Bio-Based Flexible Solar-Driven Sustainable Generator with Efficient Electricity Generation Enabled by Plant Transpiration System
Corresponding Author: Chuanhui Xu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 114
Abstract
The global energy crisis and electricity shortage pose unprecedented challenges. Bio-based solar-driven ionic power generation devices with flexibility, photothermal self-healing and scalability hold great promise for sustainable electricity and alleviating energy crisis. Here, inspired by plant transpiration, a multifunctional bio-based ion conductive elastomer with solar power generation capability was designed by engineered synergy among epoxy natural rubber, cellulose nanofibrils, lithium bis(trifluoromethane) sulfonimide and eumelanin. The film exhibits an outstanding stretchability (1072%) and toughness (22.7 MJ m−3). The favorable synergy of low thermal conductivity, high hygroscopicity and photothermal conversion performance endowed the film with a large thermal gradient under light illumination, driving efficient water transpiration. Furthermore, the excellent interfacial compatibility between eumelanin and matrix facilitates the formation of space charge regions, which further enhances Li+ transport. The film demonstrates excellent evaporation rate (2.83 kg m−2 h−1), output voltage (0.47 V) and conductivity (5.11 × 10–2 S m−1). Notably, the film exhibits remarkable photothermal self-healing performance even in saline environment, achieving 99.6% healing efficiency of output voltage. Therefore, the film demonstrates significant prospects for applications in photo-thermoelectric generation and solar-driven ionic power generation.
Highlights:
1 Bio-based solar-driven ionic power generation devices were designed based on the principle of plant transpiration, achieving an evaporation rate of 2.83 kg m⁻2 h⁻1 and an output voltage of 0.47 V.
2 The excellent interfacial compatibility between eumelanin and the matrix facilitates the formation of space charge layer, which significantly enhances Li+ transport.
3 Solar-driven ionic power generation devices possess excellent photothermal self-healing ability (99.6% healing efficiency) and stretchability (1072%) in saline environment.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Si, H. Xiao, W. Xing, R. Song, Z. Li et al., Have a cake and eat it too: a nanofluidic hybrid membrane with both high stability and ionic conductivity. Adv. Funct. Mater. 34(40), 2404039 (2024). https://doi.org/10.1002/adfm.202404039
- C. Ge, D. Xu, Y. Qian, H. Du, C. Gao et al., Carbon materials for hybrid evaporation-induced electricity generation systems. Green Chem. 25(19), 7470–7484 (2023). https://doi.org/10.1039/d3gc02805d
- S. Qi, T. Jia, Y. Zhang, Y. Zhao, Y. Xing et al., Efficient “core–shell” carbon-based solar evaporator with honeycomb structure for large-scale solar-driven water purification and energy harvesting. Adv. Funct. Mater. 35(29), 2503234 (2025). https://doi.org/10.1002/adfm.202503234
- C. Zhao, Z. Ding, K. Zhang, Z. Du, H. Fang et al., Comprehensive chlorine suppression: advances in materials and system technologies for direct seawater electrolysis. Nano-Micro Lett. 17(1), 113 (2025). https://doi.org/10.1007/s40820-025-01653-z
- G. Zan, W. Jiang, H. Kim, K. Zhao, S. Li et al., A core-shell fiber moisture-driven electric generator enabled by synergetic complex coacervation and built-in potential. Nat. Commun. 15(1), 10056 (2024). https://doi.org/10.1038/s41467-024-54442-4
- E. Shin, G. Kim, K. Zhao, G. Zan, H. Kim et al., Environmentally sustainable moisture energy harvester with chemically networked cellulose nanofiber. Energy Environ. Sci. 17(19), 7165–7181 (2024). https://doi.org/10.1039/d4ee01881h
- J. Tan, S. Fang, Z. Zhang, J. Yin, L. Li et al., Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nat. Commun. 13(1), 3643 (2022). https://doi.org/10.1038/s41467-022-31221-7
