Violet Arsenic Phosphorus: Switching p-Type into High Performance n-Type Semiconductor by Arsenic Substitution
Corresponding Author: Jinying Zhang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 145
Abstract
Violet phosphorus, a recently explored layered elemental semiconductor, has attracted much attention due to its unique photoelectric, mechanical properties, and high hole mobility. Herein, violet arsenic phosphorus has for the first time been synthesized by a molten lead method. The crystal structure of violet arsenic phosphorus (P83.4As0.6, CSD-2408761) was determined by single crystal X-ray diffraction to have similar structure as that of violet phosphorus, where P12 is occupied by arsenic/phosphorus (As/P) atoms as mixed occupancy sites As1/P12. The arsenic substitution has been demonstrated to tune the band structure of violet phosphorus, switching p-type of violet phosphorus to high-performance n-type violet arsenic phosphorus. The effective electron mass along the < 010 > direction is significantly reduced from 1.792 to 0.515 m0 by arsenic substitution, resulting in an extremely high electron mobility of 2622.503 cm2 V⁻1 s⁻1. The field effect transistor built with P83.4As0.6 nanosheets was measured to have a high electron mobility (137.06 cm2 V⁻1 s⁻1, 61.2 nm), even under ambient conditions for 5 h, much higher than the hole mobility of violet phosphorene nanosheets (4.07 cm2 V⁻1 s⁻1, 73.3 nm). This work provides a new idea for designing phosphorus-based materials for field effect transistors, giving significant potential in complementary metal–oxide–semiconductor applications.
Highlights:
1 Violet arsenic phosphorus (VP-As) single crystals were synthesized and characterized by single crystal X-ray diffraction to be P83.4As0.6 (CSD-2408761), the P12 is occupied by arsenic/phosphorus as a mixed occupancy site.
2 The p-type VP has been switched into n-type VP-As, the effective electron mass was significantly reduced and resulted in high electron mobility of 2622.503 cm2 V−1 s−1.
3 High electron mobility of 137.06 cm2 V−1 s−1 has been achieved from field effect transistor, much higher than the hole mobility of VP.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Thurn, H. Krebs, Über Struktur und Eigenschaften der Halbmetalle. XXII. Die Kristallstruktur des Hittorfschen Phosphors. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 25(1), 125–135 (1969). https://doi.org/10.1107/s0567740869001853
- L. Zhang, X. Li, F. Yao, L. Li, H. Huang et al., Fast identification of the crystallographic orientation of violet phosphorus nanoflakes with preferred in-plane cleavage edge orientation. Adv. Funct. Mater. 32(18), 2111057 (2022). https://doi.org/10.1002/adfm.202111057
- B. Zhang, L. Zhang, C. Chen, M. Gu, Y. Cheng et al., Friction anisotropy of violet phosphorene and its surface structure direction identification. 2D Mater. 9(2), 025002 (2022). https://doi.org/10.1088/2053-1583/ac4813
- B. Zhang, L. Zhang, Z. Wang, Y. Li, Y. Cheng et al., Cross structured two-dimensional violet phosphorene with extremely high deformation resistance. J. Mater. Chem. A 9(24), 13855–13860 (2021). https://doi.org/10.1039/D1TA02595C
- Y. Wang, M. Jin, M. Gu, X. Zhao, J. Xie et al., Synthesis of violet phosphorus with large lateral sizes to facilitate nano-device fabrications. Nanoscale 15(29), 12406–12412 (2023). https://doi.org/10.1039/D3NR01113E
- H. Ma, H. Fang, X. Xie, Y. Liu, H. Tian et al., Optoelectronic synapses based on MXene/violet phosphorus van der Waals heterojunctions for visual-olfactory crossmodal perception. Nano-Micro Lett. 16(1), 104 (2024). https://doi.org/10.1007/s40820-024-01330-7
- H. Pan, X. Ma, H. Chu, Y. Li, Z. Pan et al., Few-layered violet phosphorene nanostructures as saturable absorbers for stable soliton mode-locking operations in an ultrafast fiber laser. ACS Appl. Nano Mater. 6(6), 4726–4733 (2023). https://doi.org/10.1021/acsanm.3c00218
