Solid–State Hydrogen Storage Materials with Excellent Selective Hydrogen Adsorption in the Presence of Alkanes, Oxygen, and Carbon Dioxide by Atomic Layer Amorphous Al2O3 Encapsulation
Corresponding Author: Jinying Zhang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 78
Abstract
Metal hydrides with high hydrogen density provide promising hydrogen storage paths for hydrogen transportation. However, the requirement of highly pure H2 for re-hydrogenation limits its wide application. Here, amorphous Al2O3 shells (10 nm) were deposited on the surface of highly active hydrogen storage material particles (MgH2–ZrTi) by atomic layer deposition to obtain MgH2–ZrTi@Al2O3, which have been demonstrated to be air stable with selective adsorption of H2 under a hydrogen atmosphere with different impurities (CH4, O2, N2, and CO2). About 4.79 wt% H2 was adsorbed by MgH2–ZrTi@10nmAl2O3 at 75 °C under 10%CH4 + 90%H2 atmosphere within 3 h with no kinetic or density decay after 5 cycles (~ 100% capacity retention). Furthermore, about 4 wt% of H2 was absorbed by MgH2–ZrTi@10nmAl2O3 under 0.1%O2 + 0.4%N2 + 99.5%H2 and 0.1%CO2 + 0.4%N2 + 99.5%H2 atmospheres at 100 °C within 0.5 h, respectively, demonstrating the selective hydrogen absorption of MgH2–ZrTi@10nmAl2O3 in both oxygen-containing and carbon dioxide-containing atmospheres hydrogen atmosphere. The absorption and desorption curves of MgH2–ZrTi@10nmAl2O3 with and without absorption in pure hydrogen and then in 21%O2 + 79%N2 for 1 h were found to overlap, further confirming the successful shielding effect of Al2O3 shells against O2 and N2. The MgH2–ZrTi@10nmAl2O3 has been demonstrated to be air stable and have excellent selective hydrogen absorption performance under the atmosphere with CH4, O2, N2, and CO2.
Highlights:
1 Gas selective amorphous Al2O3 encapsulation was constructed on highly reactive MgH2 using atomic layer deposition.
2 Hydrogen selective adsorption was achieved in the impure hydrogen atmosphere containing impurities (O2, N2, CH4, and CO2).
3 Excellent air stability with no MgO or Mg(OH)2 generated after 3 months of air exposure was achieved.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Sun, C. Shen, Q. Lai, W. Liu, D.-W. Wang et al., Tailoring magnesium based materials for hydrogen storage through synthesis: current state of the art. Energy Storage Mater. 10, 168–198 (2018). https://doi.org/10.1016/j.ensm.2017.01.010
- M. Chen, X. Xiao, X. Wang, Y. Lu, M. Zhang et al., Self-templated carbon enhancing catalytic effect of ZrO2 nanops on the excellent dehydrogenation kinetics of MgH2. Carbon 166, 46–55 (2020). https://doi.org/10.1016/j.carbon.2020.05.025
- C. Gu, H.-G. Gao, P. Tan, Y.-N. Liu, X.-Q. Liu et al., Cheese-like Ti3C2 for enhanced hydrogen storage. Chem. Eng. J. 473, 145462 (2023). https://doi.org/10.1016/j.cej.2023.145462
- J. Mao, T. Huang, S. Panda, J. Zou, W. Ding, Direct observations of diffusion controlled microstructure transition in Mg–In/Mg–Ag ultrafine ps with enhanced hydrogen storage and hydrolysis properties. Chem. Eng. J. 418, 129301 (2021). https://doi.org/10.1016/j.cej.2021.129301
- R. Shi, H. Yan, J. Zhang, H. Gao, Y. Zhu et al., Vacancy-mediated hydrogen spillover improving hydrogen storage properties and air stability of metal hydrides. Small 17(31), 2100852 (2021). https://doi.org/10.1002/smll.202100852
