Scalable Manufacturing and Precise Patterning of Perovskites for Light-Emitting Diodes
Corresponding Author: Mojun Chen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 183
Abstract
Owing to the exceptional optoelectronic properties, metal halide perovskites have emerged as leading semiconductor materials for next-generation display technologies, providing perovskite light-emitting diodes (PeLEDs) great potential for high-quality color displays with a wide color gamut and pure color emission. Although laboratory-scale PeLEDs have achieved near-theoretical efficiencies, challenges such as achieving uniform large-area films, improving material stability, and enhancing patterning precision remain barriers to commercialization. This review presents a systematic analysis of scalable manufacturing and precision patterning strategies for PeLEDs, focusing on their applications in large-area lighting and full-color displays. Fabrication methods are categorized into film deposition techniques (spin-coating, blade-coating, and thermal evaporation) and patterning strategies, including top-down (photolithography, laser/e-beam lithography, and nanoimprinting) and bottom-up (patterned crystal growth, inkjet printing, and electrohydrodynamic jet printing) approaches. In this review, we discuss the advantages and limitations of each strategy, highlight current challenges, and outlook possible pathways towards scalable, high-performance PeLEDs for advanced optoelectronic applications.
Highlights:
1 This review provides a comprehensive exploration of advanced film and patterning fabrication techniques for high-performance perovskite light-emitting diodes (PeLEDs).
2 This review examines both top-down and bottom-up techniques, such as photolithography and inkjet printing to achieve precise patterning of PeLEDs for full-color displays.
3 This review discusses critical challenges, including device stability, scalable manufacturing, and microscale pixel patterning, as well as promising strategies to overcome these obstacles for the commercialization of PeLEDs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q.A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza et al., Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137(32), 10276–10281 (2015). https://doi.org/10.1021/jacs.5b05602
- Q.A. Akkerman, G. Rainò, M.V. Kovalenko, L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17(5), 394–405 (2018). https://doi.org/10.1038/s41563-018-0018-4
- L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015). https://doi.org/10.1021/nl5048779
- J. Shamsi, A.S. Urban, M. Imran, L. De Trizio, L. Manna, Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119(5), 3296–3348 (2019). https://doi.org/10.1021/acs.chemrev.8b00644
- M. Karlsson, Z. Yi, S. Reichert, X. Luo, W. Lin et al., Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat. Commun. 12, 361 (2021). https://doi.org/10.1038/s41467-020-20582-6
- L. Zhang, L. Mei, K. Wang, Y. Lv, S. Zhang et al., Advances in the application of perovskite materials. Nano-Micro Lett. 15, 177 (2023). https://doi.org/10.1007/s40820-023-01140-3
- J. Kang, L.-W. Wang, High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8(2), 489–493 (2017). https://doi.org/10.1021/acs.jpclett.6b02800
- S. Kumar, J. Jagielski, N. Kallikounis, Y.-H. Kim, C. Wolf et al., Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: achieving recommendation 2020 color coordinates. Nano Lett. 17(9), 5277–5284 (2017). https://doi.org/10.1021/acs.nanolett.7b01544
- H. Huang, M.I. Bodnarchuk, S.V. Kershaw, M.V. Kovalenko, A.L. Rogach, Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett. 2(9), 2071–2083 (2017). https://doi.org/10.1021/acsenergylett.7b00547
- Y. Wu, F. Xie, H. Chen, X. Yang, H. Su et al., Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv. Mater. 29(28), 1701073 (2017). https://doi.org/10.1002/adma.201701073
- M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134
- H. Chen, C. Liu, J. Xu, A. Maxwell, W. Zhou et al., Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384(6692), 189–193 (2024). https://doi.org/10.1126/science.adm9474
- S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang et al., Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380(6643), 404–409 (2023). https://doi.org/10.1126/science.adg3755
- Y. Rong, Y. Hu, A. Mei, H. Tan, M.I. Saidaminov et al., Challenges for commercializing perovskite solar cells. Science 361(6408), eaat8235 (2018). https://doi.org/10.1126/science.aat8235
- S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun et al., Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632(8025), 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3
- M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (version 66). Prog. Photovoltaics Res. Appl. 33(7), 795–810 (2025). https://doi.org/10.1002/pip.3919
- J. Liu, Y. He, L. Ding, H. Zhang, Q. Li et al., Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature 635(8039), 596–603 (2024). https://doi.org/10.1038/s41586-024-07997-7
- Z. Liu, R. Lin, M. Wei, M. Yin, P. Wu et al., All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites. Nat. Mater. 24(2), 252–259 (2025). https://doi.org/10.1038/s41563-024-02073-x
- H. Wang, X. Gong, D. Zhao, Y.-B. Zhao, S. Wang et al., A multi-functional molecular modifier enabling efficient large-area perovskite light-emitting diodes. Joule 4(9), 1977–1987 (2020). https://doi.org/10.1016/j.joule.2020.07.002
- M.T. Hoang, A.S. Pannu, Y. Yang, S. Madani, P. Shaw et al., Surface treatment of inorganic CsPbI3 nanocrystals with guanidinium iodide for efficient perovskite light-emitting diodes with high brightness. Nano-Micro Lett. 14(1), 69 (2022). https://doi.org/10.1007/s40820-022-00813-9
- G.H. Lee, K. Kim, Y. Kim, J. Yang, M.K. Choi, Recent advances in patterning strategies for full-color perovskite light-emitting diodes. Nano-Micro Lett. 16(1), 45 (2023). https://doi.org/10.1007/s40820-023-01254-8
- C. Sun, Y. Jiang, K. Wei, M. Yuan, Perovskite light-emitting diodes toward commercial full-colour displays: progress and key technical obstacles. Light: Adv. Manuf. 4(3), 1 (2023). https://doi.org/10.37188/lam.2023.015
- B.R. Sutherland, E.H. Sargent, Perovskite photonic sources. Nat. Photonics 10(5), 295–302 (2016). https://doi.org/10.1038/nphoton.2016.62
- F. Palazon, F. Di Stasio, Q.A. Akkerman, R. Krahne, M. Prato et al., Polymer-free films of inorganic halide perovskite nanocrystals as UV-to-white color-conversion layers in LEDs. Chem. Mater. 28(9), 2902–2906 (2016). https://doi.org/10.1021/acs.chemmater.6b00954
- Z.-K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9(9), 687–692 (2014). https://doi.org/10.1038/nnano.2014.149
- J.S. Kim, J.-M. Heo, G.-S. Park, S.-J. Woo, C. Cho et al., Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611(7937), 688–694 (2022). https://doi.org/10.1038/s41586-022-05304-w
- Y. Nong, J. Yao, J. Li, L. Xu, Z. Yang et al., Boosting external quantum efficiency of blue perovskite QLEDs exceeding 23% by trifluoroacetate passivation and mixed hole transportation design. Adv. Mater. 36(27), 2402325 (2024). https://doi.org/10.1002/adma.202402325
- L. Kong, Y. Sun, B. Zhao, K. Ji, J. Feng et al., Fabrication of red-emitting perovskite LEDs by stabilizing their octahedral structure. Nature 631(8019), 73–79 (2024). https://doi.org/10.1038/s41586-024-07531-9
- Z. Liu, W. Qiu, X. Peng, G. Sun, X. Liu et al., Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 33(43), 2103268 (2021). https://doi.org/10.1002/adma.202103268
- Y. Gao, H. Li, X. Dai, X. Ying, Z. Liu et al., Microsecond-response perovskite light-emitting diodes for active-matrix displays. Nat. Electron. 7(6), 487–496 (2024). https://doi.org/10.1038/s41928-024-01181-5
- S. Yuan, L. Dai, Y. Sun, F. Auras, Y.-H. Zhou et al., Efficient blue electroluminescence from reduced-dimensional perovskites. Nat. Photon. 18(5), 425–431 (2024). https://doi.org/10.1038/s41566-024-01382-6
- G.-H. Lee, H. Moon, H. Kim, G.H. Lee, W. Kwon et al., Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5(2), 149–165 (2020). https://doi.org/10.1038/s41578-019-0167-3
- S. Choi, H. Lee, R. Ghaffari, T. Hyeon, D.-H. Kim, Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28(22), 4203–4218 (2016). https://doi.org/10.1002/adma.201504150
- J.I. Kwon, G. Park, G.H. Lee, J.H. Jang, N.J. Sung et al., Ultrahigh-resolution full-color perovskite nanocrystal patterning for ultrathin skin-attachable displays. Sci. Adv. 8(43), eadd0697 (2022). https://doi.org/10.1126/sciadv.add0697
- S.G.R. Bade, X. Shan, P.T. Hoang, J. Li, T. Geske et al., Stretchable light-emitting diodes with organometal-halide-perovskite–polymer composite emitters. Adv. Mater. 29(23), 1607053 (2017). https://doi.org/10.1002/adma.201607053
- Y. Shen, M.-N. Li, Y. Li, F.-M. Xie, H.-Y. Wu et al., Rational interface engineering for efficient flexible perovskite light-emitting diodes. ACS Nano 14(5), 6107–6116 (2020). https://doi.org/10.1021/acsnano.0c01908
- F. Chun, B. Zhang, Y. Gao, X. Wei, Q. Zhang et al., Multicolour stretchable perovskite electroluminescent devices for user-interactive displays. Nat. Photon. 18(8), 856–863 (2024). https://doi.org/10.1038/s41566-024-01455-6
- Y.H. Song, J. Ge, L.B. Mao, K.H. Wang, X.L. Tai et al., Planar defect-free pure red perovskite light-emitting diodes via metastable phase crystallization. Sci. Adv. 8(45), eabq2321 (2022). https://doi.org/10.1126/sciadv.abq2321
- C. Sun, Y. Jiang, M. Cui, L. Qiao, J. Wei et al., High-performance large-area quasi-2D perovskite light-emitting diodes. Nat. Commun. 12, 2207 (2021). https://doi.org/10.1038/s41467-021-22529-x
- J. Luo, J. Li, L. Grater, R. Guo, A.R. bin Mohd Yusoff et al., Vapour-deposited perovskite light-emitting diodes. Nat. Rev. Mater. 9(4), 282–294 (2024). https://doi.org/10.1038/s41578-024-00651-8
- Y. Zou, P. Teng, W. Xu, G. Zheng, W. Lin et al., Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters. Nat. Commun. 12, 4831 (2021). https://doi.org/10.1038/s41467-021-25092-7
- J.-W. Lee, S.M. Kang, Patterning of metal halide perovskite thin films and functional layers for optoelectronic applications. Nano-Micro Lett. 15(1), 184 (2023). https://doi.org/10.1007/s40820-023-01154-x
- X. Yang, L. Ma, L. Li, M. Luo, X. Wang et al., Towards micro-PeLED displays. Nat. Rev. Mater. 8(5), 341–353 (2023). https://doi.org/10.1038/s41578-022-00522-0
- T.-H. Han, K.Y. Jang, Y. Dong, R.H. Friend, E.H. Sargent et al., A roadmap for the commercialization of perovskite light emitters. Nat. Rev. Mater. 7(10), 757–777 (2022). https://doi.org/10.1038/s41578-022-00459-4
- Y. Dong, Y.-K. Wang, F. Yuan, A. Johnston, Y. Liu et al., Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15(8), 668–674 (2020). https://doi.org/10.1038/s41565-020-0714-5
- L. Zhang, C. Sun, T. He, Y. Jiang, J. Wei et al., High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light. Sci. Appl. 10, 61 (2021). https://doi.org/10.1038/s41377-021-00501-0
- X. Zhao, Z.-K. Tan, Large-area near-infrared perovskite light-emitting diodes. Nat. Photonics 14(4), 215–218 (2020). https://doi.org/10.1038/s41566-019-0559-3
- C. Chen, T.-H. Han, S. Tan, J. Xue, Y. Zhao et al., Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr3 emitters prepared via low-temperature in situ dynamic thermal crystallization. Nano Lett. 20(6), 4673–4680 (2020). https://doi.org/10.1021/acs.nanolett.0c01550
- Y. Shen, J.-K. Wang, Y.-Q. Li, K.-C. Shen, Z.-H. Su et al., Interfacial “anchoring effect” enables efficient large-area sky-blue perovskite light-emitting diodes. Adv. Sci. 8(19), 2102213 (2021). https://doi.org/10.1002/advs.202102213
- Y.-H. Kim, S. Kim, A. Kakekhani, J. Park, J. Park et al., Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics 15(2), 148–155 (2021). https://doi.org/10.1038/s41566-020-00732-4
- S. Chu, W. Chen, Z. Fang, X. Xiao, Y. Liu et al., Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating. Nat. Commun. 12, 147 (2021). https://doi.org/10.1038/s41467-020-20433-4
- C. Chen, L. Zeng, Z. Jiang, Z. Xu, Y. Chen et al., Vacuum-assisted preparation of high-quality quasi-2D perovskite thin films for large-area light-emitting diodes. Adv. Funct. Mater. 32(4), 2107644 (2022). https://doi.org/10.1002/adfm.202107644
- P. Du, J. Li, L. Wang, L. Sun, X. Wang et al., Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nat. Commun. 12, 4751 (2021). https://doi.org/10.1038/s41467-021-25093-6
- S. Chu, Y. Zhang, P. Xiao, W. Chen, R. Tang et al., Large-area and efficient sky-blue perovskite light-emitting diodes via blade-coating. Adv. Mater. 34(16), 2108939 (2022). https://doi.org/10.1002/adma.202108939
- Y.-H. Kim, J. Park, S. Kim, J.S. Kim, H. Xu et al., Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nat. Nanotechnol. 17(6), 590–597 (2022). https://doi.org/10.1038/s41565-022-01113-4
- D. Zhang, Q. Zhang, B. Ren, Y. Zhu, M. Abdellah et al., Large-scale planar and spherical light-emitting diodes based on arrays of perovskite quantum wires. Nat. Photonics 16(4), 284–290 (2022). https://doi.org/10.1038/s41566-022-00978-0
- Y.B. Cao, D. Zhang, Q. Zhang, X. Qiu, Y. Zhou et al., High-efficiency, flexible and large-area red/green/blue all-inorganic metal halide perovskite quantum wires-based light-emitting diodes. Nat. Commun. 14, 4611 (2023). https://doi.org/10.1038/s41467-023-40150-y
- L. Kong, C. Sun, M. You, Y. Jiang, G. Wang et al., Universal molecular control strategy for scalable fabrication of perovskite light-emitting diodes. Nano Lett. 23(3), 985–992 (2023). https://doi.org/10.1021/acs.nanolett.2c04459
- J. Li, P. Du, Q. Guo, L. Sun, Z. Shen et al., Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays. Nat. Photon. 17(5), 435–441 (2023). https://doi.org/10.1038/s41566-023-01177-1
- G. Shi, Z. Huang, R. Qiao, W. Chen, Z. Li et al., Manipulating solvent fluidic dynamics for large-area perovskite film-formation and white light-emitting diodes. Nat. Commun. 15(1), 1066 (2024). https://doi.org/10.1038/s41467-024-45488-5
- C.-H. Tien, J.-Q. Liu, L.-C. Chen, Post-hot-cast annealing deposition of perovskite films with infused multifunctional organic molecules to enhance the performance of large-area light-emitting devices. RSC Adv. 14(26), 18567–18575 (2024). https://doi.org/10.1039/d4ra02652g
- K. Wei, T. Zhou, Y. Jiang, C. Sun, Y. Liu et al., Perovskite heteroepitaxy for high-efficiency and stable pure-red LEDs. Nature 638(8052), 949–956 (2025). https://doi.org/10.1038/s41586-024-08503-9
- G. Chen, S. Wang, Z. Yu, C. Dong, P. Jia et al., Regulation of nucleation and crystallization for blade-coating large-area CsPbBr3 perovskite light-emitting diodes. Sci. Bull. 70(2), 212–222 (2025). https://doi.org/10.1016/j.scib.2024.10.022
- W.-Z. Liu, Y. Wang, J.-Z. Xu, S.-H. Xu, D.-Y. Zhou et al., Enhancing carrier balance in blade-coated near-infrared quantum dot light-emitting diodes by a PSS-rich PEDOT: PSS hole-buffering layer. Small 21(44), e04662 (2025). https://doi.org/10.1002/smll.202504662
- Y. Li, N. Meng, Y. Xu, B. Yu, J. Liu et al., Sequential layer-by-layer deposition for high-performance fully thermal-evaporated red perovskite light-emitting diodes. Nat. Commun. 16, 6908 (2025). https://doi.org/10.1038/s41467-025-62282-z
- S. Ding, Q. Wang, W. Gu, Z. Tang, B. Zhang et al., Phase dimensions resolving of efficient and stable perovskite light-emitting diodes at high brightness. Nat. Photon. 18(4), 363–370 (2024). https://doi.org/10.1038/s41566-023-01372-0
- S. Zheng, Z. Wang, N. Jiang, H. Huang, X. Wu et al., Ultralow voltage-driven efficient and stable perovskite light-emitting diodes. Sci. Adv. 10(36), eadp8473 (2024). https://doi.org/10.1126/sciadv.adp8473
