Strong yet Flexible TiC-SiC Fibrous Membrane with Long-Time Ultrahigh Temperature Resistance for Sensing in Extreme Environment
Corresponding Author: Yanzi Gou
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 177
Abstract
The demand for sensors capable of operating in extreme environment of the fields, such as aerospace vehicles, aeroengines and fire protection, is rapidly increasing. However, developing flexible ceramic fibrous pressure sensors that combine high temperature stability with robust mechanical properties remains a significant challenge. Herein, through precise multi-scale process control, high-strength (2.1 MPa) TiC-SiC flexible fibrous membrane is successfully fabricated. The membrane exhibits exceptional thermal resistance (2000 °C) and long–term thermal stability (1800 °C for 5 h) in the inert atmosphere. Meanwhile, the TiC-SiC fibrous membrane shows excellent oxidation resistance and still achieves strength of 1.8 MPa after being oxidized at 1200 °C for 1 h in air. Remarkably, TiC-SiC fibrous membrane withstands a load of approximately 1400 times its own weight and the ablation of butane flame (~ 1300 °C) for at least 1 h without breaking. Notably, after heat treatment at 1800 °C for 5 h in an argon atmosphere, the TiC-SiC fibrous membrane even sustains pressure–sensing performance for up to 300 cycles. The membrane exhibits stable resistivity up to 900 °C and shows sensing stability under butane flame. The results of this work provide an effective and feasible solution to fill the research gap of flexible fibrous sensors for extreme environments.
Highlights:
1 TiC-SiC fibrous membrane exhibits exceptional high–temperature resistance (2000 °C) and long–term thermal stability (1800 °C for 5 h) in an inert atmosphere.
2 TiC-SiC fibrous membrane demonstrates stable resistivity up to 900 °C and shows sensing stability under butane flame (~1300 °C).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Fu, J. Zhang, Y. Jin, Y. Zhao, S. Huang et al., A highly sensitive, reliable, and high-temperature-resistant flexible pressure sensor based on ceramic nanofibers. Adv. Sci. 7(17), 2000258 (2020). https://doi.org/10.1002/advs.202000258
- Y. Xie, Y. Cheng, Y. Ma, J. Wang, J. Zou et al., 3D MXene-based flexible network for high-performance pressure sensor with a wide temperature range. Adv. Sci. 10(6), 2205303 (2023). https://doi.org/10.1002/advs.202205303
- Z. Wang, Z. Qin, B. Zhao, H. Zhu, K. Pan, Lightweight, superelastic, and temperature-resistant rGO/polysulfoneamide-based nanofiber composite aerogel for wearable piezoresistive sensors. J. Mater. Chem. C 11(42), 14641–14651 (2023). https://doi.org/10.1039/d3tc02496b
- W. Shi, S. Chen, Y. Lin, G. Zhang, Z. Peng et al., Piezoresistive fibers with record high sensitivity via the synergic optimization of porous microstructure and elastic modulus. Chem. Eng. J. 441, 136046 (2022). https://doi.org/10.1016/j.cej.2022.136046
- Z. Yu, Y. Wan, M. Zhou, M.H. Mia, S. Huo et al., Muscle-inspired anisotropic aramid nanofibers aerogel exhibiting high-efficiency thermoelectric conversion and precise temperature monitoring for firefighting clothing. Nano-Micro Lett. 17(1), 214 (2025). https://doi.org/10.1007/s40820-025-01728-x
