Artificial Intelligence Empowered New Materials: Discovery, Synthesis, Prediction to Validation
Corresponding Author: Bingang Xu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 109
Abstract
Recent years have witnessed the significant breakthrough in the field of new materials discovery brought about by the artificial intelligence (AI). AI has successfully been applied for predicting the formability, revealing the properties, and guiding the experimental synthesis of materials. Rapid progress has been made in the integration of increasing database and improved computing power. Though some reviews present the development from their unique aspects, reviews from the view of how AI empowered both discovery of new materials and cognition of existing materials that covers the completed contents with two synergistical aspects are few. Here, the newest development is systematically reviewed in the field of AI empowered materials, reflecting advanced design of the intelligent systems for discovery, synthesis, prediction and validation of materials. First, background and mechanisms are briefed, after which the design for the AI systems with data, machine learning and automated laboratory included is illustrated. Next, strategies are summarized to obtain the AI systems for materials with improved performance which comprehensively cover the aspects from the in-depth cognizance of existing material and the rapid discovery of new materials, and then, the design thought for future AI systems in material science is pointed out. Finally, some perspectives are put forward.
Highlights:
1 A comprehensive review focused on the recent advancement of artificial intelligence (AI) powered materials research from various aspects, including material discovery, synthesis, prediction and validation, is presented.
2 The design strategies for the enhanced performance of AI for materials can be implemented from various procedures for cognizance of existing materials and discovery of novel materials with the data processing, algorithm design and automated laboratory construction included.
3 A broad outlook on the future considerations of the AI systems for material is proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.M. Mroz, V. Posligua, A. Tarzia, E.H. Wolpert, K.E. Jelfs, Into the unknown: how computation can help explore uncharted material space. J. Am. Chem. Soc. 144(41), 18730–18743 (2022). https://doi.org/10.1021/jacs.2c06833
- J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen et al., A library of atomically thin metal chalcogenides. Nature 556(7701), 355–359 (2018). https://doi.org/10.1038/s41586-018-0008-3
- S. Jiang, Y. Zhou, W. Xu, Q. Xia, M. Yi et al., Machine learning-driven optimization and application of bimetallic catalysts in peroxymonosulfate activation for degradation of fluoroquinolone antibiotics. Chem. Eng. J. 486, 150297 (2024). https://doi.org/10.1016/j.cej.2024.150297
- T. Jing, B. Xu, Y. Yang, M. Li, Y. Gao, Organogel electrode enables highly transparent and stretchable triboelectric nanogenerators of high power density for robust and reliable energy harvesting. Nano Energy 78, 105373 (2020). https://doi.org/10.1016/j.nanoen.2020.105373
- Y. Liu, B. Xie, Q. Hu, R. Zhao, Q. Zheng et al., Regulating the Helmholtz plane by trace polarity additive for long-life Zn ion batteries. Energy Storage Mater. 66, 103202 (2024). https://doi.org/10.1016/j.ensm.2024.103202
- J. Wen, B. Xu, J. Zhou, Toward flexible and wearable embroidered supercapacitors from cobalt phosphides-decorated conductive fibers. Nano-Micro Lett. 11(1), 89 (2019). https://doi.org/10.1007/s40820-019-0321-x
