Scalable-Designed Photonic Metamaterial for Color-Regulating Passive Daytime Radiative Cooling
Corresponding Author: Su Chen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 153
Abstract
Methods allowing passive daytime radiative cooling (PDRC) to be carried out in an energy-efficient and scalable way are potentially important for various disciplines. Here, we report a sustainable strategy for scalable-designed and color-regulating PDRC coating based on high-crystallinity photonic metamaterial (crystallinity: 71.5%; enhanced assembly efficiency: 72%), that is derived from the as-prepared 55 wt% solid content poly(methyl methacrylate-butyl acrylate-methacrylic acid) P(MMA-BA-MAA) monodispersed latexes (approaching theoretical limit: 59 wt%). Robust meter-scale PDRC coatings are constructed by various industrial modes onto diverse surfaces, addressing bottlenecks like dull appearance, high cost, low efficiency, and hard construction. Notably, the solar reflectance, long-wave infrared emittance, and calculated theoretical cooling power of the designed PDRC coating, respectively, reach ~ 0.94, ~ 0.97, and ~ 95.5 W m−2 under solar radiation, which can achieve an average 5.3 °C sub-ambient daytime temperature drop in the summer in Nanjing. The cooling performance, scale preparation, and cost-effectiveness of the PDRC coating have extended into leading position compared with those of state-of-the-art designs. This work provides promising route to reduce carbon emissions and energy consumption for global sustainability.
Highlights:
1 The 55 wt% solid content monodispersed latexes were synthesized under the synergistic action of ionic and nonionic surfactants.
2 The 55 wt% solid content monodispersed latexes open a homogeneous assembly avenue, establishing high-crystallinity photonic metamaterial (crystallinity:71.5%).
3 We developed scalable-designed and color-regulating passive daytime radiative cooling coating based on the high-crystallinity photonic metamaterial, showing high solar reflectance (~ 0.94), high infrared emittance (~ 0.97), large sub-ambient cooling temperature (average 5.3 °C), and great cooling power (~ 95.5 W m−2).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Tang, K. Dong, J. Li, M.P. Gordon, F.G. Reichertz et al., Temperature-adaptive radiative coating for all-season household thermal regulation. Science 374(6574), 1504–1509 (2021). https://doi.org/10.1126/science.abf7136
- A.-Q. Xie, H. Qiu, W. Jiang, Y. Wang, S. Niu et al., Recent advances in spectrally selective daytime radiative cooling materials. Nano-Micro Lett. 17(1), 264 (2025). https://doi.org/10.1007/s40820-025-01771-8
- L.T. Biardeau, L.W. Davis, P. Gertler, C. Wolfram, Heat exposure and global air conditioning. Nat. Sustain. 3(1), 25–28 (2020). https://doi.org/10.1038/s41893-019-0441-9
- C. Wang, H. Chen, F. Wang, Passive daytime radiative cooling materials toward real-world applications. Prog. Mater. Sci. 144, 101276 (2024). https://doi.org/10.1016/j.pmatsci.2024.101276
- X. Yin, R. Yang, G. Tan, S. Fan, Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source. Science 370(6518), 786–791 (2020). https://doi.org/10.1126/science.abb0971
- J. Wei, H. Chen, J. Liu, F. Wang, C. Wang, Radiative cooling technologies toward enhanced energy efficiency of solar cells: materials, systems, and perspectives. Nano Energy 136, 110680 (2025). https://doi.org/10.1016/j.nanoen.2025.110680
- H. Chen, X. Liu, J. Liu, F. Wang, C. Wang, Radiative cooling applications toward enhanced energy efficiency: system designs, achievements, and perspectives. Innovation 6(10), 100999 (2025). https://doi.org/10.1016/j.xinn.2025.100999
- S. Liu, F. Zhang, X. Chen, H. Yan, W. Chen et al., Thin paints for durable and scalable radiative cooling. J. Energy Chem. 90, 176–182 (2024). https://doi.org/10.1016/j.jechem.2023.11.016
- J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
