Anisotropic Hygroscopic Hydrogels with Synergistic Insulation-Radiation-Evaporation for High-Power and Self-Sustained Passive Daytime Cooling
Corresponding Author: Xi Shen
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 240
Abstract
Hygroscopic hydrogel is a promising evaporative-cooling material for high-power passive daytime cooling with water self-regeneration. However, undesired solar and environmental heating makes it a challenge to maintain sub-ambient daytime cooling. While different strategies have been developed to mitigate heat gains, they inevitably sacrifice the evaporation and water regeneration due to highly coupled thermal and vapor transport. Here, an anisotropic synergistically performed insulation-radiation-evaporation (ASPIRE) cooler is developed by leveraging a dual-alignment structure both internal and external to the hydrogel for coordinated thermal and water transport. The ASPIRE cooler achieves an impressive average sub-ambient cooling temperature of ~ 8.2 °C and a remarkable peak cooling power of 311 W m−2 under direct sunlight. Further examining the cooling mechanism reveals that the ASPIRE cooler reduces the solar and environmental heat gains without comprising the evaporation. Moreover, self-sustained multi-day cooling is possible with water self-regeneration at night under both clear and cloudy days. The synergistic design provides new insights toward high-power, sustainable, and all-weather passive cooling applications.
Highlights:
1 Inspired by human skin structure, an anisotropic synergistically performed insulation-radiation-evaporation cooler is developed by leveraging a dual-alignment structure both internal and external to the hydrogel.
2 The coordinated thermal and water transport through multiscale engineering contributed to high-power synergistic passive cooling in the day and water self-regeneration at night.
3 The cooler achieved an impressive cooling power of 311 W m−2 and an average sub-ambient cooling temperature of ~8.2 °C under direct sunlight.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Pennisi, Living with heat. Science 370(6518), 778–781 (2020). https://doi.org/10.1126/science.370.6518.778
- B. Grocholski, Cooling in a warming world. Science 370(6518), 776–777 (2020). https://doi.org/10.1126/science.abf1931
- A. Aili, X. Yin, R. Yang, Passive sub-ambient cooling: radiative cooling versus evaporative cooling. Appl. Therm. Eng. 202, 117909 (2022). https://doi.org/10.1016/j.applthermaleng.2021.117909
- P.-C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353(6303), 1019–1023 (2016). https://doi.org/10.1126/science.aaf5471
- S. Yu, Q. Zhang, Y. Wang, Y. Lv, R. Ma, Photonic-structure colored radiative coolers for daytime subambient cooling. Nano Lett. 22(12), 4925–4932 (2022). https://doi.org/10.1021/acs.nanolett.2c01570
- J. Lee, D. Im, S. Sung, J. Yu, H. Kim et al., Scalable and efficient radiative cooling coatings using uniform-hollow silica spheres. Appl. Therm. Eng. 254, 123810 (2024). https://doi.org/10.1016/j.applthermaleng.2024.123810
- C. Park, C. Park, X. Nie, J. Lee, Y.S. Kim et al., Fully organic and flexible biodegradable emitter for global energy-free cooling applications. ACS Sustain. Chem. Eng. 10(21), 7091–7099 (2022). https://doi.org/10.1021/acssuschemeng.2c01182
- M. Lian, W. Ding, S. Liu, Y. Wang, T. Zhu et al., Highly porous yet transparent mechanically flexible aerogels realizing solar-thermal regulatory cooling. Nano-Micro Lett. 16(1), 131 (2024). https://doi.org/10.1007/s40820-024-01356-x
- M.M. Hossain, M. Gu, Radiative cooling: principles, progress, and potentials. Adv. Sci. 3(7), 1500360 (2016). https://doi.org/10.1002/advs.201500360
- E.A. Goldstein, A.P. Raman, S. Fan, Sub-ambient non-evaporative fluid cooling with the sky. Nat. Energy 2(9), 17143 (2017). https://doi.org/10.1038/nenergy.2017.143
- Q. Zhang, Y. Lv, Y. Wang, S. Yu, C. Li et al., Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nat. Commun. 13(1), 4874 (2022). https://doi.org/10.1038/s41467-022-32528-1
- P. Poredoš, R. Wang, Sustainable cooling with water generation. Science 380(6644), 458–459 (2023). https://doi.org/10.1126/science.add1795
- J. Liu, Y. Zhou, Z. Zhou, Y. Du, C. Wang et al., Passive photovoltaic cooling: advances toward low-temperature operation. Adv. Energy Mater. 14(2), 2302662 (2024). https://doi.org/10.1002/aenm.202302662
- Y. Fang, X. Zhao, G. Chen, T. Tat, J. Chen, Smart polyethylene textiles for radiative and evaporative cooling. Joule 5(4), 752–754 (2021). https://doi.org/10.1016/j.joule.2021.03.019