- W. Zhu, L. Ren, C. Lu, H. Xu, F. Sun et al., Nanoconfined and in situ catalyzed MgH2 self-assembled on 3D Ti3C2 MXene folded nanosheets with enhanced hydrogen sorption performances. ACS Nano 15(11), 18494–18504 (2021). https://doi.org/10.1021/acsnano.1c08343
- G. Xia, Y. Tan, X. Chen, D. Sun, Z. Guo et al., Monodisperse magnesium hydride nanops uniformly self-assembled on graphene. Adv. Mater. 27(39), 5981–5988 (2015). https://doi.org/10.1002/adma.201502005
- M. Liu, S. Zhao, X. Xiao, M. Chen, C. Sun et al., Novel 1D carbon nanotubes uniformly wrapped nanoscale MgH2 for efficient hydrogen storage cycling performances with extreme high gravimetric and volumetric capacities. Nano Energy 61, 540–549 (2019). https://doi.org/10.1016/j.nanoen.2019.04.094
- L. Ren, W. Zhu, Y. Li, X. Lin, H. Xu et al., Oxygen vacancy-rich 2D TiO2 nanosheets: a bridge toward high stability and rapid hydrogen storage kinetics of nano-confined MgH2. Nano-Micro Lett. 14(1), 144 (2022). https://doi.org/10.1007/s40820-022-00891-9
- Z. Lan, F. Hong, W. Shi, R. Zhao, R. Li et al., Effect of MOF-derived carbon–nitrogen nanosheets Co-doped with nickel and titanium dioxide nanops on hydrogen storage performance of MgH2. Chem. Eng. J. 468, 143692 (2023). https://doi.org/10.1016/j.cej.2023.143692
- L. Zhang, Z. Cai, X. Zhu, Z. Yao, Z. Sun et al., Two-dimensional ZrCo nanosheets as highly effective catalyst for hydrogen storage in MgH2. J. Alloys Compd. 805, 295–302 (2019). https://doi.org/10.1016/j.jallcom.2019.07.085
- J. Yang, W. Shi, R. Liu, Y. Tan, Y. Fan et al., MXene-supported V2O5 nanocatalysts: boosting hydrogen storage efficiency in MgH2 through synergistic catalysis. J. Energy Storage 130, 117474 (2025). https://doi.org/10.1016/j.est.2025.117474
- Z. Yang, J. Wu, Y. Wang, S. Wang, Y. Zou et al., Improved hydrogen storage performance of magnesium hydride catalyzed by two dimensional Ti3C2-coated NbN. J. Alloys Compd. 1029, 180752 (2025). https://doi.org/10.1016/j.jallcom.2025.180752
- K.C. Tome, S. Xi, Y. Fu, C. Lu, N. Lu et al., Remarkable catalytic effect of Ni and ZrO2 nanops on the hydrogen sorption properties of MgH2. Int. J. Hydrog. Energy 47(7), 4716–4724 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.102
- X. Zhang, Y. Sun, S. Ju, J. Ye, X. Hu et al., Solar-driven reversible hydrogen storage. Adv. Mater. 35(2), e2206946 (2023). https://doi.org/10.1002/adma.202206946
- X. Hu, X. Chen, X. Zhang, Y. Meng, G. Xia et al., In situ construction of interface with photothermal and mutual catalytic effect for efficient solar-driven reversible hydrogen storage of MgH2. Adv. Sci. 11(22), 2400274 (2024). https://doi.org/10.1002/advs.202400274
- Y. Jiang, Y. Sun, Y. Liu, M. Yue, Y. Cao et al., Solar-driven reversible hydrogen storage in metal oxides-catalyzed MgH2. Int. J. Hydrogen Energy 149, 150101 (2025). https://doi.org/10.1016/j.ijhydene.2025.150101
- M. Chen, X. Xie, P. Liu, T. Liu, Facile fabrication of ultrathin carbon layer encapsulated air-stable Mg nanops with enhanced hydrogen storage properties. Chem. Eng. J. 337, 161–168 (2018). https://doi.org/10.1016/j.cej.2017.12.087
- K.-J. Jeon, H.R. Moon, A.M. Ruminski, B. Jiang, C. Kisielowski et al., Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat. Mater. 10(4), 286–290 (2011). https://doi.org/10.1038/nmat2978
- W. Ali, Y. Qin, N.A. Khan, H. Zhao, Y. Su et al., Highly air-stable magnesium hydrides encapsulated by nitrogen-doped graphene nanospheres with favorable hydrogen storage kinetics. Chem. Eng. J. 480, 148163 (2024). https://doi.org/10.1016/j.cej.2023.148163