- L. Li, H. Xu, Z. Li, B. Zhong, Z. Lou et al., 3D heterogeneous sensing system for multimode parrallel signal no-spatiotemporal misalignment recognition. Adv. Mater. 37(6), e2414054 (2025). https://doi.org/10.1002/adma.202414054
- Y. Zheng, H. Xu, Z. Li, L. Li, Y. Yu et al., Artificial intelligence-driven approaches in semiconductor research. Adv. Mater. 37(35), 2504378 (2025). https://doi.org/10.1002/adma.202504378
- Z. Zhao, W. Liao, J. Chen, J. Jiao, C. Wu et al., Advanced research on the preparation and application of carbide ceramic fibers. J. Adv. Ceram. 13(9), 1291–1336 (2024). https://doi.org/10.26599/jac.2024.9220936
- R. Wu, H. Chen, Y. Zhou, Y. Guo, Z. Ji et al., Advances in silicon carbides and their MEMS pressure sensors for high temperature and pressure applications. ACS Appl. Mater. Interfaces 17(18), 26117–26155 (2025). https://doi.org/10.1021/acsami.5c03045
- Q. Zhang, S. Shen, H. Li, W. Cao, W. Tang et al., Digital twin-driven intelligent production line for automotive MEMS pressure sensors. Adv. Eng. Inform. 54, 101779 (2022). https://doi.org/10.1016/j.aei.2022.101779
- M. Chen, X. An, F. Zhao, P. Chen, J. Wang et al., Boosting sensitivity of cellulose pressure sensor via hierarchically porous structure. Nano-Micro Lett. 17(1), 205 (2025). https://doi.org/10.1007/s40820-025-01718-z
- S. Zhong, B. Lu, D.-C. Wang, B. Arianpour, S. Wang et al., Passive isothermal flexible sensor enabled by smart thermal-regulating aerogels. Adv. Mater. 37(8), e2415386 (2025). https://doi.org/10.1002/adma.202415386
- Y. Wang, Y. Yue, F. Cheng, Y. Cheng, B. Ge et al., Ti3C2Tx MXene-based flexible piezoresistive physical sensors. Nano Lett. 16(2), 1734–1758 (2022). https://doi.org/10.1021/acsnano.1c09925
- D. Chen, T. Zhang, W. Geng, D. Sun, X. Liu et al., An intelligent tactile sensor based on interlocked carbon nanotube array for ultrasensitive physiological signal detection and real-time monitoring. Adv. Mater. Technol. 7(11), 2200290 (2022). https://doi.org/10.1002/admt.202200290
- Y. Zhi, H. Zhang, L. Zhang, Q. Li, X. Kuang et al., Pressure sensors based on densely structured graphene fibers for motion monitoring. Adv. Fiber Mater. 7(2), 541–553 (2025). https://doi.org/10.1007/s42765-024-00502-9
- R. Shao, G. Wang, J. Chai, J. Lin, G. Zhao et al., Multifunctional Janus-structured polytetrafluoroethylene-carbon nanotube-Fe3O4/MXene membranes for enhanced EMI shielding and thermal management. Nano-Micro Lett. 17(1), 136 (2025). https://doi.org/10.1007/s40820-025-01647-x
- Y. Xiao, H. Li, T. Gu, X. Jia, S. Sun et al., Ti3C2Tx composite aerogels enable pressure sensors for dialect speech recognition assisted by deep learning. Nano-Micro Lett. 17(1), 101 (2024). https://doi.org/10.1007/s40820-024-01605-z
- M. Jia, C. Yi, Y. Han, L. Wang, X. Li et al., Hierarchical network enabled flexible textile pressure sensor with ultrabroad response range and high-temperature resistance. Adv. Sci. 9(14), 2105738 (2022). https://doi.org/10.1002/advs.202105738
- H. Liu, W. Wang, H. Xiang, H. Wu, Z. Li et al., Paper-based flexible strain and pressure sensor with enhanced mechanical strength and super-hydrophobicity that can work under water. J. Mater. Chem. C 10(10), 3908–3918 (2022). https://doi.org/10.1039/D1TC04697G