- X. Song, Y. Gao, P. Zhang, Optical properties of the polymeric radiative cooler with embedded nano/micro-ps. Renew. Sustain. Energy Rev. 200, 114556 (2024). https://doi.org/10.1016/j.rser.2024.114556
- J. Dong, Y. Peng, Y. Zhang, Y. Chai, J. Long et al., Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 15(1), 181 (2023). https://doi.org/10.1007/s40820-023-01156-9
- Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
- Q. Ye, X. Chen, H. Yan, M. Chen, Thermal conductive radiative cooling film for local heat dissipation. Mater. Today Phys. 50, 101626 (2025). https://doi.org/10.1016/j.mtphys.2024.101626
- S. Fan, W. Li, Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16(3), 182–190 (2022). https://doi.org/10.1038/s41566-021-00921-9
- X.-Q. Yu, J. Wu, J.-W. Wang, N.-X. Zhang, R.-K. Qing et al., Facile access to high solid content monodispersed microspheres via dual-component surfactants regulation toward high-performance colloidal photonic crystals. Adv. Mater. 36(24), 2312879 (2024). https://doi.org/10.1002/adma.202312879
- C. Cai, X. Wu, F. Cheng, C. Ding, Z. Wei et al., Cellulose metamaterials with hetero-profiled topology via structure rearrangement during ball milling for daytime radiative cooling. Adv. Funct. Mater. 34(40), 2405903 (2024). https://doi.org/10.1002/adfm.202405903
- N. Aravindakshan, E. Eftekhari, S.H. Tan, X. Li, J. St John et al., Ensembles of photonic beads: optical properties and enhanced light: matter interactions. Adv. Opt. Mater. 8(7), 1901537 (2020). https://doi.org/10.1002/adom.201901537
- S. Yu, Q. Zhang, Y. Wang, Y. Lv, R. Ma, Photonic-structure colored radiative coolers for daytime subambient cooling. Nano Lett. 22(12), 4925–4932 (2022). https://doi.org/10.1021/acs.nanolett.2c01570
- H. Zhang, K.C.S. Ly, X. Liu, Z. Chen, M. Yan et al., Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. U. S. A. 117(26), 14657–14666 (2020). https://doi.org/10.1073/pnas.2001802117
- M. Chen, D. Pang, J. Mandal, X. Chen, H. Yan et al., Designing mesoporous photonic structures for high-performance passive daytime radiative cooling. Nano Lett. 21(3), 1412–1418 (2021). https://doi.org/10.1021/acs.nanolett.0c04241
- W. Zhu, B. Droguet, Q. Shen, Y. Zhang, T.G. Parton et al., Structurally colored radiative cooling cellulosic films. Adv. Sci. 9(26), 2202061 (2022). https://doi.org/10.1002/advs.202202061
- M. Lee, G. Kim, Y. Jung, K.R. Pyun, J. Lee et al., Photonic structures in radiative cooling. Light Sci. Appl. 12, 134 (2023). https://doi.org/10.1038/s41377-023-01119-0
- Z. Cai, Z. Li, S. Ravaine, M. He, Y. Song et al., From colloidal ps to photonic crystals: advances in self-assembly and their emerging applications. Chem. Soc. Rev. 50(10), 5898–5951 (2021). https://doi.org/10.1039/d0cs00706d
- W. Li, H. Palis, R. Mérindol, J. Majimel, S. Ravaine et al., Colloidal molecules and patchy ps: complementary concepts, synthesis and self-assembly. Chem. Soc. Rev. 49(6), 1955–1976 (2020). https://doi.org/10.1039/c9cs00804g
- J. Qiu, P.H.C. Camargo, U. Jeong, Y. Xia, Synthesis, transformation, and utilization of monodispersed colloidal spheres. Acc. Chem. Res. 52(12), 3475–3487 (2019). https://doi.org/10.1021/acs.accounts.9b00490
- X. Wu, R. Hong, J. Meng, R. Cheng, Z. Zhu et al., Hydrophobic poly(tert-butyl acrylate) photonic crystals towards robust energy-saving performance. Angew. Chem. Int. Ed. 58(38), 13556–13564 (2019). https://doi.org/10.1002/anie.201907464
- M. Li, Q. Lyu, B. Peng, X. Chen, L. Zhang et al., Bioinspired colloidal photonic composites: fabrications and emerging applications. Adv. Mater. 34(52), e2110488 (2022). https://doi.org/10.1002/adma.202110488
- L. Wang, X. Ding, L. Fan, A.M. Filppula, Q. Li et al., Self-healing dynamic hydrogel microps with structural color for wound management. Nano-Micro Lett. 16(1), 232 (2024). https://doi.org/10.1007/s40820-024-01422-4