- X. Ma, H. Pan, T. Yang, Q. Liao, J. Zhang et al., Optical absorption and second-harmonic generation in violet phosphorene: experimental and theoretical aspects. Adv. Opt. Mater. 11(9), 2202770 (2023). https://doi.org/10.1002/adom.202202770
- M. Gu, L. Zhang, S. Mao, Y. Zou, D. Ma et al., Violet phosphorus: an effective metal-free elemental photocatalyst for hydrogen evolution. Chem. Commun. 58(92), 12811–12814 (2022). https://doi.org/10.1039/D2CC04461G
- S. Wang, X. Zhao, Z. Liu, X. Yang, B. Pang et al., Violet phosphorus-Fe3O4 as a novel photocatalysis-self-Fenton system coupled with underwater bubble plasma to efficiently remove norfloxacin in water. Chem. Eng. J. 452, 139481 (2023). https://doi.org/10.1016/j.cej.2022.139481
- X. Wang, M. Ma, X. Zhao, P. Jiang, Y. Wang et al., Phase engineering of 2D violet/black phosphorus heterostructure for enhanced photocatalytic hydrogen evolution. Small Struct. 4(10), 2300123 (2023). https://doi.org/10.1002/sstr.202300123
- R. Zhai, Z. Wang, M. Gu, H. Liu, X. Zhao et al., Electron gathering at violet phosphorene-Ag interface for photoreduction of CO2 to ethylene. Appl. Catal. B Environ. Energy 361, 124603 (2025). https://doi.org/10.1016/j.apcatb.2024.124603
- J. Singh, Effective mass of charge carriers in amorphous semiconductors and its applications. J. Non-Crys. Solids 299–302, 444–448 (2002). https://doi.org/10.1016/s0022-3093(01)00957-7
- C. Goffaux, V. Lousse, J. Vigneron, Complete minigaps for effective-mass carriers in three-dimensional semiconductor superlattices. Phys. Rev. B 62, 7133–7137 (2000). https://doi.org/10.1023/A:1013366325187
- T. Chu, Z. Chen, Electrically tunable bandgaps in 2D layered materials. In: 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC). IEEE (2016), pp. 25–29. https://doi.org/10.1109/EDSSC.2016.7785202
- J. Wu, H. Yuan, M. Meng, C. Chen, Y. Sun et al., High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 12(6), 530–534 (2017). https://doi.org/10.1038/nnano.2017.43
- Y. Hu, P. Xie, M. De Corato, A. Ruini, S. Zhao et al., Bandgap engineering of graphene nanoribbons by control over structural distortion. J. Am. Chem. Soc. 140(25), 7803–7809 (2018). https://doi.org/10.1021/jacs.8b02209
- S. Yang, P. Zhang, A.S. Nia, X. Feng, Exfoliation and engineering of 2D materials through electrochemistry. CCS Chem. 6(10), 2368–2391 (2024). https://doi.org/10.31635/ccschem.024.202403878
- M.-H. Shang, J. Zhang, S. Wei, Y. Zhu, L. Wang et al., Bi-doped Sb2S3 for low effective mass and optimized optical properties. J. Mater. Chem. C 4(22), 5081–5090 (2016). https://doi.org/10.1039/c6tc00513f
- G. Bhowmik, K. Gruenewald, G. Malladi, T. Mowll, C. Ventrice et al., Tunable photoluminescence of atomically thin MoS2 via Nb doping. MRS Adv. 4(10), 609–614 (2019). https://doi.org/10.1557/adv.2019.24
- Y. Jin, Z. Zeng, Z. Xu, Y.-C. Lin, K. Bi et al., Synthesis and transport properties of degenerate P-type Nb-doped WS2 monolayers. Chem. Mater. 31(9), 3534–3541 (2019). https://doi.org/10.1021/acs.chemmater.9b00913
- S.-H. Su, Y.-T. Hsu, Y.-H. Chang, M.-H. Chiu, C.-L. Hsu et al., Band gap-tunable molybdenum sulfide selenide monolayer alloy. Small 10(13), 2589–2594 (2014). https://doi.org/10.1002/smll.201302893
- B. Liu, M. Köpf, A.N. Abbas, X. Wang, Q. Guo et al., Black arsenic–phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 27(30), 4423–4429 (2015). https://doi.org/10.1002/adma.201501758
- Y. Yu, B. Xing, J. Yao, X. Niu, Y. Liu et al., N-type doping of black phosphorus single crystal by tellurium. Nanotechnology 31(31), 315605 (2020). https://doi.org/10.1088/1361-6528/ab8c08
- R. Enderlein, N.J. Horing, Fundamentals of Semiconductor Physics and Devices. Singapore: World Scientific, (1997). https://doi.org/10.1142/2866