- Z. Mao, Q. Wang, Z. Yu, A. Osman, Y. Yao et al., High performance solar-driven power-water cogeneration for practical application: from micro/nano materials to beyond. ACS Nano 18(34), 22648–22663 (2024). https://doi.org/10.1021/acsnano.4c06339
- G. Wang, Z. Zhang, J. Lin, Multi-energy complementary power systems based on solar energy: a review. Renew. Sustain. Energy Rev. 199, 114464 (2024). https://doi.org/10.1016/j.rser.2024.114464
- Y. Sun, D. Liu, F. Zhang, X. Gao, J. Xue et al., Multiscale biomimetic evaporators based on liquid metal/polyacrylonitrile composite fibers for highly efficient solar steam generation. Nano-Micro Lett. 17(1), 129 (2025). https://doi.org/10.1007/s40820-025-01661-z
- S. Zhou, Z. Qiu, M. Strømme, C. Xu, Solar-driven ionic power generation via a film of nanocellulose @ conductive metal–organic framework. Energy Environ. Sci. 14(2), 900–905 (2021). https://doi.org/10.1039/D0EE02730H
- X. Wang, F. Lin, X. Wang, S. Fang, J. Tan et al., Hydrovoltaic technology: from mechanism to applications. Chem. Soc. Rev. 51(12), 4902–4927 (2022). https://doi.org/10.1039/d1cs00778e
- N. He, H. Wang, H. Zhang, B. Jiang, D. Tang et al., Ionization engineering of hydrogels enables highly efficient salt-impeded solar evaporation and night-time electricity harvesting. Nano-Micro Lett. 16(1), 8 (2023). https://doi.org/10.1007/s40820-023-01215-1
- X. Mu, J. Zhou, P. Wang, H. Chen, T. Yang et al., A robust starch–polyacrylamide hydrogel with scavenging energy harvesting capacity for efficient solar thermoelectricity–freshwater cogeneration. Energy Environ. Sci. 15(8), 3388–3399 (2022). https://doi.org/10.1039/D2EE01394K
- P. Yang, K. Liu, Q. Chen, J. Li, J. Duan et al., Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ. Sci. 10(9), 1923–1927 (2017). https://doi.org/10.1039/c7ee01804e
- Z. Fu, D. Zhong, S. Zhou, L. Zhang, W. Long et al., Scalable asymmetric fabric evaporator for solar desalination and thermoelectricity generation. Adv. Sci. 11(45), 2406474 (2024). https://doi.org/10.1002/advs.202406474
- J. Ma, Z. Guo, X. Han, H. Lu, K. Guo et al., Achieving solar-thermal-electro integration evaporator nine-grid array with asymmetric strategy for simultaneous harvesting clean water and electricity. Adv. Sci. 10(31), 2303815 (2023). https://doi.org/10.1002/advs.202303815
- C.-H. Huang, J.-X. Huang, Y.-H. Chiao, C.-M. Chang, W.-S. Hung et al., Tailoring of a piezo-photo-thermal solar evaporator for simultaneous steam and power generation. Adv. Funct. Mater. 31(17), 2010422 (2021). https://doi.org/10.1002/adfm.202010422
- F. Wu, C. Hu, Z. Zhu, J. Zheng, Z. Huang et al., A system for efficient and sustainable cogeneration of water and electricity: Temperature difference induced by photothermal conversion and evaporative cooling. J. Colloid Interface Sci. 678(Pt B), 720–731 (2025). https://doi.org/10.1016/j.jcis.2024.09.061
- W. Luo, X. Xuan, J. Shen, P. Cheng, D. Wang et al., High performance photothermal carbon nanotubes/nanostructured hydrogel for solar electricity production and solar water sterilization. Appl. Surf. Sci. 643, 158680 (2024). https://doi.org/10.1016/j.apsusc.2023.158680
- Z. Liu, C. Chen, J. Liu, Q. Sun, B. Huo et al., All-day solar power generation enabled by photo/thermoelectric conversion and thermal energy storage. Sci. China Chem. 68(5), 2035–2043 (2025). https://doi.org/10.1007/s11426-024-2336-1
- X. Jing, L. Chen, Y. Li, H. Yin, J. Chen et al., Synergistic effect between 0D CQDs and 2D MXene to enhance the photothermal conversion of hydrogel evaporators for efficient solar water evaporation, photothermal sensing and electricity generation. Small 20(50), 2405587 (2024). https://doi.org/10.1002/smll.202405587
- R. Xu, H. Cui, N. Wei, Y. Yu, L. Dai et al., Biomimetic micro-nanostructured evaporator with dual-transition-metal MXene for efficient solar steam generation and multifunctional salt harvesting. Nano-Micro Lett. 17(1), 102 (2025). https://doi.org/10.1007/s40820-024-01612-0