- H. Li, Y. Feng, M. Zhu, Y. Gao, C. Fan et al., Nanosurface-reconstructed perovskite for highly efficient and stable active-matrix light-emitting diode display. Nat. Nanotechnol. 19(5), 638–645 (2024). https://doi.org/10.1038/s41565-024-01652-y
- N.-G. Park, K. Zhu, Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5(5), 333–350 (2020). https://doi.org/10.1038/s41578-019-0176-2
- H. Liu, G. Shi, C. Peng, W. Chen, H. Yao et al., Advances and challenges in large-area perovskite light-emitting diodes. Adv. Mater. 37(25), 2410154 (2025). https://doi.org/10.1002/adma.202410154
- Z. Ma, Z. Shi, C. Qin, M. Cui, D. Yang et al., Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons. ACS Nano 14(4), 4475–4486 (2020). https://doi.org/10.1021/acsnano.9b10148
- Y. Zou, Y. Li, X. Pang, Y. Song, W. Xu et al., Unraveling deposition atmosphere impact on reproducibility of perovskite light-emitting diodes. J. Phys. Chem. Lett. 14(21), 5025–5032 (2023). https://doi.org/10.1021/acs.jpclett.3c01067
- Y. Han, J. Wang, C.G. Bischak, S. Kim, K. Lee et al., Significance of ambient temperature control for highly reproducible layered perovskite light-emitting diodes. ACS Photonics 7(9), 2489–2497 (2020). https://doi.org/10.1021/acsphotonics.0c00779
- Y. Zhao, C. Liu, M. Li, X. Chen, Z. Song et al., Custom-tailored surface morphology for efficient quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater. 35(37), 2503978 (2025). https://doi.org/10.1002/adfm.202503978
- S. Chi, Y. Chen, X. Li, J. Wang, Z. Zhao et al., Functional molecule surface infiltration treatment for efficient all-inorganic perovskite light-emitting diodes. Chem. Eng. J. 514, 162787 (2025). https://doi.org/10.1016/j.cej.2025.162787
- S. Wang, X. Sun, J. Shi, R. Zhao, B. Zhang et al., Additive-driven enhancement of crystallization: strategies and prospects for boosting photoluminescence quantum yields in halide perovskite films for light-emitting diodes. Adv. Mater. 36(52), e2413673 (2024). https://doi.org/10.1002/adma.202413673
- M. Hu, S. Fernández, Q. Zhou, P. Narayanan, B. Saini et al., Water additives improve the efficiency of violet perovskite light-emitting diodes. Matter 6(7), 2356–2367 (2023). https://doi.org/10.1016/j.matt.2023.05.018
- L. Zhu, H. Cao, C. Xue, H. Zhang, M. Qin et al., Unveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodes. Nat. Commun. 12(1), 5081 (2021). https://doi.org/10.1038/s41467-021-25407-8
- M. Li, Y. Zhao, J. Guo, X. Qin, Q. Zhang et al., Phase regulation and defect passivation enabled by phosphoryl chloride molecules for efficient quasi-2D perovskite light-emitting diodes. Nano-Micro Lett. 15(1), 119 (2023). https://doi.org/10.1007/s40820-023-01089-3
- M. Li, Y. Yang, Z. Kuang, C. Hao, S. Wang et al., Acceleration of radiative recombination for efficient perovskite LEDs. Nature 630(8017), 631–635 (2024). https://doi.org/10.1038/s41586-024-07460-7
- J. Li, C. Duan, Q. Zhang, C. Chen, Q. Wen et al., Self-generated buried submicrocavities for high-performance near-infrared perovskite light-emitting diode. Nano-Micro Lett. 15(1), 125 (2023). https://doi.org/10.1007/s40820-023-01097-3
- Y.-K. Wang, F. Jia, X. Li, S. Teale, P. Xia et al., Self-assembled monolayer–based blue perovskite LEDs. Sci. Adv. 9(36), eadh2140 (2023). https://doi.org/10.1126/sciadv.adh2140
- N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao et al., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10(11), 699–704 (2016). https://doi.org/10.1038/nphoton.2016.185
- Y. Cao, N. Wang, H. Tian, J. Guo, Y. Wei et al., Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562(7726), 249–253 (2018). https://doi.org/10.1038/s41586-018-0576-2
- S. Yuan, Z.-K. Wang, M.-P. Zhuo, Q.-S. Tian, Y. Jin et al., Self-assembled high quality CsPbBr3 quantum dot films toward highly efficient light-emitting diodes. ACS Nano 12(9), 9541–9548 (2018). https://doi.org/10.1021/acsnano.8b05185
- L. Ni, U. Huynh, A. Cheminal, T.H. Thomas, R. Shivanna et al., Real-time observation of exciton–phonon coupling dynamics in self-assembled hybrid perovskite quantum wells. ACS Nano 11(11), 10834–10843 (2017). https://doi.org/10.1021/acsnano.7b03984
- B. Yu, C. Zhang, L. Chen, X. Huang, Z. Qin et al., Exciton linewidth broadening induced by exciton–phonon interactions in CsPbBr3 nanocrystals. J. Chem. Phys. 154(21), 214502 (2021). https://doi.org/10.1063/5.0051611
- Y. Jiang, C. Qin, M. Cui, T. He, K. Liu et al., Spectra stable blue perovskite light-emitting diodes. Nat. Commun. 10, 1868 (2019). https://doi.org/10.1038/s41467-019-09794-7
- J. Jiang, M. Shi, Z. Xia, Y. Cheng, Z. Chu et al., Efficient pure-red perovskite light-emitting diodes with strong passivation via ultrasmall-sized molecules. Sci. Adv. 10(18), eadn5683 (2024). https://doi.org/10.1126/sciadv.adn5683
- F. Yuan, G. Folpini, T. Liu, U. Singh, A. Treglia et al., Bright and stable near-infrared lead-free perovskite light-emitting diodes. Nat. Photon. 18(2), 170–176 (2024). https://doi.org/10.1038/s41566-023-01351-5
- Z. Xia, J. Jiang, A. Wang, D. An, Z. Li et al., Overall performance improvement of perovskite green LEDs by CsPbBr3&Cs4PbBr6 nanocrystals and molecular doping. Adv. Mater. 37(34), 2506187 (2025). https://doi.org/10.1002/adma.202506187
- A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore et al., Quantum dot–induced phase stabilization of α-CsPbI3perovskite for high-efficiency photovoltaics. Science 354(6308), 92–95 (2016). https://doi.org/10.1126/science.aag2700
- A.D. Wright, C. Verdi, R.L. Milot, G.E. Eperon, M.A. Pérez-Osorio et al., Electron–phonon coupling in hybrid lead halide perovskites. Nat. Commun. 7, 11755 (2016). https://doi.org/10.1038/ncomms11755
- S.-D. Baek, W. Shao, W. Feng, Y. Tang, Y.H. Lee et al., Grain engineering for efficient near-infrared perovskite light-emitting diodes. Nat. Commun. 15, 10760 (2024). https://doi.org/10.1038/s41467-024-55075-3
- H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf et al., Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350(6265), 1222–1225 (2015). https://doi.org/10.1126/science.aad1818
- K. Lin, J. Xing, L.N. Quan, F.P.G. de Arquer, X. Gong et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562(7726), 245–248 (2018). https://doi.org/10.1038/s41586-018-0575-3
- Z. Chu, W. Zhang, J. Jiang, Z. Qu, F. Ma et al., Blue light-emitting diodes based on quasi-two-dimensional perovskite with efficient charge injection and optimized phase distribution via an alkali metal salt. Nat. Electron. 6(5), 360–369 (2023). https://doi.org/10.1038/s41928-023-00955-7
- Y.-H. Kim, C. Wolf, Y.-T. Kim, H. Cho, W. Kwon et al., Highly efficient light-emitting diodes of colloidal metal–halide perovskite nanocrystals beyond quantum size. ACS Nano 11(7), 6586–6593 (2017). https://doi.org/10.1021/acsnano.6b07617
- X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu et al., CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26(15), 2435–2445 (2016). https://doi.org/10.1002/adfm.201600109
- Z. Xiao, R.A. Kerner, L. Zhao, N.L. Tran, K.M. Lee et al., Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11(2), 108–115 (2017). https://doi.org/10.1038/nphoton.2016.269
- H. Wang, X. Zhang, Q. Wu, F. Cao, D. Yang et al., Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 10(1), 665 (2019). https://doi.org/10.1038/s41467-019-08425-5
- Y. Hassan, J.H. Park, M.L. Crawford, A. Sadhanala, J. Lee et al., Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591(7848), 72–77 (2021). https://doi.org/10.1038/s41586-021-03217-8
- J. Zhang, T. Zhang, Z. Ma, F. Yuan, X. Zhou et al., A multifunctional “halide-equivalent” anion enabling efficient CsPb(Br/I)3 nanocrystals pure-red light-emitting diodes with external quantum efficiency exceeding 23%. Adv. Mater. 35(8), 2209002 (2023). https://doi.org/10.1002/adma.202209002
- J. Zhang, B. Cai, X. Zhou, F. Yuan, C. Yin et al., Ligand-induced cation-π interactions enable high-efficiency, bright, and spectrally stable rec. 2020 pure-red perovskite light-emitting diodes. Adv. Mater. 35(45), e2303938 (2023). https://doi.org/10.1002/adma.202303938
- X. Fu, M. Wang, Y. Jiang, X. Guo, X. Zhao et al., Mixed-halide perovskites with halogen bond induced interlayer locking structure for stable pure-red PeLEDs. Nano Lett. 23(14), 6465–6473 (2023). https://doi.org/10.1021/acs.nanolett.3c01319
- Y. Liu, Y. Dong, T. Zhu, D. Ma, A. Proppe et al., Bright and stable light-emitting diodes based on perovskite quantum dots in perovskite matrix. J. Am. Chem. Soc. 143(38), 15606–15615 (2021). https://doi.org/10.1021/jacs.1c02148
- X. Yang, L. Ma, M. Yu, H.-H. Chen, Y. Ji et al., Focus on perovskite emitters in blue light-emitting diodes. Light Sci. Appl. 12(1), 177 (2023). https://doi.org/10.1038/s41377-023-01206-2
- J. Zhang, L. Wang, X. Zhang, G. Xie, G. Jia et al., Blue light-emitting diodes based on halide perovskites: recent advances and strategies. Mater. Today 51, 222–246 (2021). https://doi.org/10.1016/j.mattod.2021.10.023
- M. Aftabuzzaman, Y. Hong, S. Jeong, R. Levan, S.J. Lee et al., Colloidal perovskite nanocrystals for blue-light-emitting diodes and displays. Adv. Sci. 12(15), 2409736 (2025). https://doi.org/10.1002/advs.202409736
- Y. Deng, C.H. Van Brackle, X. Dai, J. Zhao, B. Chen et al., Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Sci. Adv. 5(12), eaax7537 (2019). https://doi.org/10.1126/sciadv.aax7537
- J. Yang, E.L. Lim, L. Tan, Z. Wei, Ink engineering in blade-coating large-area perovskite solar cells. Adv. Energy Mater. 12(28), 2200975 (2022). https://doi.org/10.1002/aenm.202200975
- Z. Yang, C.-C. Chueh, F. Zuo, J.H. Kim, P.-W. Liang et al., High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv. Energy Mater. 5(13), 1500328 (2015). https://doi.org/10.1002/aenm.201500328
- J. Li, R. Munir, Y. Fan, T. Niu, Y. Liu et al., Phase transition control for high-performance blade-coated perovskite solar cells. Joule 2(7), 1313–1330 (2018). https://doi.org/10.1016/j.joule.2018.04.011
- Y. Xiao, C. Zuo, J.-X. Zhong, W.-Q. Wu, L. Shen et al., Large-area blade-coated solar cells: advances and perspectives. Adv. Energy Mater. 11(21), 2100378 (2021). https://doi.org/10.1002/aenm.202100378
- W. Zhao, S. Zhang, Y. Zhang, S. Li, X. Liu et al., Environmentally friendly solvent-processed organic solar cells that are highly efficient and adaptable for the blade-coating method. Adv. Mater. 30(4), 1704837 (2018). https://doi.org/10.1002/adma.201704837
- S.G.R. Bade, J. Li, X. Shan, Y. Ling, Y. Tian et al., Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes. ACS Nano 10(2), 1795–1801 (2016). https://doi.org/10.1021/acsnano.5b07506
- Y. Liu, J. Cui, K. Du, H. Tian, Z. He et al., Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photonics 13(11), 760–764 (2019). https://doi.org/10.1038/s41566-019-0505-4
- Z. Chen, Z. Li, C. Zhang, X.-F. Jiang, D. Chen et al., Recombination dynamics study on nanostructured perovskite light-emitting devices. Adv. Mater. 30(38), 1801370 (2018). https://doi.org/10.1002/adma.201801370
- Q. Hu, L. Zhao, J. Wu, K. Gao, D. Luo et al., In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4- cage nanops. Nat. Commun. 8, 15688 (2017). https://doi.org/10.1038/ncomms15688
- Y.-H. Kim, Y. Zhai, E.A. Gaulding, S.N. Habisreutinger, T. Moot et al., Strategies to achieve high circularly polarized luminescence from colloidal organic–inorganic hybrid perovskite nanocrystals. ACS Nano 14(7), 8816–8825 (2020). https://doi.org/10.1021/acsnano.0c03418
- J. Li, P. Du, S. Li, J. Liu, M. Zhu et al., High-throughput combinatorial optimizations of perovskite light-emitting diodes based on all-vacuum deposition. Adv. Funct. Mater. 29(51), 1903607 (2019). https://doi.org/10.1002/adfm.201903607
- J. Li, L. Yang, Q. Guo, P. Du, L. Wang et al., All-vacuum fabrication of yellow perovskite light-emitting diodes. Sci. Bull. 67(2), 178–185 (2022). https://doi.org/10.1016/j.scib.2021.09.003
- S. Ji, S.-R. Bae, L. Hu, A.T. Hoang, M.J. Seol et al., Perovskite light-emitting diode display based on MoS2 backplane thin-film transistors. Adv. Mater. 36(2), e2309531 (2024). https://doi.org/10.1002/adma.202309531
- J. Ávila, C. Momblona, P.P. Boix, M. Sessolo, H.J. Bolink, Vapor-deposited perovskites: the route to high-performance solar cell production? Joule 1(3), 431–442 (2017). https://doi.org/10.1016/j.joule.2017.07.014
- R. Ilmi, D. Zhang, J.D.L. Dutra, N. Dege, L. Zhou et al., A tris β-diketonate europium(III) complex based OLED fabricated by thermal evaporation method displaying efficient bright red emission. Org. Electron. 96, 106216 (2021). https://doi.org/10.1016/j.orgel.2021.106216
- C.B. Lee, A. Uddin, X. Hu, Anderssonb, Study of Alq3 thermal evaporation rate effects on the OLED. Mater. Sci. Eng. B 112(1), 14–18 (2004). https://doi.org/10.1016/j.mseb.2004.05.009
- F.U. Kosasih, E. Erdenebileg, N. Mathews, S.G. Mhaisalkar, A. Bruno, Thermal evaporation and hybrid deposition of perovskite solar cells and mini-modules. Joule 6(12), 2692–2734 (2022). https://doi.org/10.1016/j.joule.2022.11.004
- S.R. Bae, D.Y. Heo, S.Y. Kim, Recent progress of perovskite devices fabricated using thermal evaporation method: perspective and outlook. Mater. Today Adv. 14, 100232 (2022). https://doi.org/10.1016/j.mtadv.2022.100232
- F. Mariano, A. Listorti, A. Rizzo, S. Colella, G. Gigli et al., Thermally evaporated hybrid perovskite for hetero-structured green light-emitting diodes. Appl. Phys. Lett. 111(16), 163301 (2017). https://doi.org/10.1063/1.5001828
- J. Zhu, J. Li, Y. Huang, N. Liu, L. Sun et al., All-thermally evaporated blue perovskite light-emitting diodes for active matrix displays. Small Methods 8(1), 2300712 (2024). https://doi.org/10.1002/smtd.202300712
- I.J. Cleveland, M.N. Tran, A. Dey, E.S. Aydil, Vapor deposition of CsPbBr3 thin films by evaporation of CsBr and PbBr2. J. Vac. Sci. Technol. A Vac. Surf. Films 39(4), 043415 (2021). https://doi.org/10.1116/6.0000875
- E.J. Juarez-Perez, L.K. Ono, Y. Qi, Thermal degradation of formamidinium based lead halide perovskites into sym-triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis. J. Mater. Chem. A 7(28), 16912–16919 (2019). https://doi.org/10.1039/C9TA06058H
- S. He, L. Qin, Z. Liu, J.-W. Kang, J. Luo et al., Efficient thermally evaporated near-infrared perovskite light-emitting diodes via phase regulation. Nano-Micro Lett. 17(1), 270 (2025). https://doi.org/10.1007/s40820-025-01776-3
- S. Sanders, G. Simkus, J. Riedel, A. Ost, A. Schmitz et al., Showerhead-assisted chemical vapor deposition of CsPbBr3 films for LED applications. J. Mater. Res. 36(9), 1813–1823 (2021). https://doi.org/10.1557/s43578-021-00239-w
- L. Qiu, S. He, L.K. Ono, Y. Qi, Progress of surface science studies on ABX3-based metal halide perovskite solar cells. Adv. Energy Mater. 10(13), 1902726 (2020). https://doi.org/10.1002/aenm.201902726
- M. Shin, H.S. Lee, Y.C. Sim, Y.-H. Cho, K.C. Choi et al., Modulation of growth kinetics of vacuum-deposited CsPbBr3 films for efficient light-emitting diodes. ACS Appl. Mater. Interfaces 12(1), 1944–1952 (2020). https://doi.org/10.1021/acsami.9b20094
- Q. Guesnay, F. Sahli, C. Ballif, Q. Jeangros, Vapor deposition of metal halide perovskite thin films: process control strategies to shape layer properties. APL Mater. 9(10), 100703 (2021). https://doi.org/10.1063/5.0060642
- Y. Fu, Q. Zhang, D. Zhang, Y. Tang, L. Shu et al., Scalable all-evaporation fabrication of efficient light-emitting diodes with hybrid 2D–3D perovskite nanostructures. Adv. Funct. Mater. 30(39), 2002913 (2020). https://doi.org/10.1002/adfm.202002913