- Z. Ma, Q. Tang, J. Ni, Y. Zhu, Y. Zhang et al., Synergistic effect of TiH2 and air exposure on enhancing hydrogen storage performance of Mg2NiH4. Chem. Eng. J. 433, 134489 (2022). https://doi.org/10.1016/j.cej.2021.134489
- J. Zhang, W. Wang, X. Chen, J. Jin, X. Yan et al., Single-atom Ni supported on TiO2 for catalyzing hydrogen storage in MgH2. J. Am. Chem. Soc. 146(15), 10432–10442 (2024). https://doi.org/10.1021/jacs.3c13970
- J. Xu, W. Lin, Integrated hydrogen liquefaction processes with LNG production by two-stage helium reverse Brayton cycles taking industrial by-products as feedstock gas. Energy 227, 120443 (2021). https://doi.org/10.1016/j.energy.2021.120443
- Y. Zhang, Q. Li, P. Shen, Y. Liu, Z. Yang et al., Hydrogen amplification of coke oven gas by reforming of methane in a ceramic membrane reactor. Int. J. Hydrog. Energy 33(13), 3311–3319 (2008). https://doi.org/10.1016/j.ijhydene.2008.04.015
- Y.J. Kwak, M.Y. Song, K.-T. Lee, Conversion of CH4 and hydrogen storage via reactions with MgH2–12Ni. Micromachines 14(9), 1777 (2023). https://doi.org/10.3390/mi14091777
- F. Bu, A. Wajid, M. Gu, T. Liu, S. Liu et al., Synergistic effect of multivalent Ti, Zr, and oxygen vacancies to significantly enhance the hydrogen sorption properties of MgH2. J. Mater. Chem. A 13(21), 16102–16111 (2025). https://doi.org/10.1039/d5ta01302j
- D. Ma, Z. Wang, J.-W. Shi, Y. Zou, Y. Lv et al., An ultrathin Al2O3 bridging layer between CdS and ZnO boosts photocatalytic hydrogen production. J. Mater. Chem. A 8(21), 11031–11042 (2020). https://doi.org/10.1039/D0TA03933K
- F. Bu, A. Wajid, N. Yang, M. Gu, X. Zhao et al., Fabrication of amorphous TiO2 hydrogen channels and graphene wrappers to enhance the hydrogen storage properties of MgH2 with extremely high cycle stability. J. Mater. Chem. A 12(20), 12190–12197 (2024). https://doi.org/10.1039/D4TA00722K
- N. Grønbech-Jensen, O. Farago, A simple and effective Verlet-type algorithm for simulating Langevin dynamics. Mol. Phys. 111(8), 983–991 (2013). https://doi.org/10.1080/00268976.2012.760055
- L. Tian, H. Duan, J. Luo, Y. Cheng, L. Shi, Density functional theory and molecular dynamics simulations of nanoporous graphene membranes for hydrogen separation. ACS Appl. Nano Mater. 4(9), 9440–9448 (2021). https://doi.org/10.1021/acsanm.1c01919
- J.H. Sharp, G.W. Brindley, B.N. Narahari Achar, Numerical data for some commonly used solid state reaction equations. J. Am. Ceram. Soc. 49(7), 379–382 (1966). https://doi.org/10.1111/j.1151-2916.1966.tb13289.x
- A. Khawam, D.R. Flanagan, Solid-state kinetic models: basics and mathematical fundamentals. ChemInform 37(47), 200647223 (2006). https://doi.org/10.1002/chin.200647223
- L.F. Jones, D. Dollimore, T. Nicklin, Comparison of experimental kinetic decomposition data with master data using a linear plot method. Thermochim. Acta 13(2), 240–245 (1975). https://doi.org/10.1016/0040-6031(75)80085-2
- H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702–1706 (1957). https://doi.org/10.1021/ac60131a045
- J. Meyer, H. Schmidt, W. Kowalsky, T. Riedl, A. Kahn, The origin of low water vapor transmission rates through Al2O3/ZrO2 nanolaminate gas-diffusion barriers grown by atomic layer deposition. Appl. Phys. Lett. 96(24), 243308 (2010). https://doi.org/10.1063/1.3455324