- G. Yin, J. Wu, C. Qi, X. Zhou, Z.-Z. Yu et al., Pickering emulsion-driven MXene/silk fibroin hydrogels with programmable functional networks for EMI shielding and solar evaporation. Nano-Micro Lett. 17(1), 312 (2025). https://doi.org/10.1007/s40820-025-01818-w
- Z. Wei, Y. Wang, C. Cai, Y. Zhang, S. Guo et al., Dual-network liquid metal hydrogel with integrated solar-driven evaporation, multi-sensory applications, and electricity generation via enhanced light absorption and Bénard–Marangoni effect. Adv. Funct. Mater. 32(41), 2206287 (2022). https://doi.org/10.1002/adfm.202206287
- V.-D. Dao, H.T.K. Nguyen, Nature-inspired design for high-efficiency solar-driven water evaporation. J. Power. Sources 609, 234676 (2024). https://doi.org/10.1016/j.jpowsour.2024.234676
- F.L. Meng, M. Gao, T. Ding, G. Yilmaz, W.L. Ong et al., Modular deformable steam electricity cogeneration system with photothermal, water, and electrochemical tunable multilayers. Adv. Funct. Mater. 30(32), 2002867 (2020). https://doi.org/10.1002/adfm.202002867
- W. Xie, E. Pakdel, Y. Liang, Y.J. Kim, D. Liu et al., Natural eumelanin and its derivatives as multifunctional materials for bioinspired applications: a review. Biomacromol 20(12), 4312–4331 (2019). https://doi.org/10.1021/acs.biomac.9b01413
- L. Li, L. Kong, T. Luo, J. Li, B. Lin et al., Flexible photothermal phase change material with high photothermal properties achieved by promoted dispersion of hydrophobically modified eumelanin and its photovoltaic applications. Small 21(22), 2500951 (2025). https://doi.org/10.1002/smll.202500951
- Q. Zeng, Q. Peng, F. Wang, G. Shi, H. Haick et al., Tailoring food biopolymers into biogels for regenerative wound healing and versatile skin bioelectronics. Nano-Micro Lett. 15(1), 153 (2023). https://doi.org/10.1007/s40820-023-01099-1
- L. Yang, L. Li, J. Lu, B. Lin, L. Fu et al., Flexible photothermal materials with controllable accurate healing and reversible adhesive abilities. Macromolecules 56(8), 3004–3014 (2023). https://doi.org/10.1021/acs.macromol.3c00372
- L. Jin, Y. Tan, S. Yuan, S. Wang, X. Cheng et al., Phytic acid–decorated κ-carrageenan/melanin hybrid aerogels supported phase change composites with excellent photothermal conversion efficiency and flame retardancy. Renew. Energy 206, 148–156 (2023). https://doi.org/10.1016/j.renene.2023.02.030
- Y. Hu, W. Yang, W. Wei, Z. Sun, B. Wu et al., Phyto-inspired sustainable and high-performance fabric generators via moisture absorption-evaporation cycles. Sci. Adv. 10(2), eadk4620 (2024). https://doi.org/10.1126/sciadv.adk4620
- L. Cao, J. Fan, J. Huang, Y. Chen, A robust and stretchable cross-linked rubber network with recyclable and self-healable capabilities based on dynamic covalent bonds. J. Mater. Chem. A 7(9), 4922–4933 (2019). https://doi.org/10.1039/C8TA11587G
- B. Zhang, Q. Feng, H. Song, X. Zhang, C. Zhang et al., Hierarchical response network boosts solvent-free ionic conductive elastomers with extreme stretchability, healability, and recyclability for ionic sensors. ACS Appl. Mater. Interfaces 14(6), 8404–8416 (2022). https://doi.org/10.1021/acsami.1c22602
- X. Wang, Y. Yang, Z. Zheng, L. Fu, B. Lin et al., Harmonious state between filled and coated flexible conductive films: an ultra-high conductivity, sensitive and environmentally stable sensing film based on integrated layered structure. Compos. Part B Eng. 255, 110645 (2023). https://doi.org/10.1016/j.compositesb.2023.110645
- L. Kong, Y. Yang, M. Wu, X. Teng, Y. Wang et al., Design of epoxidized natural rubber/poly(lipoic acid) elastomer with fast and efficient self-healing under a mild temperature. Int. J. Biol. Macromol. 223(Pt A), 446–457 (2022). https://doi.org/10.1016/j.ijbiomac.2022.11.040