- Y. Hu, Q. Wang, Y.-L. Shi, M. Li, L. Zhang et al., Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes. J. Mater. Chem. C 5(32), 8144–8149 (2017). https://doi.org/10.1039/c7tc02477k
- N. Kim, M. Shin, S. Jun, B. Choi, J. Kim et al., Highly efficient vacuum-evaporated CsPbBr3 perovskite light-emitting diodes with an electrical conductivity enhanced polymer-assisted passivation layer. ACS Appl. Mater. Interfaces 13(31), 37323–37330 (2021). https://doi.org/10.1021/acsami.1c05447
- L. Song, L. Huang, Y. Liu, X. Guo, C. Geng et al., Efficient thermally evaporated perovskite light-emitting devices via a bilateral interface engineering strategy. J. Phys. Chem. Lett. 12(26), 6165–6173 (2021). https://doi.org/10.1021/acs.jpclett.1c01592
- Y. Lian, Y. Wang, Y. Yuan, Z. Ren, W. Tang et al., Downscaling micro- and nano-perovskite LEDs. Nature 640(8057), 62–68 (2025). https://doi.org/10.1038/s41586-025-08685-w
- E.G. Dyrvik, J.H. Warby, M.M. McCarthy, A.J. Ramadan, K.-A. Zaininger et al., Reducing nonradiative losses in perovskite LEDs through atomic layer deposition of Al2O3 on the hole-injection contact. ACS Nano 17(4), 3289–3300 (2023). https://doi.org/10.1021/acsnano.2c04786
- Y. Shen, L.-P. Cheng, Y.-Q. Li, W. Li, J.-D. Chen et al., High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Adv. Mater. 31(24), e1901517 (2019). https://doi.org/10.1002/adma.201901517
- K. Wang, Y. Du, J. Liang, J. Zhao, F.F. Xu et al., Wettability-guided screen printing of perovskite microlaser arrays for current-driven displays. Adv. Mater. 32(29), 2001999 (2020). https://doi.org/10.1002/adma.202001999
- D. Li, J. Wang, M. Li, G. Xie, B. Guo et al., Inkjet printing matrix perovskite quantum dot light-emitting devices. Adv. Mater. Technol. 5(6), 2000099 (2020). https://doi.org/10.1002/admt.202000099
- C. Zou, C. Chang, D. Sun, K.F. Böhringer, L.Y. Lin, Photolithographic patterning of perovskite thin films for multicolor display applications. Nano Lett. 20(5), 3710–3717 (2020). https://doi.org/10.1021/acs.nanolett.0c00701
- C. Zheng, X. Zheng, C. Feng, S. Ju, Z. Xu et al., High-brightness perovskite quantum dot light-emitting devices using inkjet printing. Org. Electron. 93, 106168 (2021). https://doi.org/10.1016/j.orgel.2021.106168
- J. Wang, D. Li, L. Mu, M. Li, Y. Luo et al., Inkjet-printed full-color matrix quasi-two-dimensional perovskite light-emitting diodes. ACS Appl. Mater. Interfaces 13(35), 41773–41781 (2021). https://doi.org/10.1021/acsami.1c07526
- J. Zhao, L.-W. Lo, H. Wan, P. Mao, Z. Yu et al., High-speed fabrication of all-inkjet-printed organometallic halide perovskite light-emitting diodes on elastic substrates. Adv. Mater. 33(48), 2102095 (2021). https://doi.org/10.1002/adma.202102095
- Y. Li, Z. Chen, D. Liang, J. Zang, Z. Song et al., Coffee-stain-free perovskite film for efficient printed light-emitting diode. Adv. Opt. Mater. 9(17), 2100553 (2021). https://doi.org/10.1002/adom.202100553
- S.-Y. Liang, Y.-F. Liu, H.-J. Zhang, Z.-K. Ji, H. Xia, High-quality patterning of CsPbBr3 perovskite films through lamination-assisted femtosecond laser ablation toward light-emitting diodes. ACS Appl. Mater. Interfaces 14(41), 46958–46963 (2022). https://doi.org/10.1021/acsami.2c11870
- Z. Li, S. Chu, Y. Zhang, W. Chen, J. Chen et al., Mass transfer printing of metal-halide perovskite films and nanostructures. Adv. Mater. 34(35), e2203529 (2022). https://doi.org/10.1002/adma.202203529
- D.H. Kim, H.J. An, J.-M. Myoung, Red-emitting micro PeLEDs for UHD displays by using capillary force lithography. Chem. Eng. J. 448, 137727 (2022). https://doi.org/10.1016/j.cej.2022.137727
- W. Bai, T. Xuan, H. Zhao, S. Shi, X. Zhang et al., Microscale perovskite quantum dot light-emitting diodes (micro-PeLEDs) for full-color displays. Adv. Opt. Mater. 10(12), 2200087 (2022). https://doi.org/10.1002/adom.202200087
- G. Vescio, J. Sanchez-Diaz, J.L. Frieiro, R.S. Sánchez, S. Hernández et al., 2D PEA2SnI4 inkjet-printed halide perovskite LEDs on rigid and flexible substrates. ACS Energy Lett. 7(10), 3653–3655 (2022). https://doi.org/10.1021/acsenergylett.2c01773
- C. Wei, W. Su, J. Li, B. Xu, Q. Shan et al., A universal ternary-solvent-ink strategy toward efficient inkjet-printed perovskite quantum dot light-emitting diodes. Adv. Mater. 34(10), e2107798 (2022). https://doi.org/10.1002/adma.202107798
- D. Li, J. Wang, M. Li, B. Guo, L. Mu et al., Efficient red perovskite quantum dot light-emitting diode fabricated by inkjet printing. Mater. Futures 1(1), 015301 (2022). https://doi.org/10.1088/2752-5724/ac3568
- V.R.F. Schröder, N. Fratzscher, F. Mathies, E.R. Nandayapa, F. Hermerschmidt et al., Large area inkjet-printed metal halide perovskite LEDs enabled by gas flow assisted drying and crystallization. Nanoscale 15(12), 5649–5654 (2023). https://doi.org/10.1039/D3NR00565H
- M.-S. Kim, P. Sadhukhan, J.-M. Myoung, High-performance blue perovskite films and micro-arrays for light-emitting diodes with ionic liquid interlayer. Adv. Funct. Mater. 34(1), 2309436 (2024). https://doi.org/10.1002/adfm.202309436
- G. Jang, D.-Y. Jo, S. Ma, J. Lee, J. Son et al., Core–shell perovskite quantum dots for highly selective room-temperature spin light-emitting diodes. Adv. Mater. 36(5), 2309335 (2024). https://doi.org/10.1002/adma.202309335
- H. Liu, G. Shi, R. Khan, S. Chu, Z. Huang et al., Large-area flexible perovskite light-emitting diodes enabled by inkjet printing. Adv. Mater. 36(8), 2309921 (2024). https://doi.org/10.1002/adma.202309921
- B. Ren, D. Zhang, X. Qiu, Y. Ding, Q. Zhang et al., Full-color fiber light-emitting diodes based on perovskite quantum wires. Sci. Adv. 10(20), eadn1095 (2024). https://doi.org/10.1126/sciadv.adn1095
- V.R.F. Schröder, N. Fratzscher, N. Zorn Morales, D.S. Rühl, F. Hermerschmidt et al., Bicolour, large area, inkjet-printed metal halide perovskite light emitting diodes. Mater. Horiz. 11(8), 1989–1996 (2024). https://doi.org/10.1039/d3mh02025h
- Y. Huo, C. Luo, C. Wu, Z. Ren, H. Wang et al., Ambient direct lithography patterning of ultra-stable perovskite quantum dots for high-resolution light-emitting diodes. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202504261
- L. Thi Ngo, Y.-T. Huang, C.-C. Chang, H. Verma, Y.-H. Lin et al., High-efficiency and ultrastable solvent-free curable perovskite quantum dot inks for microLED and LED backlighting applications. Nano Energy 142, 111230 (2025). https://doi.org/10.1016/j.nanoen.2025.111230
- Q. Zhang, K. Yang, C. Luo, Z. Lin, W. Chen et al., Nanosecond response perovskite quantum dot light-emitting diodes with ultra-high resolution for active display application. Light. Sci. Appl. 14, 285 (2025). https://doi.org/10.1038/s41377-025-01959-y
- C. Wang, J.M. Myoung, Spatially confined synthesis of CsPbBr 3 quantum dots for high-performance pure-blue light-emitting diodes. Matter (2025). https://doi.org/10.1016/j.matt.2025.102416
- J. Harwell, J. Burch, A. Fikouras, M.C. Gather, A. Di Falco et al., Patterning multicolor hybrid perovskite films via top-down lithography. ACS Nano 13(4), 3823–3829 (2019). https://doi.org/10.1021/acsnano.8b09592
- X. Zhou, Z. Gao, J. Shi, T. Li, S. Wei et al., Direct synthesis of perovskite quantum dot photoresist for direct photolithography. Angew. Chem. Int. Ed. 64(1), e202413741 (2025). https://doi.org/10.1002/anie.202413741
- P. Zhang, G. Yang, F. Li, J. Shi, H. Zhong, Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes. Nat. Commun. 13, 6713 (2022). https://doi.org/10.1038/s41467-022-34453-9
- C.H. Lin, B. Cheng, T.Y. Li, J.R.D. Retamal, T.C. Wei et al., Orthogonal lithography for halide perovskite optoelectronic nanodevices. ACS Nano (2018). https://doi.org/10.1021/acsnano.8b05859
- N. Lamers, Z. Zhang, J. Wallentin, Perovskite-compatible electron-beam-lithography process based on nonpolar solvents for single-nanowire devices. ACS Appl. Nano Mater. 5(3), 3177–3182 (2022). https://doi.org/10.1021/acsanm.2c00188
- D. Lyashenko, A. Perez, A. Zakhidov, High-resolution patterning of organohalide lead perovskite pixels for photodetectors using orthogonal photolithography. Phys. Status Solidi A 214(1), 1600302 (2017). https://doi.org/10.1002/pssa.201600302
- G.-H. Dun, H. Zhang, K. Qin, X. Tan, R. Zhao et al., Wafer-scale photolithography-pixeled Pb-free perovskite X-ray detectors. ACS Nano 16(7), 10199–10208 (2022). https://doi.org/10.1021/acsnano.2c01074
- B. Xia, M. Tu, B. Pradhan, F. Ceyssens, M.L. Tietze et al., Flexible metal halide perovskite photodetector arrays via photolithography and dry lift-off patterning. Adv. Eng. Mater. 24, 2100930 (2022). https://doi.org/10.1002/adem.202100930
- S. Wei, J. Yuan, G. Yang, H. Zhong, Y. Dong et al., A photoinitiator-grafted photoresist for direct in situ lithography of perovskite quantum dots. ACS Appl. Nano Mater. 7(23), 26397–26404 (2024). https://doi.org/10.1021/acsanm.3c06297
- F.H. Dill, W.P. Hornberger, P.S. Hauge, J.M. Shaw, Characterization of positive photoresist. IEEE Trans. Electron Devices 22(7), 445–452 (1975). https://doi.org/10.1109/T-ED.1975.18159
- J.M. Shaw, J.D. Gelorme, N.C. LaBianca, W.E. Conley, S.J. Holmes, Negative photoresists for optical lithography. IBM J. Res. Dev. 41(1.2), 81–94 (1997). https://doi.org/10.1147/rd.411.0081
- T. Haeger, R. Heiderhoff, T. Riedl, Thermal properties of metal-halide perovskites. J. Mater. Chem. C 8(41), 14289–14311 (2020). https://doi.org/10.1039/d0tc03754k
- G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3(17), 8970–8980 (2015). https://doi.org/10.1039/C4TA04994B
- M. Lai, G. Parish, Y. Liu, J.M. Dell, A.J. Keating, Development of an alkaline-compatible porous-silicon photolithographic process. J. Microelectromech. Syst. 20(2), 418–423 (2011). https://doi.org/10.1109/JMEMS.2011.2111356
- A.W. Flounders, D.L. Brandon, A.H. Bates, Patterning of immobilized antibody layers via photolithography and oxygen plasma exposure. Biosens. Bioelectron. 12(6), 447–456 (1997). https://doi.org/10.1016/S0956-5663(96)00064-4
- S.-Y. Lien, C.-W. Wang, W.-R. Chen, C.-H. Liu, C.-C. Kang et al., The influence of oxygen plasma on methylammonium lead iodide (MAPbI3) film doped with lead cesium triiodide (CsPbI3). Molecules 26(17), 5133 (2021). https://doi.org/10.3390/molecules26175133
- X. Kong, X. Fan, Y. Wang, Y. Luo, Y. Chen et al., Recent advances of photolithography patterning of quantum dots for micro-display applications. Nano Mater. Sci. 7(1), 49–64 (2025). https://doi.org/10.1016/j.nanoms.2024.03.005
- X. Fan, S. Wang, X. Yang, C. Zhong, G. Chen et al., Brightened bicomponent perovskite nanocomposite based on Förster resonance energy transfer for micro-LED displays. Adv. Mater. 35(30), 2300834 (2023). https://doi.org/10.1002/adma.202300834
- Y. Wang, Y. Luo, X. Kong, T. Wu, Y. Lin et al., Patterning technologies of quantum dots for color-conversion micro-LED display applications. Nanoscale 17(4), 1764–1789 (2025). https://doi.org/10.1039/d4nr03925d
- C. Cueto, D. Nikolla, A. Ribbe, J. Chambers, T. Emrick, Exploiting photohalide generation in shape and multichromatic color patterning of polymer–perovskite nanocomposites. J. Am. Chem. Soc. 147(11), 9774–9785 (2025). https://doi.org/10.1021/jacs.4c18454
- W. Sun, F. Li, J. Tao, P. Li, L. Zhu et al., Micropore filling fabrication of high resolution patterned PQDs with a pixel size less than 5 μm. Nanoscale 14(16), 5994–5998 (2022). https://doi.org/10.1039/d2nr01115h
- T. Li, P. Zhang, S. Wei, Y. Jing, J. Shi et al., Polymerizable monomer solvents enabled direct in situ photolithography of perovskite quantum dots. Adv. Opt. Mater. 12(20), 2400486 (2024). https://doi.org/10.1002/adom.202400486
- J. Chen, Y. Wu, X. Li, F. Cao, Y. Gu et al., Simple and fast patterning process by laser direct writing for perovskite quantum dots. Adv. Mater. Technol. 2(10), 1700132 (2017). https://doi.org/10.1002/admt.201700132
- K. Sun, D. Tan, X. Fang, X. Xia, D. Lin et al., Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 375(6578), 307–310 (2022). https://doi.org/10.1126/science.abj2691
- X. Huang, Q. Guo, D. Yang, X. Xiao, X. Liu et al., Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photonics 14(2), 82–88 (2020). https://doi.org/10.1038/s41566-019-0538-8
- P. You, G. Li, G. Tang, J. Cao, F. Yan, Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy Environ. Sci. 13(4), 1187–1196 (2020). https://doi.org/10.1039/c9ee02324k
- L. Zhang, Y. Liu, Z. Gan, J. Su, Y. Gao, In situ localized formation of cesium lead bromide nanocomposites for fluorescence micro-patterning technology achieved by organic solvent polymerization. J. Mater. Chem. C 8(10), 3409–3417 (2020). https://doi.org/10.1039/C9TC06687J
- W. Zhan, L. Meng, C. Shao, X.-G. Wu, K. Shi et al., In situ patterning perovskite quantum dots by direct laser writing fabrication. ACS Photonics 8(3), 765–770 (2021). https://doi.org/10.1021/acsphotonics.1c00118
- A. Zhizhchenko, S. Syubaev, A. Berestennikov, A.V. Yulin, A. Porfirev et al., Single-mode lasing from imprinted halide-perovskite microdisks. ACS Nano 13(4), 4140–4147 (2019). https://doi.org/10.1021/acsnano.8b08948
- S.J. Kim, J. Byun, T. Jeon, H.M. Jin, H.R. Hong et al., Perovskite light-emitting diodes via laser crystallization: systematic investigation on grain size effects for device performance. ACS Appl. Mater. Interfaces 10(3), 2490–2495 (2018). https://doi.org/10.1021/acsami.7b15470
- Z. Wan, Z. Liu, Q. Zhang, Q. Zhang, M. Gu, Laser technology for perovskite: fabrication and applications. Adv. Mater. Technol. 9(10), 2302033 (2024). https://doi.org/10.1002/admt.202302033
- A.Y. Zhizhchenko, P. Tonkaev, D. Gets, A. Larin, D. Zuev et al., Light-emitting nanophotonic designs enabled by ultrafast laser processing of halide perovskites. Small 16(19), 2000410 (2020). https://doi.org/10.1002/smll.202000410
- C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias et al., Electron beam lithography: resolution limits and applications. Appl. Surf. Sci. 164(1–4), 111–117 (2000). https://doi.org/10.1016/S0169-4332(00)00352-4
- C. Zhu, H. Ekinci, A. Pan, B. Cui, X. Zhu, Electron beam lithography on nonplanar and irregular surfaces. Microsyst. Nanoeng. 10, 52 (2024). https://doi.org/10.1038/s41378-024-00682-9
- H.S. Kim, B.H. Son, Y.C. Kim, Y.H. Ahn, Direct laser writing lithography using a negative-tone electron-beam resist. Opt. Mater. Express 10(11), 2813 (2020). https://doi.org/10.1364/ome.409302
- Y. Chen, Nanofabrication by electron beam lithography and its applications: a review. Microelectron. Eng. 135, 57–72 (2015). https://doi.org/10.1016/j.mee.2015.02.042
- W.Y.E. Ong, Y.Z.D. Tan, L.J. Lim, T.G. Hoang, Z.-K. Tan, Crosslinkable ligands for high-density photo-patterning of perovskite nanocrystals. Adv. Mater. 37(25), e2409564 (2025). https://doi.org/10.1002/adma.202409564
- Y. Fukuta, T. Miyata, Y. Hamanaka, Fabrication of two-dimensional hybrid organic–inorganic lead halide perovskites with controlled multilayer structures by liquid-phase laser ablation. J. Mater. Chem. C 11(3), 910–916 (2023). https://doi.org/10.1039/D2TC04395E
- X. Huang, Q. Guo, S. Kang, T. Ouyang, Q. Chen et al., Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence. ACS Nano 14(3), 3150–3158 (2020). https://doi.org/10.1021/acsnano.9b08314
- T.R. Groves, D. Pickard, B. Rafferty, N. Crosland, D. Adam et al., Maskless electron beam lithography: prospects, progress, and challenges. Microelectron. Eng. 61–62, 285–293 (2002). https://doi.org/10.1016/S0167-9317(02)00528-2
- Z. Li, Z. Gao, L. Liu, K. Zhang, R. Ma et al., 3D patterning of perovskite quantum dots via direct in situ femtosecond laser writing. Nano Lett. 25(18), 7410–7418 (2025). https://doi.org/10.1021/acs.nanolett.5c00861