- Y. Li, G. Wu, G. Song, S.-H. Lu, Z. Wang et al., Soft, pressure-tolerant, flexible electronic sensors for sensing under harsh environments. ACS Sens. 7(8), 2400–2409 (2022). https://doi.org/10.1021/acssensors.2c01059
- Y. Guo, X. Zhang, F. Jiang, X. Tian, J. Wu et al., Large-scale synthesis of flexible cermet interdigital electrodes with stable ceramic-metal contact for fire-resistant pressure tactile sensors. Adv. Funct. Mater. 34(16), 2313645 (2024). https://doi.org/10.1002/adfm.202313645
- W. Liu, Y. Duo, J. Liu, F. Yuan, L. Li et al., Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces. Nat. Commun. 13(1), 5030 (2022). https://doi.org/10.1038/s41467-022-32702-5
- Z. Chen, D. Su, W. Zhu, X. Sun, X. Li et al., A superelastic SiOC@carbon ceramic spring for multifunctional pressure sensor in wide temperature range. Chem. Eng. J. 468, 143635 (2023). https://doi.org/10.1016/j.cej.2023.143635
- L. Cao, Q. Liu, J. Ren, W. Chen, Y. Pei et al., Electro-blown spun silk/graphene nanoionotronic skin for multifunctional fire protection and alarm. Adv. Mater. 33(38), 2102500 (2021). https://doi.org/10.1002/adma.202102500
- X. Liu, Y. Ma, X. Dai, S. Li, B. Li et al., Flexible pressure sensor based on Pt/PI network with high sensitivity and high thermal resistance. Chem. Eng. J. 494, 152996 (2024). https://doi.org/10.1016/j.cej.2024.152996
- X. Cheng, X. Chang, X. Zhang, J. Dai, H. Fong et al., Way to a library of Ti-series oxide nanofiber sponges that are highly stretchable, compressible, and bendable. Adv. Mater. 36(14), 2307690 (2024). https://doi.org/10.1002/adma.202307690
- S. Chen, Y. Chen, Y. Zhao, L. Zhang, C. Zhu et al., Status and strategies for fabricating flexible oxide ceramic micro-nanofiber materials. Mater. Today 61, 139–168 (2022). https://doi.org/10.1016/j.mattod.2022.11.004
- Q. Wen, F. Qu, Z. Yu, M. Graczyk-Zajac, X. Xiong et al., Si-based polymer-derived ceramics for energy conversion and storage. J. Adv. Ceram. 11(2), 197–246 (2022). https://doi.org/10.1007/s40145-021-0562-2
- W. Xiao, L. Lu, Z. Xu, Y. Huang, Q. Zhuang et al., A superelastic ceramic aerogel for flexible pressure sensor in harsh environment. Compos. Part B Eng. 292, 112110 (2025). https://doi.org/10.1016/j.compositesb.2024.112110
- J. Li, X. Wang, S. Guo, D. Zhang, J. Qi et al., Recent progress in the fabrication strategies and toughening mechanism of flexible ceramics and their applications. J. Mater. Chem. C 12(44), 17742–17788 (2024). https://doi.org/10.1039/D4TC01283F
- Y. Bao, J. Xu, R. Guo, J. Ma, High-sensitivity flexible pressure sensor based on micro-nano structure. Prog. Chem. 35, 709–720 (2023). https://doi.org/10.7536/PC221014
- L. Dou, X. Zhang, H. Shan, X. Cheng, Y. Si et al., Interweaved cellular structured ceramic nanofibrous aerogels with superior bendability and compressibility. Adv. Funct. Mater. 30(49), 2005928 (2020). https://doi.org/10.1002/adfm.202005928
- F. Wang, L. Dou, J. Dai, Y. Li, L. Huang et al., In situ synthesis of biomimetic silica nanofibrous aerogels with temperature-invariant superelasticity over one million compressions. Angew. Chem. Int. Ed. 59(21), 8285–8292 (2020). https://doi.org/10.1002/anie.202001679
