Fe0.5(PO4)3 cathode for high-performance Na-ion batteries. Adv. Energy Mater. 11(22), 2100729 (2021). https://doi.org/10.1002/aenm.202100729
K. Liang, S. Wang, H. Zhao, X. Huang, Y. Ren et al., A facile strategy for developing uniform hierarchical Na3V2(PO4)2F3@carbonized polyacrylonitrile multi-clustered hollow microspheres for high-energy-density sodium-ion batteries. Chem. Eng. J. 428, 131780 (2022). https://doi.org/10.1016/j.cej.2021.131780
Y. Zhang, T. Wang, Y. Tang, Y. Huang, D. Jia et al., In situ redox reaction induced firmly anchoring of Na3V2(PO4)2F3 on reduced graphene oxide and carbon nanosheets as cathodes for high stable sodium-ion batteries. J. Power. Sources 516, 230515 (2021). https://doi.org/10.1016/j.jpowsour.2021.230515
H. Tan, J. Verbeeck, A. Abakumov, G. Van Tendeloo, Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy 116, 24–33 (2012). https://doi.org/10.1016/j.ultramic.2012.03.002
X. Chen, Q. Wu, P. Guo, X. Liu, Rational design of two dimensional single crystalline Na3V2(PO4)2F3 nanosheets for boosting Na+ migration and mitigating grain pulverization. Chem. Eng. J. 439, 135533 (2022). https://doi.org/10.1016/j.cej.2022.135533
L. Wang, J. Wang, H. Chen, H. Dong, H. Wang et al., Fast screening suitable doping transition metals to Na3V2(PO4)2F3 for sodium-ion batteries with high energy density in wide-temperature range. Adv. Mater. 37, 2505093 (2025). https://doi.org/10.1002/adma.202505093
M. Sun, Y. Sun, H. Ma, S. Wang, Q. Liu et al., High-entropy doping enabling ultrahigh power density for advanced sodium-ion batteries. ACS Nano 19(19), 18386–18396 (2025). https://doi.org/10.1021/acsnano.5c01312
Y. Zhou, G. Xu, J. Lin, Y. Zhang, G. Fang et al., Reversible multielectron redox chemistry in a NASICON-type cathode toward high-energy-density and long-life sodium-ion full batteries. Adv. Mater. 35(44), 2304428 (2023). https://doi.org/10.1002/adma.202304428
J. Zhang, Y. Lai, P. Li, Y. Wang, F. Zhong et al., Boosting rate and cycling performance of K-doped Na3V2(PO4)2F3 cathode for high-energy-density sodium-ion batteries. Green Energy Environ. 7(6), 1253–1262 (2022). https://doi.org/10.1016/j.gee.2021.01.001
A.R. Iarchuk, D.V. Sheptyakov, A.M. Abakumov, Hydrothermal microwave-assisted synthesis of Na3+xV2–yMny(PO4)2F3 solid solutions as potential positive electrodes for Na-ion batteries. ACS Appl. Energy Mater. 4(5), 5007–5014 (2021). https://doi.org/10.1021/acsaem.1c00579
Z.-Y. Gu, J.-Z. Guo, X.-X. Zhao, X.-T. Wang, D. Xie et al., High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries. InfoMat 3(6), 694–704 (2021). https://doi.org/10.1002/inf2.12184
N. Huang, Y. Sun, S. Liu, X. Wang, J. Zhang et al., Microwave-assisted rational designed CNT-Mn3 O4)/CoWO4 hybrid nanocomposites for high performance battery-supercapacitor hybrid device. Small 19(35), e2300696 (2023). https://doi.org/10.1002/smll.202300696
G. Li, Y. Su, S. Zhou, J. Shen, D. Liu et al., From 0D to 3D: Controllable synthesis of ammonium vanadate materials for Zn2+ storage with superior rate performance and cycling stability. Chem. Eng. J. 469, 143816 (2023). https://doi.org/10.1016/j.cej.2023.143816
Z.-F. Wu, P.-F. Gao, L. Guo, J. Kang, D.-Q. Fang et al., Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene. Phys. Chem. Chem. Phys. 19(47), 31796–31803 (2017). https://doi.org/10.1039/C7CP05404A
A. Chaves, J.G. Azadani, H. Alsalman, D.R. da Costa, R. Frisenda et al., Bandgap engineering of two-dimensional semiconductor materials. NPJ 2D Mater Appl. 4, 29 (2020). https://doi.org/10.1038/s41699-020-00162-4
S. Zhang, G. Wang, J. Jin, L. Zhang, Z. Wen et al., Robust and conductive red MoSe2 for stable and fast lithium storage. ACS Nano 12(4), 4010–4018 (2018). https://doi.org/10.1021/acsnano.8b01703
Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32(7), 1905923 (2020). https://doi.org/10.1002/adma.201905923
D. Zhu, Q. Zhou, Nitrogen doped g-C3N4 with the extremely narrow band gap for excellent photocatalytic activities under visible light. Appl. Catal. B Environ. 281, 119474 (2021). https://doi.org/10.1016/j.apcatb.2020.119474
J. Zhang, F. Shi, J. Lin, D. Chen, J. Gao et al., Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst. Chem. Mater. 20(9), 2937–2941 (2008). https://doi.org/10.1021/cm7031898
M. Li, C. Sun, Q. Ni, Z. Sun, Y. Liu et al., High entropy enabling the reversible redox reaction of V4+/V5+ couple in NASICON-type sodium ion cathode. Adv. Energy Mater. 13(12), 2203971 (2023). https://doi.org/10.1002/aenm.202203971