Construction of Modifiable Phthalocyanine-Based Covalent Organic Frameworks with Irreversible Linking for Efficient Photocatalytic CO2 Reduction
Corresponding Author: Hepeng Zhang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 119
Abstract
Covalent organic frameworks (COFs) are considered promising catalysts for photocatalytic CO2 reduction reaction (pCO2RR) due to facilitated regulations. However, the instability of COFs with dynamic reversible covalent bonds and the limited modifiability of COFs with irreversible covalent bonds restricted the enhancement of the pCO2RR performance. Herein, three phthalocyanine-based COFs with ether-linked, CoOP, CoPOP, and CoBOP, were successfully prepared via in situ polycondensation using modifiable bis-phthalonitrile. CoBOP achieved a record of syngas performance in pCO2RR systems with photosensitizers and sacrificial agents (CO 83.7 mmol g−1 h−1 and H2 54.7 mmol g−1 h−1), surpassing most COF photocatalysts. Additionally, CoOP, CoPOP, and CoBOP exhibit stabilities in extreme environments owing to their irreversible covalent bonds. Experimental and density functional theory analyses confirm that the optimally matched the lowest unoccupied molecular orbital of the linking unit between the photosensitizer and active unit endowed CoBOP with the highest photoelectron transfer efficiency among the three catalysts, boosting its pCO2RR activity. This work is highly instructive for designing COFs with structure-adjustable and irreversible covalent bonds.
Highlights:
1 Phthalocyanine-based covalent organic frameworks photocatalysts (CoOP, CoPOP, and CoBOP) with irreversible covalent linking were synthesized by designing bis-phthalonitrile precursors, exhibiting exceptional stability in thermal, acidic, alkaline, and organic environments.
2 Tuning the conjugation length of the linking unit effectively modulates the electronic features of the photocatalyst.
3 The linking unit serves as a ‘ladder’ between excited [Ru(bpy)3]Cl2 and Co2+, allowing the electrons to cascade down and facilitating rapid transfer, which is responsible for the excellent photocatalytic CO2 reduction reaction performance of the photocatalysts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.J. Davis, K. Caldeira, H.D. Matthews, Future CO2 emissions and climate change from existing energy infrastructure. Science 329(5997), 1330–1333 (2010). https://doi.org/10.1126/science.1188566
- E. Boutin, L. Merakeb, B. Ma, B. Boudy, M. Wang et al., Molecular catalysis of CO2 reduction: recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes. Chem. Soc. Rev. 49(16), 5772–5809 (2020). https://doi.org/10.1039/D0CS00218F
- J. Zhou, T. Wang, L. Chen, L. Liao, Y. Wang et al., Boosting the reaction kinetics in aprotic lithium-carbon dioxide batteries with unconventional phase metal nanomaterials. Proc. Natl. Acad. Sci. U.S.A. 119(40), e2204666119 (2022). https://doi.org/10.1073/pnas.2204666119
- J. Zhou, Z. Xu, K. Cui, J.-A. Yin, H.-C. Chen et al., Theory-guided design of unconventional phase metal heteronanostructures for higher-rate stable Li-CO2 and Li-air batteries. Angew. Chem. Int. Ed. 64(5), e202416947 (2025). https://doi.org/10.1002/anie.202416947
- Y. Wang, J. Hu, L. Yu, X. Wu, Y. Zhang et al., Recent strategies for constructing efficient interfacial solar evaporation systems. Nano Res. Energy 2, e9120062 (2023). https://doi.org/10.26599/nre.2023.9120062
- R. Du, S. Wang, T. Li, Energy-saving windows derived from transparent aerogels. Nano Res. Energy 3, e9120090 (2024). https://doi.org/10.26599/nre.2023.9120090
- W. Lin, J. Lin, X. Zhang, L. Zhang, R.A. Borse et al., Decoupled artificial photosynthesis via a catalysis-redox coupled COF||BiVO4 photoelectrochemical device. J. Am. Chem. Soc. 145(32), 18141–18147 (2023). https://doi.org/10.1021/jacs.3c06687
- H. Rao, L.C. Schmidt, J. Bonin, M. Robert, Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 548(7665), 74–77 (2017). https://doi.org/10.1038/nature23016