- D. Wei, C. Wang, H. Wang, X. Hu, D. Wei et al., Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photonics 12(10), 596–600 (2018). https://doi.org/10.1038/s41566-018-0240-2
- S.-Y. Liang, Y.-F. Liu, S.-Y. Wang, Z.-K. Ji, H. Xia et al., High-resolution patterning of 2D perovskite films through femtosecond laser direct writing. Adv. Funct. Mater. 32(38), 0224957 (2022). https://doi.org/10.1002/adfm.202204957
- Z. Wang, J. Zheng, G. Chen, K. Zhang, T. Wei et al., Laser-assisted thermal exposure lithography: arbitrary feature sizes. Adv. Eng. Mater. 23(5), 2001468 (2021). https://doi.org/10.1002/adem.202001468
- D. Tan, Z. Wang, B. Xu, J. Qiu, Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Adv. Photon. 3(2), 024002 (2021). https://doi.org/10.1117/1.ap.3.2.024002
- B. Jeong, H. Han, C. Park, Micro- and nanopatterning of halide perovskites where crystal engineering for emerging photoelectronics meets integrated device array technology. Adv. Mater. 32(30), 2000597 (2020). https://doi.org/10.1002/adma.202000597
- L.J. Guo, Nanoimprint lithography: methods and material requirements. Adv. Mater. 19(4), 495–513 (2007). https://doi.org/10.1002/adma.200600882
- S.Y. Chou, P.R. Krauss, P.J. Renstrom, Nanoimprint lithography. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 14(6), 4129–4133 (1996). https://doi.org/10.1116/1.588605
- Y. Yang, K. Mielczarek, M. Aryal, A. Zakhidov, W. Hu, Nanoimprinted polymer solar cell. ACS Nano 6(4), 2877–2892 (2012). https://doi.org/10.1021/nn3001388
- D.-Y. Khang, H. Kang, T.-I. Kim, H.H. Lee, Low-pressure nanoimprint lithography. Nano Lett. 4(4), 633–637 (2004). https://doi.org/10.1021/nl049887d
- S.V. Makarov, V. Milichko, E.V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran et al., Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photonics 4(4), 728–735 (2017). https://doi.org/10.1021/acsphotonics.6b00940
- H. Han, J.W. Oh, J. Park, H. Lee, C. Park et al., Hierarchically ordered perovskites with high photo-electronic and environmental stability via nanoimprinting guided block copolymer self-assembly. Adv. Mater. Interfaces 9(16), 2200082 (2022). https://doi.org/10.1002/admi.202200082
- A. Cherala, P.N. Pandya, K.M. Liechti, S.V. Sreenivasan, Extending the resolution limits of nanoshape imprint lithography using molecular dynamics of polymer crosslinking. Microsyst. Nanoeng. 7, 13 (2021). https://doi.org/10.1038/s41378-020-00225-y
- B. Jeong, H. Han, H.H. Kim, W.K. Choi, Y.J. Park et al., Polymer-assisted nanoimprinting for environment- and phase-stable perovskite nanopatterns. ACS Nano 14(2), 1645–1655 (2020). https://doi.org/10.1021/acsnano.9b06980
- K. Deng, Z. Liu, M. Wang, L. Li, Nanoimprinted grating-embedded perovskite solar cells with improved light management. Adv. Funct. Mater. 29(19), 1900830 (2019). https://doi.org/10.1002/adfm.201900830
- M.G. Kang, L.J. Guo, Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Adv. Mater. 19(10), 1391–1396 (2007). https://doi.org/10.1002/adma.200700134
- S. Wang, X. Dou, L. Chen, Y. Fang, A. Wang et al., Enhanced light out-coupling efficiency of quantum dot light emitting diodes by nanoimprint lithography. Nanoscale 10(24), 11651–11656 (2018). https://doi.org/10.1039/C8NR02082E
- R. Schmager, I.M. Hossain, F. Schackmar, B.S. Richards, G. Gomard et al., Light coupling to quasi-guided modes in nanoimprinted perovskite solar cells. Sol. Energy Mater. Sol. Cells 201, 110080 (2019). https://doi.org/10.1016/j.solmat.2019.110080
- H. Wang, R. Haroldson, B. Balachandran, A. Zakhidov, S. Sohal et al., Nanoimprinted perovskite nanograting photodetector with improved efficiency. ACS Nano 10(12), 10921–10928 (2016). https://doi.org/10.1021/acsnano.6b05535
- S. Guo, Y.-S. Liu, X.-L. Zhang, Y.-F. Liu, Y.-G. Bi et al., Improved light extraction in all-inorganic perovskite light-emitting devices with periodic nanostructures by nanoimprinting lithography. Opt. Lett. 45(18), 5156–5159 (2020). https://doi.org/10.1364/OL.404873
- J. Mao, W.E.I. Sha, H. Zhang, X. Ren, J. Zhuang et al., Novel direct nanopatterning approach to fabricate periodically nanostructured perovskite for optoelectronic applications. Adv. Funct. Mater. 27(10), 1606525 (2017). https://doi.org/10.1002/adfm.201606525
- N. Pourdavoud, S. Wang, A. Mayer, T. Hu, Y. Chen et al., Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites. Adv. Mater. 29(12), 1605003 (2017). https://doi.org/10.1002/adma.201605003
- T.-H. Kim, K.-S. Cho, E.K. Lee, S.J. Lee, J. Chae et al., Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 5(3), 176–182 (2011). https://doi.org/10.1038/nphoton.2011.12
- C. Wang, C. Linghu, S. Nie, C. Li, Q. Lei et al., Programmable and scalable transfer printing with high reliability and efficiency for flexible inorganic electronics. Sci. Adv. 6(25), eabb2393 (2020). https://doi.org/10.1126/sciadv.abb2393
- T. Meng, Y. Zheng, D. Zhao, H. Hu, Y. Zhu et al., Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photon. 16(4), 297–303 (2022). https://doi.org/10.1038/s41566-022-00960-w
- T.W. Nam, M. Kim, Y. Wang, G.Y. Kim, W. Choi et al., Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution. Nat. Commun. 11(1), 3040 (2020). https://doi.org/10.1038/s41467-020-16865-7
- C.K.W. Lee, Y. Pan, R. Yang, M. Kim, M.G. Li, Laser-induced transfer of functional materials. Top. Curr. Chem. 381(4), 18 (2023). https://doi.org/10.1007/s41061-023-00429-6
- M.A. Meitl, Z.-T. Zhu, V. Kumar, K.J. Lee, X. Feng et al., Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5(1), 33–38 (2006). https://doi.org/10.1038/nmat1532
- A. Carlson, A.M. Bowen, Y. Huang, R.G. Nuzzo, J.A. Rogers, Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 24(39), 5284–5318 (2012). https://doi.org/10.1002/adma.201201386
- J. Yoo, K. Lee, U.J. Yang, H.H. Song, J.H. Jang et al., Highly efficient printed quantum dot light-emitting diodes through ultrahigh-definition double-layer transfer printing. Nat. Photonics 18(10), 1105–1112 (2024). https://doi.org/10.1038/s41566-024-01496-x
- J. Jang, Y.-G. Park, E. Cha, S. Ji, H. Hwang et al., 3D heterogeneous device arrays for multiplexed sensing platforms using transfer of perovskites. Adv. Mater. 33(30), e2101093 (2021). https://doi.org/10.1002/adma.202101093
- Y. Yin, Z. Hu, M.U. Ali, M. Duan, L. Gao et al., Full-color micro-LED display with CsPbBr3 perovskite and CdSe quantum dots as color conversion layers. Adv. Mater. Technol. 5(8), 2000251 (2020). https://doi.org/10.1002/admt.202000251
- Y. Li, F. Zhang, S. Wang, Regulatable interfacial adhesion between stamp and ink for transfer printing. Interdiscip. Mater. 3(1), 29–53 (2024). https://doi.org/10.1002/idm2.12139
- J. McPhillimy, D. Jevtics, B.J.E. Guilhabert, C. Klitis, A. Hurtado et al., Automated nanoscale absolute accuracy alignment system for transfer printing. ACS Appl. Nano Mater. 3(10), 10326–10332 (2020). https://doi.org/10.1021/acsanm.0c02224
- M. Kędziora, A. Opala, R. Mastria, L. De Marco, M. Król et al., Predesigned perovskite crystal waveguides for room-temperature exciton–polariton condensation and edge lasing. Nat. Mater. 23(11), 1515–1522 (2024). https://doi.org/10.1038/s41563-024-01980-3
- G. Wang, D. Li, H.-C. Cheng, Y. Li, C.-Y. Chen et al., Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Sci. Adv. 1(9), e1500613 (2015). https://doi.org/10.1126/sciadv.1500613
- Z. Xu, X. Han, W. Wu, F. Li, R. Wang et al., Controlled on-chip fabrication of large-scale perovskite single crystal arrays for high-performance laser and photodetector integration. Light Sci. Appl. 12(1), 67 (2023). https://doi.org/10.1038/s41377-023-01107-4
- M. Yuan, J. Feng, H. Li, H. Gao, Y. Qiu et al., Remote epitaxial crystalline perovskites for ultrahigh-resolution micro-LED displays. Nat. Nanotechnol. 20(3), 381–387 (2025). https://doi.org/10.1038/s41565-024-01841-9
- M.K. Gangishetty, R.W.J. Scott, T.L. Kelly, Effect of relative humidity on crystal growth, device performance and hysteresis in planar heterojunction perovskite solar cells. Nanoscale 8(12), 6300–6307 (2016). https://doi.org/10.1039/c5nr04179a
- X. Duan, X. Li, L. Tan, Z. Huang, J. Yang et al., Controlling crystal growth via an autonomously longitudinal scaffold for planar perovskite solar cells. Adv. Mater. 32(26), 2000617 (2020). https://doi.org/10.1002/adma.202000617
- T. Zhou, Z. Xu, R. Wang, X. Dong, Q. Fu et al., Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability. Adv. Mater. 34(17), 2200705 (2022). https://doi.org/10.1002/adma.202200705
- S. Wang, H. Luo, Z. Gu, R. Zhao, L. Guo et al., Crystal growth regulation of α-FAPbI3 perovskite films for high-efficiency solar cells with long-term stability. Adv. Funct. Mater. 33(26), 2214834 (2023). https://doi.org/10.1002/adfm.202214834
- J.-W. Lee, D.-K. Lee, D.-N. Jeong, N.-G. Park, Control of crystal growth toward scalable fabrication of perovskite solar cells. Adv. Funct. Mater. 29(47), 1807047 (2019). https://doi.org/10.1002/adfm.201807047
- H. Hu, M. Singh, X. Wan, J. Tang, C.-W. Chu et al., Nucleation and crystal growth control for scalable solution-processed organic–inorganic hybrid perovskite solar cells. J. Mater. Chem. A 8(4), 1578–1603 (2020). https://doi.org/10.1039/c9ta11245f
- J. Yu, G. Liu, C. Chen, Y. Li, M. Xu et al., Perovskite CsPbBr3 crystals: growth and applications. J. Mater. Chem. C 8(19), 6326–6341 (2020). https://doi.org/10.1039/d0tc00922a
- W. Chen, X. Li, Y. Li, Y. Li, A review: crystal growth for high-performance all-inorganic perovskite solar cells. Energy Environ. Sci. 13(7), 1971–1996 (2020). https://doi.org/10.1039/d0ee00215a
- G. Hu, J. Guo, J. Jiang, L. Wang, J. Zhang et al., Capillary condensation-driven growth of perovskite nanowire arrays for multi-functional photodetector. Light Sci. Appl. 14(1), 61 (2025). https://doi.org/10.1038/s41377-024-01680-2
- R. Abe, A. Suzuki, K. Watanabe, A. Kikuchi, Fabrication of CH3NH3PbBr 3-based perovskite single-crystal arrays by spin-coating method using hydrophobic patterned substrate. Phys. Status Solidi A 217(3), 1900511 (2020). https://doi.org/10.1002/pssa.201900511
- S. Jariwala, H. Sun, G.W.P. Adhyaksa, A. Lof, L.A. Muscarella et al., Local crystal misorientation influences non-radiative recombination in halide perovskites. Joule 3(12), 3048–3060 (2019). https://doi.org/10.1016/j.joule.2019.09.001
- W. Chen, H. Chen, G. Xu, R. Xue, S. Wang et al., Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule 3(1), 191–204 (2019). https://doi.org/10.1016/j.joule.2018.10.011
- X. Zhou, Y. Cai, M. Xu, J. Li, C. Sheng et al., Dewetting-assisted patterning of organic semiconductors for micro-OLED arrays with a pixel size of 1 µm. Small Methods 6(4), 2101509 (2022). https://doi.org/10.1002/smtd.202101509
- J. Hu, Z. Li, P. Huang, L. Huang, S. Xu, In situ dewetting assisted plasma etching of large-scale uniform nanocones on arbitrarily structured glass elements. Adv. Funct. Mater. 34(51), 2410563 (2024). https://doi.org/10.1002/adfm.202410563
- J. Zhang, Y. Yang, W. Li, Z. Tang, Z. Hu et al., Precise arraying of perovskite single crystals through droplet-assisted self-alignment. Sci. Adv. 10(28), eado0873 (2024). https://doi.org/10.1126/sciadv.ado0873
- L. Shi, L. Meng, F. Jiang, Y. Ge, F. Li et al., In situ inkjet printing strategy for fabricating perovskite quantum dot patterns. Adv. Funct. Mater. 29(37), 1903648 (2019). https://doi.org/10.1002/adfm.201903648
- H. Eggers, F. Schackmar, T. Abzieher, Q. Sun, U. Lemmer et al., Inkjet-printed micrometer-thick perovskite solar cells with large columnar grains. Adv. Energy Mater. 10(6), 1903184 (2020). https://doi.org/10.1002/aenm.201903184
- C. Liang, P. Li, H. Gu, Y. Zhang, F. Li et al., One-step inkjet printed perovskite in air for efficient light harvesting. Sol. RRL 2(2), 1700217 (2018). https://doi.org/10.1002/solr.201700217
- J. Zhao, L.-W. Lo, Z. Yu, C. Wang, Handwriting of perovskite optoelectronic devices on diverse substrates. Nat. Photon. 17(11), 964–971 (2023). https://doi.org/10.1038/s41566-023-01266-1
- M. Duan, Z. Feng, Y. Wu, Y. Yin, Z. Hu et al., Inkjet-printed micrometer-thick patterned perovskite quantum dot films for efficient blue-to-green photoconversion. Adv. Mater. Technol. 4(12), 1900779 (2019). https://doi.org/10.1002/admt.201900779
- S. Wang, X. Kong, S. Cai, Y. Luo, Y. Gu et al., Solvent engineering in perovskite nanocrystal colloid inks for super-fine electrohydrodynamic inkjet printing of color conversion microstructures in micro-LED displays. Chin. Chem. Lett. 36(8), 110976 (2025). https://doi.org/10.1016/j.cclet.2025.110976
- F. Schackmar, H. Eggers, M. Frericks, B.S. Richards, U. Lemmer et al., Perovskite solar cells with all-inkjet-printed absorber and charge transport layers. Adv. Mater. Technol. 6(2), 2000271 (2021). https://doi.org/10.1002/admt.202000271
- B. Derby, Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40, 395–414 (2010). https://doi.org/10.1146/annurev-matsci-070909-104502
- X. Peng, J. Yuan, S. Shen, M. Gao, A.S.R. Chesman et al., Perovskite and organic solar cells fabricated by inkjet printing: progress and prospects. Adv. Funct. Mater. 27(41), 1703704 (2017). https://doi.org/10.1002/adfm.201703704
- D. Lohse, Fundamental fluid dynamics challenges in inkjet printing. Annu. Rev. Fluid Mech. 54, 349–382 (2022). https://doi.org/10.1146/annurev-fluid-022321-114001
- N. Reis, C. Ainsley, B. Derby, Ink-jet delivery of p suspensions by piezoelectric droplet ejectors. J. Appl. Phys. 97(9), 094903 (2005). https://doi.org/10.1063/1.1888026
- O.A. Basaran, H. Gao, P.P. Bhat, Nonstandard inkjets. Annu. Rev. Fluid Mech. 45, 85–113 (2013). https://doi.org/10.1146/annurev-fluid-120710-101148
- L. Zhang, S. Chen, J. Zeng, Z. Jiang, Q. Ai et al., Inkjet-printing controlled phase evolution boosts the efficiency of hole transport material free and carbon-based CsPbBr3 perovskite solar cells exceeding 9%. Energy Environ. Mater. 7(2), e12543 (2024). https://doi.org/10.1002/eem2.12543
- F. Mathies, E.J.W. List-Kratochvil, E.L. Unger, Advances in inkjet-printed metal halide perovskite photovoltaic and optoelectronic devices. Energy Technol. 8(4), 1900991 (2020). https://doi.org/10.1002/ente.201900991
- J.E. Fromm, Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J. Res. Dev. 28(3), 322–333 (1984). https://doi.org/10.1147/rd.283.0322
- N. Reis, B. Derby, Ink jet deposition of ceramic suspensions: modeling and experiments of droplet formation. MRS Online Proc. Libr. 625(1), 117 (2000). https://doi.org/10.1557/PROC-625-117
- J. Eggers, Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 71(21), 3458–3460 (1993). https://doi.org/10.1103/PhysRevLett.71.3458
- J. Eggers, Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69(3), 865–930 (1997). https://doi.org/10.1103/revmodphys.69.865
- T.A. Cohen, D. Sharp, K.T. Kluherz, Y. Chen, C. Munley et al., Direct patterning of perovskite nanocrystals on nanophotonic cavities with electrohydrodynamic inkjet printing. Nano Lett. 22(14), 5681–5688 (2022). https://doi.org/10.1021/acs.nanolett.2c00473
- Y. Chen, X. Yang, X. Fan, A. Kang, X. Kong et al., Electrohydrodynamic inkjet printing of three-dimensional perovskite nanocrystal arrays for full-color micro-LED displays. ACS Appl. Mater. Interfaces 16(19), 24908–24919 (2024). https://doi.org/10.1021/acsami.4c02594
- X. Yang, S. Wang, Y. Hou, Y. Wang, T. Zhang et al., Dual-ligand red perovskite ink for electrohydrodynamic printing color conversion arrays over 2540 dpi in near-eye micro-LED display. Nano Lett. 24(12), 3661–3669 (2024). https://doi.org/10.1021/acs.nanolett.3c04927
