Laser-Driven Single-Step Synthesis of Monolithic Prelithiated Silicon-Graphene Anodes for Ultrahigh-Performance Zero-Decay Lithium-Ion Batteries
Corresponding Author: Fernando Patolsky
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 220
Abstract
Silicon-based anodes offer a promising alternative to graphite in lithium-ion batteries (LIBs) due to significantly higher energy density. However, their practical application is limited by substantial volume expansion during lithiation, which causes structural instability and continuous formation of the solid electrolyte interphase (SEI), drastically reducing initial coulombic efficiency (ICE) and capacity retention. Strategies such as silicon nanostructuring and integration with conductive carbon matrices help accommodate volume changes and improve conductivity but fall short in fully addressing lithium loss and long-term capacity fade. Prelithiation can mitigate these issues by compensating for lithium loss and stabilizing the SEI. However, conventional prelithiation methods are complex, air-sensitive, multi-step, and ex situ, often requiring reactive lithium metal or exotic lithium salt precursors. In response, this study introduces a laser-driven, solid-state, ambient, in situ prelithiation method performed concurrently with the synthesis of silicon-graphene pseudo-monolithic composite anodes. A ternary blend of phenolic resin, silicon nanoparticles (SiNPs), and common lithium salts, subjected to rapid, low-power laser irradiation, produces a self-standing, air-stable, prelithiated composite, where the resulting porous and conductive matrix encapsulates the SiNPs, while the unique laser-induced environment triggers in situ reactions that prelithiate the silicon surface and form stable covalent interfaces. The resulting lithiated anodes reveal remarkable features, delivering over 1700 mAh g−1 with negligible capacity decay (< 2%) over 2000 + cycles at 5 A g−1, 83% retention after 4500 cycles, and ICE above 97% versus non-lithiated counterparts. The anodes also display ultrafast charging capabilities, retaining up to 63% of their maximum capacity at 10 A g−1. This innovation not only advances the development of next-generation LIBs, but also establishes a framework for converting readily available and cost-effective precursor materials into high-performing electrodes, promising to reduce complexity and costs in battery manufacturing.
Highlights:
1 We report an ambient single-step laser-driven process that simultaneously synthesizes and integrates prelithiated silicon nanoparticles into a robust graphene matrix using simple precursors.
2 Prelithiation is achieved in situ through interfacial solid-state reactions between Si and common lithium salt precursors during the ultrafast photothermal graphitization of phenolic resin.
3 Prelithiated silicon nanoparticles/laser-induced graphene anodes exhibit exceptional cycling stability (> 98% capacity retention after 2000 cycles) and near-zero performance decay in Li-ion half and full cells compared to non-lithiated counterparts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. He, J. Meng, Y. Huang, Challenges and recent progress in fast-charging lithium-ion battery materials. J. Power. Sources 570, 232965 (2023). https://doi.org/10.1016/j.jpowsour.2023.232965
- P. Engels, F. Cerdas, T. Dettmer, C. Frey, J. Hentschel et al., Life cycle assessment of natural graphite production for lithium-ion battery anodes based on industrial primary data. J. Cleaner Prod. 336, 130474 (2022). https://doi.org/10.1016/j.jclepro.2022.130474
- Y. Yang, S. Biswas, R. Xu, X. Xiao, X. Xu et al., Capacity recovery by transient voltage pulse in silicon-anode batteries. Science 386(6719), 322–327 (2024). https://doi.org/10.1126/science.adn1749
- S.A. Ahad, T. Kennedy, H. Geaney, Si nanowires: from model system to practical Li-ion anode material and beyond. ACS Energy Lett. 9(4), 1548–1561 (2024). https://doi.org/10.1021/acsenergylett.4c00262
- E. Lübke, L. Helfen, P. Cook, M. Mirolo, V. Vinci et al., The origins of critical deformations in cylindrical silicon based Li-ion batteries. Energy Environ. Sci. 17(14), 5048–5059 (2024). https://doi.org/10.1039/D4EE00590B
- P.R. Adhikari, G.F. Pach, J. Quinn, C. Wang, A. Singh et al., The origin of improved performance in boron-alloyed silicon nanop-based anodes for lithium-ion batteries. Adv. Energy Mater. 15(32), 2501074 (2025). https://doi.org/10.1002/aenm.202501074
- H. Huo, M. Jiang, Y. Bai, S. Ahmed, K. Volz et al., Chemo-mechanical failure mechanisms of the silicon anode in solid-state batteries. Nat. Mater. 23(4), 543–551 (2024). https://doi.org/10.1038/s41563-023-01792-x
- J.A. Lewis, K.A. Cavallaro, Y. Liu, M.T. McDowell, The promise of alloy anodes for solid-state batteries. Joule 6(7), 1418–1430 (2022). https://doi.org/10.1016/j.joule.2022.05.016
- W. Yan, Z. Mu, Z. Wang, Y. Huang, D. Wu et al., Hard-carbon-stabilized Li–Si anodes for high-performance all-solid-state Li-ion batteries. Nat. Energy 8(8), 800–813 (2023). https://doi.org/10.1038/s41560-023-01279-8