- H. Shen, T. Wang, H. Jiang, P. Zhao, Z. Chen et al., Theoretical calculation guided design of single atom-alloyed bismuth catalysts for ampere-level CO2 electrolysis to formate. Appl. Catal. B Environ. 339, 123140 (2023). https://doi.org/10.1016/j.apcatb.2023.123140
- X. Linghu, J. Chen, L. Jiang, T. Wang, Recent progress in bismuth-based materials for electrochemical CO2 reduction to formate/formic acid. Nano Mater. Sci. (2024). https://doi.org/10.1016/j.nanoms.2024.11.007
- H. Shen, H. Wang, T. Wang, J. Zhang, S. Yang et al., Redistributing the local electron density of bismuth via introducing halogen atoms for boosting CO2 reduction to formate. Chem. Catal. 4(8), 101057 (2024). https://doi.org/10.1016/j.checat.2024.101057
- J. Shen, D. Wang, How to select heterogeneous CO2 reduction electrocatalyst. Nano Res. Energy 3, e9120096 (2024). https://doi.org/10.26599/nre.2023.9120096
- X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu et al., Ultrafast electron transfer at the In2O3/Nb2O5 S-scheme interface for CO2 photoreduction. Nat. Commun. 15, 4807 (2024). https://doi.org/10.1038/s41467-024-49004-7
- S. Wang, B.Y. Guan, X.W.D. Lou, Construction of ZnIn2S4–In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. J. Am. Chem. Soc. 140(15), 5037–5040 (2018). https://doi.org/10.1021/jacs.8b02200
- W. Zhan, L. Sun, X. Han, Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal-organic frameworks. Nano-Micro Lett. 11(1), 1 (2019). https://doi.org/10.1007/s40820-018-0235-z
- Z. Liang, Y. Xue, X. Wang, X. Zhang, J. Tian et al., The incorporation of cocatalyst cobalt sulfide into graphitic carbon nitride: boosted photocatalytic hydrogen evolution performance and mechanism exploration. Nano Mater. Sci. 5(2), 202–209 (2023). https://doi.org/10.1016/j.nanoms.2022.03.001
- Y.H. Kim, N. Kim, J.-M. Seo, J.-P. Jeon, H.-J. Noh et al., Benzothiazole-based covalent organic frameworks with different symmetrical combinations for photocatalytic CO2 conversion. Chem. Mater. 33(22), 8705–8711 (2021). https://doi.org/10.1021/acs.chemmater.1c02660
- P. Dong, X. Xu, R. Luo, S. Yuan, J. Zhou et al., Postsynthetic annulation of three-dimensional covalent organic frameworks for boosting CO2 photoreduction. J. Am. Chem. Soc. 145(28), 15473–15481 (2023). https://doi.org/10.1021/jacs.3c03897
- C.S. Diercks, O.M. Yaghi, The atom, the molecule, and the covalent organic framework. Science 355(6328), eaal1585 (2017). https://doi.org/10.1126/science.aal1585
- Y. Yang, B. Liang, J. Kreie, M. Hambsch, Z. Liang et al., Elastic films of single-crystal two-dimensional covalent organic frameworks. Nature 630(8018), 878–883 (2024). https://doi.org/10.1038/s41586-024-07505-x
- Y. Liu, L. Li, Z. Sang, H. Tan, N. Ye et al., Enhanced hydrogen peroxide photosynthesis in covalent organic frameworks through induced asymmetric electron distribution. Nat. Synth. 4(1), 134–141 (2025). https://doi.org/10.1038/s44160-024-00644-z
- W. Ai, J. Zou, Z. Cao, K. Cui, J. Gu et al., Spontaneous conversion of pyridine N-oxide ylide covalent organic framework (COF) into biradical COF as an efficient catalyst in catalytic dehydrogenation of nitrogen heterocycles. Chem. Sci. 16(27), 12439–12448 (2025). https://doi.org/10.1039/D4SC08236B
- X. Lan, H. Li, Y. Liu, Y. Zhang, T. Zhang et al., Covalent organic framework with donor1-acceptor-donor2 motifs regulating local charge of intercalated single cobalt sites for photocatalytic CO2 reduction to syngas. Angew. Chem. Int. Ed. 63(31), e202407092 (2024). https://doi.org/10.1002/anie.202407092
- S. Gao, Q. Zhang, X. Su, X. Wu, X.-G. Zhang et al., Ingenious artificial leaf based on covalent organic framework membranes for boosting CO2 photoreduction. J. Am. Chem. Soc. 145(17), 9520–9529 (2023). https://doi.org/10.1021/jacs.2c11146
- J. Zhang, X. Li, H. Hu, H. Huang, H. Li et al., Enhancing photocatalytic performance of covalent organic frameworks via ionic polarization. Nat. Commun. 15(1), 9576 (2024). https://doi.org/10.1038/s41467-024-53834-w