- A. Brown, S. Rundqvist, Refinement of the crystal structure of black phosphorus. Acta Crystallogr. 19(4), 684–685 (1965). https://doi.org/10.1107/S0365110X65004140
- M. Liu, S. Feng, Y. Hou, S. Zhao, L. Tang et al., High yield growth and doping of black phosphorus with tunable electronic properties. Mater. Today 36, 91–101 (2020). https://doi.org/10.1016/j.mattod.2019.12.027
- L. Zhang, H. Huang, B. Zhang, M. Gu, D. Zhao et al., Structure and properties of violet phosphorus and its phosphorene exfoliation. Angew. Chem. Int. Ed. 59(3), 1074–1080 (2020). https://doi.org/10.1002/anie.201912761
- F. Baumer, Y. Ma, C. Shen, A. Zhang, L. Chen et al., Synthesis, characterization, and device application of antimony-substituted violet phosphorus: a layered material. ACS Nano 11(4), 4105–4113 (2017). https://doi.org/10.1021/acsnano.7b00798
- X. Zhao, M. Gu, R. Zhai, Y. Zhang, M. Jin et al., Violet antimony phosphorus with enhanced photocatalytic hydrogen evolution. Small 19(41), e2302859 (2023). https://doi.org/10.1002/smll.202302859
- L. Zhang, H. Huang, Z. Lv, L. Li, M. Gu et al., Phonon properties of bulk violet phosphorus single crystals: temperature and pressure evolution. ACS Appl. Electron. Mater. 3(3), 1043–1049 (2021). https://doi.org/10.1021/acsaelm.0c00731
- D. Vithanage, U. Abu, M.R. Khan Musa, K.J. Tasnim, H. Weerahennedige et al., High-pressure response of vibrational properties of b-AsxP1-x: in situ Raman studies. Nanotechnology 34(46), acef28 (2023). https://doi.org/10.1088/1361-6528/acef28
- W. Hong, M. Kitta, Q. Xu, Bimetallic MOF-derived FeCo-P/C nanocomposites as efficient catalysts for oxygen evolution reaction. Small Meth 2(12), 1800214 (2018). https://doi.org/10.1002/smtd.201800214
- H. Jin, Z. Kou, W. Cai, H. Zhou, P. Ji et al., P-Fe bond oxygen reduction catalysts toward high-efficiency metal–air batteries and fuel cells. J. Mater. Chem. A 8(18), 9121–9127 (2020). https://doi.org/10.1039/D0TA02334E
- B. Elsener, D. Atzei, A. Krolikowski, A. Rossi, Effect of phosphorus concentration on the electronic structure of nanocrystalline electrodeposited Ni–P alloys: an XPS and XAES investigation. Surf. Interface Anal. 40(5), 919–926 (2008). https://doi.org/10.1002/sia.2802
- S. Wu, S.S. Neo, Z. Dong, F. Boey, P. Wu, Tunable ionic and electronic conduction of lithium nitride via phosphorus and arsenic substitution: a first-principles study. J. Phys. Chem. C 114(39), 16706–16709 (2010). https://doi.org/10.1021/jp1045047
- J. Yamauchi, Y. Yoshimoto, Y. Suwa, Core-level shifts in X-ray photoelectron spectroscopy of arsenic defects in silicon crystal: a first-principles study. AIP Adv. 10(11), 115301 (2020). https://doi.org/10.1063/5.0025316
- H.A. Bullen, M.J. Dorko, J.K. Oman, S.J. Garrett, Valence and core-level binding energy shifts in realgar (As4S4) and pararealgar (As4S4) arsenic sulfides. Surf. Sci. 531(3), 319–328 (2003). https://doi.org/10.1016/S0039-6028(03)00491-6
- V. Kumar, S.K. Sharma, T.P. Sharma, V. Singh, Band gap determination in thick films from reflectance measurements. Opt. Mater. 12(1), 115–119 (1999). https://doi.org/10.1016/S0925-3467(98)00052-4
- X. Li, B. Kang, F. Dong, Z. Zhang, X. Luo et al., Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2. Nano Energy 81, 105671 (2021). https://doi.org/10.1016/j.nanoen.2020.105671
- S. Zhang, S. Ma, X. Hao, Y. Wang, B. Cao et al., Controllable preparation of crystalline red phosphorus and its photocatalytic properties. Nanoscale 13(45), 18955–18960 (2021). https://doi.org/10.1039/d1nr06530k
- X. Ma, Y. Dai, M. Guo, B. Huang, The role of effective mass of carrier in the photocatalytic behavior of silver halide-based Ag@AgX (X=Cl, Br, I): a theoretical study. ChemPhysChem 13(9), 2304–2309 (2012). https://doi.org/10.1002/cphc.201200159
