Dipole-Driven Charge Trapping in Monolayer Janus MoSSe for Ultrathin Nonvolatile Memory Devices
Corresponding Author: Hyun Ho Kim
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 216
Abstract
The continued scaling of flash memory technologies faces challenges such as limited operation speed, poor data retention, and interface defects inherent to conventional three-dimensional architectures. Two-dimensional (2D) materials, with van der Waals interfaces and atomic-scale thickness, offer a promising pathway to overcome these limitations by enabling efficient charge modulation while minimizing surface defects. In this work, a nonvolatile 2D flash memory device is developed employing monolayer Janus MoSSe as the charge-trapping layer and hexagonal boron nitride (h-BN) as an ultrathin tunneling barrier. The intrinsic structural asymmetry of Janus MoSSe induces a strong vertical dipole moment, resulting in enhanced charge trapping, deeper energy barriers, and directional polarization compared with symmetric 2D materials. Consequently, the devices exhibit outstanding retention times exceeding 104 s, endurance beyond 104 program/erase cycles, and large memory window ratios (ΔV/VG,max of 50%–70% for 10 and 6 nm h-BN, respectively), with charge-trapping rates up to 8.96 × 1014 cm−2 s−1. In addition, Janus MoSSe-based devices show synaptic characteristics under electrical pulses and perform recognition simulations in artificial neural networks. These findings establish a design paradigm for 2D memory devices, enabling ultrathin, flexible, and energy-efficient nonvolatile memories.
Highlights:
1 Janus MoSSe-based floating-gate memory exhibits ultrafast charge-trapping dynamics and stable charge retention exceeding 108 s under low-voltage operation.
2 The intrinsic out-of-plane dipole moment in Janus MoSSe effectively suppresses leakage current and enlarges the memory window, even with ultrathin h-BN tunneling layers.
3 The proposed all-van der Waals heterostructure provides a scalable platform for high-speed, energy-efficient, and reliable nonvolatile memory applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Shi, Z. Liu, J. Wei, A. Azam, C.-H. Lin et al., Revolutionizing nonvolatile memory: advances and future prospects of 2D floating-gate technology. ACS Nano 19(24), 21905–21926 (2025). https://doi.org/10.1021/acsnano.5c02740
- M. Naqi, B. Kim, S.-W. Kim, S. Kim, Pulsed gate switching of MoS2 field-effect transistor based on flexible polyimide substrate for ultrasonic detectors. Adv. Funct. Mater. 31(7), 2007389 (2021). https://doi.org/10.1002/adfm.202007389
- T.-Y. Wang, J.-L. Meng, L. Chen, H. Zhu, Q.-Q. Sun et al., Flexible 3D memristor array for binary storage and multi-states neuromorphic computing applications. InfoMat 3(2), 212–221 (2021). https://doi.org/10.1002/inf2.12158
- Z. Zhang, Z. Wang, T. Shi, C. Bi, F. Rao et al., Memory materials and devices: from concept to application. InfoMat 2(2), 261–290 (2020). https://doi.org/10.1002/inf2.12077
- S. Mandal, A. El-Amin, K. Alexander, B. Rajendran, R. Jha, Novel synaptic memory device for neuromorphic computing. Sci. Rep. 4, 5333 (2014). https://doi.org/10.1038/srep05333
- W. Li, T. Mu, Y. Chen, M. Dai, P. Sun et al., Investigation of non-volatile and photoelectric storage characteristics for MoS2/h-BN/graphene heterojunction floating-gate transistor with the different tunneling layer thicknesses. Micro. Nanostructures 187, 207764 (2024). https://doi.org/10.1016/j.micrna.2024.207764
- L. Wu, A. Wang, J. Shi, J. Yan, Z. Zhou et al., Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices. Nat. Nanotechnol. 16(8), 882–887 (2021). https://doi.org/10.1038/s41565-021-00904-5