- Y. Chen, R. Liu, Y. Guo, G. Wu, T.C. Sum et al., Hierarchical assembly of donor–acceptor covalent organic frameworks for photosynthesis of hydrogen peroxide from water and air. Nat. Synth. 3(8), 998–1010 (2024). https://doi.org/10.1038/s44160-024-00542-4
- H. Jiang, P. Zhao, H. Shen, S. Yang, R. Gao et al., New insight into the electronic effect for Cu porphyrin catalysts in electrocatalytic of CO2 into CH4. Small 20(2), 2304998 (2024). https://doi.org/10.1002/smll.202304998
- E. Nikoloudakis, I. López-Duarte, G. Charalambidis, K. Ladomenou, M. Ince et al., Porphyrins and phthalocyanines as biomimetic tools for photocatalytic H2 production and CO2 reduction. Chem. Soc. Rev. 51(16), 6965–7045 (2022). https://doi.org/10.1039/D2CS00183G
- D.D. Eley, Phthalocyanines as semiconductors. Nature 162(4125), 819 (1948). https://doi.org/10.1038/162819a0
- W. Lin, F. Lin, J. Lin, Z. Xiao, D. Yuan et al., Efficient photocatalytic CO2 reduction in ellagic acid–based covalent organic frameworks. J. Am. Chem. Soc. 146(23), 16229–16236 (2024). https://doi.org/10.1021/jacs.4c04185
- Y. Zhang, L. Zang, S. Zhao, W. Cheng, L. Zhang et al., Brominated metal phthalocyanine-based covalent organic framework for enhanced selective photocatalytic reduction of CO2. J. Colloid Interface Sci. 655, 1–11 (2024). https://doi.org/10.1016/j.jcis.2023.10.111
- Y. Wang, M. Wang, T. Chen, W. Yu, H. Liu et al., Pyrazine-linked iron-coordinated tetrapyrrole conjugated organic polymer catalyst with spatially proximate donor-acceptor pairs for oxygen reduction in fuel cells. Angew. Chem. Int. Ed. 62(47), e202308070 (2023). https://doi.org/10.1002/anie.202308070
- B. Zhang, M. Wei, H. Mao, X. Pei, S.A. Alshmimri et al., Crystalline dioxin-linked covalent organic frameworks from irreversible reactions. J. Am. Chem. Soc. 140(40), 12715–12719 (2018). https://doi.org/10.1021/jacs.8b08374
- W. Chen, Y. Zhang, M. Yang, C. Yang, Z. Meng, Single-point linkage engineering in conjugated phthalocyanine-based covalent organic frameworks for electrochemical CO2 reduction. Nano-Micro Lett. 17(1), 252 (2025). https://doi.org/10.1007/s40820-025-01754-9
- K. Seob Song, P.W. Fritz, D.F. Abbott, L.N. Poon, C.M. Caridade et al., Mixed-metal ionothermal synthesis of metallophthalocyanine covalent organic frameworks for CO2 capture and conversion. Angew. Chem. Int. Ed. 62(38), e202309775 (2023). https://doi.org/10.1002/anie.202309775
- Y. Zhang, X. Zhang, L. Jiao, Z. Meng, H.-L. Jiang, Conductive covalent organic frameworks of polymetallophthalocyanines as a tunable platform for electrocatalysis. J. Am. Chem. Soc. 145(44), 24230–24239 (2023). https://doi.org/10.1021/jacs.3c08594
- X. Yang, Y. Jin, B. Yu, L. Gong, W. Liu et al., Two-dimensional conjugated N-rich covalent organic frameworks for superior sodium storage. Sci. China Chem. 65(7), 1291–1298 (2022). https://doi.org/10.1007/s11426-022-1269-0
- T. Xie, S. Chen, Y. Yue, T. Sheng, N. Huang et al., Biomimetic phthalocyanine-based covalent organic frameworks with tunable pendant groups for electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 63(43), e202411188 (2024). https://doi.org/10.1002/anie.202411188
- G. Zhao, H. Ma, C. Zhang, Y. Yang, S. Yu et al., Constructing donor-acceptor-linked COFs electrolytes to regulate electron density and accelerate the Li+ migration in quasi-solid-state battery. Nano-Micro Lett. 17(1), 21 (2024). https://doi.org/10.1007/s40820-024-01509-y
- X. Yang, L. Gong, K. Wang, S. Ma, W. Liu et al., Ionothermal synthesis of fully conjugated covalent organic frameworks for high-capacity and ultrastable potassium-ion batteries. Adv. Mater. 34(50), 2207245 (2022). https://doi.org/10.1002/adma.202207245
- J. Jia, X. Zhao, W. Hu, Y. Wang, J. Huang et al., Role of cobalt phthalocyanine on the formation of high-valent cobalt species revealed by in situ Raman spectroscopy. J. Mater. Chem. A 11(15), 8141–8149 (2023). https://doi.org/10.1039/D2TA10063K
- Z. Chen, C. Wu, W. Li, S. Yang, H. Shen et al., Construction Co-ZnO acid-base pair catalysts for alcohol and nitrobenzene hydrogen transfer cascade reaction. Appl. Catal. B Environ. 340, 123203 (2024). https://doi.org/10.1016/j.apcatb.2023.123203
