Modulation of Trichromatic Emission Centers in Organic–Inorganic Hybrids for Optoelectronic Applications
Corresponding Author: Yiqiang Zhan
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 140
Abstract
Organic–inorganic metal halides (OIMHs) have emerged as highly promising novel multifunctional optoelectronic materials, owing to their easily adjustable properties from a variety of combinations of different components. But it is still difficult and rare to realize highly tunable multicolor luminescence within the same material. In this work, we successfully incorporated three adjustable emission centers in OIMHs to synthesize a novel OIMH (NEA)2MnBr4, with each emission center capable of emitting one of the primary colors—red, green, and blue. The green and red emissions originate from the tetrahedron and octahedron structures in the Mn-based frame, while the blue can be attributed to the contribution of organic components. Additionally, to achieve comparable emission intensity among the three primary colors, we enhanced the blue emission performance by optimizing the ratio of organic structure components and incorporating chirality in the OIMHs. The resulting high-quality films can be obtained by spin-coating method with a photoluminescence quantum yields of up to 96%. More interestingly, by the dual manipulation of excitation wavelength and temperature, the sample can be emitted at least seven distinct colors including a standard white luminescence at (0.33, 0.33), opening up promising prospects for multicolor luminescence applications such as high-end anti-counterfeiting technology, light-emitting diodes, X-ray imaging, latent fingerprints, humidity detection, and so on. Therefore, based on application scenarios and requirements, our research on this highly tunable luminescent OIMH material lays a solid foundation for further development of various functional properties of related materials.
Highlights:
1 A novel chiral (NEA)₂MnBr₄ was obtained by introducing three independently tunable primary-color emissive centers.
2 Comparable emission intensities among the three primary colors were achieved by optimizing components and introducing chirality.
3 By means of dual control of excitation photon energy and temperature, the sample can emit at least seven different colors, including standard white light emission at (0.33, 0.33).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Niu, F. Qu, F. Chen, X. Ma, B. Chen et al., Multifunctional integrated organic-inorganic-metal hybrid aerogel for excellent thermal insulation and electromagnetic shielding performance. Nano-Micro Lett. 16(1), 200 (2024). https://doi.org/10.1007/s40820-024-01409-1
- J. Shi, K. Mao, Q. Zhang, Z. Liu, F. Long et al., An air-rechargeable Zn battery enabled by organic-inorganic hybrid cathode. Nano-Micro Lett. 15(1), 53 (2023). https://doi.org/10.1007/s40820-023-01023-7
- C. Yang, X. Liu, C. Teng, Q. Wu, F. Liang, Acentric organic-inorganic hybrid halide [N(CH3)4]2HgBr2I2 featuring an isolated [HgBr2I2]2- tetrahedron and second-order nonlinearity. Inorg. Chem. 60(9), 6829–6835 (2021). https://doi.org/10.1021/acs.inorgchem.1c00756
- Y.-H. Liu, H. Peng, W.-Q. Liao, A lead-free bismuth iodide organic-inorganic ferroelectric semiconductor. Chem. Commun. 57(5), 647–650 (2021). https://doi.org/10.1039/d0cc07443h
- J. Lin, K. Liu, H. Ruan, N. Sun, X. Chen et al., Zero-dimensional lead-free halide with indirect optical gap and enhanced photoluminescence by Sb doping. J. Phys. Chem. Lett. 13(1), 198–207 (2022). https://doi.org/10.1021/acs.jpclett.1c03649