- F. Hermerschmidt, F. Mathies, V.R.F. Schröder, C. Rehermann, N.Z. Morales et al., Finally, inkjet-printed metal halide perovskite LEDs–utilizing seed crystal templating of salty PEDOT: PSS. Mater. Horiz. 7(7), 1773–1781 (2020). https://doi.org/10.1039/d0mh00512f
- J. Philip, P.D. Shima, B. Raj, Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures. Appl. Phys. Lett. 91(20), 203108 (2007). https://doi.org/10.1063/1.2812699
- Z. Li, P. Li, G. Chen, Y. Cheng, X. Pi et al., Ink engineering of inkjet printing perovskite. ACS Appl. Mater. Interfaces 12(35), 39082–39091 (2020). https://doi.org/10.1021/acsami.0c09485
- Y. Cheng, H. Wu, J. Ma, P. Li, Z. Gu et al., Droplet manipulation and crystallization regulation in inkjet-printed perovskite film formation. CCS Chem. 4(5), 1465–1485 (2022). https://doi.org/10.31635/ccschem.022.202101583
- Z. Zhang, Z. Li, Y. Chen, Z. Zhang, K. Fan et al., Progress on inkjet printing technique for perovskite films and their optoelectronic and optical applications. ACS Photonics 10(10), 3435–3450 (2023). https://doi.org/10.1021/acsphotonics.3c00897
- Y.-J. Choi, K. Eun, R. Bail, C. Doo, Systematic development of a novel ternary solvent system for uniform inkjet printing of organic light-emitting diodes. ACS Appl. Mater. Interfaces 17(17), 25546–25561 (2025). https://doi.org/10.1021/acsami.5c00941
- J. Stringer, B. Derby, Limits to feature size and resolution in ink jet p
References
Q.A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza et al., Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137(32), 10276–10281 (2015). https://doi.org/10.1021/jacs.5b05602
Q.A. Akkerman, G. Rainò, M.V. Kovalenko, L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17(5), 394–405 (2018). https://doi.org/10.1038/s41563-018-0018-4
L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015). https://doi.org/10.1021/nl5048779
J. Shamsi, A.S. Urban, M. Imran, L. De Trizio, L. Manna, Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119(5), 3296–3348 (2019). https://doi.org/10.1021/acs.chemrev.8b00644
M. Karlsson, Z. Yi, S. Reichert, X. Luo, W. Lin et al., Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat. Commun. 12, 361 (2021). https://doi.org/10.1038/s41467-020-20582-6
L. Zhang, L. Mei, K. Wang, Y. Lv, S. Zhang et al., Advances in the application of perovskite materials. Nano-Micro Lett. 15, 177 (2023). https://doi.org/10.1007/s40820-023-01140-3
J. Kang, L.-W. Wang, High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8(2), 489–493 (2017). https://doi.org/10.1021/acs.jpclett.6b02800
S. Kumar, J. Jagielski, N. Kallikounis, Y.-H. Kim, C. Wolf et al., Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: achieving recommendation 2020 color coordinates. Nano Lett. 17(9), 5277–5284 (2017). https://doi.org/10.1021/acs.nanolett.7b01544
H. Huang, M.I. Bodnarchuk, S.V. Kershaw, M.V. Kovalenko, A.L. Rogach, Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett. 2(9), 2071–2083 (2017). https://doi.org/10.1021/acsenergylett.7b00547
Y. Wu, F. Xie, H. Chen, X. Yang, H. Su et al., Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv. Mater. 29(28), 1701073 (2017). https://doi.org/10.1002/adma.201701073
M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134
H. Chen, C. Liu, J. Xu, A. Maxwell, W. Zhou et al., Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384(6692), 189–193 (2024). https://doi.org/10.1126/science.adm9474
S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang et al., Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380(6643), 404–409 (2023). https://doi.org/10.1126/science.adg3755
Y. Rong, Y. Hu, A. Mei, H. Tan, M.I. Saidaminov et al., Challenges for commercializing perovskite solar cells. Science 361(6408), eaat8235 (2018). https://doi.org/10.1126/science.aat8235
S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun et al., Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632(8025), 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3
M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (version 66). Prog. Photovoltaics Res. Appl. 33(7), 795–810 (2025). https://doi.org/10.1002/pip.3919
J. Liu, Y. He, L. Ding, H. Zhang, Q. Li et al., Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature 635(8039), 596–603 (2024). https://doi.org/10.1038/s41586-024-07997-7
Z. Liu, R. Lin, M. Wei, M. Yin, P. Wu et al., All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites. Nat. Mater. 24(2), 252–259 (2025). https://doi.org/10.1038/s41563-024-02073-x
H. Wang, X. Gong, D. Zhao, Y.-B. Zhao, S. Wang et al., A multi-functional molecular modifier enabling efficient large-area perovskite light-emitting diodes. Joule 4(9), 1977–1987 (2020). https://doi.org/10.1016/j.joule.2020.07.002
M.T. Hoang, A.S. Pannu, Y. Yang, S. Madani, P. Shaw et al., Surface treatment of inorganic CsPbI3 nanocrystals with guanidinium iodide for efficient perovskite light-emitting diodes with high brightness. Nano-Micro Lett. 14(1), 69 (2022). https://doi.org/10.1007/s40820-022-00813-9
G.H. Lee, K. Kim, Y. Kim, J. Yang, M.K. Choi, Recent advances in patterning strategies for full-color perovskite light-emitting diodes. Nano-Micro Lett. 16(1), 45 (2023). https://doi.org/10.1007/s40820-023-01254-8
C. Sun, Y. Jiang, K. Wei, M. Yuan, Perovskite light-emitting diodes toward commercial full-colour displays: progress and key technical obstacles. Light: Adv. Manuf. 4(3), 1 (2023). https://doi.org/10.37188/lam.2023.015
B.R. Sutherland, E.H. Sargent, Perovskite photonic sources. Nat. Photonics 10(5), 295–302 (2016). https://doi.org/10.1038/nphoton.2016.62
F. Palazon, F. Di Stasio, Q.A. Akkerman, R. Krahne, M. Prato et al., Polymer-free films of inorganic halide perovskite nanocrystals as UV-to-white color-conversion layers in LEDs. Chem. Mater. 28(9), 2902–2906 (2016). https://doi.org/10.1021/acs.chemmater.6b00954
Z.-K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9(9), 687–692 (2014). https://doi.org/10.1038/nnano.2014.149
J.S. Kim, J.-M. Heo, G.-S. Park, S.-J. Woo, C. Cho et al., Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611(7937), 688–694 (2022). https://doi.org/10.1038/s41586-022-05304-w
Y. Nong, J. Yao, J. Li, L. Xu, Z. Yang et al., Boosting external quantum efficiency of blue perovskite QLEDs exceeding 23% by trifluoroacetate passivation and mixed hole transportation design. Adv. Mater. 36(27), 2402325 (2024). https://doi.org/10.1002/adma.202402325
L. Kong, Y. Sun, B. Zhao, K. Ji, J. Feng et al., Fabrication of red-emitting perovskite LEDs by stabilizing their octahedral structure. Nature 631(8019), 73–79 (2024). https://doi.org/10.1038/s41586-024-07531-9
Z. Liu, W. Qiu, X. Peng, G. Sun, X. Liu et al., Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 33(43), 2103268 (2021). https://doi.org/10.1002/adma.202103268
Y. Gao, H. Li, X. Dai, X. Ying, Z. Liu et al., Microsecond-response perovskite light-emitting diodes for active-matrix displays. Nat. Electron. 7(6), 487–496 (2024). https://doi.org/10.1038/s41928-024-01181-5
S. Yuan, L. Dai, Y. Sun, F. Auras, Y.-H. Zhou et al., Efficient blue electroluminescence from reduced-dimensional perovskites. Nat. Photon. 18(5), 425–431 (2024). https://doi.org/10.1038/s41566-024-01382-6
G.-H. Lee, H. Moon, H. Kim, G.H. Lee, W. Kwon et al., Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5(2), 149–165 (2020). https://doi.org/10.1038/s41578-019-0167-3
S. Choi, H. Lee, R. Ghaffari, T. Hyeon, D.-H. Kim, Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28(22), 4203–4218 (2016). https://doi.org/10.1002/adma.201504150
J.I. Kwon, G. Park, G.H. Lee, J.H. Jang, N.J. Sung et al., Ultrahigh-resolution full-color perovskite nanocrystal patterning for ultrathin skin-attachable displays. Sci. Adv. 8(43), eadd0697 (2022). https://doi.org/10.1126/sciadv.add0697
S.G.R. Bade, X. Shan, P.T. Hoang, J. Li, T. Geske et al., Stretchable light-emitting diodes with organometal-halide-perovskite–polymer composite emitters. Adv. Mater. 29(23), 1607053 (2017). https://doi.org/10.1002/adma.201607053
Y. Shen, M.-N. Li, Y. Li, F.-M. Xie, H.-Y. Wu et al., Rational interface engineering for efficient flexible perovskite light-emitting diodes. ACS Nano 14(5), 6107–6116 (2020). https://doi.org/10.1021/acsnano.0c01908
F. Chun, B. Zhang, Y. Gao, X. Wei, Q. Zhang et al., Multicolour stretchable perovskite electroluminescent devices for user-interactive displays. Nat. Photon. 18(8), 856–863 (2024). https://doi.org/10.1038/s41566-024-01455-6
Y.H. Song, J. Ge, L.B. Mao, K.H. Wang, X.L. Tai et al., Planar defect-free pure red perovskite light-emitting diodes via metastable phase crystallization. Sci. Adv. 8(45), eabq2321 (2022). https://doi.org/10.1126/sciadv.abq2321
C. Sun, Y. Jiang, M. Cui, L. Qiao, J. Wei et al., High-performance large-area quasi-2D perovskite light-emitting diodes. Nat. Commun. 12, 2207 (2021). https://doi.org/10.1038/s41467-021-22529-x
J. Luo, J. Li, L. Grater, R. Guo, A.R. bin Mohd Yusoff et al., Vapour-deposited perovskite light-emitting diodes. Nat. Rev. Mater. 9(4), 282–294 (2024). https://doi.org/10.1038/s41578-024-00651-8
Y. Zou, P. Teng, W. Xu, G. Zheng, W. Lin et al., Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters. Nat. Commun. 12, 4831 (2021). https://doi.org/10.1038/s41467-021-25092-7
J.-W. Lee, S.M. Kang, Patterning of metal halide perovskite thin films and functional layers for optoelectronic applications. Nano-Micro Lett. 15(1), 184 (2023). https://doi.org/10.1007/s40820-023-01154-x
X. Yang, L. Ma, L. Li, M. Luo, X. Wang et al., Towards micro-PeLED displays. Nat. Rev. Mater. 8(5), 341–353 (2023). https://doi.org/10.1038/s41578-022-00522-0
T.-H. Han, K.Y. Jang, Y. Dong, R.H. Friend, E.H. Sargent et al., A roadmap for the commercialization of perovskite light emitters. Nat. Rev. Mater. 7(10), 757–777 (2022). https://doi.org/10.1038/s41578-022-00459-4
Y. Dong, Y.-K. Wang, F. Yuan, A. Johnston, Y. Liu et al., Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15(8), 668–674 (2020). https://doi.org/10.1038/s41565-020-0714-5
L. Zhang, C. Sun, T. He, Y. Jiang, J. Wei et al., High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light. Sci. Appl. 10, 61 (2021). https://doi.org/10.1038/s41377-021-00501-0
X. Zhao, Z.-K. Tan, Large-area near-infrared perovskite light-emitting diodes. Nat. Photonics 14(4), 215–218 (2020). https://doi.org/10.1038/s41566-019-0559-3
C. Chen, T.-H. Han, S. Tan, J. Xue, Y. Zhao et al., Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr3 emitters prepared via low-temperature in situ dynamic thermal crystallization. Nano Lett. 20(6), 4673–4680 (2020). https://doi.org/10.1021/acs.nanolett.0c01550
Y. Shen, J.-K. Wang, Y.-Q. Li, K.-C. Shen, Z.-H. Su et al., Interfacial “anchoring effect” enables efficient large-area sky-blue perovskite light-emitting diodes. Adv. Sci. 8(19), 2102213 (2021). https://doi.org/10.1002/advs.202102213
Y.-H. Kim, S. Kim, A. Kakekhani, J. Park, J. Park et al., Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics 15(2), 148–155 (2021). https://doi.org/10.1038/s41566-020-00732-4
S. Chu, W. Chen, Z. Fang, X. Xiao, Y. Liu et al., Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating. Nat. Commun. 12, 147 (2021). https://doi.org/10.1038/s41467-020-20433-4
C. Chen, L. Zeng, Z. Jiang, Z. Xu, Y. Chen et al., Vacuum-assisted preparation of high-quality quasi-2D perovskite thin films for large-area light-emitting diodes. Adv. Funct. Mater. 32(4), 2107644 (2022). https://doi.org/10.1002/adfm.202107644
P. Du, J. Li, L. Wang, L. Sun, X. Wang et al., Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nat. Commun. 12, 4751 (2021). https://doi.org/10.1038/s41467-021-25093-6
S. Chu, Y. Zhang, P. Xiao, W. Chen, R. Tang et al., Large-area and efficient sky-blue perovskite light-emitting diodes via blade-coating. Adv. Mater. 34(16), 2108939 (2022). https://doi.org/10.1002/adma.202108939
Y.-H. Kim, J. Park, S. Kim, J.S. Kim, H. Xu et al., Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nat. Nanotechnol. 17(6), 590–597 (2022). https://doi.org/10.1038/s41565-022-01113-4
D. Zhang, Q. Zhang, B. Ren, Y. Zhu, M. Abdellah et al., Large-scale planar and spherical light-emitting diodes based on arrays of perovskite quantum wires. Nat. Photonics 16(4), 284–290 (2022). https://doi.org/10.1038/s41566-022-00978-0
Y.B. Cao, D. Zhang, Q. Zhang, X. Qiu, Y. Zhou et al., High-efficiency, flexible and large-area red/green/blue all-inorganic metal halide perovskite quantum wires-based light-emitting diodes. Nat. Commun. 14, 4611 (2023). https://doi.org/10.1038/s41467-023-40150-y
L. Kong, C. Sun, M. You, Y. Jiang, G. Wang et al., Universal molecular control strategy for scalable fabrication of perovskite light-emitting diodes. Nano Lett. 23(3), 985–992 (2023). https://doi.org/10.1021/acs.nanolett.2c04459
J. Li, P. Du, Q. Guo, L. Sun, Z. Shen et al., Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays. Nat. Photon. 17(5), 435–441 (2023). https://doi.org/10.1038/s41566-023-01177-1
G. Shi, Z. Huang, R. Qiao, W. Chen, Z. Li et al., Manipulating solvent fluidic dynamics for large-area perovskite film-formation and white light-emitting diodes. Nat. Commun. 15(1), 1066 (2024). https://doi.org/10.1038/s41467-024-45488-5
C.-H. Tien, J.-Q. Liu, L.-C. Chen, Post-hot-cast annealing deposition of perovskite films with infused multifunctional organic molecules to enhance the performance of large-area light-emitting devices. RSC Adv. 14(26), 18567–18575 (2024). https://doi.org/10.1039/d4ra02652g
K. Wei, T. Zhou, Y. Jiang, C. Sun, Y. Liu et al., Perovskite heteroepitaxy for high-efficiency and stable pure-red LEDs. Nature 638(8052), 949–956 (2025). https://doi.org/10.1038/s41586-024-08503-9
G. Chen, S. Wang, Z. Yu, C. Dong, P. Jia et al., Regulation of nucleation and crystallization for blade-coating large-area CsPbBr3 perovskite light-emitting diodes. Sci. Bull. 70(2), 212–222 (2025). https://doi.org/10.1016/j.scib.2024.10.022
W.-Z. Liu, Y. Wang, J.-Z. Xu, S.-H. Xu, D.-Y. Zhou et al., Enhancing carrier balance in blade-coated near-infrared quantum dot light-emitting diodes by a PSS-rich PEDOT: PSS hole-buffering layer. Small 21(44), e04662 (2025). https://doi.org/10.1002/smll.202504662
Y. Li, N. Meng, Y. Xu, B. Yu, J. Liu et al., Sequential layer-by-layer deposition for high-performance fully thermal-evaporated red perovskite light-emitting diodes. Nat. Commun. 16, 6908 (2025). https://doi.org/10.1038/s41467-025-62282-z
S. Ding, Q. Wang, W. Gu, Z. Tang, B. Zhang et al., Phase dimensions resolving of efficient and stable perovskite light-emitting diodes at high brightness. Nat. Photon. 18(4), 363–370 (2024). https://doi.org/10.1038/s41566-023-01372-0
S. Zheng, Z. Wang, N. Jiang, H. Huang, X. Wu et al., Ultralow voltage-driven efficient and stable perovskite light-emitting diodes. Sci. Adv. 10(36), eadp8473 (2024). https://doi.org/10.1126/sciadv.adp8473
H. Li, Y. Feng, M. Zhu, Y. Gao, C. Fan et al., Nanosurface-reconstructed perovskite for highly efficient and stable active-matrix light-emitting diode display. Nat. Nanotechnol. 19(5), 638–645 (2024). https://doi.org/10.1038/s41565-024-01652-y
N.-G. Park, K. Zhu, Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5(5), 333–350 (2020). https://doi.org/10.1038/s41578-019-0176-2
H. Liu, G. Shi, C. Peng, W. Chen, H. Yao et al., Advances and challenges in large-area perovskite light-emitting diodes. Adv. Mater. 37(25), 2410154 (2025). https://doi.org/10.1002/adma.202410154
Z. Ma, Z. Shi, C. Qin, M. Cui, D. Yang et al., Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons. ACS Nano 14(4), 4475–4486 (2020). https://doi.org/10.1021/acsnano.9b10148
Y. Zou, Y. Li, X. Pang, Y. Song, W. Xu et al., Unraveling deposition atmosphere impact on reproducibility of perovskite light-emitting diodes. J. Phys. Chem. Lett. 14(21), 5025–5032 (2023). https://doi.org/10.1021/acs.jpclett.3c01067