- L.H. Kim, K. Kim, S. Park, Y.J. Jeong, H. Kim et al., Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition. ACS Appl. Mater. Interfaces 6(9), 6731–6738 (2014). https://doi.org/10.1021/am500458d
- J.C. Fuggle, L.M. Watson, D.J. Fabian, S. Affrossman, X-ray excited Auger and photoelectron spectra of magnesium, some alloys of magnesium and its oxide. J. Phys. F Met. Phys. 5(2), 375 (1975). https://doi.org/10.1088/0305-4608/5/2/020
- D.E. Haycock, M. Kasrai, C.J. Nicholls, D.S. Urch, The electronic structure of magnesium hydroxide (brucite) using X-ray emission, X-ray photoelectron, and auger spectroscopy. J. Chem. Soc. Dalton Trans. 12, 1791–1796 (1978). https://doi.org/10.1039/DT9780001791
- H. Seyama, M. Soma, X-ray photoelectron spectroscopic study of montmorillonite containing exchangeable divalent cations. J. Chem. Soc., Faraday Trans. 1 80(1), 237 (1984). https://doi.org/10.1039/f19848000237
- D.E. Haycock, C.J. Nicholls, D.S. Urch, M.J. Webber, G. Wiech, The electronic structure of magnesium dialuminium tetraoxide (spinel) using X-ray emission and X-ray photoelectron spectroscopies. J. Chem. Soc. Dalton Trans. 12, 1785–1790 (1978). https://doi.org/10.1039/DT9780001785
References
Y. Sun, C. Shen, Q. Lai, W. Liu, D.-W. Wang et al., Tailoring magnesium based materials for hydrogen storage through synthesis: current state of the art. Energy Storage Mater. 10, 168–198 (2018). https://doi.org/10.1016/j.ensm.2017.01.010
M. Chen, X. Xiao, X. Wang, Y. Lu, M. Zhang et al., Self-templated carbon enhancing catalytic effect of ZrO2 nanops on the excellent dehydrogenation kinetics of MgH2. Carbon 166, 46–55 (2020). https://doi.org/10.1016/j.carbon.2020.05.025
C. Gu, H.-G. Gao, P. Tan, Y.-N. Liu, X.-Q. Liu et al., Cheese-like Ti3C2 for enhanced hydrogen storage. Chem. Eng. J. 473, 145462 (2023). https://doi.org/10.1016/j.cej.2023.145462
J. Mao, T. Huang, S. Panda, J. Zou, W. Ding, Direct observations of diffusion controlled microstructure transition in Mg–In/Mg–Ag ultrafine ps with enhanced hydrogen storage and hydrolysis properties. Chem. Eng. J. 418, 129301 (2021). https://doi.org/10.1016/j.cej.2021.129301
R. Shi, H. Yan, J. Zhang, H. Gao, Y. Zhu et al., Vacancy-mediated hydrogen spillover improving hydrogen storage properties and air stability of metal hydrides. Small 17(31), 2100852 (2021). https://doi.org/10.1002/smll.202100852
W. Zhu, L. Ren, C. Lu, H. Xu, F. Sun et al., Nanoconfined and in situ catalyzed MgH2 self-assembled on 3D Ti3C2 MXene folded nanosheets with enhanced hydrogen sorption performances. ACS Nano 15(11), 18494–18504 (2021). https://doi.org/10.1021/acsnano.1c08343
G. Xia, Y. Tan, X. Chen, D. Sun, Z. Guo et al., Monodisperse magnesium hydride nanops uniformly self-assembled on graphene. Adv. Mater. 27(39), 5981–5988 (2015). https://doi.org/10.1002/adma.201502005
M. Liu, S. Zhao, X. Xiao, M. Chen, C. Sun et al., Novel 1D carbon nanotubes uniformly wrapped nanoscale MgH2 for efficient hydrogen storage cycling performances with extreme high gravimetric and volumetric capacities. Nano Energy 61, 540–549 (2019). https://doi.org/10.1016/j.nanoen.2019.04.094
L. Ren, W. Zhu, Y. Li, X. Lin, H. Xu et al., Oxygen vacancy-rich 2D TiO2 nanosheets: a bridge toward high stability and rapid hydrogen storage kinetics of nano-confined MgH2. Nano-Micro Lett. 14(1), 144 (2022). https://doi.org/10.1007/s40820-022-00891-9