- Z.-W. Zeng, B. Tang, F.-R. Zeng, H. Chen, S.-Q. Chen et al., An intelligent, recyclable, biomass film for adaptive day-night and year-round energy savings. Adv. Funct. Mater. 34(39), 2403061 (2024). https://doi.org/10.1002/adfm.202403061
- N. Guo, C. Shi, N. Warren, E.A. Sprague-Klein, B.W. Sheldon et al., Challenges and opportunities for passive thermoregulation. Adv. Energy Mater. 14(34), 2401776 (2024). https://doi.org/10.1002/aenm.202401776
- C. Park, W. Lee, C. Park, S. Park, J. Lee et al., Efficient thermal management and all-season energy harvesting using adaptive radiative cooling and a thermoelectric power generator. J. Energy Chem. 84, 496–501 (2023). https://doi.org/10.1016/j.jechem.2023.05.051
- R. Li, W. Wang, Y. Shi, C.-T. Wang, P. Wang, Advanced material design and engineering for water-based evaporative cooling. Adv. Mater. 36(12), e2209460 (2024). https://doi.org/10.1002/adma.202209460
- G. Wang, Y. Li, H. Qiu, H. Yan, Y. Zhou, High-performance and wide relative humidity passive evaporative cooling utilizing atmospheric water. Droplet 2(1), e32 (2023). https://doi.org/10.1002/dro2.32
- L. Lei, S. Meng, Y. Si, S. Shi, H. Wu et al., Wettability gradient-induced diode: MXene-engineered membrane for passive-evaporative cooling. Nano-Micro Lett. 16(1), 159 (2024). https://doi.org/10.1007/s40820-024-01359-8
- S. Pu, J. Fu, Y. Liao, L. Ge, Y. Zhou et al., Promoting energy efficiency via a self-adaptive evaporative cooling hydrogel. Adv. Mater. 32(17), e1907307 (2020). https://doi.org/10.1002/adma.201907307
- Y. Huang, Q. Li, Z. Chen, M. Chen, Sorbent-coupled radiative cooling and solar heating to improve atmospheric water harvesting. J. Colloid Interface Sci. 655, 527–534 (2024). https://doi.org/10.1016/j.jcis.2023.11.043
- G.M. Hale, M.R. Querry, Optical constants of water in the 200-nm to 200-µm wavelength region. Appl. Opt. 12(3), 555–563 (1973). https://doi.org/10.1364/AO.12.000555
- X. Hu, P. Hu, L. Liu, L. Zhao, S. Dou et al., Lightweight and hierarchically porous hydrogels for wearable passive cooling under extreme heat stress. Matter 7(12), 4398–4409 (2024). https://doi.org/10.1016/j.matt.2024.09.008
- C. Feng, P. Yang, H. Liu, M. Mao, Y. Liu et al., Bilayer porous polymer for efficient passive building cooling. Nano Energy 85, 105971 (2021). https://doi.org/10.1016/j.nanoen.2021.105971
- Z. Lu, A. Leroy, L. Zhang, J.J. Patil, E.N. Wang et al., Significantly enhanced sub-ambient passive cooling enabled by evaporation, radiation, and insulation. Cell Rep. Phys. Sci. 3(10), 101068 (2022). https://doi.org/10.1016/j.xcrp.2022.101068
- J. Li, X. Wang, D. Liang, N. Xu, B. Zhu et al., A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Sci. Adv. 8(32), eabq0411 (2022). https://doi.org/10.1126/sciadv.abq0411
- Z. Lu, E. Strobach, N. Chen, N. Ferralis, J.C. Grossman, Passive sub-ambient cooling from a transparent evaporation-insulation bilayer. Joule 4(12), 2693–2701 (2020). https://doi.org/10.1016/j.joule.2020.10.005
- H. Yao, H. Cheng, Q. Liao, X. Hao, K. Zhu et al., Integrated radiative and evaporative cooling beyond daytime passive cooling power limit. Nano Res. Energy 2, e9120060 (2023). https://doi.org/10.26599/nre.2023.9120060
- L. Yu, Y. Huang, Y. Zhao, Z. Rao, W. Li et al., Self-sustained and insulated radiative/evaporative cooler for daytime subambient passive cooling. ACS Appl. Mater. Interfaces 16(5), 6513–6522 (2024). https://doi.org/10.1021/acsami.3c19223
- L. Yu, Y. Huang, W. Li, C. Shi, B.W. Sheldon et al., Radiative-coupled evaporative cooling: fundamentals, development, and applications. Nano Res. Energy 3(2), e9120107 (2024). https://doi.org/10.26599/nre.2023.9120107
- H. Zhang, K.C.S. Ly, X. Liu, Z. Chen, M. Yan et al., Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. U.S.A. 117(26), 14657–14666 (2020). https://doi.org/10.1073/pnas.2001802117
- J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
- R. Liu, S. Wang, Z. Zhou, K. Zhang, G. Wang et al., Materials in radiative cooling technologies. Adv. Mater. 37(2), e2401577 (2025). https://doi.org/10.1002/adma.202401577
- K. Lin, S. Chen, Y. Zeng, T.C. Ho, Y. Zhu et al., Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science 382(6671), 691–697 (2023). https://doi.org/10.1126/science.adi4725
- A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528), 540–544 (2014). https://doi.org/10.1038/nature13883
- D. Hong, Y.J. Lee, O.S. Jeon, I.S. Lee, S.H. Lee et al., Humidity-tolerant porous polymer coating for passive daytime radiative cooling. Nat. Commun. 15(1), 4457 (2024). https://doi.org/10.1038/s41467-024-48621-6
- B. Xiang, R. Zhang, Y. Luo, S. Zhang, L. Xu et al., 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 81, 105600 (2021). https://doi.org/10.1016/j.nanoen.2020.105600