- J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119(8), 5298–5415 (2019). https://doi.org/10.1021/acs.chemrev.8b00593
- F. Wu, S. Qiang, X. Zhang, F. Wang, X. Yin et al., The rising of flexible and elastic ceramic fiber materials: fundamental concept, design principle, and toughening mechanism. Adv. Funct. Mater. 32(45), 2207130 (2022). https://doi.org/10.1002/adfm.202207130
- S. Li, X. Meng, C. Zhu, W. Xu, Y. Sun et al., Revolutionizing inorganic nanofibers: bridging functional elements to a future system. Nano Lett. 19(15), 14579–14604 (2025). https://doi.org/10.1021/acsnano.4c17688
- W. Kang, Q. Zhang, Y. Gou, Fabrication of highly crystalline titanium-containing SiC fibers with different boron contents exhibiting excellent electromagnetic wave absorption. J. Mater. Sci. 59(7), 2739–2756 (2024). https://doi.org/10.1007/s10853-024-09394-x
- J.E. Oghenevweta, D. Wexler, A. Calka, Study of reaction sequences during MSR synthesis of TiC by controlled ball milling of titanium and graphite. Mater. Charact. 140, 299–311 (2018). https://doi.org/10.1016/j.matchar.2018.04.005
- D. Li, Z. Zhang, M. Jiao, Y. Dong, S. Yu et al., Sandwich-structured ZnO/MXene heterojunction for sensitive and stable room-temperature ammonia sensing. Small 21(11), e2409716 (2025). https://doi.org/10.1002/smll.202409716
- L.-Å. Näslund, P.O.Å. Persson, J. Rosen, X-ray photoelectron spectroscopy of Ti3AlC2, Ti3C2Tz, and TiC provides evidence for the electrostatic interaction between laminated layers in MAX-phase materials. J. Phys. Chem. C 124(50), 27732–27742 (2020). https://doi.org/10.1021/acs.jpcc.0c07413
- H. Gu, H. Zhang, X. Wang, Q. Li, S. Chang et al., Robust construction of CdSe nanorods@Ti3C2 MXene nanosheet for superior photocatalytic H2 evolution. Appl. Catal. B Environ. 328, 122537 (2023). https://doi.org/10.1016/j.apcatb.2023.122537
- S. Wu, Y. Gou, Y. Xiang, W. Kang, Y. Wang et al., Effect of long-time annealing at high temperature on the microstructure and mechanical properties of different types of SiC fibers. Compos. Part A Appl. Sci. Manuf. 185, 108291 (2024). https://doi.org/10.1016/j.compositesa.2024.108291
- G. Hu, X. Zhang, X. Liu, J. Yu, B. Ding, Strategies in precursors and post treatments to strengthen carbon nanofibers. Adv. Fiber Mater. 2(2), 46–63 (2020). https://doi.org/10.1007/s42765-020-00035-x
- J. Yao, B. Wei, Q. Hou, D. Wang, L. Chen et al., Core-shell structure-designed TiC-based ceramics with synergistic strength-toughness via low-temperature in situ reaction sintering. Int. J. Refract. Met. Hard Mater. 132, 107276 (2025). https://doi.org/10.1016/j.ijrmhm.2025.107276
- B. Wei, L. Wang, W. Jiang, D. Wang, L. Chen et al., Design, preparation, and enhanced mechanical properties of novel plate-like grains toughened (Zr, Ti, W, Ta)C medium-entropy ceramics fabricated by in situ reaction hot-pressing. J. Mater. Res. Technol. 31, 2945–2960 (2024). https://doi.org/10.1016/j.jmrt.2024.07.045
- J. Song, J. Jiao, H. Liu, Z. Qi, J. Yang et al., Effect of surface state of SiC fibers on their interfacial properties. Compos. Commun. 53, 102232 (2025). https://doi.org/10.1016/j.coco.2024.102232