Y. Han, J. Wang, C.G. Bischak, S. Kim, K. Lee et al., Significance of ambient temperature control for highly reproducible layered perovskite light-emitting diodes. ACS Photonics 7(9), 2489–2497 (2020). https://doi.org/10.1021/acsphotonics.0c00779
Y. Zhao, C. Liu, M. Li, X. Chen, Z. Song et al., Custom-tailored surface morphology for efficient quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater. 35(37), 2503978 (2025). https://doi.org/10.1002/adfm.202503978
S. Chi, Y. Chen, X. Li, J. Wang, Z. Zhao et al., Functional molecule surface infiltration treatment for efficient all-inorganic perovskite light-emitting diodes. Chem. Eng. J. 514, 162787 (2025). https://doi.org/10.1016/j.cej.2025.162787
S. Wang, X. Sun, J. Shi, R. Zhao, B. Zhang et al., Additive-driven enhancement of crystallization: strategies and prospects for boosting photoluminescence quantum yields in halide perovskite films for light-emitting diodes. Adv. Mater. 36(52), e2413673 (2024). https://doi.org/10.1002/adma.202413673
M. Hu, S. Fernández, Q. Zhou, P. Narayanan, B. Saini et al., Water additives improve the efficiency of violet perovskite light-emitting diodes. Matter 6(7), 2356–2367 (2023). https://doi.org/10.1016/j.matt.2023.05.018
L. Zhu, H. Cao, C. Xue, H. Zhang, M. Qin et al., Unveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodes. Nat. Commun. 12(1), 5081 (2021). https://doi.org/10.1038/s41467-021-25407-8
M. Li, Y. Zhao, J. Guo, X. Qin, Q. Zhang et al., Phase regulation and defect passivation enabled by phosphoryl chloride molecules for efficient quasi-2D perovskite light-emitting diodes. Nano-Micro Lett. 15(1), 119 (2023). https://doi.org/10.1007/s40820-023-01089-3
M. Li, Y. Yang, Z. Kuang, C. Hao, S. Wang et al., Acceleration of radiative recombination for efficient perovskite LEDs. Nature 630(8017), 631–635 (2024). https://doi.org/10.1038/s41586-024-07460-7
J. Li, C. Duan, Q. Zhang, C. Chen, Q. Wen et al., Self-generated buried submicrocavities for high-performance near-infrared perovskite light-emitting diode. Nano-Micro Lett. 15(1), 125 (2023). https://doi.org/10.1007/s40820-023-01097-3
Y.-K. Wang, F. Jia, X. Li, S. Teale, P. Xia et al., Self-assembled monolayer–based blue perovskite LEDs. Sci. Adv. 9(36), eadh2140 (2023). https://doi.org/10.1126/sciadv.adh2140
N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao et al., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10(11), 699–704 (2016). https://doi.org/10.1038/nphoton.2016.185
Y. Cao, N. Wang, H. Tian, J. Guo, Y. Wei et al., Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562(7726), 249–253 (2018). https://doi.org/10.1038/s41586-018-0576-2
S. Yuan, Z.-K. Wang, M.-P. Zhuo, Q.-S. Tian, Y. Jin et al., Self-assembled high quality CsPbBr3 quantum dot films toward highly efficient light-emitting diodes. ACS Nano 12(9), 9541–9548 (2018). https://doi.org/10.1021/acsnano.8b05185
L. Ni, U. Huynh, A. Cheminal, T.H. Thomas, R. Shivanna et al., Real-time observation of exciton–phonon coupling dynamics in self-assembled hybrid perovskite quantum wells. ACS Nano 11(11), 10834–10843 (2017). https://doi.org/10.1021/acsnano.7b03984
B. Yu, C. Zhang, L. Chen, X. Huang, Z. Qin et al., Exciton linewidth broadening induced by exciton–phonon interactions in CsPbBr3 nanocrystals. J. Chem. Phys. 154(21), 214502 (2021). https://doi.org/10.1063/5.0051611
Y. Jiang, C. Qin, M. Cui, T. He, K. Liu et al., Spectra stable blue perovskite light-emitting diodes. Nat. Commun. 10, 1868 (2019). https://doi.org/10.1038/s41467-019-09794-7
J. Jiang, M. Shi, Z. Xia, Y. Cheng, Z. Chu et al., Efficient pure-red perovskite light-emitting diodes with strong passivation via ultrasmall-sized molecules. Sci. Adv. 10(18), eadn5683 (2024). https://doi.org/10.1126/sciadv.adn5683
F. Yuan, G. Folpini, T. Liu, U. Singh, A. Treglia et al., Bright and stable near-infrared lead-free perovskite light-emitting diodes. Nat. Photon. 18(2), 170–176 (2024). https://doi.org/10.1038/s41566-023-01351-5
Z. Xia, J. Jiang, A. Wang, D. An, Z. Li et al., Overall performance improvement of perovskite green LEDs by CsPbBr3&Cs4PbBr6 nanocrystals and molecular doping. Adv. Mater. 37(34), 2506187 (2025). https://doi.org/10.1002/adma.202506187
A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore et al., Quantum dot–induced phase stabilization of α-CsPbI3perovskite for high-efficiency photovoltaics. Science 354(6308), 92–95 (2016). https://doi.org/10.1126/science.aag2700
A.D. Wright, C. Verdi, R.L. Milot, G.E. Eperon, M.A. Pérez-Osorio et al., Electron–phonon coupling in hybrid lead halide perovskites. Nat. Commun. 7, 11755 (2016). https://doi.org/10.1038/ncomms11755
S.-D. Baek, W. Shao, W. Feng, Y. Tang, Y.H. Lee et al., Grain engineering for efficient near-infrared perovskite light-emitting diodes. Nat. Commun. 15, 10760 (2024). https://doi.org/10.1038/s41467-024-55075-3
H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf et al., Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350(6265), 1222–1225 (2015). https://doi.org/10.1126/science.aad1818
K. Lin, J. Xing, L.N. Quan, F.P.G. de Arquer, X. Gong et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562(7726), 245–248 (2018). https://doi.org/10.1038/s41586-018-0575-3
Z. Chu, W. Zhang, J. Jiang, Z. Qu, F. Ma et al., Blue light-emitting diodes based on quasi-two-dimensional perovskite with efficient charge injection and optimized phase distribution via an alkali metal salt. Nat. Electron. 6(5), 360–369 (2023). https://doi.org/10.1038/s41928-023-00955-7
Y.-H. Kim, C. Wolf, Y.-T. Kim, H. Cho, W. Kwon et al., Highly efficient light-emitting diodes of colloidal metal–halide perovskite nanocrystals beyond quantum size. ACS Nano 11(7), 6586–6593 (2017). https://doi.org/10.1021/acsnano.6b07617
X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu et al., CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26(15), 2435–2445 (2016). https://doi.org/10.1002/adfm.201600109
Z. Xiao, R.A. Kerner, L. Zhao, N.L. Tran, K.M. Lee et al., Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11(2), 108–115 (2017). https://doi.org/10.1038/nphoton.2016.269
H. Wang, X. Zhang, Q. Wu, F. Cao, D. Yang et al., Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 10(1), 665 (2019). https://doi.org/10.1038/s41467-019-08425-5
Y. Hassan, J.H. Park, M.L. Crawford, A. Sadhanala, J. Lee et al., Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591(7848), 72–77 (2021). https://doi.org/10.1038/s41586-021-03217-8
J. Zhang, T. Zhang, Z. Ma, F. Yuan, X. Zhou et al., A multifunctional “halide-equivalent” anion enabling efficient CsPb(Br/I)3 nanocrystals pure-red light-emitting diodes with external quantum efficiency exceeding 23%. Adv. Mater. 35(8), 2209002 (2023). https://doi.org/10.1002/adma.202209002
J. Zhang, B. Cai, X. Zhou, F. Yuan, C. Yin et al., Ligand-induced cation-π interactions enable high-efficiency, bright, and spectrally stable rec. 2020 pure-red perovskite light-emitting diodes. Adv. Mater. 35(45), e2303938 (2023). https://doi.org/10.1002/adma.202303938
X. Fu, M. Wang, Y. Jiang, X. Guo, X. Zhao et al., Mixed-halide perovskites with halogen bond induced interlayer locking structure for stable pure-red PeLEDs. Nano Lett. 23(14), 6465–6473 (2023). https://doi.org/10.1021/acs.nanolett.3c01319
Y. Liu, Y. Dong, T. Zhu, D. Ma, A. Proppe et al., Bright and stable light-emitting diodes based on perovskite quantum dots in perovskite matrix. J. Am. Chem. Soc. 143(38), 15606–15615 (2021). https://doi.org/10.1021/jacs.1c02148
X. Yang, L. Ma, M. Yu, H.-H. Chen, Y. Ji et al., Focus on perovskite emitters in blue light-emitting diodes. Light Sci. Appl. 12(1), 177 (2023). https://doi.org/10.1038/s41377-023-01206-2
J. Zhang, L. Wang, X. Zhang, G. Xie, G. Jia et al., Blue light-emitting diodes based on halide perovskites: recent advances and strategies. Mater. Today 51, 222–246 (2021). https://doi.org/10.1016/j.mattod.2021.10.023
M. Aftabuzzaman, Y. Hong, S. Jeong, R. Levan, S.J. Lee et al., Colloidal perovskite nanocrystals for blue-light-emitting diodes and displays. Adv. Sci. 12(15), 2409736 (2025). https://doi.org/10.1002/advs.202409736
Y. Deng, C.H. Van Brackle, X. Dai, J. Zhao, B. Chen et al., Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Sci. Adv. 5(12), eaax7537 (2019). https://doi.org/10.1126/sciadv.aax7537
J. Yang, E.L. Lim, L. Tan, Z. Wei, Ink engineering in blade-coating large-area perovskite solar cells. Adv. Energy Mater. 12(28), 2200975 (2022). https://doi.org/10.1002/aenm.202200975
Z. Yang, C.-C. Chueh, F. Zuo, J.H. Kim, P.-W. Liang et al., High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv. Energy Mater. 5(13), 1500328 (2015). https://doi.org/10.1002/aenm.201500328
J. Li, R. Munir, Y. Fan, T. Niu, Y. Liu et al., Phase transition control for high-performance blade-coated perovskite solar cells. Joule 2(7), 1313–1330 (2018). https://doi.org/10.1016/j.joule.2018.04.011
Y. Xiao, C. Zuo, J.-X. Zhong, W.-Q. Wu, L. Shen et al., Large-area blade-coated solar cells: advances and perspectives. Adv. Energy Mater. 11(21), 2100378 (2021). https://doi.org/10.1002/aenm.202100378
W. Zhao, S. Zhang, Y. Zhang, S. Li, X. Liu et al., Environmentally friendly solvent-processed organic solar cells that are highly efficient and adaptable for the blade-coating method. Adv. Mater. 30(4), 1704837 (2018). https://doi.org/10.1002/adma.201704837
S.G.R. Bade, J. Li, X. Shan, Y. Ling, Y. Tian et al., Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes. ACS Nano 10(2), 1795–1801 (2016). https://doi.org/10.1021/acsnano.5b07506
Y. Liu, J. Cui, K. Du, H. Tian, Z. He et al., Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photonics 13(11), 760–764 (2019). https://doi.org/10.1038/s41566-019-0505-4
Z. Chen, Z. Li, C. Zhang, X.-F. Jiang, D. Chen et al., Recombination dynamics study on nanostructured perovskite light-emitting devices. Adv. Mater. 30(38), 1801370 (2018). https://doi.org/10.1002/adma.201801370
Q. Hu, L. Zhao, J. Wu, K. Gao, D. Luo et al., In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4- cage nanops. Nat. Commun. 8, 15688 (2017). https://doi.org/10.1038/ncomms15688
Y.-H. Kim, Y. Zhai, E.A. Gaulding, S.N. Habisreutinger, T. Moot et al., Strategies to achieve high circularly polarized luminescence from colloidal organic–inorganic hybrid perovskite nanocrystals. ACS Nano 14(7), 8816–8825 (2020). https://doi.org/10.1021/acsnano.0c03418
J. Li, P. Du, S. Li, J. Liu, M. Zhu et al., High-throughput combinatorial optimizations of perovskite light-emitting diodes based on all-vacuum deposition. Adv. Funct. Mater. 29(51), 1903607 (2019). https://doi.org/10.1002/adfm.201903607
J. Li, L. Yang, Q. Guo, P. Du, L. Wang et al., All-vacuum fabrication of yellow perovskite light-emitting diodes. Sci. Bull. 67(2), 178–185 (2022). https://doi.org/10.1016/j.scib.2021.09.003
S. Ji, S.-R. Bae, L. Hu, A.T. Hoang, M.J. Seol et al., Perovskite light-emitting diode display based on MoS2 backplane thin-film transistors. Adv. Mater. 36(2), e2309531 (2024). https://doi.org/10.1002/adma.202309531
J. Ávila, C. Momblona, P.P. Boix, M. Sessolo, H.J. Bolink, Vapor-deposited perovskites: the route to high-performance solar cell production? Joule 1(3), 431–442 (2017). https://doi.org/10.1016/j.joule.2017.07.014
R. Ilmi, D. Zhang, J.D.L. Dutra, N. Dege, L. Zhou et al., A tris β-diketonate europium(III) complex based OLED fabricated by thermal evaporation method displaying efficient bright red emission. Org. Electron. 96, 106216 (2021). https://doi.org/10.1016/j.orgel.2021.106216
C.B. Lee, A. Uddin, X. Hu, Anderssonb, Study of Alq3 thermal evaporation rate effects on the OLED. Mater. Sci. Eng. B 112(1), 14–18 (2004). https://doi.org/10.1016/j.mseb.2004.05.009
F.U. Kosasih, E. Erdenebileg, N. Mathews, S.G. Mhaisalkar, A. Bruno, Thermal evaporation and hybrid deposition of perovskite solar cells and mini-modules. Joule 6(12), 2692–2734 (2022). https://doi.org/10.1016/j.joule.2022.11.004
S.R. Bae, D.Y. Heo, S.Y. Kim, Recent progress of perovskite devices fabricated using thermal evaporation method: perspective and outlook. Mater. Today Adv. 14, 100232 (2022). https://doi.org/10.1016/j.mtadv.2022.100232
F. Mariano, A. Listorti, A. Rizzo, S. Colella, G. Gigli et al., Thermally evaporated hybrid perovskite for hetero-structured green light-emitting diodes. Appl. Phys. Lett. 111(16), 163301 (2017). https://doi.org/10.1063/1.5001828
J. Zhu, J. Li, Y. Huang, N. Liu, L. Sun et al., All-thermally evaporated blue perovskite light-emitting diodes for active matrix displays. Small Methods 8(1), 2300712 (2024). https://doi.org/10.1002/smtd.202300712
I.J. Cleveland, M.N. Tran, A. Dey, E.S. Aydil, Vapor deposition of CsPbBr3 thin films by evaporation of CsBr and PbBr2. J. Vac. Sci. Technol. A Vac. Surf. Films 39(4), 043415 (2021). https://doi.org/10.1116/6.0000875
E.J. Juarez-Perez, L.K. Ono, Y. Qi, Thermal degradation of formamidinium based lead halide perovskites into sym-triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis. J. Mater. Chem. A 7(28), 16912–16919 (2019). https://doi.org/10.1039/C9TA06058H
S. He, L. Qin, Z. Liu, J.-W. Kang, J. Luo et al., Efficient thermally evaporated near-infrared perovskite light-emitting diodes via phase regulation. Nano-Micro Lett. 17(1), 270 (2025). https://doi.org/10.1007/s40820-025-01776-3
S. Sanders, G. Simkus, J. Riedel, A. Ost, A. Schmitz et al., Showerhead-assisted chemical vapor deposition of CsPbBr3 films for LED applications. J. Mater. Res. 36(9), 1813–1823 (2021). https://doi.org/10.1557/s43578-021-00239-w
L. Qiu, S. He, L.K. Ono, Y. Qi, Progress of surface science studies on ABX3-based metal halide perovskite solar cells. Adv. Energy Mater. 10(13), 1902726 (2020). https://doi.org/10.1002/aenm.201902726
M. Shin, H.S. Lee, Y.C. Sim, Y.-H. Cho, K.C. Choi et al., Modulation of growth kinetics of vacuum-deposited CsPbBr3 films for efficient light-emitting diodes. ACS Appl. Mater. Interfaces 12(1), 1944–1952 (2020). https://doi.org/10.1021/acsami.9b20094
Q. Guesnay, F. Sahli, C. Ballif, Q. Jeangros, Vapor deposition of metal halide perovskite thin films: process control strategies to shape layer properties. APL Mater. 9(10), 100703 (2021). https://doi.org/10.1063/5.0060642
Y. Fu, Q. Zhang, D. Zhang, Y. Tang, L. Shu et al., Scalable all-evaporation fabrication of efficient light-emitting diodes with hybrid 2D–3D perovskite nanostructures. Adv. Funct. Mater. 30(39), 2002913 (2020). https://doi.org/10.1002/adfm.202002913
Y. Hu, Q. Wang, Y.-L. Shi, M. Li, L. Zhang et al., Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes. J. Mater. Chem. C 5(32), 8144–8149 (2017). https://doi.org/10.1039/c7tc02477k
N. Kim, M. Shin, S. Jun, B. Choi, J. Kim et al., Highly efficient vacuum-evaporated CsPbBr3 perovskite light-emitting diodes with an electrical conductivity enhanced polymer-assisted passivation layer. ACS Appl. Mater. Interfaces 13(31), 37323–37330 (2021). https://doi.org/10.1021/acsami.1c05447
L. Song, L. Huang, Y. Liu, X. Guo, C. Geng et al., Efficient thermally evaporated perovskite light-emitting devices via a bilateral interface engineering strategy. J. Phys. Chem. Lett. 12(26), 6165–6173 (2021). https://doi.org/10.1021/acs.jpclett.1c01592
Y. Lian, Y. Wang, Y. Yuan, Z. Ren, W. Tang et al., Downscaling micro- and nano-perovskite LEDs. Nature 640(8057), 62–68 (2025). https://doi.org/10.1038/s41586-025-08685-w
E.G. Dyrvik, J.H. Warby, M.M. McCarthy, A.J. Ramadan, K.-A. Zaininger et al., Reducing nonradiative losses in perovskite LEDs through atomic layer deposition of Al2O3 on the hole-injection contact. ACS Nano 17(4), 3289–3300 (2023). https://doi.org/10.1021/acsnano.2c04786