- C. Park, C. Park, S. Park, J. Lee, J.-H. Choi et al., Passive daytime radiative cooling by thermoplastic polyurethane wrapping films with controlled hierarchical porous structures. ChemSusChem 15(24), e202202129 (2022). https://doi.org/10.1002/cssc.202202129
- C. Park, C. Park, S. Park, J. Lee, Y.S. Kim et al., Hybrid emitters with raspberry-like hollow SiO2 spheres for passive daytime radiative cooling. Chem. Eng. J. 459, 141652 (2023). https://doi.org/10.1016/j.cej.2023.141652
- C. Cui, J. Lu, S. Zhang, J. Su, J. Han, Hierarchical-porous coating coupled with textile for passive daytime radiative cooling and self-cleaning. Sol. Energy Mater. Sol. Cells 247, 111954 (2022). https://doi.org/10.1016/j.solmat.2022.111954
- B. Zhao, X. Yue, Q. Tian, F. Qiu, Y. Li et al., Bio-inspired BC aerogel/PVA hydrogel bilayer gel for enhanced daytime sub-ambient building cooling. Cellulose 29(14), 7775–7787 (2022). https://doi.org/10.1007/s10570-022-04749-6
- A. Leroy, B. Bhatia, C.C. Kelsall, A. Castillejo-Cuberos, M. Di Capua et al., High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 5(10), 09480 (2019). https://doi.org/10.1126/sciadv.aat9480
- K.-Y. Chan, X. Shen, J. Yang, K.-T. Lin, H. Venkatesan et al., Scalable anisotropic cooling aerogels by additive freeze-casting. Nat. Commun. 13(1), 5553 (2022). https://doi.org/10.1038/s41467-022-33234-8
- H. Zhong, Y. Li, P. Zhang, S. Gao, B. Liu et al., Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings. ACS Nano 15(6), 10076–10083 (2021). https://doi.org/10.1021/acsnano.1c01814
- Y. Wang, S. Gao, H. Zhong, B. Zhang, M. Cui et al., Heterogeneous wettability and radiative cooling for efficient deliquescent sorbents-based atmospheric water harvesting. Cell Rep. Phys. Sci. 3(5), 100879 (2022). https://doi.org/10.1016/j.xcrp.2022.100879
- J. Xu, T. Li, T. Yan, S. Wu, M. Wu et al., Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent. Energy Environ. Sci. 14(11), 5979–5994 (2021). https://doi.org/10.1039/D1EE01723C
- J. Yang, X. Shen, W. Yang, J. Kim, Templating strategies for 3D-structured thermally conductive composites: recent advances and thermal energy applications. Prog. Mater. Sci. 133, 101054 (2023). https://doi.org/10.1016/j.pmatsci.2022.101054
- E. Kim, K.-Y. Chan, J. Yang, H. Venkatesan, M.H. Adegun et al., Engineering anisotropic structures of thermally insulating aerogels with high solar reflectance for energy-efficient cooling applications. J. Mater. Chem. A 11(13), 7105–7114 (2023). https://doi.org/10.1039/D2TA09983G
- M.H. Adegun, K.-Y. Chan, J. Yang, H. Venkatesan, E. Kim et al., Anisotropic thermally superinsulating boron nitride composite aerogel for building thermal management. Compos. Part A Appl. Sci. Manuf. 169, 107522 (2023). https://doi.org/10.1016/j.compositesa.2023.107522
- Z. Zeng, N. Wu, J. Liu, G. Nyström, Mimicking biological architectures via freeze casting. Matter 5(8), 2519–2522 (2022). https://doi.org/10.1016/j.matt.2022.06.044
- B. Li, H. Tian, L. Li, W. Liu, J. Liu et al., Graphene-assisted assembly of electrically and magnetically conductive ceramic nanofibrous aerogels enable multifunctionality. Adv. Funct. Mater. 34(22), 2314653 (2024). https://doi.org/10.1002/adfm.202314653
- J.-W. Ma, F.-R. Zeng, X.-C. Lin, Y.-Q. Wang, Y.-H. Ma et al., A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling. Science 385(6704), 68–74 (2024). https://doi.org/10.1126/science.adn5694
- J. Yang, K.Y. Chan, H. Venkatesan, E. Kim, M.H. Adegun et al., Superinsulating BNNS/PVA composite aerogels with high solar reflectance for energy-efficient buildings. Nano-Micro Lett. 14(1), 54 (2022). https://doi.org/10.1007/s40820-022-00797-6
- N. Li, L. Qiao, J. He, S. Wang, L. Yu et al., Solar-driven interfacial evaporation and self-powered water wave detection based on an all-cellulose monolithic design. Adv. Funct. Mater. 31(7), 2008681 (2021). https://doi.org/10.1002/adfm.202008681
- Z. Zhang, H. Fu, Z. Li, J. Huang, Z. Xu et al., Hydrogel materials for sustainable water resources harvesting & treatment: synthesis, mechanism and applications. Chem. Eng. J. 439, 135756 (2022). https://doi.org/10.1016/j.cej.2022.135756
- W. Zhang, R. Wang, Z. Sun, X. Zhu, Q. Zhao et al., Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications. Chem. Soc. Rev. 49(2), 433–464 (2020). https://doi.org/10.1039/c9cs00285e
- H. Lu, W. Shi, J.H. Zhang, A.C. Chen, W. Guan et al., Tailoring the desorption behavior of hygroscopic gels for atmospheric water harvesting in arid climates. Adv. Mater. 34(37), 2205344 (2022). https://doi.org/10.1002/adma.202205344
