Perovskite/Organic Tandem Solar Cells with 26.49% Efficiency via Enhanced Absorption and Minimized Energy Losses
Corresponding Author: Yongsheng Chen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 186
Abstract
Although perovskite/organic tandem solar cells have many advantages, their power conversion efficiency (PCE) still substantially lags behind their perovskite/perovskite counterparts. One of the main reasons is the low external quantum efficiency and high energy loss of the rear subcell. In this work, guided by the semi-empirical analysis, the most suitable available material combination has been obtained. To further improve the photovoltaic performance of the organic rear cells, isopropanol has been used as a co-solvent additive to finely tune the bulk heterojunction morphology of the active layer. Together with the optimization of each subcell, a remarkable PCE of 26.49% (certified 25.56%) with a high open-circuit voltage of 2.214 V has been achieved for the perovskite/organic tandem device.
Highlights:
1 A semi-empirical analysis is performed to select the best matchable perovskite front and organic rear cell materials for tandem solar cells.
2 Isopropanol is introduced as a co-solvent additive to precisely modulate the bulk heterojunction morphology of the active layer in the rear cell.
3 The resulting perovskite/organic tandem solar cells achieve a notable power conversion efficiency of 26.49% (certified 25.56%), along with a high open-circuit voltage of 2.214 V.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. De Vos, Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D Appl. Phys. 13(5), 839–846 (1980). https://doi.org/10.1088/0022-3727/13/5/018
- G. Li, W.-H. Chang, Y. Yang, Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nat. Rev. Mater. 2(8), 17043 (2017). https://doi.org/10.1038/natrevmats.2017.43
- T. Leijtens, K.A. Bush, R. Prasanna, M.D. McGehee, Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3(10), 828–838 (2018). https://doi.org/10.1038/s41560-018-0190-4
- X. Xu, Y. Li, Q. Peng, Recent advances toward highly efficient tandem organic solar cells. Small Struct. 1(1), 2000016 (2020). https://doi.org/10.1002/sstr.202000016
- M. Han, R. Zhou, G. Chen, Q. Li, P. Li et al., Unveiling the potential of two-terminal perovskite/organic tandem solar cells: mechanisms, status, and challenges. Adv. Mater. 36(26), e2402143 (2024). https://doi.org/10.1002/adma.202402143
- K.O. Brinkmann, P. Wang, F. Lang, W. Li, X. Guo et al., Perovskite–organic tandem solar cells. Nat. Rev. Mater. 9(3), 202–217 (2024). https://doi.org/10.1038/s41578-023-00642-1
- S. Wu, M. Liu, A.K.Y. Jen, Prospects and challenges for perovskite-organic tandem solar cells. Joule 7(3), 484–502 (2023). https://doi.org/10.1016/j.joule.2023.02.014
- Q. Fu, X. Tang, H. Liu, R. Wang, T. Liu et al., Ionic dopant-free polymer alloy hole transport materials for high-performance perovskite solar cells. J. Am. Chem. Soc. 144(21), 9500–9509 (2022). https://doi.org/10.1021/jacs.2c04029
- K.O. Brinkmann, T. Becker, F. Zimmermann, C. Kreusel, T. Gahlmann et al., Perovskite-organic tandem solar cells with indium oxide interconnect. Nature 604(7905), 280–286 (2022). https://doi.org/10.1038/s41586-022-04455-0
- X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai et al., Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule 4(7), 1594–1606 (2020). https://doi.org/10.1016/j.joule.2020.06.006