- J.B. Kim, C. Chae, S.H. Han, S.Y. Lee, S.-H. Kim, Direct writing of customized structural-color graphics with colloidal photonic inks. Sci. Adv. 7(48), eabj8780 (2021). https://doi.org/10.1126/sciadv.abj8780
- T. Song, F. Gao, S. Guo, Y. Zhang, S. Li et al., A review of the role and mechanism of surfactants in the morphology control of metal nanops. Nanoscale 13(7), 3895–3910 (2021). https://doi.org/10.1039/D0NR07339C
- Y. Li, M. Girard, M. Shen, J.A. Millan, M. Olvera de la Cruz, Strong attractions and repulsions mediated by monovalent salts. Proc. Natl. Acad. Sci. U. S. A. 114(45), 11838–11843 (2017). https://doi.org/10.1073/pnas.1713168114
- F. Li, B. Tang, S. Wu, S. Zhang, Facile synthesis of monodispersed polysulfide spheres for building structural colors with high color visibility and broad viewing angle. Small 13(3), 1602565 (2017). https://doi.org/10.1002/smll.201602565
- X.-Q. Yu, X. Zhang, T. Qiu, H. Liu, J. Guo et al., Engineering ps for sensing applications via in situ synthesizing carbon dots@SiO2 photonic crystals. Chem. Eng. J. 465, 142851 (2023). https://doi.org/10.1016/j.cej.2023.142851
- J. Zhang, Z. Zhu, Z. Yu, L. Ling, C.-F. Wang et al., Large-scale colloidal films with robust structural colors. Mater. Horiz. 6(1), 90–96 (2019). https://doi.org/10.1039/c8mh00248g
- P. Xue, Y. Chen, Y. Xu, C. Valenzuela, X. Zhang et al., Bioinspired MXene-based soft actuators exhibiting angle-independent structural color. Nano-Micro Lett. 15(1), 1 (2022). https://doi.org/10.1007/s40820-022-00977-4
- C. Wang, X. Lin, C.G. Schäfer, S. Hirsemann, J. Ge, Spray synthesis of photonic crystal based automotive coatings with bright and angular-dependent structural colors. Adv. Funct. Mater. 31(9), 2008601 (2021). https://doi.org/10.1002/adfm.202008601
- M. Rey, A.D. Law, D.M.A. Buzza, N. Vogel, Anisotropic self-assembly from isotropic colloidal building blocks. J. Am. Chem. Soc. 139(48), 17464–17473 (2017). https://doi.org/10.1021/jacs.7b08503
- Y.G. Kim, S. Park, Y.H. Choi, S.H. Han, S.-H. Kim, Elastic photonic microcapsules containing colloidal crystallites as building blocks for macroscopic photonic surfaces. ACS Nano 15(7), 12438–12448 (2021). https://doi.org/10.1021/acsnano.1c02000
- H. Hwang, Y.C. Cho, S. Lee, T.M. Choi, S.-H. Kim et al., Real-time monitoring of colloidal crystallization in electrostatically-levitated drops. Small 16(11), e1907478 (2020). https://doi.org/10.1002/smll.201907478
- S.-H. Kim, J.-G. Park, T.M. Choi, V.N. Manoharan, D.A. Weitz, Osmotic-pressure-controlled concentration of colloidal ps in thin-shelled capsules. Nat. Commun. 5, 3068 (2014). https://doi.org/10.1038/ncomms4068
- A.-Q. Xie, Q. Li, Y. Xi, L. Zhu, S. Chen, Assembly of crack-free photonic crystals: fundamentals, emerging strategies, and perspectives. Acc. Mater. Res. 4(5), 403–415 (2023). https://doi.org/10.1021/accountsmr.2c00236
- T.M. Choi, G.H. Lee, Y.-S. Kim, J.-G. Park, H. Hwang et al., Photonic microcapsules containing single-crystal colloidal arrays with optical anisotropy. Adv. Mater. 31(18), e1900693 (2019). https://doi.org/10.1002/adma.201900693
- K.R. Phillips, C.T. Zhang, T. Yang, T. Kay, C. Gao et al., Fabrication of photonic microbricks via crack engineering of colloidal crystals. Adv. Funct. Mater. 30(26), 1908242 (2020). https://doi.org/10.1002/adfm.201908242
- K. Keller, A.V. Yakovlev, E.V. Grachova, A.V. Vinogradov, Inkjet printing of multicolor daylight visible opal holography. Adv. Funct. Mater. 28(21), 1706903 (2018). https://doi.org/10.1002/adfm.201706903
- I. Jurewicz, A.A.K. King, R. Shanker, M.J. Large, R.J. Smith et al., Mechanochromic and thermochromic sensors based on graphene infused polymer opals. Adv. Funct. Mater. 30(31), 2002473 (2020). https://doi.org/10.1002/adfm.202002473