- Z. Xiao, H. Wu, L. Quan, F. Zeng, R. Guo et al., Micro-sized CVD-derived Si–C anodes: challenges, strategies, and prospects for next-generation high-energy lithium-ion batteries. Energy Environ. Sci. 18(9), 4037–4052 (2025). https://doi.org/10.1039/d5ee01568e
- Y. Li, Q. Li, J. Chai, Y. Wang, J. Du et al., Si-based anode lithium-ion batteries: a comprehensive review of recent progress. ACS Mater. Lett. 5(11), 2948–2970 (2023). https://doi.org/10.1021/acsmaterialslett.3c00253
- Z. Xiao, C. Wang, L. Song, Y. Zheng, T. Long, Research progress of nano-silicon-based materials and silicon-carbon composite anode materials for lithium-ion batteries. J. Solid State Electrochem. 26(5), 1125–1136 (2022). https://doi.org/10.1007/s10008-022-05141-x
- Y. Zhang, B. Wu, G. Mu, C. Ma, D. Mu et al., Recent progress and perspectives on silicon anode: synthesis and prelithiation for LIBs energy storage. J. Energy Chem. 64, 615–650 (2022). https://doi.org/10.1016/j.jechem.2021.04.013
- X. Liu, Z. Wu, L. Xie, L. Sheng, J. Liu et al., Prelithiation enhances cycling life of lithium-ion batteries: a mini review. Energy Environ. Mater. 6(6), e12501 (2023). https://doi.org/10.1002/eem2.12501
- T. Jia, G. Zhong, Y. Lv, N. Li, Y. Liu et al., Prelithiation strategies for silicon-based anode in high energy density lithium-ion battery. Green Energy Environ. 8(5), 1325–1340 (2023). https://doi.org/10.1016/j.gee.2022.08.005
- L. Quan, Q. Su, H. Lei, W. Zhang, Y. Deng et al., Integrated prelithiation and SEI engineering for high-performance silicon anodes in lithium-ion batteries. Natl. Sci. Rev. 12(7), nwaf084 (2025). https://doi.org/10.1093/nsr/nwaf084
- X. Min, G. Xu, B. Xie, P. Guan, M. Sun et al., Challenges of prelithiation strategies for next generation high energy lithium-ion batteries. Energy Storage Mater. 47, 297–318 (2022). https://doi.org/10.1016/j.ensm.2022.02.005
- R. Zhan, X. Wang, Z. Chen, Z.W. Seh, L. Wang et al., Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries. Adv. Energy Mater. 11(35), 2101565 (2021). https://doi.org/10.1002/aenm.202101565
- Y. Yang, J. Wang, S.C. Kim, W. Zhang, Y. Peng et al., In situ prelithiation by direct integration of lithium mesh into battery cells. Nano Lett. 23(11), 5042–5047 (2023). https://doi.org/10.1021/acs.nanolett.3c00859
- Y.-S. Su, J.-K. Chang, Polycyclic aromatic hydrocarbon-enabled wet chemical prelithiation and presodiation for batteries. Batteries 8(8), 99 (2022). https://doi.org/10.3390/batteries8080099
- K. Avinash, F. Patolsky, Laser-induced graphene structures: from synthesis and applications to future prospects. Mater. Today 70, 104–136 (2023). https://doi.org/10.1016/j.mattod.2023.10.009
- Y. Dong, S.C. Rismiller, J. Lin, Molecular dynamic simulation of layered graphene clusters formation from polyimides under extreme conditions. Carbon 104, 47–55 (2016). https://doi.org/10.1016/j.carbon.2016.03.050
- A. Vashisth, M. Kowalik, J.C. Gerringer, C. Ashraf, A.C.T. van Duin et al., ReaxFF simulations of laser-induced graphene (LIG) formation for multifunctional polymer nanocomposites. ACS Appl. Nano Mater. 3(2), 1881–1890 (2020). https://doi.org/10.1021/acsanm.9b02524
- A. Kothuru, A. Cohen, G. Daffan, Y. Juhl, F. Patolsky, Pioneering the direct large-scale laser printing of flexible “graphenic silicon” self-standing thin films as ultrahigh-performance lithium-ion battery anodes. Carbon Energy 6(7), e507 (2024). https://doi.org/10.1002/cey2.507
- G. Daffan, A. Cohen, Y. Sharaby, R. Nudelman, S. Richter et al., ‘Jelly to Joule’: direct laser writing of sustainable jellyfish-based ‘graphenic silicon’ anodes for environmentally remediating high-performance lithium-ion batteries. J. Energy Chem. 97, 553–565 (2024). https://doi.org/10.1016/j.jechem.2024.05.056
- G. Daffan, A. Kothuru, A. Eran, F. Patolsky, In-situ laser synthesis of molecularly dispersed and covalently bound phosphorus-graphene adducts as self-standing 3D anodes for high-performance fast-charging lithium-ion batteries. Adv. Energy Mater. 14(36), 2401832 (2024). https://doi.org/10.1002/aenm.202401832
- A. Kothuru, A. Cohen, G. Daffan, F. Patolsky, Direct laser-printing of molecularly-dispersed strongly-anchored sulfur-graphene layers as high-performance cathodes for polysulfide shuttle effect-inhibited lithium-sulfur batteries. ChemRxiv (2024). https://doi.org/10.26434/chemrxiv-2024-qdtpf
- G. Daffan, G. Bahuguna, A. Kothuru, F. Patolsky, Universal light-induced solid-state single-step approach for the in situ synthesis of porous graphene-embedded nanops. Carbon 235, 120077 (2025). https://doi.org/10.1016/j.carbon.2025.120077
- A. Monshi, M.R. Foroughi, M.R. Monshi, Modified scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2(3), 154–160 (2012). https://doi.org/10.4236/wjnse.2012.23020
- L. Wang, J. Zhao, X. He, J. Gao, J. Li et al., Electrochemical impedance spectroscopy (EIS) study of LiNi1/3Co1/3Mn1/3O2 for Li-ion batteries. Int. J. Electrochem. Sci. 7(1), 345–353 (2012). https://doi.org/10.1016/S1452-3981(23)13343-8
- J. Liu, L. Zhang, C. Yang, S. Tao, Preparation of multifunctional porous carbon electrodes through direct laser writing on a phenolic resin film. J. Mater. Chem. A 7(37), 21168–21175 (2019). https://doi.org/10.1039/C9TA07395G