Y. Shen, L.-P. Cheng, Y.-Q. Li, W. Li, J.-D. Chen et al., High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Adv. Mater. 31(24), e1901517 (2019). https://doi.org/10.1002/adma.201901517
K. Wang, Y. Du, J. Liang, J. Zhao, F.F. Xu et al., Wettability-guided screen printing of perovskite microlaser arrays for current-driven displays. Adv. Mater. 32(29), 2001999 (2020). https://doi.org/10.1002/adma.202001999
D. Li, J. Wang, M. Li, G. Xie, B. Guo et al., Inkjet printing matrix perovskite quantum dot light-emitting devices. Adv. Mater. Technol. 5(6), 2000099 (2020). https://doi.org/10.1002/admt.202000099
C. Zou, C. Chang, D. Sun, K.F. Böhringer, L.Y. Lin, Photolithographic patterning of perovskite thin films for multicolor display applications. Nano Lett. 20(5), 3710–3717 (2020). https://doi.org/10.1021/acs.nanolett.0c00701
C. Zheng, X. Zheng, C. Feng, S. Ju, Z. Xu et al., High-brightness perovskite quantum dot light-emitting devices using inkjet printing. Org. Electron. 93, 106168 (2021). https://doi.org/10.1016/j.orgel.2021.106168
J. Wang, D. Li, L. Mu, M. Li, Y. Luo et al., Inkjet-printed full-color matrix quasi-two-dimensional perovskite light-emitting diodes. ACS Appl. Mater. Interfaces 13(35), 41773–41781 (2021). https://doi.org/10.1021/acsami.1c07526
J. Zhao, L.-W. Lo, H. Wan, P. Mao, Z. Yu et al., High-speed fabrication of all-inkjet-printed organometallic halide perovskite light-emitting diodes on elastic substrates. Adv. Mater. 33(48), 2102095 (2021). https://doi.org/10.1002/adma.202102095
Y. Li, Z. Chen, D. Liang, J. Zang, Z. Song et al., Coffee-stain-free perovskite film for efficient printed light-emitting diode. Adv. Opt. Mater. 9(17), 2100553 (2021). https://doi.org/10.1002/adom.202100553
S.-Y. Liang, Y.-F. Liu, H.-J. Zhang, Z.-K. Ji, H. Xia, High-quality patterning of CsPbBr3 perovskite films through lamination-assisted femtosecond laser ablation toward light-emitting diodes. ACS Appl. Mater. Interfaces 14(41), 46958–46963 (2022). https://doi.org/10.1021/acsami.2c11870
Z. Li, S. Chu, Y. Zhang, W. Chen, J. Chen et al., Mass transfer printing of metal-halide perovskite films and nanostructures. Adv. Mater. 34(35), e2203529 (2022). https://doi.org/10.1002/adma.202203529
D.H. Kim, H.J. An, J.-M. Myoung, Red-emitting micro PeLEDs for UHD displays by using capillary force lithography. Chem. Eng. J. 448, 137727 (2022). https://doi.org/10.1016/j.cej.2022.137727
W. Bai, T. Xuan, H. Zhao, S. Shi, X. Zhang et al., Microscale perovskite quantum dot light-emitting diodes (micro-PeLEDs) for full-color displays. Adv. Opt. Mater. 10(12), 2200087 (2022). https://doi.org/10.1002/adom.202200087
G. Vescio, J. Sanchez-Diaz, J.L. Frieiro, R.S. Sánchez, S. Hernández et al., 2D PEA2SnI4 inkjet-printed halide perovskite LEDs on rigid and flexible substrates. ACS Energy Lett. 7(10), 3653–3655 (2022). https://doi.org/10.1021/acsenergylett.2c01773
C. Wei, W. Su, J. Li, B. Xu, Q. Shan et al., A universal ternary-solvent-ink strategy toward efficient inkjet-printed perovskite quantum dot light-emitting diodes. Adv. Mater. 34(10), e2107798 (2022). https://doi.org/10.1002/adma.202107798
D. Li, J. Wang, M. Li, B. Guo, L. Mu et al., Efficient red perovskite quantum dot light-emitting diode fabricated by inkjet printing. Mater. Futures 1(1), 015301 (2022). https://doi.org/10.1088/2752-5724/ac3568
V.R.F. Schröder, N. Fratzscher, F. Mathies, E.R. Nandayapa, F. Hermerschmidt et al., Large area inkjet-printed metal halide perovskite LEDs enabled by gas flow assisted drying and crystallization. Nanoscale 15(12), 5649–5654 (2023). https://doi.org/10.1039/D3NR00565H
M.-S. Kim, P. Sadhukhan, J.-M. Myoung, High-performance blue perovskite films and micro-arrays for light-emitting diodes with ionic liquid interlayer. Adv. Funct. Mater. 34(1), 2309436 (2024). https://doi.org/10.1002/adfm.202309436
G. Jang, D.-Y. Jo, S. Ma, J. Lee, J. Son et al., Core–shell perovskite quantum dots for highly selective room-temperature spin light-emitting diodes. Adv. Mater. 36(5), 2309335 (2024). https://doi.org/10.1002/adma.202309335
H. Liu, G. Shi, R. Khan, S. Chu, Z. Huang et al., Large-area flexible perovskite light-emitting diodes enabled by inkjet printing. Adv. Mater. 36(8), 2309921 (2024). https://doi.org/10.1002/adma.202309921
B. Ren, D. Zhang, X. Qiu, Y. Ding, Q. Zhang et al., Full-color fiber light-emitting diodes based on perovskite quantum wires. Sci. Adv. 10(20), eadn1095 (2024). https://doi.org/10.1126/sciadv.adn1095
V.R.F. Schröder, N. Fratzscher, N. Zorn Morales, D.S. Rühl, F. Hermerschmidt et al., Bicolour, large area, inkjet-printed metal halide perovskite light emitting diodes. Mater. Horiz. 11(8), 1989–1996 (2024). https://doi.org/10.1039/d3mh02025h
Y. Huo, C. Luo, C. Wu, Z. Ren, H. Wang et al., Ambient direct lithography patterning of ultra-stable perovskite quantum dots for high-resolution light-emitting diodes. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202504261
L. Thi Ngo, Y.-T. Huang, C.-C. Chang, H. Verma, Y.-H. Lin et al., High-efficiency and ultrastable solvent-free curable perovskite quantum dot inks for microLED and LED backlighting applications. Nano Energy 142, 111230 (2025). https://doi.org/10.1016/j.nanoen.2025.111230
Q. Zhang, K. Yang, C. Luo, Z. Lin, W. Chen et al., Nanosecond response perovskite quantum dot light-emitting diodes with ultra-high resolution for active display application. Light. Sci. Appl. 14, 285 (2025). https://doi.org/10.1038/s41377-025-01959-y
C. Wang, J.M. Myoung, Spatially confined synthesis of CsPbBr 3 quantum dots for high-performance pure-blue light-emitting diodes. Matter (2025). https://doi.org/10.1016/j.matt.2025.102416
J. Harwell, J. Burch, A. Fikouras, M.C. Gather, A. Di Falco et al., Patterning multicolor hybrid perovskite films via top-down lithography. ACS Nano 13(4), 3823–3829 (2019). https://doi.org/10.1021/acsnano.8b09592
X. Zhou, Z. Gao, J. Shi, T. Li, S. Wei et al., Direct synthesis of perovskite quantum dot photoresist for direct photolithography. Angew. Chem. Int. Ed. 64(1), e202413741 (2025). https://doi.org/10.1002/anie.202413741
P. Zhang, G. Yang, F. Li, J. Shi, H. Zhong, Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes. Nat. Commun. 13, 6713 (2022). https://doi.org/10.1038/s41467-022-34453-9
C.H. Lin, B. Cheng, T.Y. Li, J.R.D. Retamal, T.C. Wei et al., Orthogonal lithography for halide perovskite optoelectronic nanodevices. ACS Nano (2018). https://doi.org/10.1021/acsnano.8b05859
N. Lamers, Z. Zhang, J. Wallentin, Perovskite-compatible electron-beam-lithography process based on nonpolar solvents for single-nanowire devices. ACS Appl. Nano Mater. 5(3), 3177–3182 (2022). https://doi.org/10.1021/acsanm.2c00188
D. Lyashenko, A. Perez, A. Zakhidov, High-resolution patterning of organohalide lead perovskite pixels for photodetectors using orthogonal photolithography. Phys. Status Solidi A 214(1), 1600302 (2017). https://doi.org/10.1002/pssa.201600302
G.-H. Dun, H. Zhang, K. Qin, X. Tan, R. Zhao et al., Wafer-scale photolithography-pixeled Pb-free perovskite X-ray detectors. ACS Nano 16(7), 10199–10208 (2022). https://doi.org/10.1021/acsnano.2c01074
B. Xia, M. Tu, B. Pradhan, F. Ceyssens, M.L. Tietze et al., Flexible metal halide perovskite photodetector arrays via photolithography and dry lift-off patterning. Adv. Eng. Mater. 24, 2100930 (2022). https://doi.org/10.1002/adem.202100930
S. Wei, J. Yuan, G. Yang, H. Zhong, Y. Dong et al., A photoinitiator-grafted photoresist for direct in situ lithography of perovskite quantum dots. ACS Appl. Nano Mater. 7(23), 26397–26404 (2024). https://doi.org/10.1021/acsanm.3c06297
F.H. Dill, W.P. Hornberger, P.S. Hauge, J.M. Shaw, Characterization of positive photoresist. IEEE Trans. Electron Devices 22(7), 445–452 (1975). https://doi.org/10.1109/T-ED.1975.18159
J.M. Shaw, J.D. Gelorme, N.C. LaBianca, W.E. Conley, S.J. Holmes, Negative photoresists for optical lithography. IBM J. Res. Dev. 41(1.2), 81–94 (1997). https://doi.org/10.1147/rd.411.0081
T. Haeger, R. Heiderhoff, T. Riedl, Thermal properties of metal-halide perovskites. J. Mater. Chem. C 8(41), 14289–14311 (2020). https://doi.org/10.1039/d0tc03754k
G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3(17), 8970–8980 (2015). https://doi.org/10.1039/C4TA04994B
M. Lai, G. Parish, Y. Liu, J.M. Dell, A.J. Keating, Development of an alkaline-compatible porous-silicon photolithographic process. J. Microelectromech. Syst. 20(2), 418–423 (2011). https://doi.org/10.1109/JMEMS.2011.2111356
A.W. Flounders, D.L. Brandon, A.H. Bates, Patterning of immobilized antibody layers via photolithography and oxygen plasma exposure. Biosens. Bioelectron. 12(6), 447–456 (1997). https://doi.org/10.1016/S0956-5663(96)00064-4
S.-Y. Lien, C.-W. Wang, W.-R. Chen, C.-H. Liu, C.-C. Kang et al., The influence of oxygen plasma on methylammonium lead iodide (MAPbI3) film doped with lead cesium triiodide (CsPbI3). Molecules 26(17), 5133 (2021). https://doi.org/10.3390/molecules26175133
X. Kong, X. Fan, Y. Wang, Y. Luo, Y. Chen et al., Recent advances of photolithography patterning of quantum dots for micro-display applications. Nano Mater. Sci. 7(1), 49–64 (2025). https://doi.org/10.1016/j.nanoms.2024.03.005
X. Fan, S. Wang, X. Yang, C. Zhong, G. Chen et al., Brightened bicomponent perovskite nanocomposite based on Förster resonance energy transfer for micro-LED displays. Adv. Mater. 35(30), 2300834 (2023). https://doi.org/10.1002/adma.202300834
Y. Wang, Y. Luo, X. Kong, T. Wu, Y. Lin et al., Patterning technologies of quantum dots for color-conversion micro-LED display applications. Nanoscale 17(4), 1764–1789 (2025). https://doi.org/10.1039/d4nr03925d
C. Cueto, D. Nikolla, A. Ribbe, J. Chambers, T. Emrick, Exploiting photohalide generation in shape and multichromatic color patterning of polymer–perovskite nanocomposites. J. Am. Chem. Soc. 147(11), 9774–9785 (2025). https://doi.org/10.1021/jacs.4c18454
W. Sun, F. Li, J. Tao, P. Li, L. Zhu et al., Micropore filling fabrication of high resolution patterned PQDs with a pixel size less than 5 μm. Nanoscale 14(16), 5994–5998 (2022). https://doi.org/10.1039/d2nr01115h
T. Li, P. Zhang, S. Wei, Y. Jing, J. Shi et al., Polymerizable monomer solvents enabled direct in situ photolithography of perovskite quantum dots. Adv. Opt. Mater. 12(20), 2400486 (2024). https://doi.org/10.1002/adom.202400486
J. Chen, Y. Wu, X. Li, F. Cao, Y. Gu et al., Simple and fast patterning process by laser direct writing for perovskite quantum dots. Adv. Mater. Technol. 2(10), 1700132 (2017). https://doi.org/10.1002/admt.201700132
K. Sun, D. Tan, X. Fang, X. Xia, D. Lin et al., Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 375(6578), 307–310 (2022). https://doi.org/10.1126/science.abj2691
X. Huang, Q. Guo, D. Yang, X. Xiao, X. Liu et al., Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photonics 14(2), 82–88 (2020). https://doi.org/10.1038/s41566-019-0538-8
P. You, G. Li, G. Tang, J. Cao, F. Yan, Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy Environ. Sci. 13(4), 1187–1196 (2020). https://doi.org/10.1039/c9ee02324k
L. Zhang, Y. Liu, Z. Gan, J. Su, Y. Gao, In situ localized formation of cesium lead bromide nanocomposites for fluorescence micro-patterning technology achieved by organic solvent polymerization. J. Mater. Chem. C 8(10), 3409–3417 (2020). https://doi.org/10.1039/C9TC06687J
W. Zhan, L. Meng, C. Shao, X.-G. Wu, K. Shi et al., In situ patterning perovskite quantum dots by direct laser writing fabrication. ACS Photonics 8(3), 765–770 (2021). https://doi.org/10.1021/acsphotonics.1c00118
A. Zhizhchenko, S. Syubaev, A. Berestennikov, A.V. Yulin, A. Porfirev et al., Single-mode lasing from imprinted halide-perovskite microdisks. ACS Nano 13(4), 4140–4147 (2019). https://doi.org/10.1021/acsnano.8b08948
S.J. Kim, J. Byun, T. Jeon, H.M. Jin, H.R. Hong et al., Perovskite light-emitting diodes via laser crystallization: systematic investigation on grain size effects for device performance. ACS Appl. Mater. Interfaces 10(3), 2490–2495 (2018). https://doi.org/10.1021/acsami.7b15470
Z. Wan, Z. Liu, Q. Zhang, Q. Zhang, M. Gu, Laser technology for perovskite: fabrication and applications. Adv. Mater. Technol. 9(10), 2302033 (2024). https://doi.org/10.1002/admt.202302033
A.Y. Zhizhchenko, P. Tonkaev, D. Gets, A. Larin, D. Zuev et al., Light-emitting nanophotonic designs enabled by ultrafast laser processing of halide perovskites. Small 16(19), 2000410 (2020). https://doi.org/10.1002/smll.202000410
C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias et al., Electron beam lithography: resolution limits and applications. Appl. Surf. Sci. 164(1–4), 111–117 (2000). https://doi.org/10.1016/S0169-4332(00)00352-4
C. Zhu, H. Ekinci, A. Pan, B. Cui, X. Zhu, Electron beam lithography on nonplanar and irregular surfaces. Microsyst. Nanoeng. 10, 52 (2024). https://doi.org/10.1038/s41378-024-00682-9
H.S. Kim, B.H. Son, Y.C. Kim, Y.H. Ahn, Direct laser writing lithography using a negative-tone electron-beam resist. Opt. Mater. Express 10(11), 2813 (2020). https://doi.org/10.1364/ome.409302
Y. Chen, Nanofabrication by electron beam lithography and its applications: a review. Microelectron. Eng. 135, 57–72 (2015). https://doi.org/10.1016/j.mee.2015.02.042
W.Y.E. Ong, Y.Z.D. Tan, L.J. Lim, T.G. Hoang, Z.-K. Tan, Crosslinkable ligands for high-density photo-patterning of perovskite nanocrystals. Adv. Mater. 37(25), e2409564 (2025). https://doi.org/10.1002/adma.202409564
Y. Fukuta, T. Miyata, Y. Hamanaka, Fabrication of two-dimensional hybrid organic–inorganic lead halide perovskites with controlled multilayer structures by liquid-phase laser ablation. J. Mater. Chem. C 11(3), 910–916 (2023). https://doi.org/10.1039/D2TC04395E
X. Huang, Q. Guo, S. Kang, T. Ouyang, Q. Chen et al., Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence. ACS Nano 14(3), 3150–3158 (2020). https://doi.org/10.1021/acsnano.9b08314
T.R. Groves, D. Pickard, B. Rafferty, N. Crosland, D. Adam et al., Maskless electron beam lithography: prospects, progress, and challenges. Microelectron. Eng. 61–62, 285–293 (2002). https://doi.org/10.1016/S0167-9317(02)00528-2
Z. Li, Z. Gao, L. Liu, K. Zhang, R. Ma et al., 3D patterning of perovskite quantum dots via direct in situ femtosecond laser writing. Nano Lett. 25(18), 7410–7418 (2025). https://doi.org/10.1021/acs.nanolett.5c00861
D. Wei, C. Wang, H. Wang, X. Hu, D. Wei et al., Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photonics 12(10), 596–600 (2018). https://doi.org/10.1038/s41566-018-0240-2
S.-Y. Liang, Y.-F. Liu, S.-Y. Wang, Z.-K. Ji, H. Xia et al., High-resolution patterning of 2D perovskite films through femtosecond laser direct writing. Adv. Funct. Mater. 32(38), 0224957 (2022). https://doi.org/10.1002/adfm.202204957
Z. Wang, J. Zheng, G. Chen, K. Zhang, T. Wei et al., Laser-assisted thermal exposure lithography: arbitrary feature sizes. Adv. Eng. Mater. 23(5), 2001468 (2021). https://doi.org/10.1002/adem.202001468
D. Tan, Z. Wang, B. Xu, J. Qiu, Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Adv. Photon. 3(2), 024002 (2021). https://doi.org/10.1117/1.ap.3.2.024002
B. Jeong, H. Han, C. Park, Micro- and nanopatterning of halide perovskites where crystal engineering for emerging photoelectronics meets integrated device array technology. Adv. Mater. 32(30), 2000597 (2020). https://doi.org/10.1002/adma.202000597
L.J. Guo, Nanoimprint lithography: methods and material requirements. Adv. Mater. 19(4), 495–513 (2007). https://doi.org/10.1002/adma.200600882