- L.-K. Gong, J.-R. Li, Z.-F. Wu, B. Hu, Z.-P. Wang et al., Enhancing the phosphorescence of hybrid metal halides through molecular sensitization. J. Mater. Chem. C 7(32), 9803–9807 (2019). https://doi.org/10.1039/c9tc03067k
- X. Zhang, X. Jiang, K. Liu, L. Fan, J. Cao et al., Small organic molecular-based hybrid halides with high photoluminescence quenching temperature. Inorg. Chem. 61(19), 7560–7567 (2022). https://doi.org/10.1021/acs.inorgchem.2c00711
- J. Lin, Z. Guo, N. Sun, K. Liu, X. Chen et al., High-efficiency red photoluminescence achieved by antimony doping in organic–inorganic halide (C11H24N2)2 [InBr 6] [InBr4]. J. Mater. Chem. C 10(15), 5905–5913 (2022). https://doi.org/10.1039/D2TC00355D
- V. Morad, I. Cherniukh, L. Pöttschacher, Y. Shynkarenko, S. Yakunin et al., Manganese(II) in tetrahedral halide environment: factors governing bright green luminescence. Chem. Mater. 31(24), 10161–10169 (2019). https://doi.org/10.1021/acs.chemmater.9b03782
- C. Jiang, N. Zhong, C. Luo, H. Lin, Y. Zhang et al., (Diisopropylammonium)2MnBr4: a multifunctional ferroelectric with efficient green-emission and excellent gas sensing properties. Chem. Commun. 53(44), 5954–5957 (2017). https://doi.org/10.1039/C7CC01107E
- M. Li, J. Zhou, M.S. Molokeev, X. Jiang, Z. Lin et al., Lead-free hybrid metal halides with a green-emissive [MnBr4] unit as a selective turn-on fluorescent sensor for acetone. Inorg. Chem. 58(19), 13464–13470 (2019). https://doi.org/10.1021/acs.inorgchem.9b02374
- W. Cai, J. Qin, T. Pang, X. Cai, R. Jia et al., Chirality induced crystal structural difference in metal halide composites. Adv. Opt. Mater. 10(16), 2102140 (2022). https://doi.org/10.1002/adom.202102140
- Q. Guo, W.-Y. Zhang, C. Chen, Q. Ye, D.-W. Fu, Red-light emission and dielectric reversible duple opto-electronic switches in a hybrid multifunctional material: (2-methylimidazolium)MnCl3(H2O). J. Mater. Chem. C 5(22), 5458–5464 (2017). https://doi.org/10.1039/C7TC01520H
- Y. Zhang, W.-Q. Liao, D.-W. Fu, H.-Y. Ye, Z.-N. Chen et al., Highly efficient red-light emission in an organic–inorganic hybrid ferroelectric: (pyrrolidinium)MnCl3. J. Am. Chem. Soc. 137(15), 4928–4931 (2015). https://doi.org/10.1021/jacs.5b01680
- H.-Y. Ye, Q. Zhou, X. Niu, W.-Q. Liao, D.-W. Fu et al., High-temperature ferroelectricity and photoluminescence in a hybrid organic-inorganic compound: (3-pyrrolinium)MnCl3. J. Am. Chem. Soc. 137(40), 13148–13154 (2015). https://doi.org/10.1021/jacs.5b08290
- Y. Zhang, W.-Q. Liao, D.-W. Fu, H.-Y. Ye, C.-M. Liu et al., The first organic–inorganic hybrid luminescent multiferroic: (pyrrolidinium)MnBr3. Adv. Mater. 27(26), 3942–3946 (2015). https://doi.org/10.1002/adma.201501026
- M. Li, J. Zhou, G. Zhou, M.S. Molokeev, J. Zhao et al., Hybrid metal halides with multiple photoluminescence centers. Angew. Chem. Int. Ed. 58(51), 18670–18675 (2019). https://doi.org/10.1002/anie.201911419
- Z.-F. Liu, M.-F. Wu, S.-H. Wang, F.-K. Zheng, G.-E. Wang et al., Eu3+-doped Tb3+ metal–organic frameworks emitting tunable three primary colors towards white light. J. Mater. Chem. C 1(31), 4634–4639 (2013). https://doi.org/10.1039/c3tc30733f
- Q. Tang, S. Liu, Y. Liu, D. He, J. Miao et al., Color tuning and white light emission via in situ doping of luminescent lanthanide metal–organic frameworks. Inorg. Chem. 53(1), 289–293 (2014). https://doi.org/10.1021/ic402228g
- X. Rao, Q. Huang, X. Yang, Y. Cui, Y. Yang et al., Color tunable and white light emitting Tb3+ and Eu3+ doped lanthanide metal–organic framework materials. J. Mater. Chem. 22(7), 3210–3214 (2012). https://doi.org/10.1039/c2jm14127b