- J. Huang, Z. Gong, Y. Chen, A stretchable elastomer with recyclability and shape memory assisted self-healing capabilities based on dynamic disulfide bonds. Polymer 242, 124569 (2022). https://doi.org/10.1016/j.polymer.2022.124569
- L. Zhang, L. Chen, S. Wang, S. Wang, D. Wang et al., Cellulose nanofiber-mediated manifold dynamic synergy enabling adhesive and photo-detachable hydrogel for self-powered E-skin. Nat. Commun. 15, 3859 (2024). https://doi.org/10.1038/s41467-024-47986-y
- L. Li, Z. Lin, Z. He, Z. Su, L. Fu et al., Robust and flexible rubber composite with high photothermal properties achieved by in situ ZDMA assisted dispersion of eumelanin and its hydrophobic photothermal application. Small 20(42), 2403553 (2024). https://doi.org/10.1002/smll.202403553
- W.-C. Zhou, X.-Q. Gao, J.-H. Li, C. Ye, Y.-Z. Wang et al., Robust, tough, ultra-low-creep and reprocessable rubber enabled by weak supramolecular-interaction-dominated yet strong covalent-bond-assisted reverse design paradigm. J. Mater. Chem. A 13(3), 1746–1754 (2025). https://doi.org/10.1039/D4TA06405D
- M. Ebrahimian Mashhadi, M.M. Hassan, R. Yang, Q. Lu, All-in-one hybrid solar-driven interfacial evaporators for cogeneration of clean water and electricity. Adv. Funct. Mater. 35(2), 2412870 (2025). https://doi.org/10.1002/adfm.202412870
- J. Chen, Y. Gao, L. Shi, W. Yu, Z. Sun et al., Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability. Nat. Commun. 13(1), 4868 (2022). https://doi.org/10.1038/s41467-022-32517-4
- Z. Li, J. Fu, X. Zhou, S. Gui, L. Wei et al., Ionic conduction in polymer-based solid electrolytes. Adv. Sci. 10(10), 2201718 (2023). https://doi.org/10.1002/advs.202201718
- C. Wang, W. Li, D. Li, X. Zhao, Y. Li et al., High-performance solid-state lithium metal batteries of garnet/polymer composite thin-film electrolyte with domain-limited ion transport pathways. ACS Nano 18(46), 32175–32185 (2024). https://doi.org/10.1021/acsnano.4c11205
- Y. Li, Y. Qin, J. Zhao, M. Ma, M. Zhang et al., Boosting the ion mobility in solid polymer electrolytes using hollow polymer nanospheres as an additive. ACS Appl. Mater. Interfaces 14(16), 18360–18372 (2022). https://doi.org/10.1021/acsami.2c00244
- Z. Li, H.-M. Huang, J.-K. Zhu, J.-F. Wu, H. Yang et al., Ionic conduction in composite polymer electrolytes: case of PEO: Ga-LLZO composites. ACS Appl. Mater. Interfaces 11(1), 784–791 (2019). https://doi.org/10.1021/acsami.8b17279
- Y. Gong, L. Yu, X. Lyu, S. Zheng, Y. Yu et al., A mechanically robust, self-healing, and adhesive biomimetic camouflage ionic conductor for aquatic environments. Adv. Funct. Mater. 33(47), 2305314 (2023). https://doi.org/10.1002/adfm.202305314
- D. Lee, Y.H. Song, U.H. Choi, J. Kim, Highly flexible and stable solid-state supercapacitors based on a homogeneous thin ion gel polymer electrolyte using a poly(dimethylsiloxane) stamp. ACS Appl. Mater. Interfaces 11(45), 42221–42232 (2019). https://doi.org/10.1021/acsami.9b14990
- J. Chi, C. Liu, L. Che, D. Li, K. Fan et al., Harvesting water-evaporation-induced electricity based on liquid-solid triboelectric nanogenerator. Adv. Sci. 9(17), 2201586 (2022). https://doi.org/10.1002/advs.202201586
- Y. Zhang, S.K. Ravi, S.C. Tan, Food-derived carbonaceous materials for solar desalination and thermo-electric power generation. Nano Energy 65, 104006 (2019). https://doi.org/10.1016/j.nanoen.2019.104006
- M. Liu, X. He, J. Gu, Z. Li, H. Liu et al., Cotton fiber-based composite aerogel derived from waste biomass for high-performance solar-driven interfacial evaporation. Ind. Crops Prod. 211, 118220 (2024). https://doi.org/10.1016/j.indcrop.2024.118220
- C. Cheng, J. Fang, Y. Chai, R. Yuan, H. Liu, Inclined interfacial solar evaporator using polypyrrole/polydopamine composites for efficient desalination and salinity-driven electricity generation. Chem. Eng. J. 498, 155665 (2024). https://doi.org/10.1016/j.cej.2024.155665