- P. Wang, Y. Gou, H. Wang, Y. Wang, Revealing the formation mechanism of the skin-core structure in nearly stoichiometric polycrystalline SiC fibers. J. Eur. Ceram. Soc. 40(6), 2295–2305 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.01.038
- Y. Gou, K. Jian, H. Wang, J. Wang, Fabrication of nearly stoichiometric polycrystalline SiC fibers with excellent high-temperature stability up to 1900 °C. J. Am. Ceram. Soc. 101(5), 2050–2059 (2018). https://doi.org/10.1111/jace.15366
- T. Liu, C. Han, S. Wang, Y. Ou, X. Zhang et al., Embedding thermostable rGO/SiC O composite phase in SiC fibers for improved high temperature resistance. Carbon 233, 119858 (2025). https://doi.org/10.1016/j.carbon.2024.119858
- A.B. Peters, D. Zhang, D.C. Nagle, J.B. Spicer, Reactive two-step additive manufacturing of ultra-high temperature carbide ceramics. Addit. Manuf. 61, 103318 (2023). https://doi.org/10.1016/j.addma.2022.103318
References
M. Fu, J. Zhang, Y. Jin, Y. Zhao, S. Huang et al., A highly sensitive, reliable, and high-temperature-resistant flexible pressure sensor based on ceramic nanofibers. Adv. Sci. 7(17), 2000258 (2020). https://doi.org/10.1002/advs.202000258
Y. Xie, Y. Cheng, Y. Ma, J. Wang, J. Zou et al., 3D MXene-based flexible network for high-performance pressure sensor with a wide temperature range. Adv. Sci. 10(6), 2205303 (2023). https://doi.org/10.1002/advs.202205303
Z. Wang, Z. Qin, B. Zhao, H. Zhu, K. Pan, Lightweight, superelastic, and temperature-resistant rGO/polysulfoneamide-based nanofiber composite aerogel for wearable piezoresistive sensors. J. Mater. Chem. C 11(42), 14641–14651 (2023). https://doi.org/10.1039/d3tc02496b
W. Shi, S. Chen, Y. Lin, G. Zhang, Z. Peng et al., Piezoresistive fibers with record high sensitivity via the synergic optimization of porous microstructure and elastic modulus. Chem. Eng. J. 441, 136046 (2022). https://doi.org/10.1016/j.cej.2022.136046
Z. Yu, Y. Wan, M. Zhou, M.H. Mia, S. Huo et al., Muscle-inspired anisotropic aramid nanofibers aerogel exhibiting high-efficiency thermoelectric conversion and precise temperature monitoring for firefighting clothing. Nano-Micro Lett. 17(1), 214 (2025). https://doi.org/10.1007/s40820-025-01728-x
L. Li, H. Xu, Z. Li, B. Zhong, Z. Lou et al., 3D heterogeneous sensing system for multimode parrallel signal no-spatiotemporal misalignment recognition. Adv. Mater. 37(6), e2414054 (2025). https://doi.org/10.1002/adma.202414054
Y. Zheng, H. Xu, Z. Li, L. Li, Y. Yu et al., Artificial intelligence-driven approaches in semiconductor research. Adv. Mater. 37(35), 2504378 (2025). https://doi.org/10.1002/adma.202504378
Z. Zhao, W. Liao, J. Chen, J. Jiao, C. Wu et al., Advanced research on the preparation and application of carbide ceramic fibers. J. Adv. Ceram. 13(9), 1291–1336 (2024). https://doi.org/10.26599/jac.2024.9220936
R. Wu, H. Chen, Y. Zhou, Y. Guo, Z. Ji et al., Advances in silicon carbides and their MEMS pressure sensors for high temperature and pressure applications. ACS Appl. Mater. Interfaces 17(18), 26117–26155 (2025). https://doi.org/10.1021/acsami.5c03045