- S. Yang, C. Wu, J. Wang, H. Shen, K. Zhu et al., Metal single-atom and nanop double-active-site relay catalysts: design, preparation, and application to the oxidation of 5-hydroxymethylfurfural. ACS Catal. 12(2), 971–981 (2022). https://doi.org/10.1021/acscatal.1c05236
- S. Yang, R. Sa, H. Zhong, H. Lv, D. Yuan et al., Microenvironments enabled by covalent organic framework linkages for modulating active metal species in photocatalytic CO2 reduction. Adv. Funct. Mater. 32(17), 2110694 (2022). https://doi.org/10.1002/adfm.202110694
- Y. Wang, Y. Ren, Y. Cao, X. Liang, G. He et al., Engineering HOF-based mixed-matrix membranes for efficient CO2 separation. Nano-Micro Lett. 15(1), 50 (2023). https://doi.org/10.1007/s40820-023-01020-w
- J. Ding, X. Guan, J. Lv, X. Chen, Y. Zhang et al., Three-dimensional covalent organic frameworks with ultra-large pores for highly efficient photocatalysis. J. Am. Chem. Soc. 145(5), 3248–3254 (2023). https://doi.org/10.1021/jacs.2c13817
- Z. Lei, F.W.S. Lucas, E.C. Moya, S. Huang, Y. Rong et al., Highly stable dioxin-linked metallophthalocyanine covalent organic frameworks. Chin. Chem. Lett. 32(12), 3799–3802 (2021). https://doi.org/10.1016/j.cclet.2021.04.047
- C. Yang, K. Jiang, Q. Zheng, X. Li, H. Mao et al., Chemically stable polyarylether-based metallophthalocyanine frameworks with high carrier mobilities for capacitive energy storage. J. Am. Chem. Soc. 143(42), 17701–17707 (2021). https://doi.org/10.1021/jacs.1c08265
- I. Khan, S. Khan, S.-Y. Wu, H.-T. Chen, A. Zada et al., Synergistic functionality of dopants and defects in co-phthalocyanine/B-CN Z-scheme photocatalysts for promoting photocatalytic CO2 reduction reactions. Small 19(25), 2208179 (2023). https://doi.org/10.1002/smll.202208179
- W. Li, Z. Chen, S. Yang, K. Cui, X. Zhou et al., Enhanced photocatalytic degradation of phenol by electron-directed movement of polypyrrole/ZnIn2S4 composites. Ind. Eng. Chem. Res. 63(18), 8111–8121 (2024). https://doi.org/10.1021/acs.iecr.4c00232
- S. Zhang, S. Wang, L. Guo, H. Chen, B. Tan et al., An artificial photosynthesis system comprising a covalent triazine framework as an electron relay facilitator for photochemical carbon dioxide reduction. J. Mater. Chem. C 8(1), 192–200 (2020). https://doi.org/10.1039/C9TC05297F
- X.-Y. Dong, Y.-N. Si, Q.-Y. Wang, S. Wang, S.-Q. Zang, Integrating single atoms with different microenvironments into one porous organic polymer for efficient photocatalytic CO2 reduction. Adv. Mater. 33(33), 2101568 (2021). https://doi.org/10.1002/adma.202101568
- C. Ban, Y. Duan, Y. Wang, J. Ma, K. Wang et al., Isotype heterojunction-boosted CO2 photoreduction to CO. Nano-Micro Lett. 14(1), 74 (2022). https://doi.org/10.1007/s40820-022-00821-9
- K. Wang, Z. Hu, P. Yu, A.M. Balu, K. Li et al., Understanding bridging sites and accelerating quantum efficiency for photocatalytic CO2 reduction. Nano-Micro Lett. 16(1), 5 (2023). https://doi.org/10.1007/s40820-023-01221-3
- J.-W. Wang, L. Jiang, H.-H. Huang, Z. Han, G. Ouyang, Rapid electron transfer via dynamic coordinative interaction boosts quantum efficiency for photocatalytic CO2 reduction. Nat. Commun. 12(1), 4276 (2021). https://doi.org/10.1038/s41467-021-24647-y
- V.S. Thoi, N. Kornienko, C.G. Margarit, P. Yang, C.J. Chang, Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene–isoquinoline complex. J. Am. Chem. Soc. 135(38), 14413–14424 (2013). https://doi.org/10.1021/ja4074003
- X. Wang, X. Ding, Y. Jin, D. Qi, H. Wang et al., Post-nickelation of a crystalline trinuclear copper organic framework for synergistic photocatalytic carbon dioxide conversion. Angew. Chem. Int. Ed. 62(18), e202302808 (2023). https://doi.org/10.1002/anie.202302808
- K. Sun, Y. Huang, Q. Wang, W. Zhao, X. Zheng et al., Manipulating the spin state of Co sites in metal–organic frameworks for boosting CO2 photoreduction. J. Am. Chem. Soc. 146(5), 3241–3249 (2024). https://doi.org/10.1021/jacs.3c11446