- J. Zheng, W. Chen, Z. Wang, S. Kang, P. Dong et al., Selective crystallization delay in wide-bandgap perovskites enables initial homogeneous phase for square centimeter perovskite/organic tandem solar cells. Adv. Mater. 37(42), e10437 (2025). https://doi.org/10.1002/adma.202510437
- X. Cui, G. Xie, G. Ran, Y. Liu, X. Ma et al., Organic film evolution and recombination losses in highly efficient perovskite/organic tandem solar cells. Nat. Commun. 16, 8986 (2025). https://doi.org/10.1038/s41467-025-64032-7
- X. Jiang, S. Qin, L. Meng, G. He, J. Zhang et al., Isomeric diammonium passivation for perovskite-organic tandem solar cells. Nature 635(8040), 860–866 (2024). https://doi.org/10.1038/s41586-024-08160-y
- Y. An, N. Zhang, Q. Liu, W. Jiang, G. Du et al., Balancing carrier transport in interconnection layer for efficient perovskite/organic tandem solar cells. Nat. Commun. 16(1), 2759 (2025). https://doi.org/10.1038/s41467-025-58047-3
- C.-C. Chen, S.-H. Bae, W.-H. Chang, Z. Hong, G. Li et al., Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process. Mater. Horiz. 2(2), 203–211 (2015). https://doi.org/10.1039/c4mh00237g
- Z. Song, J. Wang, Y. Bao, J. Zeng, D. Wang et al., Optimization of crystallization dynamics in wide-bandgap bromine–iodine perovskite films for high-performance perovskite–organic tandem solar cells. Energy Environ. Sci. 18(10), 4883–4892 (2025). https://doi.org/10.1039/d5ee00264h
- Z. Zhang, W. Chen, X. Jiang, J. Cao, H. Yang et al., Suppression of phase segregation in wide-bandgap perovskites with thiocyanate ions for perovskite/organic tandems with 25.06% efficiency. Nat. Energy 9(5), 592–601 (2024). https://doi.org/10.1038/s41560-024-01491-0
- X. Guo, Z. Jia, S. Liu, R. Guo, F. Jiang et al., Stabilizing efficient wide-bandgap perovskite in perovskite-organic tandem solar cells. Joule 8(9), 2554–2569 (2024). https://doi.org/10.1016/j.joule.2024.06.009
- N. Wei, Z. Gao, F. Qi, H. Song, B. Shang et al., Robust organic photovoltaic ternary strategy pairing tunable wide-bandgap perovskites for efficient perovskite/organic tandems. Adv. Mater. e08611 (2025). https://doi.org/10.1002/adma.202508611
- X. Wu, D. Zhang, B. Liu, Y. Wang, X. Wang et al., Optimization of charge extraction and interconnecting layers for highly efficient perovskite/organic tandem solar cells with high fill factor. Adv. Mater. 36(49), 2410692 (2024). https://doi.org/10.1002/adma.202410692
- J. Tian, C. Liu, K. Forberich, A. Barabash, Z. Xie et al., Overcoming optical losses in thin metal-based recombination layers for efficient n-i-p perovskite-organic tandem solar cells. Nat. Commun. 16, 154 (2025). https://doi.org/10.1038/s41467-024-55376-7
- Z. Jia, X. Guo, X. Yin, M. Sun, J. Qiao et al., Efficient near-infrared harvesting in perovskite-organic tandem solar cells. Nature 643(8070), 104–110 (2025). https://doi.org/10.1038/s41586-025-09181-x
- R. Lin, H. Gao, J. Lou, J. Xu, M. Yin et al., All-perovskite tandem solar cells with dipolar passivation. Nature, 1–3 (2025). https://doi.org/10.1038/s41586-025-09773-7
- S. Kang, Z. Wang, W. Chen, Z. Zhang, J. Cao et al., Boosting carrier transport in quasi-2D/3D perovskite heterojunction for high-performance perovskite/organic tandems. Adv. Mater. 37(1), 2411027 (2025). https://doi.org/10.1002/adma.202411027
- Y. Han, J. Fu, Z. Ren, J. Yu, Q. Liang et al., Inorganic perovskite/organic tandem solar cells with 25.1% certified efficiency via bottom contact modulation. Nat. Energy 10(4), 513–525 (2025). https://doi.org/10.1038/s41560-025-01742-8
