Microenvironment-Engineered Biocatalytic Metal–Organic Framework Nanomotors for Selective and Transformative Water Decontamination
Corresponding Author: Kang Liang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 224
Abstract
Catalytically powered micro-/nanomotors have become a compelling alternative to conventional catalysts for active and efficient removal of environmental pollutants in water remediation. We developed a novel biocatalytic nanomotor system by encapsulating catalase and peroxidase enzymes into metal–organic frameworks (MOFs), demonstrating exceptional speed and facilitated motion-induced convection and mass transfer. Leveraging a synergistic structural etching and surface engineering strategy using tannic acid (TA), we create a tailored microenvironment of the MOF’s framework with charge-selective and nanoconfinement properties. Both experimental and simulation results indicate that microenvironment modulation of MOF matrix could act in synergy with the encapsulated enzymes and significantly improve efficiency and selectivity in removing charged pollutants. Surface engineering of TA selectively preconcentrates target contaminants by modulating the MOF shell's surface charge, while etching-induced voids facilitate rapid mass transfer to the enzyme active sites. Finally, we also validated the applicability of these nanomotors in the transformative removal of pollutants from the aqueous phase into polymeric products via an enzyme-mediated polymerization pathway. This biocatalytic nanomotor system provides a promising water remediation paradigm for reducing carbon emissions and recycling chemical energy from emerging contaminants.
Highlights:
1 Biocatalytic metal–organic framework nanomotors were engineered with tunable microenvironment through a synergistic etching and surface engineering strategy.
2 Enhanced catalytic efficiency and selectivity for dye decontamination were achieved through charge-based enrichment and nanoconfinement effects.
3 Exceptional performance in water remediation of emerging contaminants, e.g., ~ 98% bisphenol A removal, in 2 min was achieved via enzymatic transformation into recoverable products.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Ren, Q. Zhang, J. Chen, X. Xiao, X. Duan et al., Catalytic resource recovery for transformation of the wastewater industry. Nat. Water 3(11), 1228–1242 (2025). https://doi.org/10.1038/s44221-025-00530-8
- H. Wang, D. Xu, G. Li, H. Liang, Insights into fouling control of the salt-responsive membrane across the entire filtration–backwashing cycle. Environ. Sci. Technol. 59(37), 20087–20097 (2025). https://doi.org/10.1021/acs.est.5c07126
- J. Parmar, D. Vilela, K. Villa, J. Wang, S. Sánchez, Micro- and nanomotors as active environmental microcleaners and sensors. J. Am. Chem. Soc. 140(30), 9317–9331 (2018). https://doi.org/10.1021/jacs.8b05762
- S. Dutta, S. Noh, R.S. Gual, X. Chen, S. Pané et al., Recent developments in metallic degradable micromotors for biomedical and environmental remediation applications. Nano-Micro Lett. 16(1), 41 (2023). https://doi.org/10.1007/s40820-023-01259-3
- S. Chen, D.E. Fan, P. Fischer, A. Ghosh, K. Göpfrich et al., A roadmap for next-generation nanomotors. Nat. Nanotechnol. 20(8), 990–1000 (2025). https://doi.org/10.1038/s41565-025-01962-9