Q. Zhang, S. Shen, H. Li, W. Cao, W. Tang et al., Digital twin-driven intelligent production line for automotive MEMS pressure sensors. Adv. Eng. Inform. 54, 101779 (2022). https://doi.org/10.1016/j.aei.2022.101779
M. Chen, X. An, F. Zhao, P. Chen, J. Wang et al., Boosting sensitivity of cellulose pressure sensor via hierarchically porous structure. Nano-Micro Lett. 17(1), 205 (2025). https://doi.org/10.1007/s40820-025-01718-z
S. Zhong, B. Lu, D.-C. Wang, B. Arianpour, S. Wang et al., Passive isothermal flexible sensor enabled by smart thermal-regulating aerogels. Adv. Mater. 37(8), e2415386 (2025). https://doi.org/10.1002/adma.202415386
Y. Wang, Y. Yue, F. Cheng, Y. Cheng, B. Ge et al., Ti3C2Tx MXene-based flexible piezoresistive physical sensors. Nano Lett. 16(2), 1734–1758 (2022). https://doi.org/10.1021/acsnano.1c09925
D. Chen, T. Zhang, W. Geng, D. Sun, X. Liu et al., An intelligent tactile sensor based on interlocked carbon nanotube array for ultrasensitive physiological signal detection and real-time monitoring. Adv. Mater. Technol. 7(11), 2200290 (2022). https://doi.org/10.1002/admt.202200290
Y. Zhi, H. Zhang, L. Zhang, Q. Li, X. Kuang et al., Pressure sensors based on densely structured graphene fibers for motion monitoring. Adv. Fiber Mater. 7(2), 541–553 (2025). https://doi.org/10.1007/s42765-024-00502-9
R. Shao, G. Wang, J. Chai, J. Lin, G. Zhao et al., Multifunctional Janus-structured polytetrafluoroethylene-carbon nanotube-Fe3O4/MXene membranes for enhanced EMI shielding and thermal management. Nano-Micro Lett. 17(1), 136 (2025). https://doi.org/10.1007/s40820-025-01647-x
Y. Xiao, H. Li, T. Gu, X. Jia, S. Sun et al., Ti3C2Tx composite aerogels enable pressure sensors for dialect speech recognition assisted by deep learning. Nano-Micro Lett. 17(1), 101 (2024). https://doi.org/10.1007/s40820-024-01605-z
M. Jia, C. Yi, Y. Han, L. Wang, X. Li et al., Hierarchical network enabled flexible textile pressure sensor with ultrabroad response range and high-temperature resistance. Adv. Sci. 9(14), 2105738 (2022). https://doi.org/10.1002/advs.202105738
H. Liu, W. Wang, H. Xiang, H. Wu, Z. Li et al., Paper-based flexible strain and pressure sensor with enhanced mechanical strength and super-hydrophobicity that can work under water. J. Mater. Chem. C 10(10), 3908–3918 (2022). https://doi.org/10.1039/D1TC04697G
Y. Li, G. Wu, G. Song, S.-H. Lu, Z. Wang et al., Soft, pressure-tolerant, flexible electronic sensors for sensing under harsh environments. ACS Sens. 7(8), 2400–2409 (2022). https://doi.org/10.1021/acssensors.2c01059
Y. Guo, X. Zhang, F. Jiang, X. Tian, J. Wu et al., Large-scale synthesis of flexible cermet interdigital electrodes with stable ceramic-metal contact for fire-resistant pressure tactile sensors. Adv. Funct. Mater. 34(16), 2313645 (2024). https://doi.org/10.1002/adfm.202313645
W. Liu, Y. Duo, J. Liu, F. Yuan, L. Li et al., Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces. Nat. Commun. 13(1), 5030 (2022). https://doi.org/10.1038/s41467-022-32702-5
Z. Chen, D. Su, W. Zhu, X. Sun, X. Li et al., A superelastic SiOC@carbon ceramic spring for multifunctional pressure sensor in wide temperature range. Chem. Eng. J. 468, 143635 (2023). https://doi.org/10.1016/j.cej.2023.143635