- H. Sang, C. Tang, K. Ma, X. Li, Highly salt-resistant organic-inorganic composite as a solar-driven interfacial evaporator for desalination and electricity generation. J. Water Process. Eng. 56, 104403 (2023). https://doi.org/10.1016/j.jwpe.2023.104403
- J. Li, M. Liu, W. Luo, G. Xing, W. Yang et al., 3D tea-residue microcrystalline cellulose aerogel with aligned channels for solar-driven interfacial evaporation co-generation. ACS Appl. Mater. Interfaces 15(44), 51979–51988 (2023). https://doi.org/10.1021/acsami.3c12170
- B. Zhang, H. Chen, Y. Huang, Z. Liu, W.-M. Lau et al., A coal-based multifunctional membrane for solar-driven seawater desalination and power generation. Desalination 578, 117451 (2024). https://doi.org/10.1016/j.desal.2024.117451
- Q. Zhang, Z. Ren, P. Jia, J. Shi, J. Yin et al., An ultra-miniaturized fiber humidity sensor based on near-parallel ion pathways induced efficient Water−Electricity conversion. Adv. Mater. 37(3), 2411558 (2025). https://doi.org/10.1002/adma.202411558
- H. Li, R. Fan, F. Zhang, Z. Cui, T. Wu et al., Engineering wood-MOF networks to realize multilevel weak water interactions for highly-efficient solar water-power cogeneration. Chem. Eng. J. 509, 161332 (2025). https://doi.org/10.1016/j.cej.2025.161332
References
L. Si, H. Xiao, W. Xing, R. Song, Z. Li et al., Have a cake and eat it too: a nanofluidic hybrid membrane with both high stability and ionic conductivity. Adv. Funct. Mater. 34(40), 2404039 (2024). https://doi.org/10.1002/adfm.202404039
C. Ge, D. Xu, Y. Qian, H. Du, C. Gao et al., Carbon materials for hybrid evaporation-induced electricity generation systems. Green Chem. 25(19), 7470–7484 (2023). https://doi.org/10.1039/d3gc02805d
S. Qi, T. Jia, Y. Zhang, Y. Zhao, Y. Xing et al., Efficient “core–shell” carbon-based solar evaporator with honeycomb structure for large-scale solar-driven water purification and energy harvesting. Adv. Funct. Mater. 35(29), 2503234 (2025). https://doi.org/10.1002/adfm.202503234
C. Zhao, Z. Ding, K. Zhang, Z. Du, H. Fang et al., Comprehensive chlorine suppression: advances in materials and system technologies for direct seawater electrolysis. Nano-Micro Lett. 17(1), 113 (2025). https://doi.org/10.1007/s40820-025-01653-z
G. Zan, W. Jiang, H. Kim, K. Zhao, S. Li et al., A core-shell fiber moisture-driven electric generator enabled by synergetic complex coacervation and built-in potential. Nat. Commun. 15(1), 10056 (2024). https://doi.org/10.1038/s41467-024-54442-4
E. Shin, G. Kim, K. Zhao, G. Zan, H. Kim et al., Environmentally sustainable moisture energy harvester with chemically networked cellulose nanofiber. Energy Environ. Sci. 17(19), 7165–7181 (2024). https://doi.org/10.1039/d4ee01881h
J. Tan, S. Fang, Z. Zhang, J. Yin, L. Li et al., Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nat. Commun. 13(1), 3643 (2022). https://doi.org/10.1038/s41467-022-31221-7
Z. Mao, Q. Wang, Z. Yu, A. Osman, Y. Yao et al., High performance solar-driven power-water cogeneration for practical application: from micro/nano materials to beyond. ACS Nano 18(34), 22648–22663 (2024). https://doi.org/10.1021/acsnano.4c06339
G. Wang, Z. Zhang, J. Lin, Multi-energy complementary power systems based on solar energy: a review. Renew. Sustain. Energy Rev. 199, 114464 (2024). https://doi.org/10.1016/j.rser.2024.114464
Y. Sun, D. Liu, F. Zhang, X. Gao, J. Xue et al., Multiscale biomimetic evaporators based on liquid metal/polyacrylonitrile composite fibers for highly efficient solar steam generation. Nano-Micro Lett. 17(1), 129 (2025). https://doi.org/10.1007/s40820-025-01661-z
S. Zhou, Z. Qiu, M. Strømme, C. Xu, Solar-driven ionic power generation via a film of nanocellulose @ conductive metal–organic framework. Energy Environ. Sci. 14(2), 900–905 (2021). https://doi.org/10.1039/D0EE02730H
X. Wang, F. Lin, X. Wang, S. Fang, J. Tan et al., Hydrovoltaic technology: from mechanism to applications. Chem. Soc. Rev. 51(12), 4902–4927 (2022). https://doi.org/10.1039/d1cs00778e