- H.-Y. Zhu, F. Tian, X.-H. Li, H.-B. Qiu, J. Wang, Crystallization and phase behavior in block copolymer solution: an in situ small angle X-ray scattering study. Chin. J. Polym. Sci. 37(11), 1162–1168 (2019). https://doi.org/10.1007/s10118-019-2258-4
- C. Wang, Y. Ning, Y. Yue, G. Du, Y. Xie et al., Scalable synthesis of phosphorescent SiO2 nanospheres and their use for angle-dependent and thermoresponsive photonic gels with multimode luminescence. Nat. Commun. 16(1), 6640 (2025). https://doi.org/10.1038/s41467-025-61967-9
- Z. Zhu, J. Zhang, C.-F. Wang, S. Chen, Construction of hydrogen-bond-assisted crack-free photonic crystal films and their performance on fluorescence enhancement effect. Macromol. Mater. Eng. 302(6), 1700013 (2017). https://doi.org/10.1002/mame.201700013
- D. Li, X. Liu, W. Li, Z. Lin, B. Zhu et al., Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16(2), 153–158 (2021). https://doi.org/10.1038/s41565-020-00800-4
- T. Li, Y. Zhai, S. He, W. Gan, Z. Wei et al., A radiative cooling structural material. Science 364(6442), 760–763 (2019). https://doi.org/10.1126/science.aau9101
- X. Dong, K.-Y. Chan, X. Yin, Y. Zhang, X. Zhao et al., Anisotropic hygroscopic hydrogels with synergistic insulation-radiation-evaporation for high-power and self-sustained passive daytime cooling. Nano-Micro Lett. 17(1), 240 (2025). https://doi.org/10.1007/s40820-025-01766-5
- Y. Zhang, P. Han, H. Zhou, N. Wu, Y. Wei et al., Highly brilliant noniridescent structural colors enabled by graphene nanosheets containing graphene quantum dots. Adv. Funct. Mater. 28(29), 1802585 (2018). https://doi.org/10.1002/adfm.201802585
- L. Bai, V.C. Mai, Y. Lim, S. Hou, H. Möhwald et al., Large-scale noniridescent structural color printing enabled by infiltration-driven nonequilibrium colloidal assembly. Adv. Mater. 30(9), 1705667 (2018). https://doi.org/10.1002/adma.201705667
- Y. Wang, T. Wang, J. Liang, J. Wu, M. Yang et al., Controllable-morphology polymer blend photonic metafoam for radiative cooling. Mater. Horiz. 10(11), 5060–5070 (2023). https://doi.org/10.1039/d3mh01008b
- Z. Cheng, Y. Shuai, D. Gong, F. Wang, H. Liang et al., Optical properties and cooling performance analyses of single-layer radiative cooling coating with mixture of TiO2 ps and SiO2 ps. Sci. China Technol. Sci. 64(5), 1017–1029 (2021). https://doi.org/10.1007/s11431-020-1586-9
- L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou et al., A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2(8), 718–724 (2019). https://doi.org/10.1038/s41893-019-0348-5
- A.P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528), 540–544 (2014). https://doi.org/10.1038/nature13883
- C. Sui, P.-C. Hsu, Standardizing the thermodynamic definition of daytime subambient radiative cooling. ACS Energy Lett. 9(6), 2997–3000 (2024). https://doi.org/10.1021/acsenergylett.4c00909
- P. Xu, B. Xiang, W. Zhong, Y. Wu, Y. Zhang et al., Biodegradable, scalable and flexible fiber membrane for green passive radiative cooling. Sol. Energy Mater. Sol. Cells 253, 112209 (2023). https://doi.org/10.1016/j.solmat.2023.112209
- L. Zhou, X. Yin, Q. Gan, Best practices for radiative cooling. Nat. Sustain. 6(9), 1030–1032 (2023). https://doi.org/10.1038/s41893-023-01170-0
- B. Xiang, R. Zhang, X. Zeng, Y. Luo, Z. Luo, An easy-to-prepare flexible dual-mode fiber membrane for daytime outdoor thermal management. Adv. Fiber Mater. 4(5), 1058–1068 (2022). https://doi.org/10.1007/s42765-022-00164-5
- A.-Q. Xie, L. Zhu, Y. Liang, J. Mao, Y. Liu et al., Fiber-spinning asymmetric assembly for Janus-structured bifunctional nanofiber films towards all-weather smart textile. Angew. Chem. Int. Ed. 61(40), e202208592 (2022). https://doi.org/10.1002/anie.202208592
- S. Li, G. Du, M. Pan, X. Wang, X. Dong et al., Scalable and sustainable hierarchical-morphology coatings for passive daytime radiative cooling. Adv. Compos. Hybrid Mater. 7(1), 15 (2024). https://doi.org/10.1007/s42114-023-00819-w