L. Cao, Q. Liu, J. Ren, W. Chen, Y. Pei et al., Electro-blown spun silk/graphene nanoionotronic skin for multifunctional fire protection and alarm. Adv. Mater. 33(38), 2102500 (2021). https://doi.org/10.1002/adma.202102500
X. Liu, Y. Ma, X. Dai, S. Li, B. Li et al., Flexible pressure sensor based on Pt/PI network with high sensitivity and high thermal resistance. Chem. Eng. J. 494, 152996 (2024). https://doi.org/10.1016/j.cej.2024.152996
X. Cheng, X. Chang, X. Zhang, J. Dai, H. Fong et al., Way to a library of Ti-series oxide nanofiber sponges that are highly stretchable, compressible, and bendable. Adv. Mater. 36(14), 2307690 (2024). https://doi.org/10.1002/adma.202307690
S. Chen, Y. Chen, Y. Zhao, L. Zhang, C. Zhu et al., Status and strategies for fabricating flexible oxide ceramic micro-nanofiber materials. Mater. Today 61, 139–168 (2022). https://doi.org/10.1016/j.mattod.2022.11.004
Q. Wen, F. Qu, Z. Yu, M. Graczyk-Zajac, X. Xiong et al., Si-based polymer-derived ceramics for energy conversion and storage. J. Adv. Ceram. 11(2), 197–246 (2022). https://doi.org/10.1007/s40145-021-0562-2
W. Xiao, L. Lu, Z. Xu, Y. Huang, Q. Zhuang et al., A superelastic ceramic aerogel for flexible pressure sensor in harsh environment. Compos. Part B Eng. 292, 112110 (2025). https://doi.org/10.1016/j.compositesb.2024.112110
J. Li, X. Wang, S. Guo, D. Zhang, J. Qi et al., Recent progress in the fabrication strategies and toughening mechanism of flexible ceramics and their applications. J. Mater. Chem. C 12(44), 17742–17788 (2024). https://doi.org/10.1039/D4TC01283F
Y. Bao, J. Xu, R. Guo, J. Ma, High-sensitivity flexible pressure sensor based on micro-nano structure. Prog. Chem. 35, 709–720 (2023). https://doi.org/10.7536/PC221014
L. Dou, X. Zhang, H. Shan, X. Cheng, Y. Si et al., Interweaved cellular structured ceramic nanofibrous aerogels with superior bendability and compressibility. Adv. Funct. Mater. 30(49), 2005928 (2020). https://doi.org/10.1002/adfm.202005928
F. Wang, L. Dou, J. Dai, Y. Li, L. Huang et al., In situ synthesis of biomimetic silica nanofibrous aerogels with temperature-invariant superelasticity over one million compressions. Angew. Chem. Int. Ed. 59(21), 8285–8292 (2020). https://doi.org/10.1002/anie.202001679
J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119(8), 5298–5415 (2019). https://doi.org/10.1021/acs.chemrev.8b00593
F. Wu, S. Qiang, X. Zhang, F. Wang, X. Yin et al., The rising of flexible and elastic ceramic fiber materials: fundamental concept, design principle, and toughening mechanism. Adv. Funct. Mater. 32(45), 2207130 (2022). https://doi.org/10.1002/adfm.202207130
S. Li, X. Meng, C. Zhu, W. Xu, Y. Sun et al., Revolutionizing inorganic nanofibers: bridging functional elements to a future system. Nano Lett. 19(15), 14579–14604 (2025). https://doi.org/10.1021/acsnano.4c17688
W. Kang, Q. Zhang, Y. Gou, Fabrication of highly crystalline titanium-containing SiC fibers with different boron contents exhibiting excellent electromagnetic wave absorption. J. Mater. Sci. 59(7), 2739–2756 (2024). https://doi.org/10.1007/s10853-024-09394-x