- C.D. Díaz-Marín, L. Zhang, B. El Fil, Z. Lu, M. Alshrah et al., Heat and mass transfer in hygroscopic hydrogels. Int. J. Heat Mass Transf. 195, 123103 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.123103
- C.D. Díaz-Marín, L. Zhang, Z. Lu, M. Alshrah, J.C. Grossman et al., Kinetics of sorption in hygroscopic hydrogels. Nano Lett. 22(3), 1100–1107 (2022). https://doi.org/10.1021/acs.nanolett.1c04216
- W. Li, X. Li, W. Chang, J. Wu, P. Liu et al., Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 13(11), 3048–3056 (2020). https://doi.org/10.1007/s12274-020-2970-y
- C. Cai, Z. Wei, C. Ding, B. Sun, W. Chen et al., Dynamically tunable all-weather daytime cellulose aerogel radiative supercooler for energy-saving building. Nano Lett. 22(10), 4106–4114 (2022). https://doi.org/10.1021/acs.nanolett.2c00844
- X. Wu, J. Li, Q. Jiang, W. Zhang, B. Wang et al., An all-weather radiative human body cooling textile. Nat. Sustain. 6(11), 1446–1454 (2023). https://doi.org/10.1038/s41893-023-01200-x
- L. Zhou, J. Rada, Y. Tian, Y. Han, Z. Lai et al., Radiative cooling for energy sustainability: materials, systems, and applications. Phys. Rev. Mater. 6(9), 090201 (2022). https://doi.org/10.1103/physrevmaterials.6.090201
- A. Aili, Z.Y. Wei, Y.Z. Chen, D.L. Zhao, R.G. Yang et al., Selection of polymers with functional groups for daytime radiative cooling. Mater. Today Phys. 10, 100127 (2019). https://doi.org/10.1016/j.mtphys.2019.100127
- X. Zhang, H. Wang, Z. Cai, N. Yan, M. Liu et al., Highly compressible and hydrophobic anisotropic aerogels for selective oil/organic solvent absorption. ACS Sustain. Chem. Eng. 7(1), 332–340 (2019). https://doi.org/10.1021/acssuschemeng.8b03554
- J.D. Caldwell, I. Aharonovich, G. Cassabois, J.H. Edgar, B. Gil et al., Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4(8), 552–567 (2019). https://doi.org/10.1038/s41578-019-0124-1
- J.E. Fröch, Y. Hwang, S. Kim, I. Aharonovich, M. Toth, Photonic nanostructures from hexagonal boron nitride. Adv. Opt. Mater. 7(4), 1801344 (2019). https://doi.org/10.1002/adom.201801344
- P. Li, A. Wang, J. Fan, Q. Kang, P. Jiang et al., Thermo-optically designed scalable photonic films with high thermal conductivity for subambient and above-ambient radiative cooling. Adv. Funct. Mater. 32(5), 2109542 (2022). https://doi.org/10.1002/adfm.202109542
- J. Liu, H. Tang, C. Jiang, S. Wu, L. Ye et al., Micro-nano porous structure for efficient daytime radiative sky cooling. Adv. Funct. Mater. 32(44), 2206962 (2022). https://doi.org/10.1002/adfm.202206962
- X. Dong, S. Gao, J. Huang, S. Li, T. Zhu et al., A self-roughened and biodegradable superhydrophobic coating with UV shielding, solar-induced self-healing and versatile oil–water separation ability. J. Mater. Chem. A 7(5), 2122–2128 (2019). https://doi.org/10.1039/C8TA10869B
- Z. Hu, Y. Qiu, J. Zhou, Q. Li, Smart flexible porous bilayer for all-day dynamic passive cooling. Small Sci. 4(3), 2300237 (2024). https://doi.org/10.1002/smsc.202300237
- B.-W. Liu, M. Cao, Y.-Y. Zhang, Y.-Z. Wang, H.-B. Zhao, Multifunctional protective aerogel with superelasticity over–196 to 500 °C. Nano Res. 15(9), 7797–7805 (2022). https://doi.org/10.1007/s12274-022-4699-2
- X.-C. Lin, S.-L. Li, W.-X. Li, Z.-H. Wang, J.-Y. Zhang et al., Thermo-responsive self-ceramifiable robust aerogel with exceptional strengthening and thermal insulating performance at ultrahigh temperatures. Adv. Funct. Mater. 33(27), 2214913 (2023). https://doi.org/10.1002/adfm.202214913
- Z. Xi, S. Li, L. Yu, H. Yan, M. Chen, All-day freshwater harvesting by selective solar absorption and radiative cooling. ACS Appl. Mater. Interfaces 14(22), 26255–26263 (2022). https://doi.org/10.1021/acsami.2c05409
- L. Xu, D.-W. Sun, Y. Tian, L. Sun, T. Fan et al., Combined effects of radiative and evaporative cooling on fruit preservation under solar radiation: sunburn resistance and temperature stabilization. ACS Appl. Mater. Interfaces 14(40), 45788–45799 (2022). https://doi.org/10.1021/acsami.2c11349
- J. Song, W. Zhang, Z. Sun, M. Pan, F. Tian et al., Durable radiative cooling against environmental aging. Nat. Commun. 13, 4805 (2022). https://doi.org/10.1038/s41467-022-32409-7
- T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen et al., A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12(1), 365 (2021). https://doi.org/10.1038/s41467-020-20646-7
- L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou et al., A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2(8), 718–724 (2019). https://doi.org/10.1038/s41893-019-0348-5
- T. Li, Y. Zhai, S. He, W. Gan, Z. Wei et al., A radiative cooling structural material. Science 364(6442), 760–763 (2019). https://doi.org/10.1126/science.aau9101