- M. Chen, Y. Li, Z. Zeng, M. Liu, T. Du et al., Regulating the crystallization of mixed-halide perovskites by cation alloying for perovskite–organic tandem solar cells. Energy Environ. Sci. 17(24), 9580–9589 (2024). https://doi.org/10.1039/d4ee03045a
- D. Qian, Z. Zheng, H. Yao, W. Tress, T.R. Hopper et al., Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 17(8), 703–709 (2018). https://doi.org/10.1038/s41563-018-0128-z
- Y. Liu, B. Liu, C.-Q. Ma, F. Huang, G. Feng et al., Recent progress in organic solar cells (Part II device engineering). Sci. China Chem. 65(8), 1457–1497 (2022). https://doi.org/10.1007/s11426-022-1256-8
- R.S. Gurney, D.G. Lidzey, T. Wang, A review of non-fullerene polymer solar cells: from device physics to morphology control. Rep. Prog. Phys. 82(3), 036601 (2019). https://doi.org/10.1088/1361-6633/ab0530
- P. Chen, Y. Xiao, S. Li, X. Jia, D. Luo et al., The promise and challenges of inverted perovskite solar cells. Chem. Rev. 124(19), 10623–10700 (2024). https://doi.org/10.1021/acs.chemrev.4c00073
- Q. Jiang, K. Zhu, Rapid advances enabling high-performance inverted perovskite solar cells. Nat. Rev. Mater. 9(6), 399–419 (2024). https://doi.org/10.1038/s41578-024-00678-x
- Y. Liu, B. Liu, C.-Q. Ma, F. Huang, G. Feng et al., Recent progress in organic solar cells (Part I material science). Sci. China Chem. 65(2), 224–268 (2022). https://doi.org/10.1007/s11426-021-1180-6
- L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang et al., Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361(6407), 1094–1098 (2018). https://doi.org/10.1126/science.aat2612
- T. Nie, Z. Fang, X. Ren, Y. Duan, S.F. Liu, Recent advances in wide-bandgap organic-inorganic halide perovskite solar cells and tandem application. Nano-Micro Lett. 15(1), 70 (2023). https://doi.org/10.1007/s40820-023-01040-6
- Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang et al., Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 32(19), 1908205 (2020). https://doi.org/10.1002/adma.201908205
- J. Fu, P.W.K. Fong, H. Liu, C.-S. Huang, X. Lu et al., 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun. 14(1), 1760 (2023). https://doi.org/10.1038/s41467-023-37526-5
- Z. Chen, J. Ge, W. Song, X. Tong, H. Liu et al., 20.2% efficiency organic photovoltaics employing a π-extension quinoxaline-based acceptor with ordered arrangement. Adv. Mater. 36(33), 2406690 (2024). https://doi.org/10.1002/adma.202406690
- M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134
- G. Dennler, M.C. Scharber, T. Ameri, P. Denk, K. Forberich et al., Design rules for donors in bulk-heterojunction tandem solar cell towards 15% energy-conversion efficiency. Adv. Mater. 20(3), 579–583 (2008). https://doi.org/10.1002/adma.200702337
- R. He, W. Wang, Z. Yi, F. Lang, C. Chen et al., Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618(7963), 80–86 (2023). https://doi.org/10.1038/s41586-023-05992-y
- Y. Jiang, K. Liu, F. Liu, G. Ran, M. Wang et al., 20.6% efficiency organic solar cells enabled by incorporating a lower bandgap guest nonfullerene acceptor without open-circuit voltage loss. Adv. Mater. 37(17), 2500282 (2025). https://doi.org/10.1002/adma.202500282
- P. Müller-Buschbaum, The active layer morphology of organic solar cells probed with grazing incidence scattering techniques. Adv. Mater. 26(46), 7692–7709 (2014). https://doi.org/10.1002/adma.201304187
- A.A. Bakulin, A. Rao, V.G. Pavelyev, P.H.M. van Loosdrecht, M.S. Pshenichnikov et al., The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335(6074), 1340–1344 (2012). https://doi.org/10.1126/science.1217745