- J. Li, B. Xu, Novel highly sensitive and wearable pressure sensors from conductive three-dimensional fabric structures. Smart Mater. Struct. 24(12), 125022 (2015). https://doi.org/10.1088/0964-1726/24/12/125022
- X. Guan, B. Xu, J. Huang, T. Jing, Y. Gao, Fiber-shaped stretchable triboelectric nanogenerator with a novel synergistic structure of opposite Poisson’s ratios. Chem. Eng. J. 427, 131698 (2022). https://doi.org/10.1016/j.cej.2021.131698
- B. Niu, T. Hua, B. Xu, Robust deposition of silver nanops on paper assisted by polydopamine for green and flexible electrodes. ACS Sustainable Chem. Eng. 8(34), 12842–12851 (2020). https://doi.org/10.1021/acssuschemeng.0c03098
- K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Machine learning for molecular and materials science. Nature 559(7715), 547–555 (2018). https://doi.org/10.1038/s41586-018-0337-2
- P.M. Attia, A. Grover, N. Jin, K.A. Severson, T.M. Markov et al., Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 578(7795), 397–402 (2020). https://doi.org/10.1038/s41586-020-1994-5
- Q. Zhou, S. Lu, Y. Wu, J. Wang, Property-oriented material design based on a data-driven machine learning technique. J. Phys. Chem. Lett. 11(10), 3920–3927 (2020). https://doi.org/10.1021/acs.jpclett.0c00665
- S. Lu, Q. Zhou, X. Chen, Z. Song, J. Wang, Inverse design with deep generative models: next step in materials discovery. Natl. Sci. Rev. 9(8), nwac111 (2022). https://doi.org/10.1093/nsr/nwac111
- H. Shi, Y. Shi, Z. Liang, S. Zhao, B. Qiao et al., Machine learning-enabled discovery of multi-resonance TADF molecules: unraveling PLQY predictions from molecular structures. Chem. Eng. J. 494, 153150 (2024). https://doi.org/10.1016/j.cej.2024.153150
- J. Sun, D. Li, Y. Wang, T. Xie, Y. Zou et al., Accelerating the generation and discovery of high-performance donor materials for organic solar cells by deep learning. J. Mater. Chem. A 12(33), 21813–21823 (2024). https://doi.org/10.1039/D4TA03944K
- Y. Li, X. Zhang, T. Li, Y. Chen, Y. Liu et al., Accelerating materials discovery for electrocatalytic water oxidation via center-environment deep learning in spinel oxides. J. Mater. Chem. A 12(30), 19362–19377 (2024). https://doi.org/10.1039/d4ta02771j
- M. Omidvar, H. Zhang, A.A. Ihalage, T.G. Saunders, H. Giddens et al., Accelerated discovery of perovskite solid solutions through automated materials synthesis and characterization. Nat. Commun. 15(1), 6554 (2024). https://doi.org/10.1038/s41467-024-50884-y
- M. Kim, W.-H. Yeo, K. Min, Co-free and low strain cathode materials for sodium-ion batteries: machine learning-based materials discovery. Energy Storage Mater. 69, 103405 (2024). https://doi.org/10.1016/j.ensm.2024.103405
- H. Wang, M. Jiang, G. Xu, C. Wang, X. Xu et al., Machine learning-guided prediction of desalination capacity and rate of porous carbons for capacitive deionization. Small 20(42), e2401214 (2024). https://doi.org/10.1002/smll.202401214
- J. Liu, R. Sun, X. Bao, J. Yang, Y. Chen et al., Machine learning driven atom-thin materials for fragrance sensing. Small 21(28), 2401066 (2025). https://doi.org/10.1002/smll.202401066
- M. Wu, Z. Song, Y. Cui, Z. Fu, K. Hong et al., Machine learning-assisted design of nitrogen-rich covalent triazine frameworks photocatalysts. Adv. Funct. Mater. 35(3), 2413453 (2025). https://doi.org/10.1002/adfm.202413453