Z. Lan, F. Hong, W. Shi, R. Zhao, R. Li et al., Effect of MOF-derived carbon–nitrogen nanosheets Co-doped with nickel and titanium dioxide nanops on hydrogen storage performance of MgH2. Chem. Eng. J. 468, 143692 (2023). https://doi.org/10.1016/j.cej.2023.143692
L. Zhang, Z. Cai, X. Zhu, Z. Yao, Z. Sun et al., Two-dimensional ZrCo nanosheets as highly effective catalyst for hydrogen storage in MgH2. J. Alloys Compd. 805, 295–302 (2019). https://doi.org/10.1016/j.jallcom.2019.07.085
J. Yang, W. Shi, R. Liu, Y. Tan, Y. Fan et al., MXene-supported V2O5 nanocatalysts: boosting hydrogen storage efficiency in MgH2 through synergistic catalysis. J. Energy Storage 130, 117474 (2025). https://doi.org/10.1016/j.est.2025.117474
Z. Yang, J. Wu, Y. Wang, S. Wang, Y. Zou et al., Improved hydrogen storage performance of magnesium hydride catalyzed by two dimensional Ti3C2-coated NbN. J. Alloys Compd. 1029, 180752 (2025). https://doi.org/10.1016/j.jallcom.2025.180752
K.C. Tome, S. Xi, Y. Fu, C. Lu, N. Lu et al., Remarkable catalytic effect of Ni and ZrO2 nanops on the hydrogen sorption properties of MgH2. Int. J. Hydrog. Energy 47(7), 4716–4724 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.102
X. Zhang, Y. Sun, S. Ju, J. Ye, X. Hu et al., Solar-driven reversible hydrogen storage. Adv. Mater. 35(2), e2206946 (2023). https://doi.org/10.1002/adma.202206946
X. Hu, X. Chen, X. Zhang, Y. Meng, G. Xia et al., In situ construction of interface with photothermal and mutual catalytic effect for efficient solar-driven reversible hydrogen storage of MgH2. Adv. Sci. 11(22), 2400274 (2024). https://doi.org/10.1002/advs.202400274
Y. Jiang, Y. Sun, Y. Liu, M. Yue, Y. Cao et al., Solar-driven reversible hydrogen storage in metal oxides-catalyzed MgH2. Int. J. Hydrogen Energy 149, 150101 (2025). https://doi.org/10.1016/j.ijhydene.2025.150101
M. Chen, X. Xie, P. Liu, T. Liu, Facile fabrication of ultrathin carbon layer encapsulated air-stable Mg nanops with enhanced hydrogen storage properties. Chem. Eng. J. 337, 161–168 (2018). https://doi.org/10.1016/j.cej.2017.12.087
K.-J. Jeon, H.R. Moon, A.M. Ruminski, B. Jiang, C. Kisielowski et al., Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat. Mater. 10(4), 286–290 (2011). https://doi.org/10.1038/nmat2978
W. Ali, Y. Qin, N.A. Khan, H. Zhao, Y. Su et al., Highly air-stable magnesium hydrides encapsulated by nitrogen-doped graphene nanospheres with favorable hydrogen storage kinetics. Chem. Eng. J. 480, 148163 (2024). https://doi.org/10.1016/j.cej.2023.148163
Z. Ma, Q. Tang, J. Ni, Y. Zhu, Y. Zhang et al., Synergistic effect of TiH2 and air exposure on enhancing hydrogen storage performance of Mg2NiH4. Chem. Eng. J. 433, 134489 (2022). https://doi.org/10.1016/j.cej.2021.134489
J. Zhang, W. Wang, X. Chen, J. Jin, X. Yan et al., Single-atom Ni supported on TiO2 for catalyzing hydrogen storage in MgH2. J. Am. Chem. Soc. 146(15), 10432–10442 (2024). https://doi.org/10.1021/jacs.3c13970
J. Xu, W. Lin, Integrated hydrogen liquefaction processes with LNG production by two-stage helium reverse Brayton cycles taking industrial by-products as feedstock gas. Energy 227, 120443 (2021). https://doi.org/10.1016/j.energy.2021.120443
Y. Zhang, Q. Li, P. Shen, Y. Liu, Z. Yang et al., Hydrogen amplification of coke oven gas by reforming of methane in a ceramic membrane reactor. Int. J. Hydrog. Energy 33(13), 3311–3319 (2008). https://doi.org/10.1016/j.ijhydene.2008.04.015
Y.J. Kwak, M.Y. Song, K.-T. Lee, Conversion of CH4 and hydrogen storage via reactions with MgH2–12Ni. Micromachines 14(9), 1777 (2023). https://doi.org/10.3390/mi14091777