- X. Huang, C. Liu, Z. Tang, S. Zeng, S. Wang et al., An ultrafast bipolar flash memory for self-activated in-memory computing. Nat. Nanotechnol. 18(5), 486–492 (2023). https://doi.org/10.1038/s41565-023-01339-w
- X. Hou, C. Liu, Y. Ding, L. Liu, S. Wang et al., A logic-memory transistor with the integration of visible information sensing-memory-processing. Adv. Sci. 7(21), 2002072 (2020). https://doi.org/10.1002/advs.202002072
- W. Li, J. Li, Y. Chen, Z. Chen, W. Li et al., Demonstration of nonvolatile storage and synaptic functions in all-two-dimensional floating-gate transistors based on MoS2 channels. ACS Appl. Electron. Mater. 5(8), 4354–4362 (2023). https://doi.org/10.1021/acsaelm.3c00595
- C. Liu, P. Zhou, Memory devices based on van der Waals heterostructures. ACS Mater. Lett. 2(9), 1101–1105 (2020). https://doi.org/10.1021/acsmaterialslett.0c00227
- K. Chang, B. Hyun, K. Hong, K. Young, J. Won, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14(1), 58 (2022). https://doi.org/10.1007/s40820-021-00784-3
- M.S. Choi, G.-H. Lee, Y.-J. Yu, D.-Y. Lee, S.H. Lee et al., Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013). https://doi.org/10.1038/ncomms2652
- Q.A. Vu, H. Kim, V.L. Nguyen, U.Y. Won, S. Adhikari et al., A high-on/off-ratio floating-gate memristor array on a flexible substrate via CVD-grown large-area 2D layer stacking. Adv. Mater. 29(44), 1703363 (2017). https://doi.org/10.1002/adma.201703363
- J. Kim, Y. Park, J. Lee, E. Lim, J.-K. Lee et al., Impact of HfO2 dielectric layer placement in Hf0.5Zr0.5O2-based ferroelectric tunnel junctions for neuromorphic applications. Adv. Mater. Technol. 9(10), 2400050 (2024). https://doi.org/10.1002/admt.202400050
- B. Mukherjee, A. Zulkefli, K. Watanabe, T. Taniguchi, Y. Wakayama et al., Laser-assisted multilevel non-volatile memory device based on 2D van-der-Waals few-layer-ReS2/h-BN/graphene heterostructures. Adv. Funct. Mater. 30(42), 2001688 (2020). https://doi.org/10.1002/adfm.202001688
- L. Liu, C. Liu, L. Jiang, J. Li, Y. Ding et al., Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nat. Nanotechnol. 16(8), 874–881 (2021). https://doi.org/10.1038/s41565-021-00921-4
- S. Lakshmy, B. Mondal, N. Kalarikkal, C.S. Rout, B. Chakraborty, Recent developments in synthesis, properties, and applications of 2D Janus MoSSe and MoSexS(1-x) alloys. Adv. Powder Mater. 3(4), 100204 (2024). https://doi.org/10.1016/j.apmate.2024.100204
- Z. Liu, S.Y. Tee, G. Guan, M.-Y. Han, Atomically substitutional engineering of transition metal dichalcogenide layers for enhancing tailored properties and superior applications. Nano-Micro Lett. 16(1), 95 (2024). https://doi.org/10.1007/s40820-023-01315-y
- D.G. Purdie, N.M. Pugno, T. Taniguchi, K. Watanabe, A.C. Ferrari et al., Cleaning interfaces in layered materials heterostructures. Nat. Commun. 9, 5387 (2018). https://doi.org/10.1038/s41467-018-07558-3
- P.-Y. Chen, X. Peng, S. Yu, NeuroSim: a circuit-level macro model for benchmarking neuro-inspired architectures in online learning. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 37(12), 3067–3080 (2018). https://doi.org/10.1109/TCAD.2018.2789723
- P.-Y. Chen, X. Peng, S. Yu, NeuroSim+: an integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures, in 2017 IEEE International Electron Devices Meeting (IEDM), 6.1.1–6.1.4. IEEE (2018). https://doi.org/10.1109/iedm.2017.8268337
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57(3), 1505–1509 (1998). https://doi.org/10.1103/physrevb.57.1505