- J.-W. Ma, F.-R. Zeng, X.-C. Lin, Y.-Q. Wang, Y.-H. Ma et al., A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling. Science 385(6704), 68–74 (2024). https://doi.org/10.1126/science.adn5694
- B.-Y. Liu, J. Wu, C.-H. Xue, Y. Zeng, J. Liang et al., Bioinspired superhydrophobic all-in-one coating for adaptive thermoregulation. Adv. Mater. 36(31), e2400745 (2024). https://doi.org/10.1002/adma.202400745
- Y. Li, Y. Zhang, Z. Yang, X. Xue, Z. He et al., Waterborne coatings with sub-ambient cooling under direct sunlight–part I: optical properties and cooling effect measurements. Sol. Energy Mater. Sol. Cells 217, 110672 (2020). https://doi.org/10.1016/j.solmat.2020.110672
- X. Xue, M. Qiu, Y. Li, Q.M. Zhang, S. Li et al., Creating an eco-friendly building coating with smart subambient radiative cooling. Adv. Mater. 32(42), e1906751 (2020). https://doi.org/10.1002/adma.201906751
- T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen et al., A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12(1), 365 (2021). https://doi.org/10.1038/s41467-020-20646-7
- S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555), 692–696 (2021). https://doi.org/10.1126/science.abi5484
References
K. Tang, K. Dong, J. Li, M.P. Gordon, F.G. Reichertz et al., Temperature-adaptive radiative coating for all-season household thermal regulation. Science 374(6574), 1504–1509 (2021). https://doi.org/10.1126/science.abf7136
A.-Q. Xie, H. Qiu, W. Jiang, Y. Wang, S. Niu et al., Recent advances in spectrally selective daytime radiative cooling materials. Nano-Micro Lett. 17(1), 264 (2025). https://doi.org/10.1007/s40820-025-01771-8
L.T. Biardeau, L.W. Davis, P. Gertler, C. Wolfram, Heat exposure and global air conditioning. Nat. Sustain. 3(1), 25–28 (2020). https://doi.org/10.1038/s41893-019-0441-9
C. Wang, H. Chen, F. Wang, Passive daytime radiative cooling materials toward real-world applications. Prog. Mater. Sci. 144, 101276 (2024). https://doi.org/10.1016/j.pmatsci.2024.101276
X. Yin, R. Yang, G. Tan, S. Fan, Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source. Science 370(6518), 786–791 (2020). https://doi.org/10.1126/science.abb0971
J. Wei, H. Chen, J. Liu, F. Wang, C. Wang, Radiative cooling technologies toward enhanced energy efficiency of solar cells: materials, systems, and perspectives. Nano Energy 136, 110680 (2025). https://doi.org/10.1016/j.nanoen.2025.110680
H. Chen, X. Liu, J. Liu, F. Wang, C. Wang, Radiative cooling applications toward enhanced energy efficiency: system designs, achievements, and perspectives. Innovation 6(10), 100999 (2025). https://doi.org/10.1016/j.xinn.2025.100999
S. Liu, F. Zhang, X. Chen, H. Yan, W. Chen et al., Thin paints for durable and scalable radiative cooling. J. Energy Chem. 90, 176–182 (2024). https://doi.org/10.1016/j.jechem.2023.11.016
J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
X. Song, Y. Gao, P. Zhang, Optical properties of the polymeric radiative cooler with embedded nano/micro-ps. Renew. Sustain. Energy Rev. 200, 114556 (2024). https://doi.org/10.1016/j.rser.2024.114556
J. Dong, Y. Peng, Y. Zhang, Y. Chai, J. Long et al., Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 15(1), 181 (2023). https://doi.org/10.1007/s40820-023-01156-9
Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
Q. Ye, X. Chen, H. Yan, M. Chen, Thermal conductive radiative cooling film for local heat dissipation. Mater. Today Phys. 50, 101626 (2025). https://doi.org/10.1016/j.mtphys.2024.101626
S. Fan, W. Li, Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16(3), 182–190 (2022). https://doi.org/10.1038/s41566-021-00921-9
X.-Q. Yu, J. Wu, J.-W. Wang, N.-X. Zhang, R.-K. Qing et al., Facile access to high solid content monodispersed microspheres via dual-component surfactants regulation toward high-performance colloidal photonic crystals. Adv. Mater. 36(24), 2312879 (2024). https://doi.org/10.1002/adma.202312879