- W. Cai, C. Kuang, T. Liu, Y. Shang, J. Zhang et al., Multicolor light emission in manganese-based metal halide composites. Appl. Phys. Rev. 9(4), 041409 (2022). https://doi.org/10.1063/5.0108010
- T. Jiang, W. Ma, H. Zhang, Y. Tian, G. Lin et al., Highly efficient and tunable emission of lead-free manganese halides toward white light-emitting diode and X-ray scintillation applications. Adv. Funct. Mater. 31(14), 2009973 (2021). https://doi.org/10.1002/adfm.202009973
- W. Gao, M. Leng, Z. Hu, J. Li, D. Li et al., Reversible luminescent humidity chromism of organic–inorganic hybrid PEA2MnBr4 single crystals. Dalton Trans. 49(17), 5662–5668 (2020). https://doi.org/10.1039/D0DT00514B
- B. Chen, W. Huang, G. Zhang, Observation of chiral-selective room-temperature phosphorescence enhancement via chirality-dependent energy transfer. Nat. Commun. 14(1), 1514 (2023). https://doi.org/10.1038/s41467-023-37157-w
- G. Albano, G. Pescitelli, L. Di Bari, Chiroptical properties in thin films of π-conjugated systems. Chem. Rev. 120(18), 10145–10243 (2020). https://doi.org/10.1021/acs.chemrev.0c00195
- F.T. Rabouw, S.A. den Hartog, T. Senden, A. Meijerink, Photonic effects on the Förster resonance energy transfer efficiency. Nat. Commun. 5, 3610 (2014). https://doi.org/10.1038/ncomms4610
- J.B. Geri, J.V. Oakley, T. Reyes-Robles, T. Wang, S.J. McCarver et al., Microenvironment mapping via Dexter energy transfer on immune cells. Science 367(6482), 1091–1097 (2020). https://doi.org/10.1126/science.aay4106
- W. Zhang, J. Wei, Z. Gong, P. Huang, J. Xu et al., Unveiling the excited-state dynamics of Mn2+ in 0D Cs4PbCl6 perovskite nanocrystals. Adv. Sci. 7(22), 2002210 (2020). https://doi.org/10.1002/advs.202002210
- H. Suo, Q. Zhu, X. Zhang, B. Chen, J. Chen et al., High-security anti-counterfeiting through upconversion luminescence. Mater. Today Phys. 21, 100520 (2021). https://doi.org/10.1016/j.mtphys.2021.100520
- H. Huang, J. Chen, Y. Liu, J. Lin, S. Wang et al., Lanthanide-doped core@multishell nanoarchitectures: multimodal excitable upconverting/downshifting luminescence and high-level anti-counterfeiting. Small 16(19), 2000708 (2020). https://doi.org/10.1002/smll.202000708
- P. Hu, S. Zhou, Y. Wang, J. Xu, S. Zhang et al., Printable, room-temperature self-healing and full-color-tunable emissive composites for transparent panchromatic display and flexible high-level anti-counterfeiting. Chem. Eng. J. 431, 133728 (2022). https://doi.org/10.1016/j.cej.2021.133728
- L. Li, Q. Li, J. Chu, P. Xi, C. Wang et al., Dual-mode luminescent multilayer core-shell UCNPs@SiO2@TEuTbB nanospheres for high-level anti-counterfeiting and recognition of latent fingerprints. Appl. Surf. Sci. 581, 152395 (2022). https://doi.org/10.1016/j.apsusc.2021.152395
- W. Jiang, L. Liu, Y. Wu, P. Zhang, F. Li et al., A green-synthesized phosphorescent carbon dot composite for multilevel anti-counterfeiting. Nanoscale Adv. 3(15), 4536–4540 (2021). https://doi.org/10.1039/d1na00252j
- J. Wang, Q. Zhang, R. Chen, J. Li, J. Wang et al., Triple-layer unclonable anti-counterfeiting enabled by huge-encoding capacity algorithm and artificial intelligence authentication. Nano Today 41, 101324 (2021). https://doi.org/10.1016/j.nantod.2021.101324
- W. Cai, J. Qin, X. Ma, S. Wang, M. Zhang et al., Multicolor light emission and multifunctional applications in double perovskite-Cs2NaInCl6 by Cu+/Sb3+ co-doping. Chem. Eng. J. 489, 151212 (2024). https://doi.org/10.1016/j.cej.2024.151212