- J.-Y. Noh, H. Kim, H.-H. Nahm, Y.-S. Kim, D.H. Kim et al., Cation composition effects on electronic structures of In–Sn–Zn–O amorphous semiconductors. J. Appl. Phys. 113(18), 183706 (2013). https://doi.org/10.1063/1.4803706
- Z.M. Gibbs, F. Ricci, G. Li, H. Zhu, K. Persson et al., Effective mass and Fermi surface complexity factor from ab initio band structure calculations. NPJ Comput. Mater. 3, 8 (2017). https://doi.org/10.1038/s41524-017-0013-3
- W. Ahmad, A. Abbas, U. Younis, J. Zhang, S.H. Aleithan et al., Advancements in optoelectronics: harnessing the potential of 2D violet phosphorus. Adv. Funct. Mater. 34(52), 2410723 (2024). https://doi.org/10.1002/adfm.202410723
- C.E. Dreyer, A. Janotti, C.G. Van de Walle, Effects of strain on the electron effective mass in GaN and AlN. Appl. Phys. Lett. 102(14), 142105 (2013). https://doi.org/10.1063/1.4801520
- M.G. Silveirinha, N. Engheta, Transformation electronics: tailoring the effective mass of electrons. Phys. Rev. B 86(16), 161104 (2012). https://doi.org/10.1103/physrevb.86.161104
- W. Wunderlich, H. Ohta, K. Koumoto, Enhanced effective mass in doped SrTiO3 and related perovskites. Phys. B Condens. Matter 404(16), 2202–2212 (2009). https://doi.org/10.1016/j.physb.2009.04.012
- Z. Sun, B. Zhang, Y. Zhao, M. Khurram, Q. Yan, Synthesis, exfoliation, and transport properties of quasi-1D van der Waals fibrous red phosphorus. Chem. Mater. 33(15), 6240–6248 (2021). https://doi.org/10.1021/acs.chemmater.1c02136
- N. Wang, N. Mao, Z. Wang, X. Yang, X. Zhou et al., Electrochemical delamination of ultralarge few-layer black phosphorus with a hydrogen-free intercalation mechanism. Adv. Mater. 33(1), e2005815 (2021). https://doi.org/10.1002/adma.202005815
- A.G. Ricciardulli, Y. Wang, S. Yang, P. Samorì, Two-dimensional violet phosphorus: a p-type semiconductor for (opto)electronics. J. Am. Chem. Soc. 144(8), 3660–3666 (2022). https://doi.org/10.1021/jacs.1c12931
- S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo et al., Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures. Nano Lett. 18(5), 3172–3179 (2018). https://doi.org/10.1021/acs.nanolett.8b00835
- Y. Wang, J.C. Kim, Y. Li, K.Y. Ma, S. Hong et al., P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 610(7930), 61–66 (2022). https://doi.org/10.1038/s41586-022-05134-w
- X. Liu, A. Islam, N. Yang, B. Odhner, M.A. Tupta, J. Guo, P.X. Feng, Atomic layer MoTe2 field-effect transistors and monolithic logic circuits configured by scanning laser annealing. ACS Nano 15(12), 19733–19742 (2021). https://doi.org/10.1021/acsnano.1c07169
- Y. Wang, A. Slassi, J. Cornil, D. Beljonne, P. Samorì, Tuning the optical and electrical properties of few-layer black phosphorus via physisorption of small solvent molecules. Small 15(47), e1903432 (2019). https://doi.org/10.1002/smll.201903432
- H. Shi, S. Fu, Y. Liu, C. Neumann, M. Wang et al., Molecularly engineered black phosphorus heterostructures with improved ambient stability and enhanced charge carrier mobility. Adv. Mater. 33(48), 2105694 (2021). https://doi.org/10.1002/adma.202105694
- W. Ahmad, M.U. Rehman, L. Pan, W. Li, J. Yi et al., Ultrasensitive near-infrared polarization photodetectors with violet phosphorus/InSe van der Waals heterostructures. ACS Appl. Mater. Interfaces 16(15), 19214–19224 (2024). https://doi.org/10.1021/acsami.4c01396
- J. Kim, W. Park, J.-H. Lee, M.-J. Seong, Simultaneous growth of Ga2S3 and GaS thin films using physical vapor deposition with GaS powder as a single precursor. Nanotechnology 30(38), 384001 (2019). https://doi.org/10.1088/1361-6528/ab284c
- G.B. Blanchet, C.R. Fincher, M. Lefenfeld, J.A. Rogers, Contact resistance in organic thin film transistors. Appl. Phys. Lett. 84(2), 296–298 (2004). https://doi.org/10.1063/1.1639937