C. Cai, X. Wu, F. Cheng, C. Ding, Z. Wei et al., Cellulose metamaterials with hetero-profiled topology via structure rearrangement during ball milling for daytime radiative cooling. Adv. Funct. Mater. 34(40), 2405903 (2024). https://doi.org/10.1002/adfm.202405903
N. Aravindakshan, E. Eftekhari, S.H. Tan, X. Li, J. St John et al., Ensembles of photonic beads: optical properties and enhanced light: matter interactions. Adv. Opt. Mater. 8(7), 1901537 (2020). https://doi.org/10.1002/adom.201901537
S. Yu, Q. Zhang, Y. Wang, Y. Lv, R. Ma, Photonic-structure colored radiative coolers for daytime subambient cooling. Nano Lett. 22(12), 4925–4932 (2022). https://doi.org/10.1021/acs.nanolett.2c01570
H. Zhang, K.C.S. Ly, X. Liu, Z. Chen, M. Yan et al., Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. U. S. A. 117(26), 14657–14666 (2020). https://doi.org/10.1073/pnas.2001802117
M. Chen, D. Pang, J. Mandal, X. Chen, H. Yan et al., Designing mesoporous photonic structures for high-performance passive daytime radiative cooling. Nano Lett. 21(3), 1412–1418 (2021). https://doi.org/10.1021/acs.nanolett.0c04241
W. Zhu, B. Droguet, Q. Shen, Y. Zhang, T.G. Parton et al., Structurally colored radiative cooling cellulosic films. Adv. Sci. 9(26), 2202061 (2022). https://doi.org/10.1002/advs.202202061
M. Lee, G. Kim, Y. Jung, K.R. Pyun, J. Lee et al., Photonic structures in radiative cooling. Light Sci. Appl. 12, 134 (2023). https://doi.org/10.1038/s41377-023-01119-0
Z. Cai, Z. Li, S. Ravaine, M. He, Y. Song et al., From colloidal ps to photonic crystals: advances in self-assembly and their emerging applications. Chem. Soc. Rev. 50(10), 5898–5951 (2021). https://doi.org/10.1039/d0cs00706d
W. Li, H. Palis, R. Mérindol, J. Majimel, S. Ravaine et al., Colloidal molecules and patchy ps: complementary concepts, synthesis and self-assembly. Chem. Soc. Rev. 49(6), 1955–1976 (2020). https://doi.org/10.1039/c9cs00804g
J. Qiu, P.H.C. Camargo, U. Jeong, Y. Xia, Synthesis, transformation, and utilization of monodispersed colloidal spheres. Acc. Chem. Res. 52(12), 3475–3487 (2019). https://doi.org/10.1021/acs.accounts.9b00490
X. Wu, R. Hong, J. Meng, R. Cheng, Z. Zhu et al., Hydrophobic poly(tert-butyl acrylate) photonic crystals towards robust energy-saving performance. Angew. Chem. Int. Ed. 58(38), 13556–13564 (2019). https://doi.org/10.1002/anie.201907464
M. Li, Q. Lyu, B. Peng, X. Chen, L. Zhang et al., Bioinspired colloidal photonic composites: fabrications and emerging applications. Adv. Mater. 34(52), e2110488 (2022). https://doi.org/10.1002/adma.202110488
L. Wang, X. Ding, L. Fan, A.M. Filppula, Q. Li et al., Self-healing dynamic hydrogel microps with structural color for wound management. Nano-Micro Lett. 16(1), 232 (2024). https://doi.org/10.1007/s40820-024-01422-4
J.B. Kim, C. Chae, S.H. Han, S.Y. Lee, S.-H. Kim, Direct writing of customized structural-color graphics with colloidal photonic inks. Sci. Adv. 7(48), eabj8780 (2021). https://doi.org/10.1126/sciadv.abj8780
T. Song, F. Gao, S. Guo, Y. Zhang, S. Li et al., A review of the role and mechanism of surfactants in the morphology control of metal nanops. Nanoscale 13(7), 3895–3910 (2021). https://doi.org/10.1039/D0NR07339C
Y. Li, M. Girard, M. Shen, J.A. Millan, M. Olvera de la Cruz, Strong attractions and repulsions mediated by monovalent salts. Proc. Natl. Acad. Sci. U. S. A. 114(45), 11838–11843 (2017). https://doi.org/10.1073/pnas.1713168114
F. Li, B. Tang, S. Wu, S. Zhang, Facile synthesis of monodispersed polysulfide spheres for building structural colors with high color visibility and broad viewing angle. Small 13(3), 1602565 (2017). https://doi.org/10.1002/smll.201602565
X.-Q. Yu, X. Zhang, T. Qiu, H. Liu, J. Guo et al., Engineering ps for sensing applications via in situ synthesizing carbon dots@SiO2 photonic crystals. Chem. Eng. J. 465, 142851 (2023). https://doi.org/10.1016/j.cej.2023.142851