- P. Díez, E. Lucena-Sánchez, A. Escudero, A. Llopis-Lorente, R. Villalonga et al., Ultrafast directional Janus Pt–mesoporous silica nanomotors for smart drug delivery. ACS Nano 15(3), 4467–4480 (2021). https://doi.org/10.1021/acsnano.0c08404
- F. Mushtaq, A. Asani, M. Hoop, X.-Z. Chen, D. Ahmed et al., Highly efficient coaxial TiO2–PtPd tubular nanomachines for photocatalytic water purification with multiple locomotion strategies. Adv. Funct. Mater. 26(38), 6995–7002 (2016). https://doi.org/10.1002/adfm.201602315
- X. Zhang, J. Tang, L. Wang, C. Wang, L. Chen et al., Nanoconfinement-triggered oligomerization pathway for efficient removal of phenolic pollutants via a Fenton-like reaction. Nat. Commun. 15(1), 917 (2024). https://doi.org/10.1038/s41467-024-45106-4
- Y. Chen, W. Ren, T. Ma, N. Ren, S. Wang et al., Transformative removal of aqueous micropollutants into polymeric products by advanced oxidation processes. Environ. Sci. Technol. 58(11), 4844–4851 (2024). https://doi.org/10.1021/acs.est.3c06376
- X. Gao, Z. Yang, W. Zhang, B. Pan, Carbon redirection via tunable fenton-like reactions under nanoconfinement toward sustainable water treatment. Nat. Commun. 15(1), 2808 (2024). https://doi.org/10.1038/s41467-024-47269-6
- Y.-J. Zhang, J.-S. Tao, Y. Hu, G.-X. Huang, Y. Pan et al., Metal oxyhalide-based heterogeneous catalytic water purification with ultralow H2O2 consumption. Nat. Water 2(8), 770–781 (2024). https://doi.org/10.1038/s44221-024-00281-y
- Y. Yang, W. Ren, K. Hu, P. Zhang, Y. Wang et al., Challenges in radical/nonradical-based advanced oxidation processes for carbon recycling. Chem. Catal. 2(8), 1858–1869 (2022). https://doi.org/10.1016/j.checat.2022.05.021
- C. Wang, S.-Y. Jia, Y. Han, Y. Li, Y. Liu et al., Selective oxidation of various phenolic contaminants by activated persulfate via the hydrogen abstraction pathway. ACS EST Eng. 1(9), 1275–1286 (2021). https://doi.org/10.1021/acsestengg.1c00091
- J. Sun, M. Mathesh, W. Li, D.A. Wilson, Enzyme-powered nanomotors with controlled size for biomedical applications. ACS Nano 13(9), 10191–10200 (2019). https://doi.org/10.1021/acsnano.9b03358
- J. Li, B. de Esteban-Fernánz Ávila, W. Gao, L. Zhang, J. Wang, Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2(4), eaam6431 (2017). https://doi.org/10.1126/scirobotics.aam6431
- S.-I. Shoda, H. Uyama, J.-I. Kadokawa, S. Kimura, S. Kobayashi, Enzymes as green catalysts for precision macromolecular synthesis. Chem. Rev. 116(4), 2307–2413 (2016). https://doi.org/10.1021/acs.chemrev.5b00472
- C. Zhong, H. Zhao, H. Cao, Q. Huang, Polymerization of micropollutants in natural aquatic environments: a review. Sci. Total. Environ. 693, 133751 (2019). https://doi.org/10.1016/j.scitotenv.2019.133751
- Z. Guo, Y. Wu, Z. Xie, J. Shao, J. Liu et al., Self-propelled initiative collision at microelectrodes with vertically mobile micromotors. Angew. Chem. Int. Ed. 61(40), e202209747 (2022). https://doi.org/10.1002/anie.202209747
- A.C. Hortelao, C. Simó, M. Guix, S. Guallar-Garrido, E. Julián et al., Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder. Sci. Robot. 6(52), eabd2823 (2021). https://doi.org/10.1126/scirobotics.abd2823
- S. Gao, J. Hou, J. Zeng, J.J. Richardson, Z. Gu et al., Superassembled biocatalytic porous framework micromotors with reversible and sensitive pH-speed regulation at ultralow physiological H2O2 concentration. Adv. Funct. Mater. 29(18), 1808900 (2019). https://doi.org/10.1002/adfm.201808900