- D. Natali, L. Fumagalli, M. Sampietro, Modeling of organic thin film transistors: effect of contact resistances. J. Appl. Phys. 101, 014501 (2007). https://doi.org/10.1063/1.2402349
- Y.-T. Huang, Y.-H. Chen, Y.-J. Ho, S.-W. Huang, Y.-R. Chang et al., High-performance InSe transistors with ohmic contact enabled by nonrectifying barrier-type indium electrodes. ACS Appl. Mater. Interfaces 10(39), 33450–33456 (2018). https://doi.org/10.1021/acsami.8b10576
- Y. Wang, J.C. Kim, R.J. Wu, J. Martinez, X. Song et al., Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568(7750), 70–74 (2019). https://doi.org/10.1038/s41586-019-1052-3
- W. Chen, R. Zhang, M. Gu, L. Zhang, B. Xie et al., An ultrahigh-contrast violet phosphorus van der Waals phototransistor. Adv. Opt. Mater. 12(2), 2301399 (2024). https://doi.org/10.1002/adom.202301399
- W. Zawadzki, Electron dynamics in crystalline semiconductors. Acta Phys. Pol. A. 123(1), 132 (2013). https://doi.org/10.12693/aphyspola.123.132
- Y. Liu, P. Sahoo, J.P.A. Makongo, X. Zhou, S.-J. Kim et al., Large enhancements of thermopower and carrier mobility in quantum dot engineered bulk semiconductors. J. Am. Chem. Soc. 135(20), 7486–7495 (2013). https://doi.org/10.1021/ja311059m
References
H. Thurn, H. Krebs, Über Struktur und Eigenschaften der Halbmetalle. XXII. Die Kristallstruktur des Hittorfschen Phosphors. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 25(1), 125–135 (1969). https://doi.org/10.1107/s0567740869001853
L. Zhang, X. Li, F. Yao, L. Li, H. Huang et al., Fast identification of the crystallographic orientation of violet phosphorus nanoflakes with preferred in-plane cleavage edge orientation. Adv. Funct. Mater. 32(18), 2111057 (2022). https://doi.org/10.1002/adfm.202111057
B. Zhang, L. Zhang, C. Chen, M. Gu, Y. Cheng et al., Friction anisotropy of violet phosphorene and its surface structure direction identification. 2D Mater. 9(2), 025002 (2022). https://doi.org/10.1088/2053-1583/ac4813
B. Zhang, L. Zhang, Z. Wang, Y. Li, Y. Cheng et al., Cross structured two-dimensional violet phosphorene with extremely high deformation resistance. J. Mater. Chem. A 9(24), 13855–13860 (2021). https://doi.org/10.1039/D1TA02595C
Y. Wang, M. Jin, M. Gu, X. Zhao, J. Xie et al., Synthesis of violet phosphorus with large lateral sizes to facilitate nano-device fabrications. Nanoscale 15(29), 12406–12412 (2023). https://doi.org/10.1039/D3NR01113E
H. Ma, H. Fang, X. Xie, Y. Liu, H. Tian et al., Optoelectronic synapses based on MXene/violet phosphorus van der Waals heterojunctions for visual-olfactory crossmodal perception. Nano-Micro Lett. 16(1), 104 (2024). https://doi.org/10.1007/s40820-024-01330-7
H. Pan, X. Ma, H. Chu, Y. Li, Z. Pan et al., Few-layered violet phosphorene nanostructures as saturable absorbers for stable soliton mode-locking operations in an ultrafast fiber laser. ACS Appl. Nano Mater. 6(6), 4726–4733 (2023). https://doi.org/10.1021/acsanm.3c00218
X. Ma, H. Pan, T. Yang, Q. Liao, J. Zhang et al., Optical absorption and second-harmonic generation in violet phosphorene: experimental and theoretical aspects. Adv. Opt. Mater. 11(9), 2202770 (2023). https://doi.org/10.1002/adom.202202770
M. Gu, L. Zhang, S. Mao, Y. Zou, D. Ma et al., Violet phosphorus: an effective metal-free elemental photocatalyst for hydrogen evolution. Chem. Commun. 58(92), 12811–12814 (2022). https://doi.org/10.1039/D2CC04461G
S. Wang, X. Zhao, Z. Liu, X. Yang, B. Pang et al., Violet phosphorus-Fe3O4 as a novel photocatalysis-self-Fenton system coupled with underwater bubble plasma to efficiently remove norfloxacin in water. Chem. Eng. J. 452, 139481 (2023). https://doi.org/10.1016/j.cej.2022.139481
X. Wang, M. Ma, X. Zhao, P. Jiang, Y. Wang et al., Phase engineering of 2D violet/black phosphorus heterostructure for enhanced photocatalytic hydrogen evolution. Small Struct. 4(10), 2300123 (2023). https://doi.org/10.1002/sstr.202300123