- A. Rao, P.C.Y. Chow, S. Gélinas, C.W. Schlenker, C.-Z. Li et al., The role of spin in the kinetic control of recombination in organic photovoltaics. Nature 500(7463), 435–439 (2013). https://doi.org/10.1038/nature12339
- L. Zhu, M. Zhang, G. Zhou, Z. Wang, W. Zhong et al., Achieving 20.8% organic solar cells via additive-assisted layer-by-layer fabrication with bulk p-i-n structure and improved optical management. Joule 8(11), 3153–3168 (2024). https://doi.org/10.1016/j.joule.2024.08.001
- J. Yu, Z. Shen, W. Lu, Y. Zhu, Y.-X. Liu et al., Composition waves in solution-processed organic films and its propagations from kinetically frozen surface mesophases. Adv. Funct. Mater. 33(40), 2302089 (2023). https://doi.org/10.1002/adfm.202302089
- W. Chen, Y. Zhu, J. Xiu, G. Chen, H. Liang et al., Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nat. Energy 7(3), 229–237 (2022). https://doi.org/10.1038/s41560-021-00966-8
- S. Wu, Y. Yan, J. Yin, K. Jiang, F. Li et al., Redox mediator-stabilized wide-bandgap perovskites for monolithic perovskite-organic tandem solar cells. Nat. Energy 9(4), 411–421 (2024). https://doi.org/10.1038/s41560-024-01451-8
- G. Xie, Q. Xue, H. Ding, A. Liang, J. Liu et al., Management of intramolecular noncovalent interactions in dopant-free hole transport materials for high-performance perovskite solar cells. Angew. Chem. Int. Ed. 64(22), e202504144 (2025). https://doi.org/10.1002/anie.202504144
- Z. He, R. Yu, Y. Dong, R. Wang, Y. Zhang et al., Minimized optical/electrical energy loss for 25.1% monolithic perovskite/organic tandem solar cells. Nat. Commun. 16(1), 1773 (2025). https://doi.org/10.1038/s41467-025-57093-1
- X. Sun, F. Wang, G. Yang, X. Ding, J. Lv et al., From 20% single-junction organic photovoltaics to 26% perovskite/organic tandem solar cells: self-assembled hole transport molecules matter. Energy Environ. Sci. 18(5), 2536–2545 (2025). https://doi.org/10.1039/d4ee05533k
- P. Dong, Z. Zhang, W. Chen, J. Zheng, J. Xu et al., Retarding phase segregation via lattice reinforcement for efficient and stable perovskite/organic tandems. Angew. Chem. Int. Ed. 64(19), e202502391 (2025). https://doi.org/10.1002/anie.202502391
- Z. Jia, Q. Ma, Z. Chen, L. Meng, N. Jain et al., Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells. Nat. Commun. 14(1), 1236 (2023). https://doi.org/10.1038/s41467-023-36917-y
- W. Liu, S. Sun, S. Xu, H. Zhang, Y. Zheng et al., Theory-guided material design enabling high-performance multifunctional semitransparent organic photovoltaics without optical modulations. Adv. Mater. 34(18), 2200337 (2022). https://doi.org/10.1002/adma.202200337
References
A. De Vos, Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D Appl. Phys. 13(5), 839–846 (1980). https://doi.org/10.1088/0022-3727/13/5/018
G. Li, W.-H. Chang, Y. Yang, Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nat. Rev. Mater. 2(8), 17043 (2017). https://doi.org/10.1038/natrevmats.2017.43
T. Leijtens, K.A. Bush, R. Prasanna, M.D. McGehee, Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3(10), 828–838 (2018). https://doi.org/10.1038/s41560-018-0190-4
X. Xu, Y. Li, Q. Peng, Recent advances toward highly efficient tandem organic solar cells. Small Struct. 1(1), 2000016 (2020). https://doi.org/10.1002/sstr.202000016
M. Han, R. Zhou, G. Chen, Q. Li, P. Li et al., Unveiling the potential of two-terminal perovskite/organic tandem solar cells: mechanisms, status, and challenges. Adv. Mater. 36(26), e2402143 (2024). https://doi.org/10.1002/adma.202402143