- Y. Liu, J. Ge, Into the unknown: micro/nanomotors propelled by biocatalysis based on metal-organic frameworks. Chem. Catal. 2(10), 2458–2470 (2022). https://doi.org/10.1016/j.checat.2022.08.005
- Y. Yang, X. Arqué, T. Patiño, V. Guillerm, P.-R. Blersch et al., Enzyme-powered porous micromotors built from a hierarchical micro- and mesoporous UiO-type metal–organic framework. J. Am. Chem. Soc. 142(50), 20962–20967 (2020). https://doi.org/10.1021/jacs.0c11061
- Z. Guo, J. Liu, Y. Li, J.A. McDonald, M.Y. Bin Zulkifli et al., Biocatalytic metal–organic framework nanomotors for active water decontamination. Chem. Commun. 56(94), 14837–14840 (2020). https://doi.org/10.1039/D0CC06429G
- E. Gkaniatsou, C. Sicard, R. Ricoux, L. Benahmed, F. Bourdreux et al., Enzyme encapsulation in mesoporous metal–organic frameworks for selective biodegradation of harmful dye molecules. Angew. Chem. Int. Ed. 57(49), 16141–16146 (2018). https://doi.org/10.1002/anie.201811327
- J. Shen, X. Wang, L. Zhang, Z. Yang, W. Yang et al., Size-selective adsorption of methyl orange using a novel nano-composite by encapsulating HKUST-1 in hyper-crosslinked polystyrene networks. J. Clean. Prod. 184, 949–958 (2018). https://doi.org/10.1016/j.jclepro.2018.03.015
- Z. Guo, C. Zhuang, Y. Song, J. Yong, Y. Li et al., Biocatalytic buoyancy-driven nanobots for autonomous cell recognition and enrichment. Nano-Micro Lett. 15(1), 236 (2023). https://doi.org/10.1007/s40820-023-01207-1
- X. He, Fundamental perspectives on the electrochemical water applications of metal–organic frameworks. Nano-Micro Lett. 15(1), 148 (2023). https://doi.org/10.1007/s40820-023-01124-3
- E.M. Arndt, W. Moore, W.-K. Lee, C. Ortiz, Mechanistic origins of bombardier beetle (Brachinini) explosion-induced defensive spray pulsation. Science 348(6234), 563–567 (2015). https://doi.org/10.1126/science.1261166
- P. Vidossich, M. Alfonso-Prieto, C. Rovira, Catalases versus peroxidases: DFT investigation of H2O2 oxidation in models systems and implications for heme protein engineering. J. Inorg. Biochem. 117, 292–297 (2012). https://doi.org/10.1016/j.jinorgbio.2012.07.002
- P. Campomanes, U. Rothlisberger, M. Alfonso-Prieto, C. Rovira, The molecular mechanism of the catalase-like activity in horseradish peroxidase. J. Am. Chem. Soc. 137(34), 11170–11178 (2015). https://doi.org/10.1021/jacs.5b06796
- D. Morales-Urrea, A. López-Córdoba, E.M. Contreras, Inactivation kinetics of horseradish peroxidase (HRP) by hydrogen peroxide. Sci. Rep. 13(1), 13363 (2023). https://doi.org/10.1038/s41598-023-39687-1
- C.E. Grey, M. Hedström, P. Adlercreutz, A mass spectrometric investigation of native and oxidatively inactivated chloroperoxidase. ChemBioChem 8(9), 1055–1062 (2007). https://doi.org/10.1002/cbic.200700091
- Athula B., A. Sihang, X. Wendy, M. Reilly, M. Aman, G.K. Will (2020) Biosynthetic origin of benzoquinones in the explosive discharge of the bombardier beetle Brachinus elongatulus The Science of Nature 107(4) https://doi.org/10.1007/s00114-020-01683-0
- K. Liang, R. Ricco, C.M. Doherty, M.J. Styles, S. Bell et al., Biomimetic mineralization of metal–organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 6, 7240 (2015). https://doi.org/10.1038/ncomms8240