R. Zhai, Z. Wang, M. Gu, H. Liu, X. Zhao et al., Electron gathering at violet phosphorene-Ag interface for photoreduction of CO2 to ethylene. Appl. Catal. B Environ. Energy 361, 124603 (2025). https://doi.org/10.1016/j.apcatb.2024.124603
J. Singh, Effective mass of charge carriers in amorphous semiconductors and its applications. J. Non-Crys. Solids 299–302, 444–448 (2002). https://doi.org/10.1016/s0022-3093(01)00957-7
C. Goffaux, V. Lousse, J. Vigneron, Complete minigaps for effective-mass carriers in three-dimensional semiconductor superlattices. Phys. Rev. B 62, 7133–7137 (2000). https://doi.org/10.1023/A:1013366325187
T. Chu, Z. Chen, Electrically tunable bandgaps in 2D layered materials. In: 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC). IEEE (2016), pp. 25–29. https://doi.org/10.1109/EDSSC.2016.7785202
J. Wu, H. Yuan, M. Meng, C. Chen, Y. Sun et al., High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 12(6), 530–534 (2017). https://doi.org/10.1038/nnano.2017.43
Y. Hu, P. Xie, M. De Corato, A. Ruini, S. Zhao et al., Bandgap engineering of graphene nanoribbons by control over structural distortion. J. Am. Chem. Soc. 140(25), 7803–7809 (2018). https://doi.org/10.1021/jacs.8b02209
S. Yang, P. Zhang, A.S. Nia, X. Feng, Exfoliation and engineering of 2D materials through electrochemistry. CCS Chem. 6(10), 2368–2391 (2024). https://doi.org/10.31635/ccschem.024.202403878
M.-H. Shang, J. Zhang, S. Wei, Y. Zhu, L. Wang et al., Bi-doped Sb2S3 for low effective mass and optimized optical properties. J. Mater. Chem. C 4(22), 5081–5090 (2016). https://doi.org/10.1039/c6tc00513f
G. Bhowmik, K. Gruenewald, G. Malladi, T. Mowll, C. Ventrice et al., Tunable photoluminescence of atomically thin MoS2 via Nb doping. MRS Adv. 4(10), 609–614 (2019). https://doi.org/10.1557/adv.2019.24
Y. Jin, Z. Zeng, Z. Xu, Y.-C. Lin, K. Bi et al., Synthesis and transport properties of degenerate P-type Nb-doped WS2 monolayers. Chem. Mater. 31(9), 3534–3541 (2019). https://doi.org/10.1021/acs.chemmater.9b00913
S.-H. Su, Y.-T. Hsu, Y.-H. Chang, M.-H. Chiu, C.-L. Hsu et al., Band gap-tunable molybdenum sulfide selenide monolayer alloy. Small 10(13), 2589–2594 (2014). https://doi.org/10.1002/smll.201302893
B. Liu, M. Köpf, A.N. Abbas, X. Wang, Q. Guo et al., Black arsenic–phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 27(30), 4423–4429 (2015). https://doi.org/10.1002/adma.201501758
Y. Yu, B. Xing, J. Yao, X. Niu, Y. Liu et al., N-type doping of black phosphorus single crystal by tellurium. Nanotechnology 31(31), 315605 (2020). https://doi.org/10.1088/1361-6528/ab8c08
R. Enderlein, N.J. Horing, Fundamentals of Semiconductor Physics and Devices. Singapore: World Scientific, (1997). https://doi.org/10.1142/2866
A. Brown, S. Rundqvist, Refinement of the crystal structure of black phosphorus. Acta Crystallogr. 19(4), 684–685 (1965). https://doi.org/10.1107/S0365110X65004140
M. Liu, S. Feng, Y. Hou, S. Zhao, L. Tang et al., High yield growth and doping of black phosphorus with tunable electronic properties. Mater. Today 36, 91–101 (2020). https://doi.org/10.1016/j.mattod.2019.12.027
L. Zhang, H. Huang, B. Zhang, M. Gu, D. Zhao et al., Structure and properties of violet phosphorus and its phosphorene exfoliation. Angew. Chem. Int. Ed. 59(3), 1074–1080 (2020). https://doi.org/10.1002/anie.201912761
F. Baumer, Y. Ma, C. Shen, A. Zhang, L. Chen et al., Synthesis, characterization, and device application of antimony-substituted violet phosphorus: a layered material. ACS Nano 11(4), 4105–4113 (2017). https://doi.org/10.1021/acsnano.7b00798
X. Zhao, M. Gu, R. Zhai, Y. Zhang, M. Jin et al., Violet antimony phosphorus with enhanced photocatalytic hydrogen evolution. Small 19(41), e2302859 (2023). https://doi.org/10.1002/smll.202302859