K.O. Brinkmann, P. Wang, F. Lang, W. Li, X. Guo et al., Perovskite–organic tandem solar cells. Nat. Rev. Mater. 9(3), 202–217 (2024). https://doi.org/10.1038/s41578-023-00642-1
S. Wu, M. Liu, A.K.Y. Jen, Prospects and challenges for perovskite-organic tandem solar cells. Joule 7(3), 484–502 (2023). https://doi.org/10.1016/j.joule.2023.02.014
Q. Fu, X. Tang, H. Liu, R. Wang, T. Liu et al., Ionic dopant-free polymer alloy hole transport materials for high-performance perovskite solar cells. J. Am. Chem. Soc. 144(21), 9500–9509 (2022). https://doi.org/10.1021/jacs.2c04029
K.O. Brinkmann, T. Becker, F. Zimmermann, C. Kreusel, T. Gahlmann et al., Perovskite-organic tandem solar cells with indium oxide interconnect. Nature 604(7905), 280–286 (2022). https://doi.org/10.1038/s41586-022-04455-0
X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai et al., Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule 4(7), 1594–1606 (2020). https://doi.org/10.1016/j.joule.2020.06.006
J. Zheng, W. Chen, Z. Wang, S. Kang, P. Dong et al., Selective crystallization delay in wide-bandgap perovskites enables initial homogeneous phase for square centimeter perovskite/organic tandem solar cells. Adv. Mater. 37(42), e10437 (2025). https://doi.org/10.1002/adma.202510437
X. Cui, G. Xie, G. Ran, Y. Liu, X. Ma et al., Organic film evolution and recombination losses in highly efficient perovskite/organic tandem solar cells. Nat. Commun. 16, 8986 (2025). https://doi.org/10.1038/s41467-025-64032-7
X. Jiang, S. Qin, L. Meng, G. He, J. Zhang et al., Isomeric diammonium passivation for perovskite-organic tandem solar cells. Nature 635(8040), 860–866 (2024). https://doi.org/10.1038/s41586-024-08160-y
Y. An, N. Zhang, Q. Liu, W. Jiang, G. Du et al., Balancing carrier transport in interconnection layer for efficient perovskite/organic tandem solar cells. Nat. Commun. 16(1), 2759 (2025). https://doi.org/10.1038/s41467-025-58047-3
C.-C. Chen, S.-H. Bae, W.-H. Chang, Z. Hong, G. Li et al., Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process. Mater. Horiz. 2(2), 203–211 (2015). https://doi.org/10.1039/c4mh00237g
Z. Song, J. Wang, Y. Bao, J. Zeng, D. Wang et al., Optimization of crystallization dynamics in wide-bandgap bromine–iodine perovskite films for high-performance perovskite–organic tandem solar cells. Energy Environ. Sci. 18(10), 4883–4892 (2025). https://doi.org/10.1039/d5ee00264h
Z. Zhang, W. Chen, X. Jiang, J. Cao, H. Yang et al., Suppression of phase segregation in wide-bandgap perovskites with thiocyanate ions for perovskite/organic tandems with 25.06% efficiency. Nat. Energy 9(5), 592–601 (2024). https://doi.org/10.1038/s41560-024-01491-0
X. Guo, Z. Jia, S. Liu, R. Guo, F. Jiang et al., Stabilizing efficient wide-bandgap perovskite in perovskite-organic tandem solar cells. Joule 8(9), 2554–2569 (2024). https://doi.org/10.1016/j.joule.2024.06.009
N. Wei, Z. Gao, F. Qi, H. Song, B. Shang et al., Robust organic photovoltaic ternary strategy pairing tunable wide-bandgap perovskites for efficient perovskite/organic tandems. Adv. Mater. e08611 (2025). https://doi.org/10.1002/adma.202508611
X. Wu, D. Zhang, B. Liu, Y. Wang, X. Wang et al., Optimization of charge extraction and interconnecting layers for highly efficient perovskite/organic tandem solar cells with high fill factor. Adv. Mater. 36(49), 2410692 (2024). https://doi.org/10.1002/adma.202410692
J. Tian, C. Liu, K. Forberich, A. Barabash, Z. Xie et al., Overcoming optical losses in thin metal-based recombination layers for efficient n-i-p perovskite-organic tandem solar cells. Nat. Commun. 16, 154 (2025). https://doi.org/10.1038/s41467-024-55376-7