- Y. Lu, G. Zhang, H. Zhou, S. Cao, Y. Zhang et al., Enhanced active sites and stability in nano-MOFs for electrochemical energy storage through dual regulation by tannic acid. Angew. Chem. Int. Ed. 62(41), e202311075 (2023). https://doi.org/10.1002/anie.202311075
- F. Yang, J. Guo, C. Han, J. Huang, Z. Zhou et al., Turing covalent organic framework membranes via heterogeneous nucleation synthesis for organic solvent nanofiltration. Sci. Adv. 10(50), eadr9260 (2024). https://doi.org/10.1126/sciadv.adr9260
- J. Liang, S. Gao, J. Liu, M.Y.B. Zulkifli, J. Xu et al., Hierarchically porous biocatalytic MOF microreactor as a versatile platform towards enhanced multienzyme and cofactor-dependent biocatalysis. Angew. Chem. Int. Ed. 60(10), 5421–5428 (2021). https://doi.org/10.1002/anie.202014002
- M. Hu, Y. Ju, K. Liang, T. Suma, J. Cui et al., Void engineering in metal–organic frameworks via synergistic etching and surface functionalization. Adv. Funct. Mater. 26(32), 5827–5834 (2016). https://doi.org/10.1002/adfm.201601193
- J. Zhou, M. Penna, Z. Lin, Y. Han, R.P.M. Lafleur et al., Robust and versatile coatings engineered via simultaneous covalent and noncovalent interactions. Angew. Chem. Int. Ed. 60(37), 20225–20230 (2021). https://doi.org/10.1002/anie.202106316
- H. Konno, A. Tsukada, Size- and ion-selective adsorption of organic dyes from aqueous solutions using functionalized UiO-66 frameworks. Colloids Surf A Physicochem Eng Asp 651, 129749 (2022). https://doi.org/10.1016/j.colsurfa.2022.129749
- J. Li, Y.-N. Wu, Z. Li, B. Zhang, M. Zhu et al., Zeolitic imidazolate framework-8 with high efficiency in trace arsenate adsorption and removal from water. J. Phys. Chem. C 118(47), 27382–27387 (2014). https://doi.org/10.1021/jp508381m
- Q. Huang, W.J. Weber, Transformation and removal of bisphenol A from aqueous phase via peroxidase-mediated oxidative coupling reactions: efficacy, products, and pathways. Environ. Sci. Technol. 39(16), 6029–6036 (2005). https://doi.org/10.1021/es050036x
- M. Wang, Y. Chen, V.A. Kickhoefer, L.H. Rome, P. Allard et al., A vault-encapsulated enzyme approach for efficient degradation and detoxification of bisphenol A and its analogues. ACS Sustain. Chem. Eng. 7(6), 5808–5817 (2019). https://doi.org/10.1021/acssuschemeng.8b05432
- S. Xu, J. Liang, M.I.B. Mohammad, D. Lv, Y. Cao et al., Biocatalytic metal–organic framework membrane towards efficient aquatic micropollutants removal. Chem. Eng. J. 426, 131861 (2021). https://doi.org/10.1016/j.cej.2021.131861
- S. Xu, Z. Feng, L. Bao, Z. Zhu, S. Wu et al., Biocatalytic nanomotor-assisted ultrafiltration membrane system for selective removal and transformation of phenolic contaminants. Matter 8(10), 102216 (2025). https://doi.org/10.1016/j.matt.2025.102216
References
W. Ren, Q. Zhang, J. Chen, X. Xiao, X. Duan et al., Catalytic resource recovery for transformation of the wastewater industry. Nat. Water 3(11), 1228–1242 (2025). https://doi.org/10.1038/s44221-025-00530-8
H. Wang, D. Xu, G. Li, H. Liang, Insights into fouling control of the salt-responsive membrane across the entire filtration–backwashing cycle. Environ. Sci. Technol. 59(37), 20087–20097 (2025). https://doi.org/10.1021/acs.est.5c07126