- R. Li, Y. Shi, M. Wu, S. Hong, P. Wang, Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle. Nat. Sustain. 3(8), 636–643 (2020). https://doi.org/10.1038/s41893-020-0535-4
- P. Yao, Z. Chen, T. Liu, X. Liao, Z. Yang et al., Spider-silk-inspired nanocomposite polymers for durable daytime radiative cooling. Adv. Mater. 34(51), e2208236 (2022). https://doi.org/10.1002/adma.202208236
- Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
- X. Wang, X. Liu, Z. Li, H. Zhang, Z. Yang et al., Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 30(5), 1907562 (2020). https://doi.org/10.1002/adfm.201907562
- C. Wang, L. Hua, H. Yan, B. Li, Y. Tu et al., A thermal management strategy for electronic devices based on moisture sorption-desorption processes. Joule 4(2), 435–447 (2020). https://doi.org/10.1016/j.joule.2019.12.005
- R.H. Galib, Y. Tian, Y. Lei, S. Dang, X. Li et al., Atmospheric-moisture-induced polyacrylate hydrogels for hybrid passive cooling. Nat. Commun. 14(1), 6707 (2023). https://doi.org/10.1038/s41467-023-42548-0
References
E. Pennisi, Living with heat. Science 370(6518), 778–781 (2020). https://doi.org/10.1126/science.370.6518.778
B. Grocholski, Cooling in a warming world. Science 370(6518), 776–777 (2020). https://doi.org/10.1126/science.abf1931
A. Aili, X. Yin, R. Yang, Passive sub-ambient cooling: radiative cooling versus evaporative cooling. Appl. Therm. Eng. 202, 117909 (2022). https://doi.org/10.1016/j.applthermaleng.2021.117909
P.-C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353(6303), 1019–1023 (2016). https://doi.org/10.1126/science.aaf5471
S. Yu, Q. Zhang, Y. Wang, Y. Lv, R. Ma, Photonic-structure colored radiative coolers for daytime subambient cooling. Nano Lett. 22(12), 4925–4932 (2022). https://doi.org/10.1021/acs.nanolett.2c01570
J. Lee, D. Im, S. Sung, J. Yu, H. Kim et al., Scalable and efficient radiative cooling coatings using uniform-hollow silica spheres. Appl. Therm. Eng. 254, 123810 (2024). https://doi.org/10.1016/j.applthermaleng.2024.123810
C. Park, C. Park, X. Nie, J. Lee, Y.S. Kim et al., Fully organic and flexible biodegradable emitter for global energy-free cooling applications. ACS Sustain. Chem. Eng. 10(21), 7091–7099 (2022). https://doi.org/10.1021/acssuschemeng.2c01182
M. Lian, W. Ding, S. Liu, Y. Wang, T. Zhu et al., Highly porous yet transparent mechanically flexible aerogels realizing solar-thermal regulatory cooling. Nano-Micro Lett. 16(1), 131 (2024). https://doi.org/10.1007/s40820-024-01356-x
M.M. Hossain, M. Gu, Radiative cooling: principles, progress, and potentials. Adv. Sci. 3(7), 1500360 (2016). https://doi.org/10.1002/advs.201500360
E.A. Goldstein, A.P. Raman, S. Fan, Sub-ambient non-evaporative fluid cooling with the sky. Nat. Energy 2(9), 17143 (2017). https://doi.org/10.1038/nenergy.2017.143
Q. Zhang, Y. Lv, Y. Wang, S. Yu, C. Li et al., Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nat. Commun. 13(1), 4874 (2022). https://doi.org/10.1038/s41467-022-32528-1
P. Poredoš, R. Wang, Sustainable cooling with water generation. Science 380(6644), 458–459 (2023). https://doi.org/10.1126/science.add1795
J. Liu, Y. Zhou, Z. Zhou, Y. Du, C. Wang et al., Passive photovoltaic cooling: advances toward low-temperature operation. Adv. Energy Mater. 14(2), 2302662 (2024). https://doi.org/10.1002/aenm.202302662
Y. Fang, X. Zhao, G. Chen, T. Tat, J. Chen, Smart polyethylene textiles for radiative and evaporative cooling. Joule 5(4), 752–754 (2021). https://doi.org/10.1016/j.joule.2021.03.019
Z.-W. Zeng, B. Tang, F.-R. Zeng, H. Chen, S.-Q. Chen et al., An intelligent, recyclable, biomass film for adaptive day-night and year-round energy savings. Adv. Funct. Mater. 34(39), 2403061 (2024). https://doi.org/10.1002/adfm.202403061
N. Guo, C. Shi, N. Warren, E.A. Sprague-Klein, B.W. Sheldon et al., Challenges and opportunities for passive thermoregulation. Adv. Energy Mater. 14(34), 2401776 (2024). https://doi.org/10.1002/aenm.202401776
C. Park, W. Lee, C. Park, S. Park, J. Lee et al., Efficient thermal management and all-season energy harvesting using adaptive radiative cooling and a thermoelectric power generator. J. Energy Chem. 84, 496–501 (2023). https://doi.org/10.1016/j.jechem.2023.05.051
R. Li, W. Wang, Y. Shi, C.-T. Wang, P. Wang, Advanced material design and engineering for water-based evaporative cooling. Adv. Mater. 36(12), e2209460 (2024). https://doi.org/10.1002/adma.202209460
G. Wang, Y. Li, H. Qiu, H. Yan, Y. Zhou, High-performance and wide relative humidity passive evaporative cooling utilizing atmospheric water. Droplet 2(1), e32 (2023). https://doi.org/10.1002/dro2.32