Z. Jia, X. Guo, X. Yin, M. Sun, J. Qiao et al., Efficient near-infrared harvesting in perovskite-organic tandem solar cells. Nature 643(8070), 104–110 (2025). https://doi.org/10.1038/s41586-025-09181-x
R. Lin, H. Gao, J. Lou, J. Xu, M. Yin et al., All-perovskite tandem solar cells with dipolar passivation. Nature, 1–3 (2025). https://doi.org/10.1038/s41586-025-09773-7
S. Kang, Z. Wang, W. Chen, Z. Zhang, J. Cao et al., Boosting carrier transport in quasi-2D/3D perovskite heterojunction for high-performance perovskite/organic tandems. Adv. Mater. 37(1), 2411027 (2025). https://doi.org/10.1002/adma.202411027
Y. Han, J. Fu, Z. Ren, J. Yu, Q. Liang et al., Inorganic perovskite/organic tandem solar cells with 25.1% certified efficiency via bottom contact modulation. Nat. Energy 10(4), 513–525 (2025). https://doi.org/10.1038/s41560-025-01742-8
M. Chen, Y. Li, Z. Zeng, M. Liu, T. Du et al., Regulating the crystallization of mixed-halide perovskites by cation alloying for perovskite–organic tandem solar cells. Energy Environ. Sci. 17(24), 9580–9589 (2024). https://doi.org/10.1039/d4ee03045a
D. Qian, Z. Zheng, H. Yao, W. Tress, T.R. Hopper et al., Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 17(8), 703–709 (2018). https://doi.org/10.1038/s41563-018-0128-z
Y. Liu, B. Liu, C.-Q. Ma, F. Huang, G. Feng et al., Recent progress in organic solar cells (Part II device engineering). Sci. China Chem. 65(8), 1457–1497 (2022). https://doi.org/10.1007/s11426-022-1256-8
R.S. Gurney, D.G. Lidzey, T. Wang, A review of non-fullerene polymer solar cells: from device physics to morphology control. Rep. Prog. Phys. 82(3), 036601 (2019). https://doi.org/10.1088/1361-6633/ab0530
P. Chen, Y. Xiao, S. Li, X. Jia, D. Luo et al., The promise and challenges of inverted perovskite solar cells. Chem. Rev. 124(19), 10623–10700 (2024). https://doi.org/10.1021/acs.chemrev.4c00073
Q. Jiang, K. Zhu, Rapid advances enabling high-performance inverted perovskite solar cells. Nat. Rev. Mater. 9(6), 399–419 (2024). https://doi.org/10.1038/s41578-024-00678-x
Y. Liu, B. Liu, C.-Q. Ma, F. Huang, G. Feng et al., Recent progress in organic solar cells (Part I material science). Sci. China Chem. 65(2), 224–268 (2022). https://doi.org/10.1007/s11426-021-1180-6
L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang et al., Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361(6407), 1094–1098 (2018). https://doi.org/10.1126/science.aat2612
T. Nie, Z. Fang, X. Ren, Y. Duan, S.F. Liu, Recent advances in wide-bandgap organic-inorganic halide perovskite solar cells and tandem application. Nano-Micro Lett. 15(1), 70 (2023). https://doi.org/10.1007/s40820-023-01040-6
Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang et al., Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 32(19), 1908205 (2020). https://doi.org/10.1002/adma.201908205
J. Fu, P.W.K. Fong, H. Liu, C.-S. Huang, X. Lu et al., 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun. 14(1), 1760 (2023). https://doi.org/10.1038/s41467-023-37526-5
Z. Chen, J. Ge, W. Song, X. Tong, H. Liu et al., 20.2% efficiency organic photovoltaics employing a π-extension quinoxaline-based acceptor with ordered arrangement. Adv. Mater. 36(33), 2406690 (2024). https://doi.org/10.1002/adma.202406690
M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134
G. Dennler, M.C. Scharber, T. Ameri, P. Denk, K. Forberich et al., Design rules for donors in bulk-heterojunction tandem solar cell towards 15% energy-conversion efficiency. Adv. Mater. 20(3), 579–583 (2008). https://doi.org/10.1002/adma.200702337