- A. Maqbool, A. Khalad, N.Z. Khan, Prediction of corrosion rate for friction stir processed WE43 alloy by combining PSO-based virtual sample generation and machine learning. J. Magnes. Alloys 12(4), 1518–1528 (2024). https://doi.org/10.1016/j.jma.2024.04.012
- C. Li, L. Bao, Y. Ji, Z. Tian, M. Cui et al., Combining machine learning and metal–organic frameworks research: novel modeling, performance prediction, and materials discovery. Coord. Chem. Rev. 514, 215888 (2024). https://doi.org/10.1016/j.ccr.2024.215888
- G. Huang, F. Huang, W. Dong, Machine learning in energy storage material discovery and performance prediction. Chem. Eng. J. 492, 152294 (2024). https://doi.org/10.1016/j.cej.2024.152294
- Y. She, H. Liu, H. Yuan, Y. Li, X. Liu et al., Artificial intelligence-assisted conductive hydrogel dressings for refractory wounds monitoring. Nano-Micro Lett. 17(1), 319 (2025). https://doi.org/10.1007/s40820-025-01834-w
- S. Wang, J. Liu, X. Song, H. Xu, Y. Gu et al., Artificial intelligence empowers solid-state batteries for material screening and performance evaluation. Nano-Micro Lett. 17(1), 287 (2025). https://doi.org/10.1007/s40820-025-01797-y
- K. Zheng, C. Zheng, L. Zhu, B. Yang, X. Jin et al., Machine learning enabled reusable adhesion, entangled network-based hydrogel for long-term, high-fidelity EEG recording and attention assessment. Nano-Micro Lett. 17(1), 281 (2025). https://doi.org/10.1007/s40820-025-01780-7
- F. Zheng, B. Yuan, Y. Cai, H. Xiang, C. Tang et al., Machine learning tailored anodes for efficient hydrogen energy generation in proton-conducting solid oxide electrolysis cells. Nano-Micro Lett. 17(1), 274 (2025). https://doi.org/10.1007/s40820-025-01764-7
- J. Chang, J. Li, J. Ye, B. Zhang, J. Chen et al., AI-enabled piezoelectric wearable for joint torque monitoring. Nano-Micro Lett. 17(1), 247 (2025). https://doi.org/10.1007/s40820-025-01753-w
- Y. Xiao, H. Li, T. Gu, X. Jia, S. Sun et al., Ti3C2Tx composite aerogels enable pressure sensors for dialect speech recognition assisted by deep learning. Nano-Micro Lett. 17(1), 101 (2024). https://doi.org/10.1007/s40820-024-01605-z
- B.H. Jeong, J. Lee, M. Ku, J. Lee, D. Kim et al., RGB color-discriminable photonic synapse for neuromorphic vision system. Nano-Micro Lett 17(1), 78 (2024). https://doi.org/10.1007/s40820-024-01579-y
- Z. Zhou, Z. Zhang, P. Li, Z. Guan, Y. Li et al., Low energy consumption photoelectric memristors with multi-level linear conductance modulation in artificial visual systems application. Nano-Micro Lett. 17(1), 317 (2025). https://doi.org/10.1007/s40820-025-01816-y
- J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov et al., Highly accurate protein structure prediction with AlphaFold. Nature 596(7873), 583–589 (2021). https://doi.org/10.1038/s41586-021-03819-2
- R. Unni, M. Zhou, P.R. Wiecha, Y. Zheng, Advancing materials science through next-generation machine learning. Curr. Opin. Solid State Mater. Sci. 30, 101157 (2024). https://doi.org/10.1016/j.cossms.2024.101157
- Y. Wang, K. Wang, C. Zhang, Applications of artificial intelligence/machine learning to high-performance composites. Compos. Part B Eng. 285, 111740 (2024). https://doi.org/10.1016/j.compositesb.2024.111740
- R. Du, R. Xin, H. Wang, W. Zhu, R. Li et al., Machine learning: an accelerator for the exploration and application of advanced metal-organic frameworks. Chem. Eng. J. 490, 151828 (2024). https://doi.org/10.1016/j.cej.2024.151828
- N. Ling, Y. Wang, S. Song, C. Liu, F. Yang et al., Experimentally validated screening strategy for alloys as anode in Mg-air battery with multi-target machine learning predictions. Chem. Eng. J. 496, 153824 (2024). https://doi.org/10.1016/j.cej.2024.153824