- M. Wu, X. Yao, Y. Hao, H. Dong, Y. Cheng et al., Electronic structures, magnetic properties and band alignments of 3d transition metal atoms doped monolayer MoS2. Phys. Lett. A 382(2–3), 111–115 (2018). https://doi.org/10.1016/j.physleta.2017.10.024
- S.Y. Park, D.-B. Seo, H. Choi, J.H. Lee, D.H. Lee et al., Structural instability stimulated heteroatoms co-doping of 2D quaternary semiconductor for optoelectronic applications. Adv. Funct. Mater. 34(13), 2310178 (2024). https://doi.org/10.1002/adfm.202310178
- A. Kanwal, A. Jalil, R.A. Raza, S. Ahmed, T. Zhao et al., Effect of strain on electronic properties of tri-layer MoS2/h-BN/graphene van der Waals heterostructures. J. Phys. Chem. Solids 185, 111776 (2024). https://doi.org/10.1016/j.jpcs.2023.111776
- S.W. Kim, S.Y. Choi, S.H. Lim, E.B. Ko, S. Kim et al., Understanding solvent-induced delamination and intense water adsorption in Janus transition metal dichalcogenides for enhanced device performance. Adv. Funct. Mater. 34(8), 2308709 (2024). https://doi.org/10.1002/adfm.202308709
- D.B. Trivedi, G. Turgut, Y. Qin, M.Y. Sayyad, D. Hajra et al., Room-temperature synthesis of 2D Janus crystals and their heterostructures. Adv. Mater. 32(50), e2006320 (2020). https://doi.org/10.1002/adma.202006320
- M. Lee, T.W. Kim, C.Y. Park, K. Lee, T. Taniguchi et al., Graphene bridge heterostructure devices for negative differential transconductance circuit applications. Nano-Micro Lett 15(1), 22 (2022). https://doi.org/10.1007/s40820-022-01001-5
- C. Acal, D. Maldonado, A.M. Aguilera, K. Zhu, M. Lanza et al., Holistic variability analysis in resistive switching memories using a two-dimensional variability coefficient. ACS Appl. Mater. Interfaces 15(15), 19102–19110 (2023). https://doi.org/10.1021/acsami.2c22617
- K. Jiang, S. Li, F. Chen, L. Zhu, W. Li, Microstructure characterization, phase transition, and device application of phase-change memory materials. Sci. Technol. Adv. Mater. 24, 2252725 (2023). https://doi.org/10.1080/14686996.2023.2252725
- H. Wang, H. Guo, R. Guzman, N. JiaziLa, K. Wu et al., Ultrafast non-volatile floating-gate memory based on all-2D materials. Adv. Mater. 36(24), e2311652 (2024). https://doi.org/10.1002/adma.202311652
- J. Yu, H. Wang, F. Zhuge, Z. Chen, M. Hu et al., Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts. Nat. Commun. 14(1), 5662 (2023). https://doi.org/10.1038/s41467-023-41363-x
- P. Yang, D. Wang, X. Zhao, W. Quan, Q. Jiang et al., Epitaxial growth of inch-scale single-crystal transition metal dichalcogenides through the patching of unidirectionally orientated ribbons. Nat. Commun. 13(1), 3238 (2022). https://doi.org/10.1038/s41467-022-30900-9
- S.-J. Jeong, Y. Gu, J. Heo, J. Yang, C.-S. Lee et al., Thickness scaling of atomic-layer-deposited HfO2 films and their application to wafer-scale graphene tunnelling transistors. Sci. Rep. 6, 20907 (2016). https://doi.org/10.1038/srep20907
- Z. Zhou, Z. Zhang, P. Li, Z. Guan, Y. Li et al., Low energy consumption photoelectric memristors with multi-level linear conductance modulation in artificial visual systems application. Nano-Micro Lett. 17(1), 317 (2025). https://doi.org/10.1007/s40820-025-01816-y
- J. Sung, S.W. Kim, D. Lee, S. Moon, E. Lee et al., Co-stimuli-driven 2D WSe2 optoelectronic synapses for neuromorphic computing. Small 21(31), e2504024 (2025). https://doi.org/10.1002/smll.202504024
- J. Hwang, J. Sung, E. Lee, W. Choi, A heterointerface effect of Mo1-xWxS2-based artificial synapse for neuromorphic computing. Chem. Eng. J. 510, 161622 (2025). https://doi.org/10.1016/j.cej.2025.161622
- D. Lee, M. Kim, S. Park, S. Lee, J. Sung et al., Inter-ion mutual repulsion control for nonvolatile artificial synapse. Adv. Funct. Mater. 35(11), 2412012 (2025). https://doi.org/10.1002/adfm.202412012