- Z. Zhang, M. Song, J. Hao, K. Wu, C. Li et al., Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon 127, 287–296 (2018). https://doi.org/10.1016/j.carbon.2017.11.014
- M. Sopronyi, F. Sima, C. Vaulot, L. Delmotte, A. Bahouka et al., Direct synthesis of graphitic mesoporous carbon from green phenolic resins exposed to subsequent UV and IR laser irradiations. Sci. Rep. 6, 39617 (2016). https://doi.org/10.1038/srep39617
- J.S. Jayan, S.S. Jayan, Biomass-derived laser-induced graphene and its advances in the electronic applications. Adv. Eng. Mater. 25(16), 2300248 (2023). https://doi.org/10.1002/adem.202300248
- T.D. Le, H.-P. Phan, S. Kwon, S. Park, Y. Jung et al., Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronics. Adv. Funct. Mater. 32(48), 2205158 (2022). https://doi.org/10.1002/adfm.202205158
- A. Ghavipanjeh, S. Sadeghzadeh, Simulation and experimental evaluation of laser-induced graphene on the cellulose and lignin substrates. Sci. Rep. 14, 4475 (2024). https://doi.org/10.1038/s41598-024-54982-1
- R.G. Zonov, K.G. Mikheev, A.A. Chulkina, I.A. Zlobin, G.M. Mikheev, Effect of laser power on the structure and specific surface area of laser-induced graphene. Diamond Relat. Mater. 148, 111409 (2024). https://doi.org/10.1016/j.diamond.2024.111409
- İA. Karİper, The synthesis of silicon carbide in rhombohedral form with different chemicals. Metall. Mater. Trans. A 48(6), 3108–3112 (2017). https://doi.org/10.1007/s11661-017-4050-9
- J. Ribeiro-Soares, M.E. Oliveros, C. Garin, M.V. David, L.G.P. Martins et al., Structural analysis of polycrystalline graphene systems by Raman spectroscopy. Carbon 95, 646–652 (2015). https://doi.org/10.1016/j.carbon.2015.08.020
- A. Pizzi, A. Stephanou, Completion of alkaline cure acceleration of phenol–formaldehyde resins: acceleration by organic anhydrides. J. Appl. Polym. Sci. 51(7), 1351–1352 (1994). https://doi.org/10.1002/app.1994.070510723
- Y. Yan, J. Xu, S. Liu, M. Wang, C. Yang, Reactive force-field MD simulation on the pyrolysis process of phenolic with various cross-linked and branched structures. Chem. Eng. Sci. 272, 118606 (2023). https://doi.org/10.1016/j.ces.2023.118606
- Y. Zhao, Y. Li, F. Ma, X. Xing, S. Wang et al., Optimization of crosslinked network structure of cured phenolic resin with high char yield. Polym. Degrad. Stab. 231, 111073 (2025). https://doi.org/10.1016/j.polymdegradstab.2024.111073
- M. Purse, B. Holmes, M. Sacchi, B. Howlin, Simulating the complete pyrolysis and charring process of phenol–formaldehyde resins using reactive molecular dynamics. J. Mater. Sci. 57(15), 7600–7620 (2022). https://doi.org/10.1007/s10853-022-07145-4
- B. Wang, J. Liu, M. Norouzi Banis, Q. Sun, Y. Zhao et al., Atomic layer deposited lithium silicates as solid-state electrolytes for all-solid-state batteries. ACS Appl. Mater. Interfaces 9(37), 31786–31793 (2017). https://doi.org/10.1021/acsami.7b07113
- E. Radvanyi, E. De Vito, W. Porcher, S. Jouanneau Si Larbi, An XPS/AES comparative study of the surface behaviour of nano-silicon anodes for Li-ion batteries. J. Anal. At. Spectrom. 29(6), 1120–1131 (2014). https://doi.org/10.1039/C3JA50362C
- Y. Zhu, W. Hu, J. Zhou, W. Cai, Y. Lu et al., Prelithiated surface oxide layer enabled high-performance Si anode for lithium storage. ACS Appl. Mater. Interfaces 11(20), 18305–18312 (2019). https://doi.org/10.1021/acsami.8b22507
- X.D. Huang, F. Zhang, X.F. Gan, Q.A. Huang, J.Z. Yang et al., Electrochemical characteristics of amorphous silicon carbide film as a lithium-ion battery anode. RSC Adv. 8(10), 5189–5196 (2018). https://doi.org/10.1039/C7RA12463E
- S.K. Kumar, S. Ghosh, S.K. Malladi, J. Nanda, S.K. Martha, Nanostructured silicon-carbon 3D electrode architectures for high-performance lithium-ion batteries. ACS Omega 3(8), 9598–9606 (2018). https://doi.org/10.1021/acsomega.8b00924
- L. dos Santos-Gómez, N. Cuesta, I. Cameán, S. García-Granda, A.B. García et al., A promising silicon/carbon xerogel composite for high-rate and high-capacity lithium-ion batteries. Electrochim. Acta 426, 140790 (2022). https://doi.org/10.1016/j.electacta.2022.140790
- Y. Zhang, B. Wu, J. Bi, X. Zhang, D. Mu et al., Facilitating prelithiation of silicon carbon anode by localized high-concentration electrolyte for high-rate and long-cycle lithium storage. Carbon Energy 6(6), e480 (2024). https://doi.org/10.1002/cey2.480
- F. Wang, B. Wang, Z. Yu, C. Zhu, P. Liu et al., Construction of air-stable pre-lithiated SiOx anodes for next-generation high-energy-density lithium-ion batteries. Cell Rep. Phys. Sci. 3(5), 100872 (2022). https://doi.org/10.1016/j.xcrp.2022.100872
- K.-J. Jeong, S. Hossen, M.T. Rahman, J.S. Shim, D.-H. Lee et al., Enhancing charging efficiency with lithium silicate in silicon composite anode materials through lithiothermic reduction reaction synthesis. Adv. Mater. Technol. 9(14), 2302055 (2024). https://doi.org/10.1002/admt.202302055