- S. Gao, Y. Cheng, L. Chen, S. Huang, Rapid discovery of gas response in materials via density functional theory and machine learning. Energy Environ. Mater. 8(1), e12816 (2025). https://doi.org/10.1002/eem2.12816
- S. Poudel, R. Thapa, R. Basnet, A. Timofiejczuk, A. Kunwar, PiezoTensorNet: Crystallography informed multi-scale hierarchical machine learning model for rapid piezoelectric performance finetuning. Appl. Energy 361, 122901 (2024). https://doi.org/10.1016/j.apenergy.2024.122901
- L. Wang, H. Chen, L. Yang, J. Li, Y. Li et al., Single-atom catalysts property prediction via supervised and self-supervised pre-training models. Chem. Eng. J. 487, 150626 (2024). https://doi.org/10.1016/j.cej.2024.150626
- P. Guo, W. Meng, Y. Bao, Knowledge-guided data-driven design of ultra-high-performance geopolymer (UHPG). Cem. Concr. Compos. 153, 105723 (2024). https://doi.org/10.1016/j.cemconcomp.2024.105723
- L. Chen, M. Ren, J. Zhou, X. Zhou, F. Liu et al., Bioinspired iontronic synapse fibers for ultralow-power multiplexing neuromorphic sensorimotor textiles. Proc. Natl. Acad. Sci. U.S.A. 121(33), e2407971121 (2024). https://doi.org/10.1073/pnas.2407971121
- Y. Li, Z. Qiu, H. Kan, Y. Yang, J. Liu et al., A human-computer interaction strategy for an FPGA platform boosted integrated “perception-memory” system based on electronic tattoos and memristors. Adv. Sci. 11(39), e2402582 (2024). https://doi.org/10.1002/advs.202402582
- H. Zhang, H. Li, Y. Li, Biomimetic electronic skin for robots aiming at superior dynamic-static perception and material cognition based on triboelectric-piezoresistive effects. Nano Lett. 24(13), 4002–4011 (2024). https://doi.org/10.1021/acs.nanolett.4c00623
- Y. Li, Q. Lin, T. Sun, M. Qin, W. Yue et al., A perceptual and interactive integration strategy toward telemedicine healthcare based on electroluminescent display and triboelectric sensing 3d stacked device. Adv. Funct. Mater. 34(40), 2402356 (2024). https://doi.org/10.1002/adfm.202402356
- W. Yang, H. Kan, G. Shen, Y. Li, A network intrusion detection system with broadband WO3–x/WO3–x-Ag/WO3–x optoelectronic memristor. Adv. Funct. Mater. 34(23), 2312885 (2024). https://doi.org/10.1002/adfm.202312885
- S. Deng, B. Xu, J. Zhao, C.W. Kan, X. Liu, Unlocking double redox reaction of metal–organic framework for aqueous zinc-ion battery. Angew. Chem. Int. Ed. 63(17), e202401996 (2024). https://doi.org/10.1002/anie.202401996
- B. Niu, T. Hua, H. Hu, B. Xu, X. Tian et al., A highly durable textile-based sensor as a human-worn material interface for long-term multiple mechanical deformation sensing. J. Mater. Chem. C 7(46), 14651–14663 (2019). https://doi.org/10.1039/C9TC04006D
- J. Xu, K.K. Wang, T. Liu, Y. Peng, B.G. Xu, Br-doped Bi2O2CO3 exposed (001) crystal facets with enhanced photocatalytic activity. CrystEngComm 19(34), 5001–5007 (2017). https://doi.org/10.1039/c7ce00924k
- Y. Wang, Z. Li, H. Fu, B. Xu, Sustainable triboelectric nanogenerators based on recycled materials for biomechanical energy harvesting and self-powered sensing. Nano Energy 115, 108717 (2023). https://doi.org/10.1016/j.nanoen.2023.108717
- A. Merchant, S. Batzner, S.S. Schoenholz, M. Aykol, G. Cheon et al., Scaling deep learning for materials discovery. Nature 624(7990), 80–85 (2023). https://doi.org/10.1038/s41586-023-06735-9
- E. Alibagheri, A. Ranjbar, M. Khazaei, T.D. Kühne, S.M. Vaez Allaei, Remarkable optoelectronic characteristics of synthesizable square-octagon haeckelite structures: machine learning materials discovery. Adv. Funct. Mater. 34(27), 2402390 (2024). https://doi.org/10.1002/adfm.202402390