- B. Song, Y. Zhong, S. Wu, B. Chu, Y. Su et al., One-dimensional fluorescent silicon nanorods featuring ultrahigh photostability, favorable biocompatibility, and excitation wavelength-dependent emission spectra. J. Am. Chem. Soc. 138(14), 4824–4831 (2016). https://doi.org/10.1021/jacs.6b00479
- Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq et al., All-inorganic perovskite nanocrystal scintillators. Nature 561(7721), 88–93 (2018). https://doi.org/10.1038/s41586-018-0451-1
- J.H. Heo, D.H. Shin, J.K. Park, D.H. Kim, S.J. Lee et al., High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Adv. Mater. (2018). https://doi.org/10.1002/adma.201801743
- Y. Zhang, R. Sun, X. Ou, K. Fu, Q. Chen et al., Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano 13(2), 2520–2525 (2019). https://doi.org/10.1021/acsnano.8b09484
- F. Cao, D. Yu, W. Ma, X. Xu, B. Cai et al., Shining emitter in a stable host: design of halide perovskite scintillators for X-ray imaging from commercial concept. ACS Nano 14(5), 5183–5193 (2020). https://doi.org/10.1021/acsnano.9b06114
- J. Chen, M. Li, R. Sun, Y. Xie, J.R. Reimers et al., Enhancement of luminescence from lanthanide metal–organic frameworks by ytterbium and calcium doping: application to photonic barcodes and fingerprint detection. Adv. Funct. Mater. 34(27), 2315276 (2024). https://doi.org/10.1002/adfm.202315276
References
Z. Niu, F. Qu, F. Chen, X. Ma, B. Chen et al., Multifunctional integrated organic-inorganic-metal hybrid aerogel for excellent thermal insulation and electromagnetic shielding performance. Nano-Micro Lett. 16(1), 200 (2024). https://doi.org/10.1007/s40820-024-01409-1
J. Shi, K. Mao, Q. Zhang, Z. Liu, F. Long et al., An air-rechargeable Zn battery enabled by organic-inorganic hybrid cathode. Nano-Micro Lett. 15(1), 53 (2023). https://doi.org/10.1007/s40820-023-01023-7
C. Yang, X. Liu, C. Teng, Q. Wu, F. Liang, Acentric organic-inorganic hybrid halide [N(CH3)4]2HgBr2I2 featuring an isolated [HgBr2I2]2- tetrahedron and second-order nonlinearity. Inorg. Chem. 60(9), 6829–6835 (2021). https://doi.org/10.1021/acs.inorgchem.1c00756
Y.-H. Liu, H. Peng, W.-Q. Liao, A lead-free bismuth iodide organic-inorganic ferroelectric semiconductor. Chem. Commun. 57(5), 647–650 (2021). https://doi.org/10.1039/d0cc07443h
J. Lin, K. Liu, H. Ruan, N. Sun, X. Chen et al., Zero-dimensional lead-free halide with indirect optical gap and enhanced photoluminescence by Sb doping. J. Phys. Chem. Lett. 13(1), 198–207 (2022). https://doi.org/10.1021/acs.jpclett.1c03649
L.-K. Gong, J.-R. Li, Z.-F. Wu, B. Hu, Z.-P. Wang et al., Enhancing the phosphorescence of hybrid metal halides through molecular sensitization. J. Mater. Chem. C 7(32), 9803–9807 (2019). https://doi.org/10.1039/c9tc03067k
X. Zhang, X. Jiang, K. Liu, L. Fan, J. Cao et al., Small organic molecular-based hybrid halides with high photoluminescence quenching temperature. Inorg. Chem. 61(19), 7560–7567 (2022). https://doi.org/10.1021/acs.inorgchem.2c00711
J. Lin, Z. Guo, N. Sun, K. Liu, X. Chen et al., High-efficiency red photoluminescence achieved by antimony doping in organic–inorganic halide (C11H24N2)2 [InBr 6] [InBr4]. J. Mater. Chem. C 10(15), 5905–5913 (2022). https://doi.org/10.1039/D2TC00355D
V. Morad, I. Cherniukh, L. Pöttschacher, Y. Shynkarenko, S. Yakunin et al., Manganese(II) in tetrahedral halide environment: factors governing bright green luminescence. Chem. Mater. 31(24), 10161–10169 (2019). https://doi.org/10.1021/acs.chemmater.9b03782
C. Jiang, N. Zhong, C. Luo, H. Lin, Y. Zhang et al., (Diisopropylammonium)2MnBr4: a multifunctional ferroelectric with efficient green-emission and excellent gas sensing properties. Chem. Commun. 53(44), 5954–5957 (2017). https://doi.org/10.1039/C7CC01107E