J. Parmar, D. Vilela, K. Villa, J. Wang, S. Sánchez, Micro- and nanomotors as active environmental microcleaners and sensors. J. Am. Chem. Soc. 140(30), 9317–9331 (2018). https://doi.org/10.1021/jacs.8b05762
S. Dutta, S. Noh, R.S. Gual, X. Chen, S. Pané et al., Recent developments in metallic degradable micromotors for biomedical and environmental remediation applications. Nano-Micro Lett. 16(1), 41 (2023). https://doi.org/10.1007/s40820-023-01259-3
S. Chen, D.E. Fan, P. Fischer, A. Ghosh, K. Göpfrich et al., A roadmap for next-generation nanomotors. Nat. Nanotechnol. 20(8), 990–1000 (2025). https://doi.org/10.1038/s41565-025-01962-9
P. Díez, E. Lucena-Sánchez, A. Escudero, A. Llopis-Lorente, R. Villalonga et al., Ultrafast directional Janus Pt–mesoporous silica nanomotors for smart drug delivery. ACS Nano 15(3), 4467–4480 (2021). https://doi.org/10.1021/acsnano.0c08404
F. Mushtaq, A. Asani, M. Hoop, X.-Z. Chen, D. Ahmed et al., Highly efficient coaxial TiO2–PtPd tubular nanomachines for photocatalytic water purification with multiple locomotion strategies. Adv. Funct. Mater. 26(38), 6995–7002 (2016). https://doi.org/10.1002/adfm.201602315
X. Zhang, J. Tang, L. Wang, C. Wang, L. Chen et al., Nanoconfinement-triggered oligomerization pathway for efficient removal of phenolic pollutants via a Fenton-like reaction. Nat. Commun. 15(1), 917 (2024). https://doi.org/10.1038/s41467-024-45106-4
Y. Chen, W. Ren, T. Ma, N. Ren, S. Wang et al., Transformative removal of aqueous micropollutants into polymeric products by advanced oxidation processes. Environ. Sci. Technol. 58(11), 4844–4851 (2024). https://doi.org/10.1021/acs.est.3c06376
X. Gao, Z. Yang, W. Zhang, B. Pan, Carbon redirection via tunable fenton-like reactions under nanoconfinement toward sustainable water treatment. Nat. Commun. 15(1), 2808 (2024). https://doi.org/10.1038/s41467-024-47269-6
Y.-J. Zhang, J.-S. Tao, Y. Hu, G.-X. Huang, Y. Pan et al., Metal oxyhalide-based heterogeneous catalytic water purification with ultralow H2O2 consumption. Nat. Water 2(8), 770–781 (2024). https://doi.org/10.1038/s44221-024-00281-y
Y. Yang, W. Ren, K. Hu, P. Zhang, Y. Wang et al., Challenges in radical/nonradical-based advanced oxidation processes for carbon recycling. Chem. Catal. 2(8), 1858–1869 (2022). https://doi.org/10.1016/j.checat.2022.05.021
C. Wang, S.-Y. Jia, Y. Han, Y. Li, Y. Liu et al., Selective oxidation of various phenolic contaminants by activated persulfate via the hydrogen abstraction pathway. ACS EST Eng. 1(9), 1275–1286 (2021). https://doi.org/10.1021/acsestengg.1c00091
J. Sun, M. Mathesh, W. Li, D.A. Wilson, Enzyme-powered nanomotors with controlled size for biomedical applications. ACS Nano 13(9), 10191–10200 (2019). https://doi.org/10.1021/acsnano.9b03358
J. Li, B. de Esteban-Fernánz Ávila, W. Gao, L. Zhang, J. Wang, Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2(4), eaam6431 (2017). https://doi.org/10.1126/scirobotics.aam6431
S.-I. Shoda, H. Uyama, J.-I. Kadokawa, S. Kimura, S. Kobayashi, Enzymes as green catalysts for precision macromolecular synthesis. Chem. Rev. 116(4), 2307–2413 (2016). https://doi.org/10.1021/acs.chemrev.5b00472
C. Zhong, H. Zhao, H. Cao, Q. Huang, Polymerization of micropollutants in natural aquatic environments: a review. Sci. Total. Environ. 693, 133751 (2019). https://doi.org/10.1016/j.scitotenv.2019.133751