- Y. Zhang, J. Zhao, H. Wang, B. Xiao, W. Zhang et al., Single-atom Cu anchored catalysts for photocatalytic renewable H(2) production with a quantum efficiency of 56. Nat. Commun. 13(1), 58 (2022). https://doi.org/10.1038/s41467-021-27698-3
- T. Peng, Y. Wang, C.-L. Dong, T.T.T. Nga, B. Wu et al., BiOCl atomic layers with electrons enriched active sites exposed for efficient photocatalytic CO2 overall splitting. Nano-Micro Lett. 17(1), 223 (2025). https://doi.org/10.1007/s40820-025-01723-2
- Y. Zhang, F. Guo, J. Di, K. Wang, M.M. Li et al., Strain-induced surface interface dual polarization constructs PML-Cu/Bi12O17Br2 high-density active sites for CO2 photoreduction. Nano-Micro Lett. 16(1), 90 (2024). https://doi.org/10.1007/s40820-023-01309-w
- N.J. Turro, V. Ramamurthy, J.C. Scaiano, Modern molecular photochemistry of organic molecules. Photochem. Photobiol. 88(4), 1033–1033 (2012). https://doi.org/10.1111/j.1751-1097.2012.01178.x
- D. Kim, V.Q. Dang, T.S. Teets, Improved transition metal photosensitizers to drive advances in photocatalysis. Chem. Sci. 15(1), 77–94 (2023). https://doi.org/10.1039/d3sc04580c
References
S.J. Davis, K. Caldeira, H.D. Matthews, Future CO2 emissions and climate change from existing energy infrastructure. Science 329(5997), 1330–1333 (2010). https://doi.org/10.1126/science.1188566
E. Boutin, L. Merakeb, B. Ma, B. Boudy, M. Wang et al., Molecular catalysis of CO2 reduction: recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes. Chem. Soc. Rev. 49(16), 5772–5809 (2020). https://doi.org/10.1039/D0CS00218F
J. Zhou, T. Wang, L. Chen, L. Liao, Y. Wang et al., Boosting the reaction kinetics in aprotic lithium-carbon dioxide batteries with unconventional phase metal nanomaterials. Proc. Natl. Acad. Sci. U.S.A. 119(40), e2204666119 (2022). https://doi.org/10.1073/pnas.2204666119
J. Zhou, Z. Xu, K. Cui, J.-A. Yin, H.-C. Chen et al., Theory-guided design of unconventional phase metal heteronanostructures for higher-rate stable Li-CO2 and Li-air batteries. Angew. Chem. Int. Ed. 64(5), e202416947 (2025). https://doi.org/10.1002/anie.202416947
Y. Wang, J. Hu, L. Yu, X. Wu, Y. Zhang et al., Recent strategies for constructing efficient interfacial solar evaporation systems. Nano Res. Energy 2, e9120062 (2023). https://doi.org/10.26599/nre.2023.9120062
R. Du, S. Wang, T. Li, Energy-saving windows derived from transparent aerogels. Nano Res. Energy 3, e9120090 (2024). https://doi.org/10.26599/nre.2023.9120090
W. Lin, J. Lin, X. Zhang, L. Zhang, R.A. Borse et al., Decoupled artificial photosynthesis via a catalysis-redox coupled COF||BiVO4 photoelectrochemical device. J. Am. Chem. Soc. 145(32), 18141–18147 (2023). https://doi.org/10.1021/jacs.3c06687
H. Rao, L.C. Schmidt, J. Bonin, M. Robert, Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 548(7665), 74–77 (2017). https://doi.org/10.1038/nature23016
H. Shen, T. Wang, H. Jiang, P. Zhao, Z. Chen et al., Theoretical calculation guided design of single atom-alloyed bismuth catalysts for ampere-level CO2 electrolysis to formate. Appl. Catal. B Environ. 339, 123140 (2023). https://doi.org/10.1016/j.apcatb.2023.123140
X. Linghu, J. Chen, L. Jiang, T. Wang, Recent progress in bismuth-based materials for electrochemical CO2 reduction to formate/formic acid. Nano Mater. Sci. (2024). https://doi.org/10.1016/j.nanoms.2024.11.007
H. Shen, H. Wang, T. Wang, J. Zhang, S. Yang et al., Redistributing the local electron density of bismuth via introducing halogen atoms for boosting CO2 reduction to formate. Chem. Catal. 4(8), 101057 (2024). https://doi.org/10.1016/j.checat.2024.101057
J. Shen, D. Wang, How to select heterogeneous CO2 reduction electrocatalyst. Nano Res. Energy 3, e9120096 (2024). https://doi.org/10.26599/nre.2023.9120096
X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu et al., Ultrafast electron transfer at the In2O3/Nb2O5 S-scheme interface for CO2 photoreduction. Nat. Commun. 15, 4807 (2024). https://doi.org/10.1038/s41467-024-49004-7