J. Zhang, Z. Zhu, Z. Yu, L. Ling, C.-F. Wang et al., Large-scale colloidal films with robust structural colors. Mater. Horiz. 6(1), 90–96 (2019). https://doi.org/10.1039/c8mh00248g
P. Xue, Y. Chen, Y. Xu, C. Valenzuela, X. Zhang et al., Bioinspired MXene-based soft actuators exhibiting angle-independent structural color. Nano-Micro Lett. 15(1), 1 (2022). https://doi.org/10.1007/s40820-022-00977-4
C. Wang, X. Lin, C.G. Schäfer, S. Hirsemann, J. Ge, Spray synthesis of photonic crystal based automotive coatings with bright and angular-dependent structural colors. Adv. Funct. Mater. 31(9), 2008601 (2021). https://doi.org/10.1002/adfm.202008601
M. Rey, A.D. Law, D.M.A. Buzza, N. Vogel, Anisotropic self-assembly from isotropic colloidal building blocks. J. Am. Chem. Soc. 139(48), 17464–17473 (2017). https://doi.org/10.1021/jacs.7b08503
Y.G. Kim, S. Park, Y.H. Choi, S.H. Han, S.-H. Kim, Elastic photonic microcapsules containing colloidal crystallites as building blocks for macroscopic photonic surfaces. ACS Nano 15(7), 12438–12448 (2021). https://doi.org/10.1021/acsnano.1c02000
H. Hwang, Y.C. Cho, S. Lee, T.M. Choi, S.-H. Kim et al., Real-time monitoring of colloidal crystallization in electrostatically-levitated drops. Small 16(11), e1907478 (2020). https://doi.org/10.1002/smll.201907478
S.-H. Kim, J.-G. Park, T.M. Choi, V.N. Manoharan, D.A. Weitz, Osmotic-pressure-controlled concentration of colloidal ps in thin-shelled capsules. Nat. Commun. 5, 3068 (2014). https://doi.org/10.1038/ncomms4068
A.-Q. Xie, Q. Li, Y. Xi, L. Zhu, S. Chen, Assembly of crack-free photonic crystals: fundamentals, emerging strategies, and perspectives. Acc. Mater. Res. 4(5), 403–415 (2023). https://doi.org/10.1021/accountsmr.2c00236
T.M. Choi, G.H. Lee, Y.-S. Kim, J.-G. Park, H. Hwang et al., Photonic microcapsules containing single-crystal colloidal arrays with optical anisotropy. Adv. Mater. 31(18), e1900693 (2019). https://doi.org/10.1002/adma.201900693
K.R. Phillips, C.T. Zhang, T. Yang, T. Kay, C. Gao et al., Fabrication of photonic microbricks via crack engineering of colloidal crystals. Adv. Funct. Mater. 30(26), 1908242 (2020). https://doi.org/10.1002/adfm.201908242
K. Keller, A.V. Yakovlev, E.V. Grachova, A.V. Vinogradov, Inkjet printing of multicolor daylight visible opal holography. Adv. Funct. Mater. 28(21), 1706903 (2018). https://doi.org/10.1002/adfm.201706903
I. Jurewicz, A.A.K. King, R. Shanker, M.J. Large, R.J. Smith et al., Mechanochromic and thermochromic sensors based on graphene infused polymer opals. Adv. Funct. Mater. 30(31), 2002473 (2020). https://doi.org/10.1002/adfm.202002473
H.-Y. Zhu, F. Tian, X.-H. Li, H.-B. Qiu, J. Wang, Crystallization and phase behavior in block copolymer solution: an in situ small angle X-ray scattering study. Chin. J. Polym. Sci. 37(11), 1162–1168 (2019). https://doi.org/10.1007/s10118-019-2258-4
C. Wang, Y. Ning, Y. Yue, G. Du, Y. Xie et al., Scalable synthesis of phosphorescent SiO2 nanospheres and their use for angle-dependent and thermoresponsive photonic gels with multimode luminescence. Nat. Commun. 16(1), 6640 (2025). https://doi.org/10.1038/s41467-025-61967-9
Z. Zhu, J. Zhang, C.-F. Wang, S. Chen, Construction of hydrogen-bond-assisted crack-free photonic crystal films and their performance on fluorescence enhancement effect. Macromol. Mater. Eng. 302(6), 1700013 (2017). https://doi.org/10.1002/mame.201700013
D. Li, X. Liu, W. Li, Z. Lin, B. Zhu et al., Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16(2), 153–158 (2021). https://doi.org/10.1038/s41565-020-00800-4
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei et al., A radiative cooling structural material. Science 364(6442), 760–763 (2019). https://doi.org/10.1126/science.aau9101