- H. Cui, Z. Wang, Y. Jing, X. Li, W. Peng et al., Electrochemical in situ lithiated Li2SiO3 layer promote high performance silicon anode for lithium-ion batteries. Mater. Today Energy 46, 101716 (2024). https://doi.org/10.1016/j.mtener.2024.101716
- Y. Zhang, N. Du, D. Yang, Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries. Nanoscale 11(41), 19086–19104 (2019). https://doi.org/10.1039/C9NR05748J
- K. Vishweswariah, N.G. Ningappa, M.D. Bouguern, A. Kumar M R, M.B. Armand et al., Evaluation and characterization of SEI composition in lithium metal and anode-free lithium batteries. Adv. Energy Mater. 15(39), 2501883 (2025). https://doi.org/10.1002/aenm.202501883
- Y.-S. Chen, J.-K. Chang, Y.-S. Su, Engineering a lithium silicate-based artificial solid electrolyte interphase for enhanced rechargeable lithium metal batteries. Surf. Coat. Technol. 480, 130617 (2024). https://doi.org/10.1016/j.surfcoat.2024.130617
- C. Cao, I.I. Abate, E. Sivonxay, B. Shyam, C. Jia et al., Solid electrolyte interphase on native oxide-terminated silicon anodes for Li-ion batteries. Joule 3(3), 762–781 (2019). https://doi.org/10.1016/j.joule.2018.12.013
- Y. Han, X. Liu, Z. Lu, Systematic investigation of prelithiated SiO2 ps for high-performance anodes in lithium-ion battery. Appl. Sci. 8(8), 1245 (2018). https://doi.org/10.3390/app8081245
- A. Nulu, V. Nulu, K.Y. Sohn, Influence of transition metal doping on nano silicon anodes for Li-ion energy storage applications. J. Alloys Compd. 911, 164976 (2022). https://doi.org/10.1016/j.jallcom.2022.164976
- X. Zhang, D. Wang, X. Qiu, Y. Ma, D. Kong et al., Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nat. Commun. 11, 3826 (2020). https://doi.org/10.1038/s41467-020-17686-4
- C. Yu, X. Chen, Z. Xiao, C. Lei, C. Zhang et al., Silicon carbide as a protective layer to stabilize Si-based anodes by inhibiting chemical reactions. Nano Lett. 19(8), 5124–5132 (2019). https://doi.org/10.1021/acs.nanolett.9b01492
- Y. Tzeng, J.-L. He, C.-Y. Jhan, Y.-H. Wu, Effects of SiC and resorcinol-formaldehyde (RF) carbon coatings on silicon-flake-based anode of lithium ion battery. Nanomaterials 11(2), 302 (2021). https://doi.org/10.3390/nano11020302
- S.S. Gabr, M.F. Mubarak, M. Keshawy, I. El Tantawy El Sayed, T. Abdel Moghny, Linear and nonlinear regression analysis of phenol and P-nitrophenol adsorption on a hybrid nanocarbon of ACTF: kinetics, isotherm, and thermodynamic modeling. Appl Water Sci 13(12), 230 (2023). https://doi.org/10.1007/s13201-023-02018-w
- M.O. Onizhuk, A.V. Panteleimonov, Y.V. Kholin, V.V. Ivanov, Dissociation constants of silanol groups of silic acids: quantum chemical estimations. J. Struct. Chem. 59(2), 261–271 (2018). https://doi.org/10.1134/s0022476618020026
- M. Higuchi, T. Yoshimatsu, T. Urakawa, M. Morita, Kinetics and mechanisms of the condensation reactions of phenolic resins II. base-catalyzed self-condensation of 4-hydroxymethylphenol. Polym. J. 33(10), 799–806 (2001). https://doi.org/10.1295/polymj.33.799
- D.D. Perrin, Ionisation constants of inorganic acids and bases in aqueous solution, 2nd edn. (Pergamon Press Ltd., Oxford, England, 1982). https://doi.org/10.1016/c2013-0-13276-x
- T. Vorauer, J. Schöggl, S.G. Sanadhya, M. Poluektov, W.D. Widanage et al., Impact of solid-electrolyte interphase reformation on capacity loss in silicon-based lithium-ion batteries. Commun. Mater. 4, 44 (2023). https://doi.org/10.1038/s43246-023-00368-1
- C.E.L. Foss, M.K. Talkhoncheh, A. Ulvestad, H.F. Andersen, P.E. Vullum et al., Revisiting mechanism of silicon degradation in Li-ion batteries: effect of delithiation examined by microscopy combined with ReaxFF. J. Phys. Chem. Lett. 16(9), 2238–2244 (2025). https://doi.org/10.1021/acs.jpclett.4c03620
- R. Zhang, Z. Xiao, Z. Lin, X. Yan, Z. He et al., Unraveling the fundamental mechanism of interface conductive network influence on the fast-charging performance of SiO-based anode for lithium-ion batteries. Nano-Micro Lett. 16(1), 43 (2023). https://doi.org/10.1007/s40820-023-01267-3
- S. Park, S. Kim, J.-A. Lee, M. Ue, N.-S. Choi, Liquid electrolyte chemistries for solid electrolyte interphase construction on silicon and lithium-metal anodes. Chem. Sci. 14(37), 9996–10024 (2023). https://doi.org/10.1039/D3SC03514J
- H. Dong, T. Yang, C. Liu, D. Luo, N. Liu et al., Controllable and scalable prelithiation of dry silicon-based anodes for high-energy-density lithium-ion batteries. Energy Storage Mater. 75, 104072 (2025). https://doi.org/10.1016/j.ensm.2025.104072
- D. Hu, C. Wu, Q. He, S. Zhang, S. Wang et al., Novel strategies for constructing highly efficient silicon/carbon anodes: chemical prelithiation and electrolyte post-treatment. J. Colloid Interface Sci. 688, 215–224 (2025). https://doi.org/10.1016/j.jcis.2025.02.136
- D. Han, S. Xiang, J. Cunha, Y. Xie, M. Zhou et al., Pre-lithiated silicon/carbon nanosphere anode with enhanced cycling ability and coulombic efficiency for lithium-ion batteries. J. Energy Storage 79, 110183 (2024). https://doi.org/10.1016/j.est.2023.110183