M. Li, J. Zhou, M.S. Molokeev, X. Jiang, Z. Lin et al., Lead-free hybrid metal halides with a green-emissive [MnBr4] unit as a selective turn-on fluorescent sensor for acetone. Inorg. Chem. 58(19), 13464–13470 (2019). https://doi.org/10.1021/acs.inorgchem.9b02374
W. Cai, J. Qin, T. Pang, X. Cai, R. Jia et al., Chirality induced crystal structural difference in metal halide composites. Adv. Opt. Mater. 10(16), 2102140 (2022). https://doi.org/10.1002/adom.202102140
Q. Guo, W.-Y. Zhang, C. Chen, Q. Ye, D.-W. Fu, Red-light emission and dielectric reversible duple opto-electronic switches in a hybrid multifunctional material: (2-methylimidazolium)MnCl3(H2O). J. Mater. Chem. C 5(22), 5458–5464 (2017). https://doi.org/10.1039/C7TC01520H
Y. Zhang, W.-Q. Liao, D.-W. Fu, H.-Y. Ye, Z.-N. Chen et al., Highly efficient red-light emission in an organic–inorganic hybrid ferroelectric: (pyrrolidinium)MnCl3. J. Am. Chem. Soc. 137(15), 4928–4931 (2015). https://doi.org/10.1021/jacs.5b01680
H.-Y. Ye, Q. Zhou, X. Niu, W.-Q. Liao, D.-W. Fu et al., High-temperature ferroelectricity and photoluminescence in a hybrid organic-inorganic compound: (3-pyrrolinium)MnCl3. J. Am. Chem. Soc. 137(40), 13148–13154 (2015). https://doi.org/10.1021/jacs.5b08290
Y. Zhang, W.-Q. Liao, D.-W. Fu, H.-Y. Ye, C.-M. Liu et al., The first organic–inorganic hybrid luminescent multiferroic: (pyrrolidinium)MnBr3. Adv. Mater. 27(26), 3942–3946 (2015). https://doi.org/10.1002/adma.201501026
M. Li, J. Zhou, G. Zhou, M.S. Molokeev, J. Zhao et al., Hybrid metal halides with multiple photoluminescence centers. Angew. Chem. Int. Ed. 58(51), 18670–18675 (2019). https://doi.org/10.1002/anie.201911419
Z.-F. Liu, M.-F. Wu, S.-H. Wang, F.-K. Zheng, G.-E. Wang et al., Eu3+-doped Tb3+ metal–organic frameworks emitting tunable three primary colors towards white light. J. Mater. Chem. C 1(31), 4634–4639 (2013). https://doi.org/10.1039/c3tc30733f
Q. Tang, S. Liu, Y. Liu, D. He, J. Miao et al., Color tuning and white light emission via in situ doping of luminescent lanthanide metal–organic frameworks. Inorg. Chem. 53(1), 289–293 (2014). https://doi.org/10.1021/ic402228g
X. Rao, Q. Huang, X. Yang, Y. Cui, Y. Yang et al., Color tunable and white light emitting Tb3+ and Eu3+ doped lanthanide metal–organic framework materials. J. Mater. Chem. 22(7), 3210–3214 (2012). https://doi.org/10.1039/c2jm14127b
W. Cai, C. Kuang, T. Liu, Y. Shang, J. Zhang et al., Multicolor light emission in manganese-based metal halide composites. Appl. Phys. Rev. 9(4), 041409 (2022). https://doi.org/10.1063/5.0108010
T. Jiang, W. Ma, H. Zhang, Y. Tian, G. Lin et al., Highly efficient and tunable emission of lead-free manganese halides toward white light-emitting diode and X-ray scintillation applications. Adv. Funct. Mater. 31(14), 2009973 (2021). https://doi.org/10.1002/adfm.202009973
W. Gao, M. Leng, Z. Hu, J. Li, D. Li et al., Reversible luminescent humidity chromism of organic–inorganic hybrid PEA2MnBr4 single crystals. Dalton Trans. 49(17), 5662–5668 (2020). https://doi.org/10.1039/D0DT00514B
B. Chen, W. Huang, G. Zhang, Observation of chiral-selective room-temperature phosphorescence enhancement via chirality-dependent energy transfer. Nat. Commun. 14(1), 1514 (2023). https://doi.org/10.1038/s41467-023-37157-w
G. Albano, G. Pescitelli, L. Di Bari, Chiroptical properties in thin films of π-conjugated systems. Chem. Rev. 120(18), 10145–10243 (2020). https://doi.org/10.1021/acs.chemrev.0c00195
F.T. Rabouw, S.A. den Hartog, T. Senden, A. Meijerink, Photonic effects on the Förster resonance energy transfer efficiency. Nat. Commun. 5, 3610 (2014). https://doi.org/10.1038/ncomms4610