- R.S. Zucker, W.G. Regehr, Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002). https://doi.org/10.1146/annurev.physiol.64.092501.114547
- J. Sung, H.J. Cheon, D. Lee, S. Chung, L. Ayuningtias et al., Improving ion uptake in artificial synapses through facilitated diffusion mechanisms. Mater. Horiz. 12(14), 5225–5235 (2025). https://doi.org/10.1039/d5mh00005j
- J. Sung, S. Chung, Y. Jang, H. Jang, J. Kim et al., Unveiling the role of side chain for improving nonvolatile characteristics of conjugated polymers-based artificial synapse. Adv. Sci. 11(16), 2400304 (2024). https://doi.org/10.1002/advs.202400304
- H. Zhou, S. Li, K.-W. Ang, Y.-W. Zhang, Recent advances in in-memory computing: exploring memristor and memtransistor arrays with 2D materials. Nano-Micro Lett. 16(1), 121 (2024). https://doi.org/10.1007/s40820-024-01335-2
- K. Wang, S. Ren, Y. Jia, X. Yan, L. Wang et al., MXene-Ti3C2Tx-based neuromorphic computing: physical mechanisms, performance enhancement, and cutting-edge computing. Nano-Micro Lett. 17(1), 273 (2025). https://doi.org/10.1007/s40820-025-01787-0
References
J. Shi, Z. Liu, J. Wei, A. Azam, C.-H. Lin et al., Revolutionizing nonvolatile memory: advances and future prospects of 2D floating-gate technology. ACS Nano 19(24), 21905–21926 (2025). https://doi.org/10.1021/acsnano.5c02740
M. Naqi, B. Kim, S.-W. Kim, S. Kim, Pulsed gate switching of MoS2 field-effect transistor based on flexible polyimide substrate for ultrasonic detectors. Adv. Funct. Mater. 31(7), 2007389 (2021). https://doi.org/10.1002/adfm.202007389
T.-Y. Wang, J.-L. Meng, L. Chen, H. Zhu, Q.-Q. Sun et al., Flexible 3D memristor array for binary storage and multi-states neuromorphic computing applications. InfoMat 3(2), 212–221 (2021). https://doi.org/10.1002/inf2.12158
Z. Zhang, Z. Wang, T. Shi, C. Bi, F. Rao et al., Memory materials and devices: from concept to application. InfoMat 2(2), 261–290 (2020). https://doi.org/10.1002/inf2.12077
S. Mandal, A. El-Amin, K. Alexander, B. Rajendran, R. Jha, Novel synaptic memory device for neuromorphic computing. Sci. Rep. 4, 5333 (2014). https://doi.org/10.1038/srep05333
W. Li, T. Mu, Y. Chen, M. Dai, P. Sun et al., Investigation of non-volatile and photoelectric storage characteristics for MoS2/h-BN/graphene heterojunction floating-gate transistor with the different tunneling layer thicknesses. Micro. Nanostructures 187, 207764 (2024). https://doi.org/10.1016/j.micrna.2024.207764
L. Wu, A. Wang, J. Shi, J. Yan, Z. Zhou et al., Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices. Nat. Nanotechnol. 16(8), 882–887 (2021). https://doi.org/10.1038/s41565-021-00904-5
X. Huang, C. Liu, Z. Tang, S. Zeng, S. Wang et al., An ultrafast bipolar flash memory for self-activated in-memory computing. Nat. Nanotechnol. 18(5), 486–492 (2023). https://doi.org/10.1038/s41565-023-01339-w
X. Hou, C. Liu, Y. Ding, L. Liu, S. Wang et al., A logic-memory transistor with the integration of visible information sensing-memory-processing. Adv. Sci. 7(21), 2002072 (2020). https://doi.org/10.1002/advs.202002072
W. Li, J. Li, Y. Chen, Z. Chen, W. Li et al., Demonstration of nonvolatile storage and synaptic functions in all-two-dimensional floating-gate transistors based on MoS2 channels. ACS Appl. Electron. Mater. 5(8), 4354–4362 (2023). https://doi.org/10.1021/acsaelm.3c00595
C. Liu, P. Zhou, Memory devices based on van der Waals heterostructures. ACS Mater. Lett. 2(9), 1101–1105 (2020). https://doi.org/10.1021/acsmaterialslett.0c00227
K. Chang, B. Hyun, K. Hong, K. Young, J. Won, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14(1), 58 (2022). https://doi.org/10.1007/s40820-021-00784-3