- Y.-J. Gao, C.-H. Cui, Z.-K. Huang, G.-Y. Pan, Y.-F. Gu et al., Lithium pre-storage enables high initial coulombic efficiency and stable lithium-enriched silicon/graphite anode. Angew. Chem. Int. Ed. 63(27), e202404637 (2024). https://doi.org/10.1002/anie.202404637
- C. Liu, Y. Yang, Y. Yao, T. Dai, S. Xu et al., Prelithiation of silicon encapsulated in MOF-derived carbon/ZnO framework for high-performance lithium-ion battery. Nano Mater. Sci. (2024). https://doi.org/10.1016/j.nanoms.2024.08.005
- P. Lai, C. Liu, Z. Sun, Z. Zhang, A highly effective and controllable chemical prelithiation of Silicon/Carbon/Graphite composite anodes for lithium-ion batteries. Solid State Ionics 403, 116415 (2023). https://doi.org/10.1016/j.ssi.2023.116415
- H. Wang, M. Zhang, Q. Jia, D. Du, F. Liu et al., Exploiting the capacity merits of Si anodes in the energy-dense prototypes via a homogeneous prelithiation therapy. Nano Energy 95, 107026 (2022). https://doi.org/10.1016/j.nanoen.2022.107026
- M. Gautam, G.K. Mishra, A. Ahuja, S. Sau, M. Furquan et al., Direct-contact prelithiation of Si–C anode study as a function of time, pressure, temperature, and the cell ideal time. ACS Appl. Mater. Interfaces 14(15), 17208–17220 (2022). https://doi.org/10.1021/acsami.1c23834
- C. Yao, X. Li, Y. Deng, Y. Li, P. Yang et al., An efficient prelithiation of graphene oxide nanoribbons wrapping silicon nanops for stable Li+ storage. Carbon 168, 392–403 (2020). https://doi.org/10.1016/j.carbon.2020.06.091
- H. Wu, L. Zheng, J. Zhan, N. Du, W. Liu et al., Recycling silicon-based industrial waste as sustainable sources of Si/SiO2 composites for high-performance Li-ion battery anodes. J. Power. Sources 449, 227513 (2020). https://doi.org/10.1016/j.jpowsour.2019.227513
References
J. He, J. Meng, Y. Huang, Challenges and recent progress in fast-charging lithium-ion battery materials. J. Power. Sources 570, 232965 (2023). https://doi.org/10.1016/j.jpowsour.2023.232965
P. Engels, F. Cerdas, T. Dettmer, C. Frey, J. Hentschel et al., Life cycle assessment of natural graphite production for lithium-ion battery anodes based on industrial primary data. J. Cleaner Prod. 336, 130474 (2022). https://doi.org/10.1016/j.jclepro.2022.130474
Y. Yang, S. Biswas, R. Xu, X. Xiao, X. Xu et al., Capacity recovery by transient voltage pulse in silicon-anode batteries. Science 386(6719), 322–327 (2024). https://doi.org/10.1126/science.adn1749
S.A. Ahad, T. Kennedy, H. Geaney, Si nanowires: from model system to practical Li-ion anode material and beyond. ACS Energy Lett. 9(4), 1548–1561 (2024). https://doi.org/10.1021/acsenergylett.4c00262
E. Lübke, L. Helfen, P. Cook, M. Mirolo, V. Vinci et al., The origins of critical deformations in cylindrical silicon based Li-ion batteries. Energy Environ. Sci. 17(14), 5048–5059 (2024). https://doi.org/10.1039/D4EE00590B
P.R. Adhikari, G.F. Pach, J. Quinn, C. Wang, A. Singh et al., The origin of improved performance in boron-alloyed silicon nanop-based anodes for lithium-ion batteries. Adv. Energy Mater. 15(32), 2501074 (2025). https://doi.org/10.1002/aenm.202501074
H. Huo, M. Jiang, Y. Bai, S. Ahmed, K. Volz et al., Chemo-mechanical failure mechanisms of the silicon anode in solid-state batteries. Nat. Mater. 23(4), 543–551 (2024). https://doi.org/10.1038/s41563-023-01792-x
J.A. Lewis, K.A. Cavallaro, Y. Liu, M.T. McDowell, The promise of alloy anodes for solid-state batteries. Joule 6(7), 1418–1430 (2022). https://doi.org/10.1016/j.joule.2022.05.016
W. Yan, Z. Mu, Z. Wang, Y. Huang, D. Wu et al., Hard-carbon-stabilized Li–Si anodes for high-performance all-solid-state Li-ion batteries. Nat. Energy 8(8), 800–813 (2023). https://doi.org/10.1038/s41560-023-01279-8
Z. Xiao, H. Wu, L. Quan, F. Zeng, R. Guo et al., Micro-sized CVD-derived Si–C anodes: challenges, strategies, and prospects for next-generation high-energy lithium-ion batteries. Energy Environ. Sci. 18(9), 4037–4052 (2025). https://doi.org/10.1039/d5ee01568e
Y. Li, Q. Li, J. Chai, Y. Wang, J. Du et al., Si-based anode lithium-ion batteries: a comprehensive review of recent progress. ACS Mater. Lett. 5(11), 2948–2970 (2023). https://doi.org/10.1021/acsmaterialslett.3c00253
Z. Xiao, C. Wang, L. Song, Y. Zheng, T. Long, Research progress of nano-silicon-based materials and silicon-carbon composite anode materials for lithium-ion batteries. J. Solid State Electrochem. 26(5), 1125–1136 (2022). https://doi.org/10.1007/s10008-022-05141-x
Y. Zhang, B. Wu, G. Mu, C. Ma, D. Mu et al., Recent progress and perspectives on silicon anode: synthesis and prelithiation for LIBs energy storage. J. Energy Chem. 64, 615–650 (2022). https://doi.org/10.1016/j.jechem.2021.04.013
X. Liu, Z. Wu, L. Xie, L. Sheng, J. Liu et al., Prelithiation enhances cycling life of lithium-ion batteries: a mini review. Energy Environ. Mater. 6(6), e12501 (2023). https://doi.org/10.1002/eem2.12501
T. Jia, G. Zhong, Y. Lv, N. Li, Y. Liu et al., Prelithiation strategies for silicon-based anode in high energy density lithium-ion battery. Green Energy Environ. 8(5), 1325–1340 (2023). https://doi.org/10.1016/j.gee.2022.08.005