N. He, H. Wang, H. Zhang, B. Jiang, D. Tang et al., Ionization engineering of hydrogels enables highly efficient salt-impeded solar evaporation and night-time electricity harvesting. Nano-Micro Lett. 16(1), 8 (2023). https://doi.org/10.1007/s40820-023-01215-1
X. Mu, J. Zhou, P. Wang, H. Chen, T. Yang et al., A robust starch–polyacrylamide hydrogel with scavenging energy harvesting capacity for efficient solar thermoelectricity–freshwater cogeneration. Energy Environ. Sci. 15(8), 3388–3399 (2022). https://doi.org/10.1039/D2EE01394K
P. Yang, K. Liu, Q. Chen, J. Li, J. Duan et al., Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ. Sci. 10(9), 1923–1927 (2017). https://doi.org/10.1039/c7ee01804e
Z. Fu, D. Zhong, S. Zhou, L. Zhang, W. Long et al., Scalable asymmetric fabric evaporator for solar desalination and thermoelectricity generation. Adv. Sci. 11(45), 2406474 (2024). https://doi.org/10.1002/advs.202406474
J. Ma, Z. Guo, X. Han, H. Lu, K. Guo et al., Achieving solar-thermal-electro integration evaporator nine-grid array with asymmetric strategy for simultaneous harvesting clean water and electricity. Adv. Sci. 10(31), 2303815 (2023). https://doi.org/10.1002/advs.202303815
C.-H. Huang, J.-X. Huang, Y.-H. Chiao, C.-M. Chang, W.-S. Hung et al., Tailoring of a piezo-photo-thermal solar evaporator for simultaneous steam and power generation. Adv. Funct. Mater. 31(17), 2010422 (2021). https://doi.org/10.1002/adfm.202010422
F. Wu, C. Hu, Z. Zhu, J. Zheng, Z. Huang et al., A system for efficient and sustainable cogeneration of water and electricity: Temperature difference induced by photothermal conversion and evaporative cooling. J. Colloid Interface Sci. 678(Pt B), 720–731 (2025). https://doi.org/10.1016/j.jcis.2024.09.061
W. Luo, X. Xuan, J. Shen, P. Cheng, D. Wang et al., High performance photothermal carbon nanotubes/nanostructured hydrogel for solar electricity production and solar water sterilization. Appl. Surf. Sci. 643, 158680 (2024). https://doi.org/10.1016/j.apsusc.2023.158680
Z. Liu, C. Chen, J. Liu, Q. Sun, B. Huo et al., All-day solar power generation enabled by photo/thermoelectric conversion and thermal energy storage. Sci. China Chem. 68(5), 2035–2043 (2025). https://doi.org/10.1007/s11426-024-2336-1
X. Jing, L. Chen, Y. Li, H. Yin, J. Chen et al., Synergistic effect between 0D CQDs and 2D MXene to enhance the photothermal conversion of hydrogel evaporators for efficient solar water evaporation, photothermal sensing and electricity generation. Small 20(50), 2405587 (2024). https://doi.org/10.1002/smll.202405587
R. Xu, H. Cui, N. Wei, Y. Yu, L. Dai et al., Biomimetic micro-nanostructured evaporator with dual-transition-metal MXene for efficient solar steam generation and multifunctional salt harvesting. Nano-Micro Lett. 17(1), 102 (2025). https://doi.org/10.1007/s40820-024-01612-0
G. Yin, J. Wu, C. Qi, X. Zhou, Z.-Z. Yu et al., Pickering emulsion-driven MXene/silk fibroin hydrogels with programmable functional networks for EMI shielding and solar evaporation. Nano-Micro Lett. 17(1), 312 (2025). https://doi.org/10.1007/s40820-025-01818-w
Z. Wei, Y. Wang, C. Cai, Y. Zhang, S. Guo et al., Dual-network liquid metal hydrogel with integrated solar-driven evaporation, multi-sensory applications, and electricity generation via enhanced light absorption and Bénard–Marangoni effect. Adv. Funct. Mater. 32(41), 2206287 (2022). https://doi.org/10.1002/adfm.202206287
V.-D. Dao, H.T.K. Nguyen, Nature-inspired design for high-efficiency solar-driven water evaporation. J. Power. Sources 609, 234676 (2024). https://doi.org/10.1016/j.jpowsour.2024.234676
F.L. Meng, M. Gao, T. Ding, G. Yilmaz, W.L. Ong et al., Modular deformable steam electricity cogeneration system with photothermal, water, and electrochemical tunable multilayers. Adv. Funct. Mater. 30(32), 2002867 (2020). https://doi.org/10.1002/adfm.202002867