- B.K. Lee, E.J. Mayhew, B. Sanchez-Lengeling, J.N. Wei, W.W. Qian et al., A principal odor map unifies diverse tasks in olfactory perception. Science 381(6661), 999–1006 (2023). https://doi.org/10.1126/science.ade4401
- V.S. Tuchin, E.A. Stepanidenko, A.A. Vedernikova, S.A. Cherevkov, D. Li et al., Optical properties prediction for red and near-infrared emitting carbon dots using machine learning. Small 20(29), 2310402 (2024). https://doi.org/10.1002/smll.202310402
- S. Lu, A. Jayaraman, Machine learning for analyses and automation of structural characterization of polymer materials. Prog. Polym. Sci. 153, 101828 (2024). https://doi.org/10.1016/j.progpolymsci.2024.101828
- Y. Srivastava, A. Jain, Accelerating thermal conductivity prediction through machine-learning: two orders of magnitude reduction in phonon-phonon scattering rates calculation. Mater. Today Phys. 41, 101345 (2024). https://doi.org/10.1016/j.mtphys.2024.101345
- L. Guo, X. Xu, Q. Wang, J. Park, H. Lei et al., Machine learning-based prediction of heavy metal immobilization rate in the solidification/stabilization of municipal solid waste incineration fly ash (MSWIFA) by geopolymers. J. Hazard. Mater. 467, 133682 (2024). https://doi.org/10.1016/j.jhazmat.2024.133682
- Q. Liu, W. Chen, V. Yakubov, J.J. Kruzic, C.H. Wang et al., Interpretable machine learning approach for exploring process-structure-property relationships in metal additive manufacturing. Addit. Manuf. 85, 104187 (2024). https://doi.org/10.1016/j.addma.2024.104187
- X. Chen, S. Lu, Q. Chen, Q. Zhou, J. Wang, From bulk effective mass to 2D carrier mobility accurate prediction via adversarial transfer learning. Nat. Commun. 15(1), 5391 (2024). https://doi.org/10.1038/s41467-024-49686-z
- D. Kwon, D. Kim, Machine learning interatomic potentials in engineering perspective for developing cathode materials. J. Mater. Chem. A 12(35), 23837–23847 (2024). https://doi.org/10.1039/D4TA03452J
- W.A. Dunlap-Shohl, Y. Meng, P.P. Sunkari, D.A.C. Beck, M. Meilă et al., Physiochemical machine learning models predict operational lifetimes of CH3NH3PbI3 perovskite solar cells. J. Mater. Chem. A 12(16), 9730–9746 (2024). https://doi.org/10.1039/D3TA06668A
- Z. Wang, L. Wang, H. Zhang, H. Xu, X. He, Materials descriptors of machine learning to boost development of lithium-ion batteries. Nano Convergence 11(1), 8 (2024). https://doi.org/10.1186/s40580-024-00417-6
- C. Jin, C. Zhang, P. Yan, M. Jiang, R. Yin et al., A superhuman sensing triboelectric nanogenerator with boosted power density and durability via a bio-inspired Janus structure. Adv. Funct. Mater. 34(37), 2402233 (2024). https://doi.org/10.1002/adfm.202402233
- J. Li, M. Zhou, H.-H. Wu, L. Wang, J. Zhang et al., Machine learning-assisted property prediction of solid-state electrolyte. Adv. Energy Mater. 14(20), 2304480 (2024). https://doi.org/10.1002/aenm.202304480
- X. Zhang, B. Ding, Y. Wang, Y. Liu, G. Zhang et al., Machine learning for screening small molecules as passivation materials for enhanced perovskite solar cells. Adv. Funct. Mater. 34(30), 2314529 (2024). https://doi.org/10.1002/adfm.202314529
- Z. Zheng, J. Zhou, Y. Zhu, Computational approach inspired advancements of solid-state electrolytes for lithium secondary batteries: from first-principles to machine learning. Chem. Soc. Rev. 53(6), 3134–3166 (2024). https://doi.org/10.1039/D3CS00572K