S. Wang, B.Y. Guan, X.W.D. Lou, Construction of ZnIn2S4–In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. J. Am. Chem. Soc. 140(15), 5037–5040 (2018). https://doi.org/10.1021/jacs.8b02200
W. Zhan, L. Sun, X. Han, Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal-organic frameworks. Nano-Micro Lett. 11(1), 1 (2019). https://doi.org/10.1007/s40820-018-0235-z
Z. Liang, Y. Xue, X. Wang, X. Zhang, J. Tian et al., The incorporation of cocatalyst cobalt sulfide into graphitic carbon nitride: boosted photocatalytic hydrogen evolution performance and mechanism exploration. Nano Mater. Sci. 5(2), 202–209 (2023). https://doi.org/10.1016/j.nanoms.2022.03.001
Y.H. Kim, N. Kim, J.-M. Seo, J.-P. Jeon, H.-J. Noh et al., Benzothiazole-based covalent organic frameworks with different symmetrical combinations for photocatalytic CO2 conversion. Chem. Mater. 33(22), 8705–8711 (2021). https://doi.org/10.1021/acs.chemmater.1c02660
P. Dong, X. Xu, R. Luo, S. Yuan, J. Zhou et al., Postsynthetic annulation of three-dimensional covalent organic frameworks for boosting CO2 photoreduction. J. Am. Chem. Soc. 145(28), 15473–15481 (2023). https://doi.org/10.1021/jacs.3c03897
C.S. Diercks, O.M. Yaghi, The atom, the molecule, and the covalent organic framework. Science 355(6328), eaal1585 (2017). https://doi.org/10.1126/science.aal1585
Y. Yang, B. Liang, J. Kreie, M. Hambsch, Z. Liang et al., Elastic films of single-crystal two-dimensional covalent organic frameworks. Nature 630(8018), 878–883 (2024). https://doi.org/10.1038/s41586-024-07505-x
Y. Liu, L. Li, Z. Sang, H. Tan, N. Ye et al., Enhanced hydrogen peroxide photosynthesis in covalent organic frameworks through induced asymmetric electron distribution. Nat. Synth. 4(1), 134–141 (2025). https://doi.org/10.1038/s44160-024-00644-z
W. Ai, J. Zou, Z. Cao, K. Cui, J. Gu et al., Spontaneous conversion of pyridine N-oxide ylide covalent organic framework (COF) into biradical COF as an efficient catalyst in catalytic dehydrogenation of nitrogen heterocycles. Chem. Sci. 16(27), 12439–12448 (2025). https://doi.org/10.1039/D4SC08236B
X. Lan, H. Li, Y. Liu, Y. Zhang, T. Zhang et al., Covalent organic framework with donor1-acceptor-donor2 motifs regulating local charge of intercalated single cobalt sites for photocatalytic CO2 reduction to syngas. Angew. Chem. Int. Ed. 63(31), e202407092 (2024). https://doi.org/10.1002/anie.202407092
S. Gao, Q. Zhang, X. Su, X. Wu, X.-G. Zhang et al., Ingenious artificial leaf based on covalent organic framework membranes for boosting CO2 photoreduction. J. Am. Chem. Soc. 145(17), 9520–9529 (2023). https://doi.org/10.1021/jacs.2c11146
J. Zhang, X. Li, H. Hu, H. Huang, H. Li et al., Enhancing photocatalytic performance of covalent organic frameworks via ionic polarization. Nat. Commun. 15(1), 9576 (2024). https://doi.org/10.1038/s41467-024-53834-w
Y. Chen, R. Liu, Y. Guo, G. Wu, T.C. Sum et al., Hierarchical assembly of donor–acceptor covalent organic frameworks for photosynthesis of hydrogen peroxide from water and air. Nat. Synth. 3(8), 998–1010 (2024). https://doi.org/10.1038/s44160-024-00542-4
H. Jiang, P. Zhao, H. Shen, S. Yang, R. Gao et al., New insight into the electronic effect for Cu porphyrin catalysts in electrocatalytic of CO2 into CH4. Small 20(2), 2304998 (2024). https://doi.org/10.1002/smll.202304998
E. Nikoloudakis, I. López-Duarte, G. Charalambidis, K. Ladomenou, M. Ince et al., Porphyrins and phthalocyanines as biomimetic tools for photocatalytic H2 production and CO2 reduction. Chem. Soc. Rev. 51(16), 6965–7045 (2022). https://doi.org/10.1039/D2CS00183G
D.D. Eley, Phthalocyanines as semiconductors. Nature 162(4125), 819 (1948). https://doi.org/10.1038/162819a0
W. Lin, F. Lin, J. Lin, Z. Xiao, D. Yuan et al., Efficient photocatalytic CO2 reduction in ellagic acid–based covalent organic frameworks. J. Am. Chem. Soc. 146(23), 16229–16236 (2024). https://doi.org/10.1021/jacs.4c04185