Z. Guo, Y. Wu, Z. Xie, J. Shao, J. Liu et al., Self-propelled initiative collision at microelectrodes with vertically mobile micromotors. Angew. Chem. Int. Ed. 61(40), e202209747 (2022). https://doi.org/10.1002/anie.202209747
A.C. Hortelao, C. Simó, M. Guix, S. Guallar-Garrido, E. Julián et al., Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder. Sci. Robot. 6(52), eabd2823 (2021). https://doi.org/10.1126/scirobotics.abd2823
S. Gao, J. Hou, J. Zeng, J.J. Richardson, Z. Gu et al., Superassembled biocatalytic porous framework micromotors with reversible and sensitive pH-speed regulation at ultralow physiological H2O2 concentration. Adv. Funct. Mater. 29(18), 1808900 (2019). https://doi.org/10.1002/adfm.201808900
Y. Liu, J. Ge, Into the unknown: micro/nanomotors propelled by biocatalysis based on metal-organic frameworks. Chem. Catal. 2(10), 2458–2470 (2022). https://doi.org/10.1016/j.checat.2022.08.005
Y. Yang, X. Arqué, T. Patiño, V. Guillerm, P.-R. Blersch et al., Enzyme-powered porous micromotors built from a hierarchical micro- and mesoporous UiO-type metal–organic framework. J. Am. Chem. Soc. 142(50), 20962–20967 (2020). https://doi.org/10.1021/jacs.0c11061
Z. Guo, J. Liu, Y. Li, J.A. McDonald, M.Y. Bin Zulkifli et al., Biocatalytic metal–organic framework nanomotors for active water decontamination. Chem. Commun. 56(94), 14837–14840 (2020). https://doi.org/10.1039/D0CC06429G
E. Gkaniatsou, C. Sicard, R. Ricoux, L. Benahmed, F. Bourdreux et al., Enzyme encapsulation in mesoporous metal–organic frameworks for selective biodegradation of harmful dye molecules. Angew. Chem. Int. Ed. 57(49), 16141–16146 (2018). https://doi.org/10.1002/anie.201811327
J. Shen, X. Wang, L. Zhang, Z. Yang, W. Yang et al., Size-selective adsorption of methyl orange using a novel nano-composite by encapsulating HKUST-1 in hyper-crosslinked polystyrene networks. J. Clean. Prod. 184, 949–958 (2018). https://doi.org/10.1016/j.jclepro.2018.03.015
Z. Guo, C. Zhuang, Y. Song, J. Yong, Y. Li et al., Biocatalytic buoyancy-driven nanobots for autonomous cell recognition and enrichment. Nano-Micro Lett. 15(1), 236 (2023). https://doi.org/10.1007/s40820-023-01207-1
X. He, Fundamental perspectives on the electrochemical water applications of metal–organic frameworks. Nano-Micro Lett. 15(1), 148 (2023). https://doi.org/10.1007/s40820-023-01124-3
E.M. Arndt, W. Moore, W.-K. Lee, C. Ortiz, Mechanistic origins of bombardier beetle (Brachinini) explosion-induced defensive spray pulsation. Science 348(6234), 563–567 (2015). https://doi.org/10.1126/science.1261166
P. Vidossich, M. Alfonso-Prieto, C. Rovira, Catalases versus peroxidases: DFT investigation of H2O2 oxidation in models systems and implications for heme protein engineering. J. Inorg. Biochem. 117, 292–297 (2012). https://doi.org/10.1016/j.jinorgbio.2012.07.002
P. Campomanes, U. Rothlisberger, M. Alfonso-Prieto, C. Rovira, The molecular mechanism of the catalase-like activity in horseradish peroxidase. J. Am. Chem. Soc. 137(34), 11170–11178 (2015). https://doi.org/10.1021/jacs.5b06796
D. Morales-Urrea, A. López-Córdoba, E.M. Contreras, Inactivation kinetics of horseradish peroxidase (HRP) by hydrogen peroxide. Sci. Rep. 13(1), 13363 (2023). https://doi.org/10.1038/s41598-023-39687-1