- H. Mai, X. Wen, X. Li, N.S.L. Dissanayake, X. Sun et al., Data driven high quantum yield halide perovskite phosphors design and fabrication. Mater. Today 74, 12–21 (2024). https://doi.org/10.1016/j.mattod.2024.02.002
- Y. Liu, X. Tan, P. Xiang, Y. Tu, T. Shao et al., Machine learning as a characterization method for analysis and design of perovskite solar cells. Mater. Today Phys. 42, 101359 (2024). https://doi.org/10.1016/j.mtphys.2024.101359
- Y. Haghshenas, W.P. Wong, V. Sethu, R. Amal, P.V. Kumar et al., Full prediction of band potentials in semiconductor materials. Mater. Today Phys. 46, 101519 (2024). https://doi.org/10.1016/j.mtphys.2024.101519
- H. Ji, Y. Tian, C. Fu, H. Ye, Transfer learning enables prediction of steel corrosion in concrete under natural environments. Cem. Concr. Compos. 148, 105488 (2024). https://doi.org/10.1016/j.cemconcomp.2024.105488
- P. Akbari, M. Zamani, A. Mostafaei, Machine learning prediction of mechanical properties in metal additive manufacturing. Addit. Manuf. 91, 104320 (2024). https://doi.org/10.1016/j.addma.2024.104320
- Y. Fu, A. Howard, C. Zeng, Y. Chen, P. Gao et al., Physics-guided continual learning for predicting emerging aqueous organic redox flow battery material performance. ACS Energy Lett. 9(6), 2767–2774 (2024). https://doi.org/10.1021/acsenergylett.4c00493
- X. Mei, T. Miyoshi, Y. Suzuki, A dynamic model of wrist-worn rotational electret energy harvester: theoretical investigation and experimental validations. Appl. Energy 373, 123888 (2024). https://doi.org/10.1016/j.apenergy.2024.123888
- W. Hamada, M. Hishida, R. Sugiura, H. Tobita, H. Imai et al., Efficient design and synthesis of an amorphous conjugated polymer network for a metal-free electrocatalyst of hydrogen evolution reaction. J. Mater. Chem. A 12(6), 3294–3303 (2024). https://doi.org/10.1039/D3TA06447F
- Y. Gu, S. Tang, X. Liu, X. Liang, Q. Zhu et al., Stability prediction of gold nanoclusters with different ligands and doped metals: deep learning and experimental tests. J. Mater. Chem. A 12(8), 4460–4472 (2024). https://doi.org/10.1039/d3ta06892g
- Z.-P. Lin, Y. Li, S.A. Haque, A.M. Ganose, A. Kafizas, Insights from experiment and machine learning for enhanced TiO2 coated glazing for photocatalytic NOx remediation. J. Mater. Chem. A 12(22), 13281–13298 (2024). https://doi.org/10.1039/D4TA01319K
- W. Li, Y. Wen, K. Wang, Z. Ding, L. Wang et al., Developing a machine learning model for accurate nucleoside hydrogels prediction based on descriptors. Nat. Commun. 15(1), 2603 (2024). https://doi.org/10.1038/s41467-024-46866-9
- X. Sun, L. Yue, L. Yu, C.T. Forte, C.D. Armstrong et al., Machine learning-enabled forward prediction and inverse design of 4D-printed active plates. Nat. Commun. 15(1), 5509 (2024). https://doi.org/10.1038/s41467-024-49775-z
- L. Gao, J. Lin, L. Wang et al., Machine learning-assisted design of advanced polymeric materials. Acc. Mater. Res. 5(5), 571–584 (2024). https://doi.org/10.1021/accountsmr.3c00288
- S. Jiang, W. Xu, Q. Xia, M. Yi, Y. Zhou et al., Application of machine learning in the study of cobalt-based oxide catalysts for antibiotic degradation: an innovative reverse synthesis strategy. J. Hazard. Mater. 471, 134309 (2024). https://doi.org/10.1016/j.jhazmat.2024.134309
- Y. Zhang, C. Wen, P. Dang, T. Lookman, D. Xue et al., Toward ultra-high strength high entropy alloys via feature engineering. J. Mater. Sci. Technol. 200, 243–252 (2024). https://doi.org/10.1016/j.jmst.2024.02.058