Y. Zhang, L. Zang, S. Zhao, W. Cheng, L. Zhang et al., Brominated metal phthalocyanine-based covalent organic framework for enhanced selective photocatalytic reduction of CO2. J. Colloid Interface Sci. 655, 1–11 (2024). https://doi.org/10.1016/j.jcis.2023.10.111
Y. Wang, M. Wang, T. Chen, W. Yu, H. Liu et al., Pyrazine-linked iron-coordinated tetrapyrrole conjugated organic polymer catalyst with spatially proximate donor-acceptor pairs for oxygen reduction in fuel cells. Angew. Chem. Int. Ed. 62(47), e202308070 (2023). https://doi.org/10.1002/anie.202308070
B. Zhang, M. Wei, H. Mao, X. Pei, S.A. Alshmimri et al., Crystalline dioxin-linked covalent organic frameworks from irreversible reactions. J. Am. Chem. Soc. 140(40), 12715–12719 (2018). https://doi.org/10.1021/jacs.8b08374
W. Chen, Y. Zhang, M. Yang, C. Yang, Z. Meng, Single-point linkage engineering in conjugated phthalocyanine-based covalent organic frameworks for electrochemical CO2 reduction. Nano-Micro Lett. 17(1), 252 (2025). https://doi.org/10.1007/s40820-025-01754-9
K. Seob Song, P.W. Fritz, D.F. Abbott, L.N. Poon, C.M. Caridade et al., Mixed-metal ionothermal synthesis of metallophthalocyanine covalent organic frameworks for CO2 capture and conversion. Angew. Chem. Int. Ed. 62(38), e202309775 (2023). https://doi.org/10.1002/anie.202309775
Y. Zhang, X. Zhang, L. Jiao, Z. Meng, H.-L. Jiang, Conductive covalent organic frameworks of polymetallophthalocyanines as a tunable platform for electrocatalysis. J. Am. Chem. Soc. 145(44), 24230–24239 (2023). https://doi.org/10.1021/jacs.3c08594
X. Yang, Y. Jin, B. Yu, L. Gong, W. Liu et al., Two-dimensional conjugated N-rich covalent organic frameworks for superior sodium storage. Sci. China Chem. 65(7), 1291–1298 (2022). https://doi.org/10.1007/s11426-022-1269-0
T. Xie, S. Chen, Y. Yue, T. Sheng, N. Huang et al., Biomimetic phthalocyanine-based covalent organic frameworks with tunable pendant groups for electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 63(43), e202411188 (2024). https://doi.org/10.1002/anie.202411188
G. Zhao, H. Ma, C. Zhang, Y. Yang, S. Yu et al., Constructing donor-acceptor-linked COFs electrolytes to regulate electron density and accelerate the Li+ migration in quasi-solid-state battery. Nano-Micro Lett. 17(1), 21 (2024). https://doi.org/10.1007/s40820-024-01509-y
X. Yang, L. Gong, K. Wang, S. Ma, W. Liu et al., Ionothermal synthesis of fully conjugated covalent organic frameworks for high-capacity and ultrastable potassium-ion batteries. Adv. Mater. 34(50), 2207245 (2022). https://doi.org/10.1002/adma.202207245
J. Jia, X. Zhao, W. Hu, Y. Wang, J. Huang et al., Role of cobalt phthalocyanine on the formation of high-valent cobalt species revealed by in situ Raman spectroscopy. J. Mater. Chem. A 11(15), 8141–8149 (2023). https://doi.org/10.1039/D2TA10063K
Z. Chen, C. Wu, W. Li, S. Yang, H. Shen et al., Construction Co-ZnO acid-base pair catalysts for alcohol and nitrobenzene hydrogen transfer cascade reaction. Appl. Catal. B Environ. 340, 123203 (2024). https://doi.org/10.1016/j.apcatb.2023.123203
S. Yang, C. Wu, J. Wang, H. Shen, K. Zhu et al., Metal single-atom and nanop double-active-site relay catalysts: design, preparation, and application to the oxidation of 5-hydroxymethylfurfural. ACS Catal. 12(2), 971–981 (2022). https://doi.org/10.1021/acscatal.1c05236
S. Yang, R. Sa, H. Zhong, H. Lv, D. Yuan et al., Microenvironments enabled by covalent organic framework linkages for modulating active metal species in photocatalytic CO2 reduction. Adv. Funct. Mater. 32(17), 2110694 (2022). https://doi.org/10.1002/adfm.202110694
Y. Wang, Y. Ren, Y. Cao, X. Liang, G. He et al., Engineering HOF-based mixed-matrix membranes for efficient CO2 separation. Nano-Micro Lett. 15(1), 50 (2023). https://doi.org/10.1007/s40820-023-01020-w
J. Ding, X. Guan, J. Lv, X. Chen, Y. Zhang et al., Three-dimensional covalent organic frameworks with ultra-large pores for highly efficient photocatalysis. J. Am. Chem. Soc. 145(5), 3248–3254 (2023). https://doi.org/10.1021/jacs.2c13817