L. Quan, Q. Su, H. Lei, W. Zhang, Y. Deng et al., Integrated prelithiation and SEI engineering for high-performance silicon anodes in lithium-ion batteries. Natl. Sci. Rev. 12(7), nwaf084 (2025). https://doi.org/10.1093/nsr/nwaf084
X. Min, G. Xu, B. Xie, P. Guan, M. Sun et al., Challenges of prelithiation strategies for next generation high energy lithium-ion batteries. Energy Storage Mater. 47, 297–318 (2022). https://doi.org/10.1016/j.ensm.2022.02.005
R. Zhan, X. Wang, Z. Chen, Z.W. Seh, L. Wang et al., Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries. Adv. Energy Mater. 11(35), 2101565 (2021). https://doi.org/10.1002/aenm.202101565
Y. Yang, J. Wang, S.C. Kim, W. Zhang, Y. Peng et al., In situ prelithiation by direct integration of lithium mesh into battery cells. Nano Lett. 23(11), 5042–5047 (2023). https://doi.org/10.1021/acs.nanolett.3c00859
Y.-S. Su, J.-K. Chang, Polycyclic aromatic hydrocarbon-enabled wet chemical prelithiation and presodiation for batteries. Batteries 8(8), 99 (2022). https://doi.org/10.3390/batteries8080099
K. Avinash, F. Patolsky, Laser-induced graphene structures: from synthesis and applications to future prospects. Mater. Today 70, 104–136 (2023). https://doi.org/10.1016/j.mattod.2023.10.009
Y. Dong, S.C. Rismiller, J. Lin, Molecular dynamic simulation of layered graphene clusters formation from polyimides under extreme conditions. Carbon 104, 47–55 (2016). https://doi.org/10.1016/j.carbon.2016.03.050
A. Vashisth, M. Kowalik, J.C. Gerringer, C. Ashraf, A.C.T. van Duin et al., ReaxFF simulations of laser-induced graphene (LIG) formation for multifunctional polymer nanocomposites. ACS Appl. Nano Mater. 3(2), 1881–1890 (2020). https://doi.org/10.1021/acsanm.9b02524
A. Kothuru, A. Cohen, G. Daffan, Y. Juhl, F. Patolsky, Pioneering the direct large-scale laser printing of flexible “graphenic silicon” self-standing thin films as ultrahigh-performance lithium-ion battery anodes. Carbon Energy 6(7), e507 (2024). https://doi.org/10.1002/cey2.507
G. Daffan, A. Cohen, Y. Sharaby, R. Nudelman, S. Richter et al., ‘Jelly to Joule’: direct laser writing of sustainable jellyfish-based ‘graphenic silicon’ anodes for environmentally remediating high-performance lithium-ion batteries. J. Energy Chem. 97, 553–565 (2024). https://doi.org/10.1016/j.jechem.2024.05.056
G. Daffan, A. Kothuru, A. Eran, F. Patolsky, In-situ laser synthesis of molecularly dispersed and covalently bound phosphorus-graphene adducts as self-standing 3D anodes for high-performance fast-charging lithium-ion batteries. Adv. Energy Mater. 14(36), 2401832 (2024). https://doi.org/10.1002/aenm.202401832
A. Kothuru, A. Cohen, G. Daffan, F. Patolsky, Direct laser-printing of molecularly-dispersed strongly-anchored sulfur-graphene layers as high-performance cathodes for polysulfide shuttle effect-inhibited lithium-sulfur batteries. ChemRxiv (2024). https://doi.org/10.26434/chemrxiv-2024-qdtpf
G. Daffan, G. Bahuguna, A. Kothuru, F. Patolsky, Universal light-induced solid-state single-step approach for the in situ synthesis of porous graphene-embedded nanops. Carbon 235, 120077 (2025). https://doi.org/10.1016/j.carbon.2025.120077
A. Monshi, M.R. Foroughi, M.R. Monshi, Modified scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2(3), 154–160 (2012). https://doi.org/10.4236/wjnse.2012.23020
L. Wang, J. Zhao, X. He, J. Gao, J. Li et al., Electrochemical impedance spectroscopy (EIS) study of LiNi1/3Co1/3Mn1/3O2 for Li-ion batteries. Int. J. Electrochem. Sci. 7(1), 345–353 (2012). https://doi.org/10.1016/S1452-3981(23)13343-8
J. Liu, L. Zhang, C. Yang, S. Tao, Preparation of multifunctional porous carbon electrodes through direct laser writing on a phenolic resin film. J. Mater. Chem. A 7(37), 21168–21175 (2019). https://doi.org/10.1039/C9TA07395G
Z. Zhang, M. Song, J. Hao, K. Wu, C. Li et al., Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon 127, 287–296 (2018). https://doi.org/10.1016/j.carbon.2017.11.014
M. Sopronyi, F. Sima, C. Vaulot, L. Delmotte, A. Bahouka et al., Direct synthesis of graphitic mesoporous carbon from green phenolic resins exposed to subsequent UV and IR laser irradiations. Sci. Rep. 6, 39617 (2016). https://doi.org/10.1038/srep39617
J.S. Jayan, S.S. Jayan, Biomass-derived laser-induced graphene and its advances in the electronic applications. Adv. Eng. Mater. 25(16), 2300248 (2023). https://doi.org/10.1002/adem.202300248
T.D. Le, H.-P. Phan, S. Kwon, S. Park, Y. Jung et al., Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronics. Adv. Funct. Mater. 32(48), 2205158 (2022). https://doi.org/10.1002/adfm.202205158
A. Ghavipanjeh, S. Sadeghzadeh, Simulation and experimental evaluation of laser-induced graphene on the cellulose and lignin substrates. Sci. Rep. 14, 4475 (2024). https://doi.org/10.1038/s41598-024-54982-1
R.G. Zonov, K.G. Mikheev, A.A. Chulkina, I.A. Zlobin, G.M. Mikheev, Effect of laser power on the structure and specific surface area of laser-induced graphene. Diamond Relat. Mater. 148, 111409 (2024). https://doi.org/10.1016/j.diamond.2024.111409
İA. Karİper, The synthesis of silicon carbide in rhombohedral form with different chemicals. Metall. Mater. Trans. A 48(6), 3108–3112 (2017). https://doi.org/10.1007/s11661-017-4050-9