- D. Park, J. Lee, H. Lee, G.X. Gu, S. Ryu, Deep generative spatiotemporal learning for integrating fracture mechanics in composite materials: inverse design, discovery, and optimization. Mater. Horiz. 11(13), 3048–3065 (2024). https://doi.org/10.1039/D4MH00337C
- M. Seifrid, S. Lo, D.G. Choi, G. Tom, M.L. Le et al., Beyond molecular structure: critically assessing machine learning for designing organic photovoltaic materials and devices. J. Mater. Chem. A 12(24), 14540–14558 (2024). https://doi.org/10.1039/D4TA01942C
- K. Li, K. Choudhary, B. DeCost, M. Greenwood, J. Hattrick-Simpers, Efficient first principles based modeling via machine learning: from simple representations to high entropy materials. J. Mater. Chem. A 12(21), 12412–12422 (2024). https://doi.org/10.1039/D4TA00982G
- M. Chen, Z. Yin, Z. Shan, X. Zheng, L. Liu et al., Application of machine learning in perovskite materials and devices: a review. J. Energy Chem. 94, 254–272 (2024). https://doi.org/10.1016/j.jechem.2024.02.035
- R.-L. Liu, J. Wang, Z.-H. Shen, Y. Shen, Ai for dielectric capacitors. Energy Storage Mater. 71, 103612 (2024). https://doi.org/10.1016/j.ensm.2024.103612
- Y. Wu, C.-F. Wang, M.-G. Ju, Q. Jia, Q. Zhou et al., Universal machine learning aided synthesis approach of two-dimensional perovskites in a typical laboratory. Nat. Commun. 15(1), 138 (2024). https://doi.org/10.1038/s41467-023-44236-5
- J. Chen, S.R. Cross, L.J. Miara, J.-J. Cho, Y. Wang et al., Navigating phase diagram complexity to guide robotic inorganic materials synthesis. Nat. Synth. 3(5), 606–614 (2024). https://doi.org/10.1038/s44160-024-00502-y
- Y. Jiang, D. Salley, A. Sharma, G. Keenan, M. Mullin et al., An artificial intelligence enabled chemical synthesis robot for exploration and optimization of nanomaterials. Sci. Adv. 8(40), eabo2626 (2022). https://doi.org/10.1126/sciadv.abo2626
- L.C. Erhard, J. Rohrer, K. Albe, V.L. Deringer, Modelling atomic and nanoscale structure in the silicon–oxygen system through active machine learning. Nat. Commun. 15, 1927 (2024). https://doi.org/10.1038/s41467-024-45840-9
- R. Miyazaki, K.S. Belthle, H. Tüysüz, L. Foppa, M. Scheffler, Materials genes of CO2 hydrogenation on supported cobalt catalysts: an artificial intelligence approach integrating theoretical and experimental data. J. Am. Chem. Soc. 146(8), 5433–5444 (2024). https://doi.org/10.1021/jacs.3c12984
- Q. Zhai, H. Jiang, N. Long, Q. Kang, X. Meng et al., Machine learning for full lifecycle management of lithium-ion batteries. Renew. Sustain. Energy Rev. 202, 114647 (2024). https://doi.org/10.1016/j.rser.2024.114647
- L. Ma, J. Tian, T. Zhang, Q. Guo, C. Hu, Accurate and efficient remaining useful life prediction of batteries enabled by physics-informed machine learning. J. Energy Chem. 91, 512–521 (2024). https://doi.org/10.1016/j.jechem.2023.12.043
- T. Zheng, Z. Huang, H. Ge, P. Hu, X. Fan et al., Applying machine learning to design delicate amorphous micro-nano materials for rechargeable batteries. Energy Storage Mater. 71, 103614 (2024). https://doi.org/10.1016/j.ensm.2024.103614
- Y. Wang, X. Feng, D. Guo, H. Hsu, J. Hou et al., Temperature excavation to boost machine learning battery thermochemical predictions. Joule 8(9), 2639–2651 (2024). https://doi.org/10.1016/j.joule.2024.07.002
- S. Varun, A.M. Chandran, K.P. Minhaj, V. Shaju, L.A. Varghese et al., Unveiling predictive insights for enhanced performance of PVDF-based nanogenerators via machine learning modeling. Chem. Eng. J. 484, 149661 (2024). https://doi.org/10.1016/j.cej.2024.149661