Z. Lei, F.W.S. Lucas, E.C. Moya, S. Huang, Y. Rong et al., Highly stable dioxin-linked metallophthalocyanine covalent organic frameworks. Chin. Chem. Lett. 32(12), 3799–3802 (2021). https://doi.org/10.1016/j.cclet.2021.04.047
C. Yang, K. Jiang, Q. Zheng, X. Li, H. Mao et al., Chemically stable polyarylether-based metallophthalocyanine frameworks with high carrier mobilities for capacitive energy storage. J. Am. Chem. Soc. 143(42), 17701–17707 (2021). https://doi.org/10.1021/jacs.1c08265
I. Khan, S. Khan, S.-Y. Wu, H.-T. Chen, A. Zada et al., Synergistic functionality of dopants and defects in co-phthalocyanine/B-CN Z-scheme photocatalysts for promoting photocatalytic CO2 reduction reactions. Small 19(25), 2208179 (2023). https://doi.org/10.1002/smll.202208179
W. Li, Z. Chen, S. Yang, K. Cui, X. Zhou et al., Enhanced photocatalytic degradation of phenol by electron-directed movement of polypyrrole/ZnIn2S4 composites. Ind. Eng. Chem. Res. 63(18), 8111–8121 (2024). https://doi.org/10.1021/acs.iecr.4c00232
S. Zhang, S. Wang, L. Guo, H. Chen, B. Tan et al., An artificial photosynthesis system comprising a covalent triazine framework as an electron relay facilitator for photochemical carbon dioxide reduction. J. Mater. Chem. C 8(1), 192–200 (2020). https://doi.org/10.1039/C9TC05297F
X.-Y. Dong, Y.-N. Si, Q.-Y. Wang, S. Wang, S.-Q. Zang, Integrating single atoms with different microenvironments into one porous organic polymer for efficient photocatalytic CO2 reduction. Adv. Mater. 33(33), 2101568 (2021). https://doi.org/10.1002/adma.202101568
C. Ban, Y. Duan, Y. Wang, J. Ma, K. Wang et al., Isotype heterojunction-boosted CO2 photoreduction to CO. Nano-Micro Lett. 14(1), 74 (2022). https://doi.org/10.1007/s40820-022-00821-9
K. Wang, Z. Hu, P. Yu, A.M. Balu, K. Li et al., Understanding bridging sites and accelerating quantum efficiency for photocatalytic CO2 reduction. Nano-Micro Lett. 16(1), 5 (2023). https://doi.org/10.1007/s40820-023-01221-3
J.-W. Wang, L. Jiang, H.-H. Huang, Z. Han, G. Ouyang, Rapid electron transfer via dynamic coordinative interaction boosts quantum efficiency for photocatalytic CO2 reduction. Nat. Commun. 12(1), 4276 (2021). https://doi.org/10.1038/s41467-021-24647-y
V.S. Thoi, N. Kornienko, C.G. Margarit, P. Yang, C.J. Chang, Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene–isoquinoline complex. J. Am. Chem. Soc. 135(38), 14413–14424 (2013). https://doi.org/10.1021/ja4074003
X. Wang, X. Ding, Y. Jin, D. Qi, H. Wang et al., Post-nickelation of a crystalline trinuclear copper organic framework for synergistic photocatalytic carbon dioxide conversion. Angew. Chem. Int. Ed. 62(18), e202302808 (2023). https://doi.org/10.1002/anie.202302808
K. Sun, Y. Huang, Q. Wang, W. Zhao, X. Zheng et al., Manipulating the spin state of Co sites in metal–organic frameworks for boosting CO2 photoreduction. J. Am. Chem. Soc. 146(5), 3241–3249 (2024). https://doi.org/10.1021/jacs.3c11446
Y. Zhang, J. Zhao, H. Wang, B. Xiao, W. Zhang et al., Single-atom Cu anchored catalysts for photocatalytic renewable H(2) production with a quantum efficiency of 56. Nat. Commun. 13(1), 58 (2022). https://doi.org/10.1038/s41467-021-27698-3
T. Peng, Y. Wang, C.-L. Dong, T.T.T. Nga, B. Wu et al., BiOCl atomic layers with electrons enriched active sites exposed for efficient photocatalytic CO2 overall splitting. Nano-Micro Lett. 17(1), 223 (2025). https://doi.org/10.1007/s40820-025-01723-2
Y. Zhang, F. Guo, J. Di, K. Wang, M.M. Li et al., Strain-induced surface interface dual polarization constructs PML-Cu/Bi12O17Br2 high-density active sites for CO2 photoreduction. Nano-Micro Lett. 16(1), 90 (2024). https://doi.org/10.1007/s40820-023-01309-w
N.J. Turro, V. Ramamurthy, J.C. Scaiano, Modern molecular photochemistry of organic molecules. Photochem. Photobiol. 88(4), 1033–1033 (2012). https://doi.org/10.1111/j.1751-1097.2012.01178.x
D. Kim, V.Q. Dang, T.S. Teets, Improved transition metal photosensitizers to drive advances in photocatalysis. Chem. Sci. 15(1), 77–94 (2023). https://doi.org/10.1039/d3sc04580c