C.E. Grey, M. Hedström, P. Adlercreutz, A mass spectrometric investigation of native and oxidatively inactivated chloroperoxidase. ChemBioChem 8(9), 1055–1062 (2007). https://doi.org/10.1002/cbic.200700091
Athula B., A. Sihang, X. Wendy, M. Reilly, M. Aman, G.K. Will (2020) Biosynthetic origin of benzoquinones in the explosive discharge of the bombardier beetle Brachinus elongatulus The Science of Nature 107(4) https://doi.org/10.1007/s00114-020-01683-0
K. Liang, R. Ricco, C.M. Doherty, M.J. Styles, S. Bell et al., Biomimetic mineralization of metal–organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 6, 7240 (2015). https://doi.org/10.1038/ncomms8240
Y. Lu, G. Zhang, H. Zhou, S. Cao, Y. Zhang et al., Enhanced active sites and stability in nano-MOFs for electrochemical energy storage through dual regulation by tannic acid. Angew. Chem. Int. Ed. 62(41), e202311075 (2023). https://doi.org/10.1002/anie.202311075
F. Yang, J. Guo, C. Han, J. Huang, Z. Zhou et al., Turing covalent organic framework membranes via heterogeneous nucleation synthesis for organic solvent nanofiltration. Sci. Adv. 10(50), eadr9260 (2024). https://doi.org/10.1126/sciadv.adr9260
J. Liang, S. Gao, J. Liu, M.Y.B. Zulkifli, J. Xu et al., Hierarchically porous biocatalytic MOF microreactor as a versatile platform towards enhanced multienzyme and cofactor-dependent biocatalysis. Angew. Chem. Int. Ed. 60(10), 5421–5428 (2021). https://doi.org/10.1002/anie.202014002
M. Hu, Y. Ju, K. Liang, T. Suma, J. Cui et al., Void engineering in metal–organic frameworks via synergistic etching and surface functionalization. Adv. Funct. Mater. 26(32), 5827–5834 (2016). https://doi.org/10.1002/adfm.201601193
J. Zhou, M. Penna, Z. Lin, Y. Han, R.P.M. Lafleur et al., Robust and versatile coatings engineered via simultaneous covalent and noncovalent interactions. Angew. Chem. Int. Ed. 60(37), 20225–20230 (2021). https://doi.org/10.1002/anie.202106316
H. Konno, A. Tsukada, Size- and ion-selective adsorption of organic dyes from aqueous solutions using functionalized UiO-66 frameworks. Colloids Surf A Physicochem Eng Asp 651, 129749 (2022). https://doi.org/10.1016/j.colsurfa.2022.129749
J. Li, Y.-N. Wu, Z. Li, B. Zhang, M. Zhu et al., Zeolitic imidazolate framework-8 with high efficiency in trace arsenate adsorption and removal from water. J. Phys. Chem. C 118(47), 27382–27387 (2014). https://doi.org/10.1021/jp508381m
Q. Huang, W.J. Weber, Transformation and removal of bisphenol A from aqueous phase via peroxidase-mediated oxidative coupling reactions: efficacy, products, and pathways. Environ. Sci. Technol. 39(16), 6029–6036 (2005). https://doi.org/10.1021/es050036x
M. Wang, Y. Chen, V.A. Kickhoefer, L.H. Rome, P. Allard et al., A vault-encapsulated enzyme approach for efficient degradation and detoxification of bisphenol A and its analogues. ACS Sustain. Chem. Eng. 7(6), 5808–5817 (2019). https://doi.org/10.1021/acssuschemeng.8b05432
S. Xu, J. Liang, M.I.B. Mohammad, D. Lv, Y. Cao et al., Biocatalytic metal–organic framework membrane towards efficient aquatic micropollutants removal. Chem. Eng. J. 426, 131861 (2021). https://doi.org/10.1016/j.cej.2021.131861
S. Xu, Z. Feng, L. Bao, Z. Zhu, S. Wu et al., Biocatalytic nanomotor-assisted ultrafiltration membrane system for selective removal and transformation of phenolic contaminants. Matter 8(10), 102216 (2025). https://doi.org/10.1016/j.matt.2025.102216