J. Ribeiro-Soares, M.E. Oliveros, C. Garin, M.V. David, L.G.P. Martins et al., Structural analysis of polycrystalline graphene systems by Raman spectroscopy. Carbon 95, 646–652 (2015). https://doi.org/10.1016/j.carbon.2015.08.020
A. Pizzi, A. Stephanou, Completion of alkaline cure acceleration of phenol–formaldehyde resins: acceleration by organic anhydrides. J. Appl. Polym. Sci. 51(7), 1351–1352 (1994). https://doi.org/10.1002/app.1994.070510723
Y. Yan, J. Xu, S. Liu, M. Wang, C. Yang, Reactive force-field MD simulation on the pyrolysis process of phenolic with various cross-linked and branched structures. Chem. Eng. Sci. 272, 118606 (2023). https://doi.org/10.1016/j.ces.2023.118606
Y. Zhao, Y. Li, F. Ma, X. Xing, S. Wang et al., Optimization of crosslinked network structure of cured phenolic resin with high char yield. Polym. Degrad. Stab. 231, 111073 (2025). https://doi.org/10.1016/j.polymdegradstab.2024.111073
M. Purse, B. Holmes, M. Sacchi, B. Howlin, Simulating the complete pyrolysis and charring process of phenol–formaldehyde resins using reactive molecular dynamics. J. Mater. Sci. 57(15), 7600–7620 (2022). https://doi.org/10.1007/s10853-022-07145-4
B. Wang, J. Liu, M. Norouzi Banis, Q. Sun, Y. Zhao et al., Atomic layer deposited lithium silicates as solid-state electrolytes for all-solid-state batteries. ACS Appl. Mater. Interfaces 9(37), 31786–31793 (2017). https://doi.org/10.1021/acsami.7b07113
E. Radvanyi, E. De Vito, W. Porcher, S. Jouanneau Si Larbi, An XPS/AES comparative study of the surface behaviour of nano-silicon anodes for Li-ion batteries. J. Anal. At. Spectrom. 29(6), 1120–1131 (2014). https://doi.org/10.1039/C3JA50362C
Y. Zhu, W. Hu, J. Zhou, W. Cai, Y. Lu et al., Prelithiated surface oxide layer enabled high-performance Si anode for lithium storage. ACS Appl. Mater. Interfaces 11(20), 18305–18312 (2019). https://doi.org/10.1021/acsami.8b22507
X.D. Huang, F. Zhang, X.F. Gan, Q.A. Huang, J.Z. Yang et al., Electrochemical characteristics of amorphous silicon carbide film as a lithium-ion battery anode. RSC Adv. 8(10), 5189–5196 (2018). https://doi.org/10.1039/C7RA12463E
S.K. Kumar, S. Ghosh, S.K. Malladi, J. Nanda, S.K. Martha, Nanostructured silicon-carbon 3D electrode architectures for high-performance lithium-ion batteries. ACS Omega 3(8), 9598–9606 (2018). https://doi.org/10.1021/acsomega.8b00924
L. dos Santos-Gómez, N. Cuesta, I. Cameán, S. García-Granda, A.B. García et al., A promising silicon/carbon xerogel composite for high-rate and high-capacity lithium-ion batteries. Electrochim. Acta 426, 140790 (2022). https://doi.org/10.1016/j.electacta.2022.140790
Y. Zhang, B. Wu, J. Bi, X. Zhang, D. Mu et al., Facilitating prelithiation of silicon carbon anode by localized high-concentration electrolyte for high-rate and long-cycle lithium storage. Carbon Energy 6(6), e480 (2024). https://doi.org/10.1002/cey2.480
F. Wang, B. Wang, Z. Yu, C. Zhu, P. Liu et al., Construction of air-stable pre-lithiated SiOx anodes for next-generation high-energy-density lithium-ion batteries. Cell Rep. Phys. Sci. 3(5), 100872 (2022). https://doi.org/10.1016/j.xcrp.2022.100872
K.-J. Jeong, S. Hossen, M.T. Rahman, J.S. Shim, D.-H. Lee et al., Enhancing charging efficiency with lithium silicate in silicon composite anode materials through lithiothermic reduction reaction synthesis. Adv. Mater. Technol. 9(14), 2302055 (2024). https://doi.org/10.1002/admt.202302055
H. Cui, Z. Wang, Y. Jing, X. Li, W. Peng et al., Electrochemical in situ lithiated Li2SiO3 layer promote high performance silicon anode for lithium-ion batteries. Mater. Today Energy 46, 101716 (2024). https://doi.org/10.1016/j.mtener.2024.101716
Y. Zhang, N. Du, D. Yang, Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries. Nanoscale 11(41), 19086–19104 (2019). https://doi.org/10.1039/C9NR05748J
K. Vishweswariah, N.G. Ningappa, M.D. Bouguern, A. Kumar M R, M.B. Armand et al., Evaluation and characterization of SEI composition in lithium metal and anode-free lithium batteries. Adv. Energy Mater. 15(39), 2501883 (2025). https://doi.org/10.1002/aenm.202501883
Y.-S. Chen, J.-K. Chang, Y.-S. Su, Engineering a lithium silicate-based artificial solid electrolyte interphase for enhanced rechargeable lithium metal batteries. Surf. Coat. Technol. 480, 130617 (2024). https://doi.org/10.1016/j.surfcoat.2024.130617
C. Cao, I.I. Abate, E. Sivonxay, B. Shyam, C. Jia et al., Solid electrolyte interphase on native oxide-terminated silicon anodes for Li-ion batteries. Joule 3(3), 762–781 (2019). https://doi.org/10.1016/j.joule.2018.12.013
Y. Han, X. Liu, Z. Lu, Systematic investigation of prelithiated SiO2 ps for high-performance anodes in lithium-ion battery. Appl. Sci. 8(8), 1245 (2018). https://doi.org/10.3390/app8081245
A. Nulu, V. Nulu, K.Y. Sohn, Influence of transition metal doping on nano silicon anodes for Li-ion energy storage applications. J. Alloys Compd. 911, 164976 (2022). https://doi.org/10.1016/j.jallcom.2022.164976
X. Zhang, D. Wang, X. Qiu, Y. Ma, D. Kong et al., Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nat. Commun. 11, 3826 (2020). https://doi.org/10.1038/s41467-020-17686-4