L. Zhang, H. Huang, Z. Lv, L. Li, M. Gu et al., Phonon properties of bulk violet phosphorus single crystals: temperature and pressure evolution. ACS Appl. Electron. Mater. 3(3), 1043–1049 (2021). https://doi.org/10.1021/acsaelm.0c00731
D. Vithanage, U. Abu, M.R. Khan Musa, K.J. Tasnim, H. Weerahennedige et al., High-pressure response of vibrational properties of b-AsxP1-x: in situ Raman studies. Nanotechnology 34(46), acef28 (2023). https://doi.org/10.1088/1361-6528/acef28
W. Hong, M. Kitta, Q. Xu, Bimetallic MOF-derived FeCo-P/C nanocomposites as efficient catalysts for oxygen evolution reaction. Small Meth 2(12), 1800214 (2018). https://doi.org/10.1002/smtd.201800214
H. Jin, Z. Kou, W. Cai, H. Zhou, P. Ji et al., P-Fe bond oxygen reduction catalysts toward high-efficiency metal–air batteries and fuel cells. J. Mater. Chem. A 8(18), 9121–9127 (2020). https://doi.org/10.1039/D0TA02334E
B. Elsener, D. Atzei, A. Krolikowski, A. Rossi, Effect of phosphorus concentration on the electronic structure of nanocrystalline electrodeposited Ni–P alloys: an XPS and XAES investigation. Surf. Interface Anal. 40(5), 919–926 (2008). https://doi.org/10.1002/sia.2802
S. Wu, S.S. Neo, Z. Dong, F. Boey, P. Wu, Tunable ionic and electronic conduction of lithium nitride via phosphorus and arsenic substitution: a first-principles study. J. Phys. Chem. C 114(39), 16706–16709 (2010). https://doi.org/10.1021/jp1045047
J. Yamauchi, Y. Yoshimoto, Y. Suwa, Core-level shifts in X-ray photoelectron spectroscopy of arsenic defects in silicon crystal: a first-principles study. AIP Adv. 10(11), 115301 (2020). https://doi.org/10.1063/5.0025316
H.A. Bullen, M.J. Dorko, J.K. Oman, S.J. Garrett, Valence and core-level binding energy shifts in realgar (As4S4) and pararealgar (As4S4) arsenic sulfides. Surf. Sci. 531(3), 319–328 (2003). https://doi.org/10.1016/S0039-6028(03)00491-6
V. Kumar, S.K. Sharma, T.P. Sharma, V. Singh, Band gap determination in thick films from reflectance measurements. Opt. Mater. 12(1), 115–119 (1999). https://doi.org/10.1016/S0925-3467(98)00052-4
X. Li, B. Kang, F. Dong, Z. Zhang, X. Luo et al., Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2. Nano Energy 81, 105671 (2021). https://doi.org/10.1016/j.nanoen.2020.105671
S. Zhang, S. Ma, X. Hao, Y. Wang, B. Cao et al., Controllable preparation of crystalline red phosphorus and its photocatalytic properties. Nanoscale 13(45), 18955–18960 (2021). https://doi.org/10.1039/d1nr06530k
X. Ma, Y. Dai, M. Guo, B. Huang, The role of effective mass of carrier in the photocatalytic behavior of silver halide-based Ag@AgX (X=Cl, Br, I): a theoretical study. ChemPhysChem 13(9), 2304–2309 (2012). https://doi.org/10.1002/cphc.201200159
J.-Y. Noh, H. Kim, H.-H. Nahm, Y.-S. Kim, D.H. Kim et al., Cation composition effects on electronic structures of In–Sn–Zn–O amorphous semiconductors. J. Appl. Phys. 113(18), 183706 (2013). https://doi.org/10.1063/1.4803706
Z.M. Gibbs, F. Ricci, G. Li, H. Zhu, K. Persson et al., Effective mass and Fermi surface complexity factor from ab initio band structure calculations. NPJ Comput. Mater. 3, 8 (2017). https://doi.org/10.1038/s41524-017-0013-3
W. Ahmad, A. Abbas, U. Younis, J. Zhang, S.H. Aleithan et al., Advancements in optoelectronics: harnessing the potential of 2D violet phosphorus. Adv. Funct. Mater. 34(52), 2410723 (2024). https://doi.org/10.1002/adfm.202410723
C.E. Dreyer, A. Janotti, C.G. Van de Walle, Effects of strain on the electron effective mass in GaN and AlN. Appl. Phys. Lett. 102(14), 142105 (2013). https://doi.org/10.1063/1.4801520
M.G. Silveirinha, N. Engheta, Transformation electronics: tailoring the effective mass of electrons. Phys. Rev. B 86(16), 161104 (2012). https://doi.org/10.1103/physrevb.86.161104