W. Xie, E. Pakdel, Y. Liang, Y.J. Kim, D. Liu et al., Natural eumelanin and its derivatives as multifunctional materials for bioinspired applications: a review. Biomacromol 20(12), 4312–4331 (2019). https://doi.org/10.1021/acs.biomac.9b01413
L. Li, L. Kong, T. Luo, J. Li, B. Lin et al., Flexible photothermal phase change material with high photothermal properties achieved by promoted dispersion of hydrophobically modified eumelanin and its photovoltaic applications. Small 21(22), 2500951 (2025). https://doi.org/10.1002/smll.202500951
Q. Zeng, Q. Peng, F. Wang, G. Shi, H. Haick et al., Tailoring food biopolymers into biogels for regenerative wound healing and versatile skin bioelectronics. Nano-Micro Lett. 15(1), 153 (2023). https://doi.org/10.1007/s40820-023-01099-1
L. Yang, L. Li, J. Lu, B. Lin, L. Fu et al., Flexible photothermal materials with controllable accurate healing and reversible adhesive abilities. Macromolecules 56(8), 3004–3014 (2023). https://doi.org/10.1021/acs.macromol.3c00372
L. Jin, Y. Tan, S. Yuan, S. Wang, X. Cheng et al., Phytic acid–decorated κ-carrageenan/melanin hybrid aerogels supported phase change composites with excellent photothermal conversion efficiency and flame retardancy. Renew. Energy 206, 148–156 (2023). https://doi.org/10.1016/j.renene.2023.02.030
Y. Hu, W. Yang, W. Wei, Z. Sun, B. Wu et al., Phyto-inspired sustainable and high-performance fabric generators via moisture absorption-evaporation cycles. Sci. Adv. 10(2), eadk4620 (2024). https://doi.org/10.1126/sciadv.adk4620
L. Cao, J. Fan, J. Huang, Y. Chen, A robust and stretchable cross-linked rubber network with recyclable and self-healable capabilities based on dynamic covalent bonds. J. Mater. Chem. A 7(9), 4922–4933 (2019). https://doi.org/10.1039/C8TA11587G
B. Zhang, Q. Feng, H. Song, X. Zhang, C. Zhang et al., Hierarchical response network boosts solvent-free ionic conductive elastomers with extreme stretchability, healability, and recyclability for ionic sensors. ACS Appl. Mater. Interfaces 14(6), 8404–8416 (2022). https://doi.org/10.1021/acsami.1c22602
X. Wang, Y. Yang, Z. Zheng, L. Fu, B. Lin et al., Harmonious state between filled and coated flexible conductive films: an ultra-high conductivity, sensitive and environmentally stable sensing film based on integrated layered structure. Compos. Part B Eng. 255, 110645 (2023). https://doi.org/10.1016/j.compositesb.2023.110645
L. Kong, Y. Yang, M. Wu, X. Teng, Y. Wang et al., Design of epoxidized natural rubber/poly(lipoic acid) elastomer with fast and efficient self-healing under a mild temperature. Int. J. Biol. Macromol. 223(Pt A), 446–457 (2022). https://doi.org/10.1016/j.ijbiomac.2022.11.040
J. Huang, Z. Gong, Y. Chen, A stretchable elastomer with recyclability and shape memory assisted self-healing capabilities based on dynamic disulfide bonds. Polymer 242, 124569 (2022). https://doi.org/10.1016/j.polymer.2022.124569
L. Zhang, L. Chen, S. Wang, S. Wang, D. Wang et al., Cellulose nanofiber-mediated manifold dynamic synergy enabling adhesive and photo-detachable hydrogel for self-powered E-skin. Nat. Commun. 15, 3859 (2024). https://doi.org/10.1038/s41467-024-47986-y
L. Li, Z. Lin, Z. He, Z. Su, L. Fu et al., Robust and flexible rubber composite with high photothermal properties achieved by in situ ZDMA assisted dispersion of eumelanin and its hydrophobic photothermal application. Small 20(42), 2403553 (2024). https://doi.org/10.1002/smll.202403553
W.-C. Zhou, X.-Q. Gao, J.-H. Li, C. Ye, Y.-Z. Wang et al., Robust, tough, ultra-low-creep and reprocessable rubber enabled by weak supramolecular-interaction-dominated yet strong covalent-bond-assisted reverse design paradigm. J. Mater. Chem. A 13(3), 1746–1754 (2025). https://doi.org/10.1039/D4TA06405D
M. Ebrahimian Mashhadi, M.M. Hassan, R. Yang, Q. Lu, All-in-one hybrid solar-driven interfacial evaporators for cogeneration of clean water and electricity. Adv. Funct. Mater. 35(2), 2412870 (2025). https://doi.org/10.1002/adfm.202412870