M.S. Choi, G.-H. Lee, Y.-J. Yu, D.-Y. Lee, S.H. Lee et al., Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013). https://doi.org/10.1038/ncomms2652
Q.A. Vu, H. Kim, V.L. Nguyen, U.Y. Won, S. Adhikari et al., A high-on/off-ratio floating-gate memristor array on a flexible substrate via CVD-grown large-area 2D layer stacking. Adv. Mater. 29(44), 1703363 (2017). https://doi.org/10.1002/adma.201703363
J. Kim, Y. Park, J. Lee, E. Lim, J.-K. Lee et al., Impact of HfO2 dielectric layer placement in Hf0.5Zr0.5O2-based ferroelectric tunnel junctions for neuromorphic applications. Adv. Mater. Technol. 9(10), 2400050 (2024). https://doi.org/10.1002/admt.202400050
B. Mukherjee, A. Zulkefli, K. Watanabe, T. Taniguchi, Y. Wakayama et al., Laser-assisted multilevel non-volatile memory device based on 2D van-der-Waals few-layer-ReS2/h-BN/graphene heterostructures. Adv. Funct. Mater. 30(42), 2001688 (2020). https://doi.org/10.1002/adfm.202001688
L. Liu, C. Liu, L. Jiang, J. Li, Y. Ding et al., Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nat. Nanotechnol. 16(8), 874–881 (2021). https://doi.org/10.1038/s41565-021-00921-4
S. Lakshmy, B. Mondal, N. Kalarikkal, C.S. Rout, B. Chakraborty, Recent developments in synthesis, properties, and applications of 2D Janus MoSSe and MoSexS(1-x) alloys. Adv. Powder Mater. 3(4), 100204 (2024). https://doi.org/10.1016/j.apmate.2024.100204
Z. Liu, S.Y. Tee, G. Guan, M.-Y. Han, Atomically substitutional engineering of transition metal dichalcogenide layers for enhancing tailored properties and superior applications. Nano-Micro Lett. 16(1), 95 (2024). https://doi.org/10.1007/s40820-023-01315-y
D.G. Purdie, N.M. Pugno, T. Taniguchi, K. Watanabe, A.C. Ferrari et al., Cleaning interfaces in layered materials heterostructures. Nat. Commun. 9, 5387 (2018). https://doi.org/10.1038/s41467-018-07558-3
P.-Y. Chen, X. Peng, S. Yu, NeuroSim: a circuit-level macro model for benchmarking neuro-inspired architectures in online learning. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 37(12), 3067–3080 (2018). https://doi.org/10.1109/TCAD.2018.2789723
P.-Y. Chen, X. Peng, S. Yu, NeuroSim+: an integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures, in 2017 IEEE International Electron Devices Meeting (IEDM), 6.1.1–6.1.4. IEEE (2018). https://doi.org/10.1109/iedm.2017.8268337
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57(3), 1505–1509 (1998). https://doi.org/10.1103/physrevb.57.1505
M. Wu, X. Yao, Y. Hao, H. Dong, Y. Cheng et al., Electronic structures, magnetic properties and band alignments of 3d transition metal atoms doped monolayer MoS2. Phys. Lett. A 382(2–3), 111–115 (2018). https://doi.org/10.1016/j.physleta.2017.10.024
S.Y. Park, D.-B. Seo, H. Choi, J.H. Lee, D.H. Lee et al., Structural instability stimulated heteroatoms co-doping of 2D quaternary semiconductor for optoelectronic applications. Adv. Funct. Mater. 34(13), 2310178 (2024). https://doi.org/10.1002/adfm.202310178
A. Kanwal, A. Jalil, R.A. Raza, S. Ahmed, T. Zhao et al., Effect of strain on electronic properties of tri-layer MoS2/h-BN/graphene van der Waals heterostructures. J. Phys. Chem. Solids 185, 111776 (2024). https://doi.org/10.1016/j.jpcs.2023.111776
S.W. Kim, S.Y. Choi, S.H. Lim, E.B. Ko, S. Kim et al., Understanding solvent-induced delamination and intense water adsorption in Janus transition metal dichalcogenides for enhanced device performance. Adv. Funct. Mater. 34(8), 2308709 (2024). https://doi.org/10.1002/adfm.202308709
D.B. Trivedi, G. Turgut, Y. Qin, M.Y. Sayyad, D. Hajra et al., Room-temperature synthesis of 2D Janus crystals and their heterostructures. Adv. Mater. 32(50), e2006320 (2020). https://doi.org/10.1002/adma.202006320