R. He, W. Wang, Z. Yi, F. Lang, C. Chen et al., Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618(7963), 80–86 (2023). https://doi.org/10.1038/s41586-023-05992-y
Y. Jiang, K. Liu, F. Liu, G. Ran, M. Wang et al., 20.6% efficiency organic solar cells enabled by incorporating a lower bandgap guest nonfullerene acceptor without open-circuit voltage loss. Adv. Mater. 37(17), 2500282 (2025). https://doi.org/10.1002/adma.202500282
P. Müller-Buschbaum, The active layer morphology of organic solar cells probed with grazing incidence scattering techniques. Adv. Mater. 26(46), 7692–7709 (2014). https://doi.org/10.1002/adma.201304187
A.A. Bakulin, A. Rao, V.G. Pavelyev, P.H.M. van Loosdrecht, M.S. Pshenichnikov et al., The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335(6074), 1340–1344 (2012). https://doi.org/10.1126/science.1217745
A. Rao, P.C.Y. Chow, S. Gélinas, C.W. Schlenker, C.-Z. Li et al., The role of spin in the kinetic control of recombination in organic photovoltaics. Nature 500(7463), 435–439 (2013). https://doi.org/10.1038/nature12339
L. Zhu, M. Zhang, G. Zhou, Z. Wang, W. Zhong et al., Achieving 20.8% organic solar cells via additive-assisted layer-by-layer fabrication with bulk p-i-n structure and improved optical management. Joule 8(11), 3153–3168 (2024). https://doi.org/10.1016/j.joule.2024.08.001
J. Yu, Z. Shen, W. Lu, Y. Zhu, Y.-X. Liu et al., Composition waves in solution-processed organic films and its propagations from kinetically frozen surface mesophases. Adv. Funct. Mater. 33(40), 2302089 (2023). https://doi.org/10.1002/adfm.202302089
W. Chen, Y. Zhu, J. Xiu, G. Chen, H. Liang et al., Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nat. Energy 7(3), 229–237 (2022). https://doi.org/10.1038/s41560-021-00966-8
S. Wu, Y. Yan, J. Yin, K. Jiang, F. Li et al., Redox mediator-stabilized wide-bandgap perovskites for monolithic perovskite-organic tandem solar cells. Nat. Energy 9(4), 411–421 (2024). https://doi.org/10.1038/s41560-024-01451-8
G. Xie, Q. Xue, H. Ding, A. Liang, J. Liu et al., Management of intramolecular noncovalent interactions in dopant-free hole transport materials for high-performance perovskite solar cells. Angew. Chem. Int. Ed. 64(22), e202504144 (2025). https://doi.org/10.1002/anie.202504144
Z. He, R. Yu, Y. Dong, R. Wang, Y. Zhang et al., Minimized optical/electrical energy loss for 25.1% monolithic perovskite/organic tandem solar cells. Nat. Commun. 16(1), 1773 (2025). https://doi.org/10.1038/s41467-025-57093-1
X. Sun, F. Wang, G. Yang, X. Ding, J. Lv et al., From 20% single-junction organic photovoltaics to 26% perovskite/organic tandem solar cells: self-assembled hole transport molecules matter. Energy Environ. Sci. 18(5), 2536–2545 (2025). https://doi.org/10.1039/d4ee05533k
P. Dong, Z. Zhang, W. Chen, J. Zheng, J. Xu et al., Retarding phase segregation via lattice reinforcement for efficient and stable perovskite/organic tandems. Angew. Chem. Int. Ed. 64(19), e202502391 (2025). https://doi.org/10.1002/anie.202502391
Z. Jia, Q. Ma, Z. Chen, L. Meng, N. Jain et al., Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells. Nat. Commun. 14(1), 1236 (2023). https://doi.org/10.1038/s41467-023-36917-y
W. Liu, S. Sun, S. Xu, H. Zhang, Y. Zheng et al., Theory-guided material design enabling high-performance multifunctional semitransparent organic photovoltaics without optical modulations. Adv. Mater. 34(18), 2200337 (2022). https://doi.org/10.1002/adma.202200337