J. Chen, Y. Gao, L. Shi, W. Yu, Z. Sun et al., Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability. Nat. Commun. 13(1), 4868 (2022). https://doi.org/10.1038/s41467-022-32517-4
Z. Li, J. Fu, X. Zhou, S. Gui, L. Wei et al., Ionic conduction in polymer-based solid electrolytes. Adv. Sci. 10(10), 2201718 (2023). https://doi.org/10.1002/advs.202201718
C. Wang, W. Li, D. Li, X. Zhao, Y. Li et al., High-performance solid-state lithium metal batteries of garnet/polymer composite thin-film electrolyte with domain-limited ion transport pathways. ACS Nano 18(46), 32175–32185 (2024). https://doi.org/10.1021/acsnano.4c11205
Y. Li, Y. Qin, J. Zhao, M. Ma, M. Zhang et al., Boosting the ion mobility in solid polymer electrolytes using hollow polymer nanospheres as an additive. ACS Appl. Mater. Interfaces 14(16), 18360–18372 (2022). https://doi.org/10.1021/acsami.2c00244
Z. Li, H.-M. Huang, J.-K. Zhu, J.-F. Wu, H. Yang et al., Ionic conduction in composite polymer electrolytes: case of PEO: Ga-LLZO composites. ACS Appl. Mater. Interfaces 11(1), 784–791 (2019). https://doi.org/10.1021/acsami.8b17279
Y. Gong, L. Yu, X. Lyu, S. Zheng, Y. Yu et al., A mechanically robust, self-healing, and adhesive biomimetic camouflage ionic conductor for aquatic environments. Adv. Funct. Mater. 33(47), 2305314 (2023). https://doi.org/10.1002/adfm.202305314
D. Lee, Y.H. Song, U.H. Choi, J. Kim, Highly flexible and stable solid-state supercapacitors based on a homogeneous thin ion gel polymer electrolyte using a poly(dimethylsiloxane) stamp. ACS Appl. Mater. Interfaces 11(45), 42221–42232 (2019). https://doi.org/10.1021/acsami.9b14990
J. Chi, C. Liu, L. Che, D. Li, K. Fan et al., Harvesting water-evaporation-induced electricity based on liquid-solid triboelectric nanogenerator. Adv. Sci. 9(17), 2201586 (2022). https://doi.org/10.1002/advs.202201586
Y. Zhang, S.K. Ravi, S.C. Tan, Food-derived carbonaceous materials for solar desalination and thermo-electric power generation. Nano Energy 65, 104006 (2019). https://doi.org/10.1016/j.nanoen.2019.104006
M. Liu, X. He, J. Gu, Z. Li, H. Liu et al., Cotton fiber-based composite aerogel derived from waste biomass for high-performance solar-driven interfacial evaporation. Ind. Crops Prod. 211, 118220 (2024). https://doi.org/10.1016/j.indcrop.2024.118220
C. Cheng, J. Fang, Y. Chai, R. Yuan, H. Liu, Inclined interfacial solar evaporator using polypyrrole/polydopamine composites for efficient desalination and salinity-driven electricity generation. Chem. Eng. J. 498, 155665 (2024). https://doi.org/10.1016/j.cej.2024.155665
H. Sang, C. Tang, K. Ma, X. Li, Highly salt-resistant organic-inorganic composite as a solar-driven interfacial evaporator for desalination and electricity generation. J. Water Process. Eng. 56, 104403 (2023). https://doi.org/10.1016/j.jwpe.2023.104403
J. Li, M. Liu, W. Luo, G. Xing, W. Yang et al., 3D tea-residue microcrystalline cellulose aerogel with aligned channels for solar-driven interfacial evaporation co-generation. ACS Appl. Mater. Interfaces 15(44), 51979–51988 (2023). https://doi.org/10.1021/acsami.3c12170
B. Zhang, H. Chen, Y. Huang, Z. Liu, W.-M. Lau et al., A coal-based multifunctional membrane for solar-driven seawater desalination and power generation. Desalination 578, 117451 (2024). https://doi.org/10.1016/j.desal.2024.117451
Q. Zhang, Z. Ren, P. Jia, J. Shi, J. Yin et al., An ultra-miniaturized fiber humidity sensor based on near-parallel ion pathways induced efficient Water−Electricity conversion. Adv. Mater. 37(3), 2411558 (2025). https://doi.org/10.1002/adma.202411558
H. Li, R. Fan, F. Zhang, Z. Cui, T. Wu et al., Engineering wood-MOF networks to realize multilevel weak water interactions for highly-efficient solar water-power cogeneration. Chem. Eng. J. 509, 161332 (2025). https://doi.org/10.1016/j.cej.2025.161332