L. Lei, S. Meng, Y. Si, S. Shi, H. Wu et al., Wettability gradient-induced diode: MXene-engineered membrane for passive-evaporative cooling. Nano-Micro Lett. 16(1), 159 (2024). https://doi.org/10.1007/s40820-024-01359-8
S. Pu, J. Fu, Y. Liao, L. Ge, Y. Zhou et al., Promoting energy efficiency via a self-adaptive evaporative cooling hydrogel. Adv. Mater. 32(17), e1907307 (2020). https://doi.org/10.1002/adma.201907307
Y. Huang, Q. Li, Z. Chen, M. Chen, Sorbent-coupled radiative cooling and solar heating to improve atmospheric water harvesting. J. Colloid Interface Sci. 655, 527–534 (2024). https://doi.org/10.1016/j.jcis.2023.11.043
G.M. Hale, M.R. Querry, Optical constants of water in the 200-nm to 200-µm wavelength region. Appl. Opt. 12(3), 555–563 (1973). https://doi.org/10.1364/AO.12.000555
X. Hu, P. Hu, L. Liu, L. Zhao, S. Dou et al., Lightweight and hierarchically porous hydrogels for wearable passive cooling under extreme heat stress. Matter 7(12), 4398–4409 (2024). https://doi.org/10.1016/j.matt.2024.09.008
C. Feng, P. Yang, H. Liu, M. Mao, Y. Liu et al., Bilayer porous polymer for efficient passive building cooling. Nano Energy 85, 105971 (2021). https://doi.org/10.1016/j.nanoen.2021.105971
Z. Lu, A. Leroy, L. Zhang, J.J. Patil, E.N. Wang et al., Significantly enhanced sub-ambient passive cooling enabled by evaporation, radiation, and insulation. Cell Rep. Phys. Sci. 3(10), 101068 (2022). https://doi.org/10.1016/j.xcrp.2022.101068
J. Li, X. Wang, D. Liang, N. Xu, B. Zhu et al., A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Sci. Adv. 8(32), eabq0411 (2022). https://doi.org/10.1126/sciadv.abq0411
Z. Lu, E. Strobach, N. Chen, N. Ferralis, J.C. Grossman, Passive sub-ambient cooling from a transparent evaporation-insulation bilayer. Joule 4(12), 2693–2701 (2020). https://doi.org/10.1016/j.joule.2020.10.005
H. Yao, H. Cheng, Q. Liao, X. Hao, K. Zhu et al., Integrated radiative and evaporative cooling beyond daytime passive cooling power limit. Nano Res. Energy 2, e9120060 (2023). https://doi.org/10.26599/nre.2023.9120060
L. Yu, Y. Huang, Y. Zhao, Z. Rao, W. Li et al., Self-sustained and insulated radiative/evaporative cooler for daytime subambient passive cooling. ACS Appl. Mater. Interfaces 16(5), 6513–6522 (2024). https://doi.org/10.1021/acsami.3c19223
L. Yu, Y. Huang, W. Li, C. Shi, B.W. Sheldon et al., Radiative-coupled evaporative cooling: fundamentals, development, and applications. Nano Res. Energy 3(2), e9120107 (2024). https://doi.org/10.26599/nre.2023.9120107
H. Zhang, K.C.S. Ly, X. Liu, Z. Chen, M. Yan et al., Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. U.S.A. 117(26), 14657–14666 (2020). https://doi.org/10.1073/pnas.2001802117
J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
R. Liu, S. Wang, Z. Zhou, K. Zhang, G. Wang et al., Materials in radiative cooling technologies. Adv. Mater. 37(2), e2401577 (2025). https://doi.org/10.1002/adma.202401577
K. Lin, S. Chen, Y. Zeng, T.C. Ho, Y. Zhu et al., Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science 382(6671), 691–697 (2023). https://doi.org/10.1126/science.adi4725
A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528), 540–544 (2014). https://doi.org/10.1038/nature13883
D. Hong, Y.J. Lee, O.S. Jeon, I.S. Lee, S.H. Lee et al., Humidity-tolerant porous polymer coating for passive daytime radiative cooling. Nat. Commun. 15(1), 4457 (2024). https://doi.org/10.1038/s41467-024-48621-6
B. Xiang, R. Zhang, Y. Luo, S. Zhang, L. Xu et al., 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 81, 105600 (2021). https://doi.org/10.1016/j.nanoen.2020.105600
C. Park, C. Park, S. Park, J. Lee, J.-H. Choi et al., Passive daytime radiative cooling by thermoplastic polyurethane wrapping films with controlled hierarchical porous structures. ChemSusChem 15(24), e202202129 (2022). https://doi.org/10.1002/cssc.202202129
C. Park, C. Park, S. Park, J. Lee, Y.S. Kim et al., Hybrid emitters with raspberry-like hollow SiO2 spheres for passive daytime radiative cooling. Chem. Eng. J. 459, 141652 (2023). https://doi.org/10.1016/j.cej.2023.141652
C. Cui, J. Lu, S. Zhang, J. Su, J. Han, Hierarchical-porous coating coupled with textile for passive daytime radiative cooling and self-cleaning. Sol. Energy Mater. Sol. Cells 247, 111954 (2022). https://doi.org/10.1016/j.solmat.2022.111954
B. Zhao, X. Yue, Q. Tian, F. Qiu, Y. Li et al., Bio-inspired BC aerogel/PVA hydrogel bilayer gel for enhanced daytime sub-ambient building cooling. Cellulose 29(14), 7775–7787 (2022). https://doi.org/10.1007/s10570-022-04749-6