S.Y. Chou, P.R. Krauss, P.J. Renstrom, Nanoimprint lithography. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 14(6), 4129–4133 (1996). https://doi.org/10.1116/1.588605
Y. Yang, K. Mielczarek, M. Aryal, A. Zakhidov, W. Hu, Nanoimprinted polymer solar cell. ACS Nano 6(4), 2877–2892 (2012). https://doi.org/10.1021/nn3001388
D.-Y. Khang, H. Kang, T.-I. Kim, H.H. Lee, Low-pressure nanoimprint lithography. Nano Lett. 4(4), 633–637 (2004). https://doi.org/10.1021/nl049887d
S.V. Makarov, V. Milichko, E.V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran et al., Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photonics 4(4), 728–735 (2017). https://doi.org/10.1021/acsphotonics.6b00940
H. Han, J.W. Oh, J. Park, H. Lee, C. Park et al., Hierarchically ordered perovskites with high photo-electronic and environmental stability via nanoimprinting guided block copolymer self-assembly. Adv. Mater. Interfaces 9(16), 2200082 (2022). https://doi.org/10.1002/admi.202200082
A. Cherala, P.N. Pandya, K.M. Liechti, S.V. Sreenivasan, Extending the resolution limits of nanoshape imprint lithography using molecular dynamics of polymer crosslinking. Microsyst. Nanoeng. 7, 13 (2021). https://doi.org/10.1038/s41378-020-00225-y
B. Jeong, H. Han, H.H. Kim, W.K. Choi, Y.J. Park et al., Polymer-assisted nanoimprinting for environment- and phase-stable perovskite nanopatterns. ACS Nano 14(2), 1645–1655 (2020). https://doi.org/10.1021/acsnano.9b06980
K. Deng, Z. Liu, M. Wang, L. Li, Nanoimprinted grating-embedded perovskite solar cells with improved light management. Adv. Funct. Mater. 29(19), 1900830 (2019). https://doi.org/10.1002/adfm.201900830
M.G. Kang, L.J. Guo, Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Adv. Mater. 19(10), 1391–1396 (2007). https://doi.org/10.1002/adma.200700134
S. Wang, X. Dou, L. Chen, Y. Fang, A. Wang et al., Enhanced light out-coupling efficiency of quantum dot light emitting diodes by nanoimprint lithography. Nanoscale 10(24), 11651–11656 (2018). https://doi.org/10.1039/C8NR02082E
R. Schmager, I.M. Hossain, F. Schackmar, B.S. Richards, G. Gomard et al., Light coupling to quasi-guided modes in nanoimprinted perovskite solar cells. Sol. Energy Mater. Sol. Cells 201, 110080 (2019). https://doi.org/10.1016/j.solmat.2019.110080
H. Wang, R. Haroldson, B. Balachandran, A. Zakhidov, S. Sohal et al., Nanoimprinted perovskite nanograting photodetector with improved efficiency. ACS Nano 10(12), 10921–10928 (2016). https://doi.org/10.1021/acsnano.6b05535
S. Guo, Y.-S. Liu, X.-L. Zhang, Y.-F. Liu, Y.-G. Bi et al., Improved light extraction in all-inorganic perovskite light-emitting devices with periodic nanostructures by nanoimprinting lithography. Opt. Lett. 45(18), 5156–5159 (2020). https://doi.org/10.1364/OL.404873
J. Mao, W.E.I. Sha, H. Zhang, X. Ren, J. Zhuang et al., Novel direct nanopatterning approach to fabricate periodically nanostructured perovskite for optoelectronic applications. Adv. Funct. Mater. 27(10), 1606525 (2017). https://doi.org/10.1002/adfm.201606525
N. Pourdavoud, S. Wang, A. Mayer, T. Hu, Y. Chen et al., Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites. Adv. Mater. 29(12), 1605003 (2017). https://doi.org/10.1002/adma.201605003
T.-H. Kim, K.-S. Cho, E.K. Lee, S.J. Lee, J. Chae et al., Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 5(3), 176–182 (2011). https://doi.org/10.1038/nphoton.2011.12
C. Wang, C. Linghu, S. Nie, C. Li, Q. Lei et al., Programmable and scalable transfer printing with high reliability and efficiency for flexible inorganic electronics. Sci. Adv. 6(25), eabb2393 (2020). https://doi.org/10.1126/sciadv.abb2393
T. Meng, Y. Zheng, D. Zhao, H. Hu, Y. Zhu et al., Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photon. 16(4), 297–303 (2022). https://doi.org/10.1038/s41566-022-00960-w
T.W. Nam, M. Kim, Y. Wang, G.Y. Kim, W. Choi et al., Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution. Nat. Commun. 11(1), 3040 (2020). https://doi.org/10.1038/s41467-020-16865-7
C.K.W. Lee, Y. Pan, R. Yang, M. Kim, M.G. Li, Laser-induced transfer of functional materials. Top. Curr. Chem. 381(4), 18 (2023). https://doi.org/10.1007/s41061-023-00429-6
M.A. Meitl, Z.-T. Zhu, V. Kumar, K.J. Lee, X. Feng et al., Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5(1), 33–38 (2006). https://doi.org/10.1038/nmat1532
A. Carlson, A.M. Bowen, Y. Huang, R.G. Nuzzo, J.A. Rogers, Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 24(39), 5284–5318 (2012). https://doi.org/10.1002/adma.201201386
J. Yoo, K. Lee, U.J. Yang, H.H. Song, J.H. Jang et al., Highly efficient printed quantum dot light-emitting diodes through ultrahigh-definition double-layer transfer printing. Nat. Photonics 18(10), 1105–1112 (2024). https://doi.org/10.1038/s41566-024-01496-x
J. Jang, Y.-G. Park, E. Cha, S. Ji, H. Hwang et al., 3D heterogeneous device arrays for multiplexed sensing platforms using transfer of perovskites. Adv. Mater. 33(30), e2101093 (2021). https://doi.org/10.1002/adma.202101093
Y. Yin, Z. Hu, M.U. Ali, M. Duan, L. Gao et al., Full-color micro-LED display with CsPbBr3 perovskite and CdSe quantum dots as color conversion layers. Adv. Mater. Technol. 5(8), 2000251 (2020). https://doi.org/10.1002/admt.202000251
Y. Li, F. Zhang, S. Wang, Regulatable interfacial adhesion between stamp and ink for transfer printing. Interdiscip. Mater. 3(1), 29–53 (2024). https://doi.org/10.1002/idm2.12139
J. McPhillimy, D. Jevtics, B.J.E. Guilhabert, C. Klitis, A. Hurtado et al., Automated nanoscale absolute accuracy alignment system for transfer printing. ACS Appl. Nano Mater. 3(10), 10326–10332 (2020). https://doi.org/10.1021/acsanm.0c02224
M. Kędziora, A. Opala, R. Mastria, L. De Marco, M. Król et al., Predesigned perovskite crystal waveguides for room-temperature exciton–polariton condensation and edge lasing. Nat. Mater. 23(11), 1515–1522 (2024). https://doi.org/10.1038/s41563-024-01980-3
G. Wang, D. Li, H.-C. Cheng, Y. Li, C.-Y. Chen et al., Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Sci. Adv. 1(9), e1500613 (2015). https://doi.org/10.1126/sciadv.1500613
Z. Xu, X. Han, W. Wu, F. Li, R. Wang et al., Controlled on-chip fabrication of large-scale perovskite single crystal arrays for high-performance laser and photodetector integration. Light Sci. Appl. 12(1), 67 (2023). https://doi.org/10.1038/s41377-023-01107-4
M. Yuan, J. Feng, H. Li, H. Gao, Y. Qiu et al., Remote epitaxial crystalline perovskites for ultrahigh-resolution micro-LED displays. Nat. Nanotechnol. 20(3), 381–387 (2025). https://doi.org/10.1038/s41565-024-01841-9
M.K. Gangishetty, R.W.J. Scott, T.L. Kelly, Effect of relative humidity on crystal growth, device performance and hysteresis in planar heterojunction perovskite solar cells. Nanoscale 8(12), 6300–6307 (2016). https://doi.org/10.1039/c5nr04179a
X. Duan, X. Li, L. Tan, Z. Huang, J. Yang et al., Controlling crystal growth via an autonomously longitudinal scaffold for planar perovskite solar cells. Adv. Mater. 32(26), 2000617 (2020). https://doi.org/10.1002/adma.202000617
T. Zhou, Z. Xu, R. Wang, X. Dong, Q. Fu et al., Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability. Adv. Mater. 34(17), 2200705 (2022). https://doi.org/10.1002/adma.202200705
S. Wang, H. Luo, Z. Gu, R. Zhao, L. Guo et al., Crystal growth regulation of α-FAPbI3 perovskite films for high-efficiency solar cells with long-term stability. Adv. Funct. Mater. 33(26), 2214834 (2023). https://doi.org/10.1002/adfm.202214834
J.-W. Lee, D.-K. Lee, D.-N. Jeong, N.-G. Park, Control of crystal growth toward scalable fabrication of perovskite solar cells. Adv. Funct. Mater. 29(47), 1807047 (2019). https://doi.org/10.1002/adfm.201807047
H. Hu, M. Singh, X. Wan, J. Tang, C.-W. Chu et al., Nucleation and crystal growth control for scalable solution-processed organic–inorganic hybrid perovskite solar cells. J. Mater. Chem. A 8(4), 1578–1603 (2020). https://doi.org/10.1039/c9ta11245f
J. Yu, G. Liu, C. Chen, Y. Li, M. Xu et al., Perovskite CsPbBr3 crystals: growth and applications. J. Mater. Chem. C 8(19), 6326–6341 (2020). https://doi.org/10.1039/d0tc00922a
W. Chen, X. Li, Y. Li, Y. Li, A review: crystal growth for high-performance all-inorganic perovskite solar cells. Energy Environ. Sci. 13(7), 1971–1996 (2020). https://doi.org/10.1039/d0ee00215a
G. Hu, J. Guo, J. Jiang, L. Wang, J. Zhang et al., Capillary condensation-driven growth of perovskite nanowire arrays for multi-functional photodetector. Light Sci. Appl. 14(1), 61 (2025). https://doi.org/10.1038/s41377-024-01680-2
R. Abe, A. Suzuki, K. Watanabe, A. Kikuchi, Fabrication of CH3NH3PbBr 3-based perovskite single-crystal arrays by spin-coating method using hydrophobic patterned substrate. Phys. Status Solidi A 217(3), 1900511 (2020). https://doi.org/10.1002/pssa.201900511
S. Jariwala, H. Sun, G.W.P. Adhyaksa, A. Lof, L.A. Muscarella et al., Local crystal misorientation influences non-radiative recombination in halide perovskites. Joule 3(12), 3048–3060 (2019). https://doi.org/10.1016/j.joule.2019.09.001
W. Chen, H. Chen, G. Xu, R. Xue, S. Wang et al., Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule 3(1), 191–204 (2019). https://doi.org/10.1016/j.joule.2018.10.011
X. Zhou, Y. Cai, M. Xu, J. Li, C. Sheng et al., Dewetting-assisted patterning of organic semiconductors for micro-OLED arrays with a pixel size of 1 µm. Small Methods 6(4), 2101509 (2022). https://doi.org/10.1002/smtd.202101509
J. Hu, Z. Li, P. Huang, L. Huang, S. Xu, In situ dewetting assisted plasma etching of large-scale uniform nanocones on arbitrarily structured glass elements. Adv. Funct. Mater. 34(51), 2410563 (2024). https://doi.org/10.1002/adfm.202410563
J. Zhang, Y. Yang, W. Li, Z. Tang, Z. Hu et al., Precise arraying of perovskite single crystals through droplet-assisted self-alignment. Sci. Adv. 10(28), eado0873 (2024). https://doi.org/10.1126/sciadv.ado0873
L. Shi, L. Meng, F. Jiang, Y. Ge, F. Li et al., In situ inkjet printing strategy for fabricating perovskite quantum dot patterns. Adv. Funct. Mater. 29(37), 1903648 (2019). https://doi.org/10.1002/adfm.201903648
H. Eggers, F. Schackmar, T. Abzieher, Q. Sun, U. Lemmer et al., Inkjet-printed micrometer-thick perovskite solar cells with large columnar grains. Adv. Energy Mater. 10(6), 1903184 (2020). https://doi.org/10.1002/aenm.201903184
C. Liang, P. Li, H. Gu, Y. Zhang, F. Li et al., One-step inkjet printed perovskite in air for efficient light harvesting. Sol. RRL 2(2), 1700217 (2018). https://doi.org/10.1002/solr.201700217
J. Zhao, L.-W. Lo, Z. Yu, C. Wang, Handwriting of perovskite optoelectronic devices on diverse substrates. Nat. Photon. 17(11), 964–971 (2023). https://doi.org/10.1038/s41566-023-01266-1
M. Duan, Z. Feng, Y. Wu, Y. Yin, Z. Hu et al., Inkjet-printed micrometer-thick patterned perovskite quantum dot films for efficient blue-to-green photoconversion. Adv. Mater. Technol. 4(12), 1900779 (2019). https://doi.org/10.1002/admt.201900779
S. Wang, X. Kong, S. Cai, Y. Luo, Y. Gu et al., Solvent engineering in perovskite nanocrystal colloid inks for super-fine electrohydrodynamic inkjet printing of color conversion microstructures in micro-LED displays. Chin. Chem. Lett. 36(8), 110976 (2025). https://doi.org/10.1016/j.cclet.2025.110976
F. Schackmar, H. Eggers, M. Frericks, B.S. Richards, U. Lemmer et al., Perovskite solar cells with all-inkjet-printed absorber and charge transport layers. Adv. Mater. Technol. 6(2), 2000271 (2021). https://doi.org/10.1002/admt.202000271
B. Derby, Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40, 395–414 (2010). https://doi.org/10.1146/annurev-matsci-070909-104502
X. Peng, J. Yuan, S. Shen, M. Gao, A.S.R. Chesman et al., Perovskite and organic solar cells fabricated by inkjet printing: progress and prospects. Adv. Funct. Mater. 27(41), 1703704 (2017). https://doi.org/10.1002/adfm.201703704
D. Lohse, Fundamental fluid dynamics challenges in inkjet printing. Annu. Rev. Fluid Mech. 54, 349–382 (2022). https://doi.org/10.1146/annurev-fluid-022321-114001
N. Reis, C. Ainsley, B. Derby, Ink-jet delivery of p suspensions by piezoelectric droplet ejectors. J. Appl. Phys. 97(9), 094903 (2005). https://doi.org/10.1063/1.1888026
O.A. Basaran, H. Gao, P.P. Bhat, Nonstandard inkjets. Annu. Rev. Fluid Mech. 45, 85–113 (2013). https://doi.org/10.1146/annurev-fluid-120710-101148
L. Zhang, S. Chen, J. Zeng, Z. Jiang, Q. Ai et al., Inkjet-printing controlled phase evolution boosts the efficiency of hole transport material free and carbon-based CsPbBr3 perovskite solar cells exceeding 9%. Energy Environ. Mater. 7(2), e12543 (2024). https://doi.org/10.1002/eem2.12543
F. Mathies, E.J.W. List-Kratochvil, E.L. Unger, Advances in inkjet-printed metal halide perovskite photovoltaic and optoelectronic devices. Energy Technol. 8(4), 1900991 (2020). https://doi.org/10.1002/ente.201900991
J.E. Fromm, Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J. Res. Dev. 28(3), 322–333 (1984). https://doi.org/10.1147/rd.283.0322
N. Reis, B. Derby, Ink jet deposition of ceramic suspensions: modeling and experiments of droplet formation. MRS Online Proc. Libr. 625(1), 117 (2000). https://doi.org/10.1557/PROC-625-117
J. Eggers, Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 71(21), 3458–3460 (1993). https://doi.org/10.1103/PhysRevLett.71.3458
J. Eggers, Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69(3), 865–930 (1997). https://doi.org/10.1103/revmodphys.69.865
T.A. Cohen, D. Sharp, K.T. Kluherz, Y. Chen, C. Munley et al., Direct patterning of perovskite nanocrystals on nanophotonic cavities with electrohydrodynamic inkjet printing. Nano Lett. 22(14), 5681–5688 (2022). https://doi.org/10.1021/acs.nanolett.2c00473
Y. Chen, X. Yang, X. Fan, A. Kang, X. Kong et al., Electrohydrodynamic inkjet printing of three-dimensional perovskite nanocrystal arrays for full-color micro-LED displays. ACS Appl. Mater. Interfaces 16(19), 24908–24919 (2024). https://doi.org/10.1021/acsami.4c02594
X. Yang, S. Wang, Y. Hou, Y. Wang, T. Zhang et al., Dual-ligand red perovskite ink for electrohydrodynamic printing color conversion arrays over 2540 dpi in near-eye micro-LED display. Nano Lett. 24(12), 3661–3669 (2024). https://doi.org/10.1021/acs.nanolett.3c04927
F. Hermerschmidt, F. Mathies, V.R.F. Schröder, C. Rehermann, N.Z. Morales et al., Finally, inkjet-printed metal halide perovskite LEDs–utilizing seed crystal templating of salty PEDOT: PSS. Mater. Horiz. 7(7), 1773–1781 (2020). https://doi.org/10.1039/d0mh00512f
J. Philip, P.D. Shima, B. Raj, Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures. Appl. Phys. Lett. 91(20), 203108 (2007). https://doi.org/10.1063/1.2812699
Z. Li, P. Li, G. Chen, Y. Cheng, X. Pi et al., Ink engineering of inkjet printing perovskite. ACS Appl. Mater. Interfaces 12(35), 39082–39091 (2020). https://doi.org/10.1021/acsami.0c09485
Y. Cheng, H. Wu, J. Ma, P. Li, Z. Gu et al., Droplet manipulation and crystallization regulation in inkjet-printed perovskite film formation. CCS Chem. 4(5), 1465–1485 (2022). https://doi.org/10.31635/ccschem.022.202101583
Z. Zhang, Z. Li, Y. Chen, Z. Zhang, K. Fan et al., Progress on inkjet printing technique for perovskite films and their optoelectronic and optical applications. ACS Photonics 10(10), 3435–3450 (2023). https://doi.org/10.1021/acsphotonics.3c00897
Y.-J. Choi, K. Eun, R. Bail, C. Doo, Systematic development of a novel ternary solvent system for uniform inkjet printing of organic light-emitting diodes. ACS Appl. Mater. Interfaces 17(17), 25546–25561 (2025). https://doi.org/10.1021/acsami.5c00941
J. Stringer, B. Derby, Limits to feature size and resolution in ink jet p