M. Lee, T.W. Kim, C.Y. Park, K. Lee, T. Taniguchi et al., Graphene bridge heterostructure devices for negative differential transconductance circuit applications. Nano-Micro Lett 15(1), 22 (2022). https://doi.org/10.1007/s40820-022-01001-5
C. Acal, D. Maldonado, A.M. Aguilera, K. Zhu, M. Lanza et al., Holistic variability analysis in resistive switching memories using a two-dimensional variability coefficient. ACS Appl. Mater. Interfaces 15(15), 19102–19110 (2023). https://doi.org/10.1021/acsami.2c22617
K. Jiang, S. Li, F. Chen, L. Zhu, W. Li, Microstructure characterization, phase transition, and device application of phase-change memory materials. Sci. Technol. Adv. Mater. 24, 2252725 (2023). https://doi.org/10.1080/14686996.2023.2252725
H. Wang, H. Guo, R. Guzman, N. JiaziLa, K. Wu et al., Ultrafast non-volatile floating-gate memory based on all-2D materials. Adv. Mater. 36(24), e2311652 (2024). https://doi.org/10.1002/adma.202311652
J. Yu, H. Wang, F. Zhuge, Z. Chen, M. Hu et al., Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts. Nat. Commun. 14(1), 5662 (2023). https://doi.org/10.1038/s41467-023-41363-x
P. Yang, D. Wang, X. Zhao, W. Quan, Q. Jiang et al., Epitaxial growth of inch-scale single-crystal transition metal dichalcogenides through the patching of unidirectionally orientated ribbons. Nat. Commun. 13(1), 3238 (2022). https://doi.org/10.1038/s41467-022-30900-9
S.-J. Jeong, Y. Gu, J. Heo, J. Yang, C.-S. Lee et al., Thickness scaling of atomic-layer-deposited HfO2 films and their application to wafer-scale graphene tunnelling transistors. Sci. Rep. 6, 20907 (2016). https://doi.org/10.1038/srep20907
Z. Zhou, Z. Zhang, P. Li, Z. Guan, Y. Li et al., Low energy consumption photoelectric memristors with multi-level linear conductance modulation in artificial visual systems application. Nano-Micro Lett. 17(1), 317 (2025). https://doi.org/10.1007/s40820-025-01816-y
J. Sung, S.W. Kim, D. Lee, S. Moon, E. Lee et al., Co-stimuli-driven 2D WSe2 optoelectronic synapses for neuromorphic computing. Small 21(31), e2504024 (2025). https://doi.org/10.1002/smll.202504024
J. Hwang, J. Sung, E. Lee, W. Choi, A heterointerface effect of Mo1-xWxS2-based artificial synapse for neuromorphic computing. Chem. Eng. J. 510, 161622 (2025). https://doi.org/10.1016/j.cej.2025.161622
D. Lee, M. Kim, S. Park, S. Lee, J. Sung et al., Inter-ion mutual repulsion control for nonvolatile artificial synapse. Adv. Funct. Mater. 35(11), 2412012 (2025). https://doi.org/10.1002/adfm.202412012
R.S. Zucker, W.G. Regehr, Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002). https://doi.org/10.1146/annurev.physiol.64.092501.114547
J. Sung, H.J. Cheon, D. Lee, S. Chung, L. Ayuningtias et al., Improving ion uptake in artificial synapses through facilitated diffusion mechanisms. Mater. Horiz. 12(14), 5225–5235 (2025). https://doi.org/10.1039/d5mh00005j
J. Sung, S. Chung, Y. Jang, H. Jang, J. Kim et al., Unveiling the role of side chain for improving nonvolatile characteristics of conjugated polymers-based artificial synapse. Adv. Sci. 11(16), 2400304 (2024). https://doi.org/10.1002/advs.202400304
H. Zhou, S. Li, K.-W. Ang, Y.-W. Zhang, Recent advances in in-memory computing: exploring memristor and memtransistor arrays with 2D materials. Nano-Micro Lett. 16(1), 121 (2024). https://doi.org/10.1007/s40820-024-01335-2
K. Wang, S. Ren, Y. Jia, X. Yan, L. Wang et al., MXene-Ti3C2Tx-based neuromorphic computing: physical mechanisms, performance enhancement, and cutting-edge computing. Nano-Micro Lett. 17(1), 273 (2025). https://doi.org/10.1007/s40820-025-01787-0