A. Leroy, B. Bhatia, C.C. Kelsall, A. Castillejo-Cuberos, M. Di Capua et al., High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 5(10), 09480 (2019). https://doi.org/10.1126/sciadv.aat9480
K.-Y. Chan, X. Shen, J. Yang, K.-T. Lin, H. Venkatesan et al., Scalable anisotropic cooling aerogels by additive freeze-casting. Nat. Commun. 13(1), 5553 (2022). https://doi.org/10.1038/s41467-022-33234-8
H. Zhong, Y. Li, P. Zhang, S. Gao, B. Liu et al., Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings. ACS Nano 15(6), 10076–10083 (2021). https://doi.org/10.1021/acsnano.1c01814
Y. Wang, S. Gao, H. Zhong, B. Zhang, M. Cui et al., Heterogeneous wettability and radiative cooling for efficient deliquescent sorbents-based atmospheric water harvesting. Cell Rep. Phys. Sci. 3(5), 100879 (2022). https://doi.org/10.1016/j.xcrp.2022.100879
J. Xu, T. Li, T. Yan, S. Wu, M. Wu et al., Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent. Energy Environ. Sci. 14(11), 5979–5994 (2021). https://doi.org/10.1039/D1EE01723C
J. Yang, X. Shen, W. Yang, J. Kim, Templating strategies for 3D-structured thermally conductive composites: recent advances and thermal energy applications. Prog. Mater. Sci. 133, 101054 (2023). https://doi.org/10.1016/j.pmatsci.2022.101054
E. Kim, K.-Y. Chan, J. Yang, H. Venkatesan, M.H. Adegun et al., Engineering anisotropic structures of thermally insulating aerogels with high solar reflectance for energy-efficient cooling applications. J. Mater. Chem. A 11(13), 7105–7114 (2023). https://doi.org/10.1039/D2TA09983G
M.H. Adegun, K.-Y. Chan, J. Yang, H. Venkatesan, E. Kim et al., Anisotropic thermally superinsulating boron nitride composite aerogel for building thermal management. Compos. Part A Appl. Sci. Manuf. 169, 107522 (2023). https://doi.org/10.1016/j.compositesa.2023.107522
Z. Zeng, N. Wu, J. Liu, G. Nyström, Mimicking biological architectures via freeze casting. Matter 5(8), 2519–2522 (2022). https://doi.org/10.1016/j.matt.2022.06.044
B. Li, H. Tian, L. Li, W. Liu, J. Liu et al., Graphene-assisted assembly of electrically and magnetically conductive ceramic nanofibrous aerogels enable multifunctionality. Adv. Funct. Mater. 34(22), 2314653 (2024). https://doi.org/10.1002/adfm.202314653
J.-W. Ma, F.-R. Zeng, X.-C. Lin, Y.-Q. Wang, Y.-H. Ma et al., A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling. Science 385(6704), 68–74 (2024). https://doi.org/10.1126/science.adn5694
J. Yang, K.Y. Chan, H. Venkatesan, E. Kim, M.H. Adegun et al., Superinsulating BNNS/PVA composite aerogels with high solar reflectance for energy-efficient buildings. Nano-Micro Lett. 14(1), 54 (2022). https://doi.org/10.1007/s40820-022-00797-6
N. Li, L. Qiao, J. He, S. Wang, L. Yu et al., Solar-driven interfacial evaporation and self-powered water wave detection based on an all-cellulose monolithic design. Adv. Funct. Mater. 31(7), 2008681 (2021). https://doi.org/10.1002/adfm.202008681
Z. Zhang, H. Fu, Z. Li, J. Huang, Z. Xu et al., Hydrogel materials for sustainable water resources harvesting & treatment: synthesis, mechanism and applications. Chem. Eng. J. 439, 135756 (2022). https://doi.org/10.1016/j.cej.2022.135756
W. Zhang, R. Wang, Z. Sun, X. Zhu, Q. Zhao et al., Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications. Chem. Soc. Rev. 49(2), 433–464 (2020). https://doi.org/10.1039/c9cs00285e
H. Lu, W. Shi, J.H. Zhang, A.C. Chen, W. Guan et al., Tailoring the desorption behavior of hygroscopic gels for atmospheric water harvesting in arid climates. Adv. Mater. 34(37), 2205344 (2022). https://doi.org/10.1002/adma.202205344
C.D. Díaz-Marín, L. Zhang, B. El Fil, Z. Lu, M. Alshrah et al., Heat and mass transfer in hygroscopic hydrogels. Int. J. Heat Mass Transf. 195, 123103 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.123103
C.D. Díaz-Marín, L. Zhang, Z. Lu, M. Alshrah, J.C. Grossman et al., Kinetics of sorption in hygroscopic hydrogels. Nano Lett. 22(3), 1100–1107 (2022). https://doi.org/10.1021/acs.nanolett.1c04216
W. Li, X. Li, W. Chang, J. Wu, P. Liu et al., Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 13(11), 3048–3056 (2020). https://doi.org/10.1007/s12274-020-2970-y
C. Cai, Z. Wei, C. Ding, B. Sun, W. Chen et al., Dynamically tunable all-weather daytime cellulose aerogel radiative supercooler for energy-saving building. Nano Lett. 22(10), 4106–4114 (2022). https://doi.org/10.1021/acs.nanolett.2c00844
X. Wu, J. Li, Q. Jiang, W. Zhang, B. Wang et al., An all-weather radiative human body cooling textile. Nat. Sustain. 6(11), 1446–1454 (2023). https://doi.org/10.1038/s41893-023-01200-x