C. Yu, X. Chen, Z. Xiao, C. Lei, C. Zhang et al., Silicon carbide as a protective layer to stabilize Si-based anodes by inhibiting chemical reactions. Nano Lett. 19(8), 5124–5132 (2019). https://doi.org/10.1021/acs.nanolett.9b01492
Y. Tzeng, J.-L. He, C.-Y. Jhan, Y.-H. Wu, Effects of SiC and resorcinol-formaldehyde (RF) carbon coatings on silicon-flake-based anode of lithium ion battery. Nanomaterials 11(2), 302 (2021). https://doi.org/10.3390/nano11020302
S.S. Gabr, M.F. Mubarak, M. Keshawy, I. El Tantawy El Sayed, T. Abdel Moghny, Linear and nonlinear regression analysis of phenol and P-nitrophenol adsorption on a hybrid nanocarbon of ACTF: kinetics, isotherm, and thermodynamic modeling. Appl Water Sci 13(12), 230 (2023). https://doi.org/10.1007/s13201-023-02018-w
M.O. Onizhuk, A.V. Panteleimonov, Y.V. Kholin, V.V. Ivanov, Dissociation constants of silanol groups of silic acids: quantum chemical estimations. J. Struct. Chem. 59(2), 261–271 (2018). https://doi.org/10.1134/s0022476618020026
M. Higuchi, T. Yoshimatsu, T. Urakawa, M. Morita, Kinetics and mechanisms of the condensation reactions of phenolic resins II. base-catalyzed self-condensation of 4-hydroxymethylphenol. Polym. J. 33(10), 799–806 (2001). https://doi.org/10.1295/polymj.33.799
D.D. Perrin, Ionisation constants of inorganic acids and bases in aqueous solution, 2nd edn. (Pergamon Press Ltd., Oxford, England, 1982). https://doi.org/10.1016/c2013-0-13276-x
T. Vorauer, J. Schöggl, S.G. Sanadhya, M. Poluektov, W.D. Widanage et al., Impact of solid-electrolyte interphase reformation on capacity loss in silicon-based lithium-ion batteries. Commun. Mater. 4, 44 (2023). https://doi.org/10.1038/s43246-023-00368-1
C.E.L. Foss, M.K. Talkhoncheh, A. Ulvestad, H.F. Andersen, P.E. Vullum et al., Revisiting mechanism of silicon degradation in Li-ion batteries: effect of delithiation examined by microscopy combined with ReaxFF. J. Phys. Chem. Lett. 16(9), 2238–2244 (2025). https://doi.org/10.1021/acs.jpclett.4c03620
R. Zhang, Z. Xiao, Z. Lin, X. Yan, Z. He et al., Unraveling the fundamental mechanism of interface conductive network influence on the fast-charging performance of SiO-based anode for lithium-ion batteries. Nano-Micro Lett. 16(1), 43 (2023). https://doi.org/10.1007/s40820-023-01267-3
S. Park, S. Kim, J.-A. Lee, M. Ue, N.-S. Choi, Liquid electrolyte chemistries for solid electrolyte interphase construction on silicon and lithium-metal anodes. Chem. Sci. 14(37), 9996–10024 (2023). https://doi.org/10.1039/D3SC03514J
H. Dong, T. Yang, C. Liu, D. Luo, N. Liu et al., Controllable and scalable prelithiation of dry silicon-based anodes for high-energy-density lithium-ion batteries. Energy Storage Mater. 75, 104072 (2025). https://doi.org/10.1016/j.ensm.2025.104072
D. Hu, C. Wu, Q. He, S. Zhang, S. Wang et al., Novel strategies for constructing highly efficient silicon/carbon anodes: chemical prelithiation and electrolyte post-treatment. J. Colloid Interface Sci. 688, 215–224 (2025). https://doi.org/10.1016/j.jcis.2025.02.136
D. Han, S. Xiang, J. Cunha, Y. Xie, M. Zhou et al., Pre-lithiated silicon/carbon nanosphere anode with enhanced cycling ability and coulombic efficiency for lithium-ion batteries. J. Energy Storage 79, 110183 (2024). https://doi.org/10.1016/j.est.2023.110183
Y.-J. Gao, C.-H. Cui, Z.-K. Huang, G.-Y. Pan, Y.-F. Gu et al., Lithium pre-storage enables high initial coulombic efficiency and stable lithium-enriched silicon/graphite anode. Angew. Chem. Int. Ed. 63(27), e202404637 (2024). https://doi.org/10.1002/anie.202404637
C. Liu, Y. Yang, Y. Yao, T. Dai, S. Xu et al., Prelithiation of silicon encapsulated in MOF-derived carbon/ZnO framework for high-performance lithium-ion battery. Nano Mater. Sci. (2024). https://doi.org/10.1016/j.nanoms.2024.08.005
P. Lai, C. Liu, Z. Sun, Z. Zhang, A highly effective and controllable chemical prelithiation of Silicon/Carbon/Graphite composite anodes for lithium-ion batteries. Solid State Ionics 403, 116415 (2023). https://doi.org/10.1016/j.ssi.2023.116415
H. Wang, M. Zhang, Q. Jia, D. Du, F. Liu et al., Exploiting the capacity merits of Si anodes in the energy-dense prototypes via a homogeneous prelithiation therapy. Nano Energy 95, 107026 (2022). https://doi.org/10.1016/j.nanoen.2022.107026
M. Gautam, G.K. Mishra, A. Ahuja, S. Sau, M. Furquan et al., Direct-contact prelithiation of Si–C anode study as a function of time, pressure, temperature, and the cell ideal time. ACS Appl. Mater. Interfaces 14(15), 17208–17220 (2022). https://doi.org/10.1021/acsami.1c23834
C. Yao, X. Li, Y. Deng, Y. Li, P. Yang et al., An efficient prelithiation of graphene oxide nanoribbons wrapping silicon nanops for stable Li+ storage. Carbon 168, 392–403 (2020). https://doi.org/10.1016/j.carbon.2020.06.091
H. Wu, L. Zheng, J. Zhan, N. Du, W. Liu et al., Recycling silicon-based industrial waste as sustainable sources of Si/SiO2 composites for high-performance Li-ion battery anodes. J. Power. Sources 449, 227513 (2020). https://doi.org/10.1016/j.jpowsour.2019.227513