X. Dong, K.-Y. Chan, X. Yin, Y. Zhang, X. Zhao et al., Anisotropic hygroscopic hydrogels with synergistic insulation-radiation-evaporation for high-power and self-sustained passive daytime cooling. Nano-Micro Lett. 17(1), 240 (2025). https://doi.org/10.1007/s40820-025-01766-5
Y. Zhang, P. Han, H. Zhou, N. Wu, Y. Wei et al., Highly brilliant noniridescent structural colors enabled by graphene nanosheets containing graphene quantum dots. Adv. Funct. Mater. 28(29), 1802585 (2018). https://doi.org/10.1002/adfm.201802585
L. Bai, V.C. Mai, Y. Lim, S. Hou, H. Möhwald et al., Large-scale noniridescent structural color printing enabled by infiltration-driven nonequilibrium colloidal assembly. Adv. Mater. 30(9), 1705667 (2018). https://doi.org/10.1002/adma.201705667
Y. Wang, T. Wang, J. Liang, J. Wu, M. Yang et al., Controllable-morphology polymer blend photonic metafoam for radiative cooling. Mater. Horiz. 10(11), 5060–5070 (2023). https://doi.org/10.1039/d3mh01008b
Z. Cheng, Y. Shuai, D. Gong, F. Wang, H. Liang et al., Optical properties and cooling performance analyses of single-layer radiative cooling coating with mixture of TiO2 ps and SiO2 ps. Sci. China Technol. Sci. 64(5), 1017–1029 (2021). https://doi.org/10.1007/s11431-020-1586-9
L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou et al., A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2(8), 718–724 (2019). https://doi.org/10.1038/s41893-019-0348-5
A.P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528), 540–544 (2014). https://doi.org/10.1038/nature13883
C. Sui, P.-C. Hsu, Standardizing the thermodynamic definition of daytime subambient radiative cooling. ACS Energy Lett. 9(6), 2997–3000 (2024). https://doi.org/10.1021/acsenergylett.4c00909
P. Xu, B. Xiang, W. Zhong, Y. Wu, Y. Zhang et al., Biodegradable, scalable and flexible fiber membrane for green passive radiative cooling. Sol. Energy Mater. Sol. Cells 253, 112209 (2023). https://doi.org/10.1016/j.solmat.2023.112209
L. Zhou, X. Yin, Q. Gan, Best practices for radiative cooling. Nat. Sustain. 6(9), 1030–1032 (2023). https://doi.org/10.1038/s41893-023-01170-0
B. Xiang, R. Zhang, X. Zeng, Y. Luo, Z. Luo, An easy-to-prepare flexible dual-mode fiber membrane for daytime outdoor thermal management. Adv. Fiber Mater. 4(5), 1058–1068 (2022). https://doi.org/10.1007/s42765-022-00164-5
A.-Q. Xie, L. Zhu, Y. Liang, J. Mao, Y. Liu et al., Fiber-spinning asymmetric assembly for Janus-structured bifunctional nanofiber films towards all-weather smart textile. Angew. Chem. Int. Ed. 61(40), e202208592 (2022). https://doi.org/10.1002/anie.202208592
S. Li, G. Du, M. Pan, X. Wang, X. Dong et al., Scalable and sustainable hierarchical-morphology coatings for passive daytime radiative cooling. Adv. Compos. Hybrid Mater. 7(1), 15 (2024). https://doi.org/10.1007/s42114-023-00819-w
J.-W. Ma, F.-R. Zeng, X.-C. Lin, Y.-Q. Wang, Y.-H. Ma et al., A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling. Science 385(6704), 68–74 (2024). https://doi.org/10.1126/science.adn5694
B.-Y. Liu, J. Wu, C.-H. Xue, Y. Zeng, J. Liang et al., Bioinspired superhydrophobic all-in-one coating for adaptive thermoregulation. Adv. Mater. 36(31), e2400745 (2024). https://doi.org/10.1002/adma.202400745
Y. Li, Y. Zhang, Z. Yang, X. Xue, Z. He et al., Waterborne coatings with sub-ambient cooling under direct sunlight–part I: optical properties and cooling effect measurements. Sol. Energy Mater. Sol. Cells 217, 110672 (2020). https://doi.org/10.1016/j.solmat.2020.110672
X. Xue, M. Qiu, Y. Li, Q.M. Zhang, S. Li et al., Creating an eco-friendly building coating with smart subambient radiative cooling. Adv. Mater. 32(42), e1906751 (2020). https://doi.org/10.1002/adma.201906751
T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen et al., A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12(1), 365 (2021). https://doi.org/10.1038/s41467-020-20646-7
S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555), 692–696 (2021). https://doi.org/10.1126/science.abi5484