L. Zhou, J. Rada, Y. Tian, Y. Han, Z. Lai et al., Radiative cooling for energy sustainability: materials, systems, and applications. Phys. Rev. Mater. 6(9), 090201 (2022). https://doi.org/10.1103/physrevmaterials.6.090201
A. Aili, Z.Y. Wei, Y.Z. Chen, D.L. Zhao, R.G. Yang et al., Selection of polymers with functional groups for daytime radiative cooling. Mater. Today Phys. 10, 100127 (2019). https://doi.org/10.1016/j.mtphys.2019.100127
X. Zhang, H. Wang, Z. Cai, N. Yan, M. Liu et al., Highly compressible and hydrophobic anisotropic aerogels for selective oil/organic solvent absorption. ACS Sustain. Chem. Eng. 7(1), 332–340 (2019). https://doi.org/10.1021/acssuschemeng.8b03554
J.D. Caldwell, I. Aharonovich, G. Cassabois, J.H. Edgar, B. Gil et al., Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4(8), 552–567 (2019). https://doi.org/10.1038/s41578-019-0124-1
J.E. Fröch, Y. Hwang, S. Kim, I. Aharonovich, M. Toth, Photonic nanostructures from hexagonal boron nitride. Adv. Opt. Mater. 7(4), 1801344 (2019). https://doi.org/10.1002/adom.201801344
P. Li, A. Wang, J. Fan, Q. Kang, P. Jiang et al., Thermo-optically designed scalable photonic films with high thermal conductivity for subambient and above-ambient radiative cooling. Adv. Funct. Mater. 32(5), 2109542 (2022). https://doi.org/10.1002/adfm.202109542
J. Liu, H. Tang, C. Jiang, S. Wu, L. Ye et al., Micro-nano porous structure for efficient daytime radiative sky cooling. Adv. Funct. Mater. 32(44), 2206962 (2022). https://doi.org/10.1002/adfm.202206962
X. Dong, S. Gao, J. Huang, S. Li, T. Zhu et al., A self-roughened and biodegradable superhydrophobic coating with UV shielding, solar-induced self-healing and versatile oil–water separation ability. J. Mater. Chem. A 7(5), 2122–2128 (2019). https://doi.org/10.1039/C8TA10869B
Z. Hu, Y. Qiu, J. Zhou, Q. Li, Smart flexible porous bilayer for all-day dynamic passive cooling. Small Sci. 4(3), 2300237 (2024). https://doi.org/10.1002/smsc.202300237
B.-W. Liu, M. Cao, Y.-Y. Zhang, Y.-Z. Wang, H.-B. Zhao, Multifunctional protective aerogel with superelasticity over–196 to 500 °C. Nano Res. 15(9), 7797–7805 (2022). https://doi.org/10.1007/s12274-022-4699-2
X.-C. Lin, S.-L. Li, W.-X. Li, Z.-H. Wang, J.-Y. Zhang et al., Thermo-responsive self-ceramifiable robust aerogel with exceptional strengthening and thermal insulating performance at ultrahigh temperatures. Adv. Funct. Mater. 33(27), 2214913 (2023). https://doi.org/10.1002/adfm.202214913
Z. Xi, S. Li, L. Yu, H. Yan, M. Chen, All-day freshwater harvesting by selective solar absorption and radiative cooling. ACS Appl. Mater. Interfaces 14(22), 26255–26263 (2022). https://doi.org/10.1021/acsami.2c05409
L. Xu, D.-W. Sun, Y. Tian, L. Sun, T. Fan et al., Combined effects of radiative and evaporative cooling on fruit preservation under solar radiation: sunburn resistance and temperature stabilization. ACS Appl. Mater. Interfaces 14(40), 45788–45799 (2022). https://doi.org/10.1021/acsami.2c11349
J. Song, W. Zhang, Z. Sun, M. Pan, F. Tian et al., Durable radiative cooling against environmental aging. Nat. Commun. 13, 4805 (2022). https://doi.org/10.1038/s41467-022-32409-7
T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen et al., A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12(1), 365 (2021). https://doi.org/10.1038/s41467-020-20646-7
L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou et al., A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2(8), 718–724 (2019). https://doi.org/10.1038/s41893-019-0348-5
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei et al., A radiative cooling structural material. Science 364(6442), 760–763 (2019). https://doi.org/10.1126/science.aau9101
R. Li, Y. Shi, M. Wu, S. Hong, P. Wang, Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle. Nat. Sustain. 3(8), 636–643 (2020). https://doi.org/10.1038/s41893-020-0535-4
P. Yao, Z. Chen, T. Liu, X. Liao, Z. Yang et al., Spider-silk-inspired nanocomposite polymers for durable daytime radiative cooling. Adv. Mater. 34(51), e2208236 (2022). https://doi.org/10.1002/adma.202208236
Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
X. Wang, X. Liu, Z. Li, H. Zhang, Z. Yang et al., Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 30(5), 1907562 (2020). https://doi.org/10.1002/adfm.201907562
C. Wang, L. Hua, H. Yan, B. Li, Y. Tu et al., A thermal management strategy for electronic devices based on moisture sorption-desorption processes. Joule 4(2), 435–447 (2020). https://doi.org/10.1016/j.joule.2019.12.005
R.H. Galib, Y. Tian, Y. Lei, S. Dang, X. Li et al., Atmospheric-moisture-induced polyacrylate hydrogels for hybrid passive cooling. Nat. Commun. 14(1), 6707 (2023). https://doi.org/10.1038/s41467-023-42548-0