J.B. Geri, J.V. Oakley, T. Reyes-Robles, T. Wang, S.J. McCarver et al., Microenvironment mapping via Dexter energy transfer on immune cells. Science 367(6482), 1091–1097 (2020). https://doi.org/10.1126/science.aay4106
W. Zhang, J. Wei, Z. Gong, P. Huang, J. Xu et al., Unveiling the excited-state dynamics of Mn2+ in 0D Cs4PbCl6 perovskite nanocrystals. Adv. Sci. 7(22), 2002210 (2020). https://doi.org/10.1002/advs.202002210
H. Suo, Q. Zhu, X. Zhang, B. Chen, J. Chen et al., High-security anti-counterfeiting through upconversion luminescence. Mater. Today Phys. 21, 100520 (2021). https://doi.org/10.1016/j.mtphys.2021.100520
H. Huang, J. Chen, Y. Liu, J. Lin, S. Wang et al., Lanthanide-doped core@multishell nanoarchitectures: multimodal excitable upconverting/downshifting luminescence and high-level anti-counterfeiting. Small 16(19), 2000708 (2020). https://doi.org/10.1002/smll.202000708
P. Hu, S. Zhou, Y. Wang, J. Xu, S. Zhang et al., Printable, room-temperature self-healing and full-color-tunable emissive composites for transparent panchromatic display and flexible high-level anti-counterfeiting. Chem. Eng. J. 431, 133728 (2022). https://doi.org/10.1016/j.cej.2021.133728
L. Li, Q. Li, J. Chu, P. Xi, C. Wang et al., Dual-mode luminescent multilayer core-shell UCNPs@SiO2@TEuTbB nanospheres for high-level anti-counterfeiting and recognition of latent fingerprints. Appl. Surf. Sci. 581, 152395 (2022). https://doi.org/10.1016/j.apsusc.2021.152395
W. Jiang, L. Liu, Y. Wu, P. Zhang, F. Li et al., A green-synthesized phosphorescent carbon dot composite for multilevel anti-counterfeiting. Nanoscale Adv. 3(15), 4536–4540 (2021). https://doi.org/10.1039/d1na00252j
J. Wang, Q. Zhang, R. Chen, J. Li, J. Wang et al., Triple-layer unclonable anti-counterfeiting enabled by huge-encoding capacity algorithm and artificial intelligence authentication. Nano Today 41, 101324 (2021). https://doi.org/10.1016/j.nantod.2021.101324
W. Cai, J. Qin, X. Ma, S. Wang, M. Zhang et al., Multicolor light emission and multifunctional applications in double perovskite-Cs2NaInCl6 by Cu+/Sb3+ co-doping. Chem. Eng. J. 489, 151212 (2024). https://doi.org/10.1016/j.cej.2024.151212
B. Song, Y. Zhong, S. Wu, B. Chu, Y. Su et al., One-dimensional fluorescent silicon nanorods featuring ultrahigh photostability, favorable biocompatibility, and excitation wavelength-dependent emission spectra. J. Am. Chem. Soc. 138(14), 4824–4831 (2016). https://doi.org/10.1021/jacs.6b00479
Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq et al., All-inorganic perovskite nanocrystal scintillators. Nature 561(7721), 88–93 (2018). https://doi.org/10.1038/s41586-018-0451-1
J.H. Heo, D.H. Shin, J.K. Park, D.H. Kim, S.J. Lee et al., High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Adv. Mater. (2018). https://doi.org/10.1002/adma.201801743
Y. Zhang, R. Sun, X. Ou, K. Fu, Q. Chen et al., Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano 13(2), 2520–2525 (2019). https://doi.org/10.1021/acsnano.8b09484
F. Cao, D. Yu, W. Ma, X. Xu, B. Cai et al., Shining emitter in a stable host: design of halide perovskite scintillators for X-ray imaging from commercial concept. ACS Nano 14(5), 5183–5193 (2020). https://doi.org/10.1021/acsnano.9b06114
J. Chen, M. Li, R. Sun, Y. Xie, J.R. Reimers et al., Enhancement of luminescence from lanthanide metal–organic frameworks by ytterbium and calcium doping: application to photonic barcodes and fingerprint detection. Adv. Funct. Mater. 34(27), 2315276 (2024). https://doi.org/10.1002/adfm.202315276