W. Wunderlich, H. Ohta, K. Koumoto, Enhanced effective mass in doped SrTiO3 and related perovskites. Phys. B Condens. Matter 404(16), 2202–2212 (2009). https://doi.org/10.1016/j.physb.2009.04.012
Z. Sun, B. Zhang, Y. Zhao, M. Khurram, Q. Yan, Synthesis, exfoliation, and transport properties of quasi-1D van der Waals fibrous red phosphorus. Chem. Mater. 33(15), 6240–6248 (2021). https://doi.org/10.1021/acs.chemmater.1c02136
N. Wang, N. Mao, Z. Wang, X. Yang, X. Zhou et al., Electrochemical delamination of ultralarge few-layer black phosphorus with a hydrogen-free intercalation mechanism. Adv. Mater. 33(1), e2005815 (2021). https://doi.org/10.1002/adma.202005815
A.G. Ricciardulli, Y. Wang, S. Yang, P. Samorì, Two-dimensional violet phosphorus: a p-type semiconductor for (opto)electronics. J. Am. Chem. Soc. 144(8), 3660–3666 (2022). https://doi.org/10.1021/jacs.1c12931
S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo et al., Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures. Nano Lett. 18(5), 3172–3179 (2018). https://doi.org/10.1021/acs.nanolett.8b00835
Y. Wang, J.C. Kim, Y. Li, K.Y. Ma, S. Hong et al., P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 610(7930), 61–66 (2022). https://doi.org/10.1038/s41586-022-05134-w
X. Liu, A. Islam, N. Yang, B. Odhner, M.A. Tupta, J. Guo, P.X. Feng, Atomic layer MoTe2 field-effect transistors and monolithic logic circuits configured by scanning laser annealing. ACS Nano 15(12), 19733–19742 (2021). https://doi.org/10.1021/acsnano.1c07169
Y. Wang, A. Slassi, J. Cornil, D. Beljonne, P. Samorì, Tuning the optical and electrical properties of few-layer black phosphorus via physisorption of small solvent molecules. Small 15(47), e1903432 (2019). https://doi.org/10.1002/smll.201903432
H. Shi, S. Fu, Y. Liu, C. Neumann, M. Wang et al., Molecularly engineered black phosphorus heterostructures with improved ambient stability and enhanced charge carrier mobility. Adv. Mater. 33(48), 2105694 (2021). https://doi.org/10.1002/adma.202105694
W. Ahmad, M.U. Rehman, L. Pan, W. Li, J. Yi et al., Ultrasensitive near-infrared polarization photodetectors with violet phosphorus/InSe van der Waals heterostructures. ACS Appl. Mater. Interfaces 16(15), 19214–19224 (2024). https://doi.org/10.1021/acsami.4c01396
J. Kim, W. Park, J.-H. Lee, M.-J. Seong, Simultaneous growth of Ga2S3 and GaS thin films using physical vapor deposition with GaS powder as a single precursor. Nanotechnology 30(38), 384001 (2019). https://doi.org/10.1088/1361-6528/ab284c
G.B. Blanchet, C.R. Fincher, M. Lefenfeld, J.A. Rogers, Contact resistance in organic thin film transistors. Appl. Phys. Lett. 84(2), 296–298 (2004). https://doi.org/10.1063/1.1639937
D. Natali, L. Fumagalli, M. Sampietro, Modeling of organic thin film transistors: effect of contact resistances. J. Appl. Phys. 101, 014501 (2007). https://doi.org/10.1063/1.2402349
Y.-T. Huang, Y.-H. Chen, Y.-J. Ho, S.-W. Huang, Y.-R. Chang et al., High-performance InSe transistors with ohmic contact enabled by nonrectifying barrier-type indium electrodes. ACS Appl. Mater. Interfaces 10(39), 33450–33456 (2018). https://doi.org/10.1021/acsami.8b10576
Y. Wang, J.C. Kim, R.J. Wu, J. Martinez, X. Song et al., Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568(7750), 70–74 (2019). https://doi.org/10.1038/s41586-019-1052-3
W. Chen, R. Zhang, M. Gu, L. Zhang, B. Xie et al., An ultrahigh-contrast violet phosphorus van der Waals phototransistor. Adv. Opt. Mater. 12(2), 2301399 (2024). https://doi.org/10.1002/adom.202301399
W. Zawadzki, Electron dynamics in crystalline semiconductors. Acta Phys. Pol. A. 123(1), 132 (2013). https://doi.org/10.12693/aphyspola.123.132
Y. Liu, P. Sahoo, J.P.A. Makongo, X. Zhou, S.-J. Kim et al., Large enhancements of thermopower and carrier mobility in quantum dot engineered bulk semiconductors. J. Am. Chem. Soc. 135(20), 7486–7495 (2013). https://doi.org/10.1021/ja311059m