J.E. Oghenevweta, D. Wexler, A. Calka, Study of reaction sequences during MSR synthesis of TiC by controlled ball milling of titanium and graphite. Mater. Charact. 140, 299–311 (2018). https://doi.org/10.1016/j.matchar.2018.04.005
D. Li, Z. Zhang, M. Jiao, Y. Dong, S. Yu et al., Sandwich-structured ZnO/MXene heterojunction for sensitive and stable room-temperature ammonia sensing. Small 21(11), e2409716 (2025). https://doi.org/10.1002/smll.202409716
L.-Å. Näslund, P.O.Å. Persson, J. Rosen, X-ray photoelectron spectroscopy of Ti3AlC2, Ti3C2Tz, and TiC provides evidence for the electrostatic interaction between laminated layers in MAX-phase materials. J. Phys. Chem. C 124(50), 27732–27742 (2020). https://doi.org/10.1021/acs.jpcc.0c07413
H. Gu, H. Zhang, X. Wang, Q. Li, S. Chang et al., Robust construction of CdSe nanorods@Ti3C2 MXene nanosheet for superior photocatalytic H2 evolution. Appl. Catal. B Environ. 328, 122537 (2023). https://doi.org/10.1016/j.apcatb.2023.122537
S. Wu, Y. Gou, Y. Xiang, W. Kang, Y. Wang et al., Effect of long-time annealing at high temperature on the microstructure and mechanical properties of different types of SiC fibers. Compos. Part A Appl. Sci. Manuf. 185, 108291 (2024). https://doi.org/10.1016/j.compositesa.2024.108291
G. Hu, X. Zhang, X. Liu, J. Yu, B. Ding, Strategies in precursors and post treatments to strengthen carbon nanofibers. Adv. Fiber Mater. 2(2), 46–63 (2020). https://doi.org/10.1007/s42765-020-00035-x
J. Yao, B. Wei, Q. Hou, D. Wang, L. Chen et al., Core-shell structure-designed TiC-based ceramics with synergistic strength-toughness via low-temperature in situ reaction sintering. Int. J. Refract. Met. Hard Mater. 132, 107276 (2025). https://doi.org/10.1016/j.ijrmhm.2025.107276
B. Wei, L. Wang, W. Jiang, D. Wang, L. Chen et al., Design, preparation, and enhanced mechanical properties of novel plate-like grains toughened (Zr, Ti, W, Ta)C medium-entropy ceramics fabricated by in situ reaction hot-pressing. J. Mater. Res. Technol. 31, 2945–2960 (2024). https://doi.org/10.1016/j.jmrt.2024.07.045
J. Song, J. Jiao, H. Liu, Z. Qi, J. Yang et al., Effect of surface state of SiC fibers on their interfacial properties. Compos. Commun. 53, 102232 (2025). https://doi.org/10.1016/j.coco.2024.102232
P. Wang, Y. Gou, H. Wang, Y. Wang, Revealing the formation mechanism of the skin-core structure in nearly stoichiometric polycrystalline SiC fibers. J. Eur. Ceram. Soc. 40(6), 2295–2305 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.01.038
Y. Gou, K. Jian, H. Wang, J. Wang, Fabrication of nearly stoichiometric polycrystalline SiC fibers with excellent high-temperature stability up to 1900 °C. J. Am. Ceram. Soc. 101(5), 2050–2059 (2018). https://doi.org/10.1111/jace.15366
T. Liu, C. Han, S. Wang, Y. Ou, X. Zhang et al., Embedding thermostable rGO/SiC O composite phase in SiC fibers for improved high temperature resistance. Carbon 233, 119858 (2025). https://doi.org/10.1016/j.carbon.2024.119858
A.B. Peters, D. Zhang, D.C. Nagle, J.B. Spicer, Reactive two-step additive manufacturing of ultra-high temperature carbide ceramics. Addit. Manuf. 61, 103318 (2023). https://doi.org/10.1016/j.addma.2022.103318