F. Bu, A. Wajid, M. Gu, T. Liu, S. Liu et al., Synergistic effect of multivalent Ti, Zr, and oxygen vacancies to significantly enhance the hydrogen sorption properties of MgH2. J. Mater. Chem. A 13(21), 16102–16111 (2025). https://doi.org/10.1039/d5ta01302j
D. Ma, Z. Wang, J.-W. Shi, Y. Zou, Y. Lv et al., An ultrathin Al2O3 bridging layer between CdS and ZnO boosts photocatalytic hydrogen production. J. Mater. Chem. A 8(21), 11031–11042 (2020). https://doi.org/10.1039/D0TA03933K
F. Bu, A. Wajid, N. Yang, M. Gu, X. Zhao et al., Fabrication of amorphous TiO2 hydrogen channels and graphene wrappers to enhance the hydrogen storage properties of MgH2 with extremely high cycle stability. J. Mater. Chem. A 12(20), 12190–12197 (2024). https://doi.org/10.1039/D4TA00722K
N. Grønbech-Jensen, O. Farago, A simple and effective Verlet-type algorithm for simulating Langevin dynamics. Mol. Phys. 111(8), 983–991 (2013). https://doi.org/10.1080/00268976.2012.760055
L. Tian, H. Duan, J. Luo, Y. Cheng, L. Shi, Density functional theory and molecular dynamics simulations of nanoporous graphene membranes for hydrogen separation. ACS Appl. Nano Mater. 4(9), 9440–9448 (2021). https://doi.org/10.1021/acsanm.1c01919
J.H. Sharp, G.W. Brindley, B.N. Narahari Achar, Numerical data for some commonly used solid state reaction equations. J. Am. Ceram. Soc. 49(7), 379–382 (1966). https://doi.org/10.1111/j.1151-2916.1966.tb13289.x
A. Khawam, D.R. Flanagan, Solid-state kinetic models: basics and mathematical fundamentals. ChemInform 37(47), 200647223 (2006). https://doi.org/10.1002/chin.200647223
L.F. Jones, D. Dollimore, T. Nicklin, Comparison of experimental kinetic decomposition data with master data using a linear plot method. Thermochim. Acta 13(2), 240–245 (1975). https://doi.org/10.1016/0040-6031(75)80085-2
H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702–1706 (1957). https://doi.org/10.1021/ac60131a045
J. Meyer, H. Schmidt, W. Kowalsky, T. Riedl, A. Kahn, The origin of low water vapor transmission rates through Al2O3/ZrO2 nanolaminate gas-diffusion barriers grown by atomic layer deposition. Appl. Phys. Lett. 96(24), 243308 (2010). https://doi.org/10.1063/1.3455324
L.H. Kim, K. Kim, S. Park, Y.J. Jeong, H. Kim et al., Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition. ACS Appl. Mater. Interfaces 6(9), 6731–6738 (2014). https://doi.org/10.1021/am500458d
J.C. Fuggle, L.M. Watson, D.J. Fabian, S. Affrossman, X-ray excited Auger and photoelectron spectra of magnesium, some alloys of magnesium and its oxide. J. Phys. F Met. Phys. 5(2), 375 (1975). https://doi.org/10.1088/0305-4608/5/2/020
D.E. Haycock, M. Kasrai, C.J. Nicholls, D.S. Urch, The electronic structure of magnesium hydroxide (brucite) using X-ray emission, X-ray photoelectron, and auger spectroscopy. J. Chem. Soc. Dalton Trans. 12, 1791–1796 (1978). https://doi.org/10.1039/DT9780001791
H. Seyama, M. Soma, X-ray photoelectron spectroscopic study of montmorillonite containing exchangeable divalent cations. J. Chem. Soc., Faraday Trans. 1 80(1), 237 (1984). https://doi.org/10.1039/f19848000237
D.E. Haycock, C.J. Nicholls, D.S. Urch, M.J. Webber, G. Wiech, The electronic structure of magnesium dialuminium tetraoxide (spinel) using X-ray emission and X-ray photoelectron spectroscopies. J. Chem. Soc. Dalton Trans. 12, 1785–1790 (1978). https://doi.org/10.1039/DT9780001785