- X. Zhang, D. Mu, S. Lu, Y. Zhang, Y. Zhang et al., Ab initio design of Ni-rich cathode material with assistance of machine learning for high energy lithium-ion batteries. Energy Environ. Mater. 7(6), e12744 (2024). https://doi.org/10.1002/eem2.12744
- X. Zhang, B. Ding, Y. Wang, Y. Liu, G. Zhang et al., Machine learning for screening small molecules as passivation materials for enhanced perovskite solar cells. Adv. Funct. Mater. 34(30), 2314529 (2024). https://doi.org/10.1002/adfm.202314529
- C. Chen, D.T. Nguyen, S.J. Lee, N.A. Baker, A.S. Karakoti et al., Accelerating computational materials discovery with machine learning and cloud high-performance computing: from large-scale screening to experimental validation. J. Am. Chem. Soc. 146(29), 20009–20018 (2024). https://doi.org/10.1021/jacs.4c03849
- J. Liu, M. Liu, J.-P. Liu, Z. Ye, Y. Wang et al., Towards provably efficient quantum algorithms for large-scale machine-learning models. Nat. Commun. 15, 434 (2024). https://doi.org/10.1038/s41467-023-43957-x
- N.J. Szymanski, B. Rendy, Y. Fei, R.E. Kumar, T. He et al., An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624(7990), 86–91 (2023). https://doi.org/10.1038/s41586-023-06734-w
- J. Cui, F. Wu, W. Zhang, L. Yang, J. Hu et al., Direct prediction of gas adsorption via spatial atom interaction learning. Nat. Commun. 14(1), 7043 (2023). https://doi.org/10.1038/s41467-023-42863-6
- V.L. Deringer, N. Bernstein, G. Csányi, C. Ben Mahmoud, M. Ceriotti et al., Origins of structural and electronic transitions in disordered silicon. Nature 589(7840), 59–64 (2021). https://doi.org/10.1038/s41586-020-03072-z
- H. Yin, M. Xu, Z. Luo, X. Bi, J. Li et al., Machine learning for membrane design and discovery. Green Energy Environ. 9(1), 54–70 (2024). https://doi.org/10.1016/j.gee.2022.12.001
- N. Han, B.-L. Su, Ai-driven material discovery for energy, catalysis and sustainability. Natl. Sci. Rev. 12(5), nwaf110 (2025). https://doi.org/10.1093/nsr/nwaf110
- A. Jaison, A. Mohan, Y.-C. Lee, Machine learning-enhanced photocatalysis for environmental sustainability: integration and applications. Mater. Sci. Eng. R. Rep. 161, 100880 (2024). https://doi.org/10.1016/j.mser.2024.100880
- X. Jiang, H. Fu, Y. Bai, L. Jiang, H. Zhang et al., Interpretable machine learning applications: a promising prospect of AI for materials. Adv. Funct. Mater. 2507734 (2025). https://doi.org/10.1002/adfm.202507734
- Y. Aoki, S. Wu, T. Tsurimoto, Y. Hayashi, S. Minami et al., Multitask machine learning to predict polymer–solvent miscibility using flory–huggins interaction parameters. Macromolecules 56(14), 5446–5456 (2023). https://doi.org/10.1021/acs.macromol.2c02600
- V. Kuznetsova, Á. Coogan, D. Botov, Y. Gromova, E.V. Ushakova et al., Expanding the horizons of machine learning in nanomaterials to chiral nanostructures. Adv. Mater. 36(18), 2308912 (2024). https://doi.org/10.1002/adma.202308912
- A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards et al., Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013). https://doi.org/10.1063/1.4812323
- J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65(11), 1501–1509 (2013). https://doi.org/10.1007/s11837-013-0755-4
- C. Draxl, M. Scheffler, The NOMAD laboratory: from data sharing to artificial intelligence. J. Phys. Mater. 2(3), 036001 (2019). https://doi.org/10.1088/2515-7639/ab13bb
- S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang et al., AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012). https://doi.org/10.1016/j.commatsci.2012.02.002
- K. Bi, Y. Wang, G. Zhou, Hierarchical porous N/S-doped carbon with machine learning to predict advanced potassium-ion batteries. J. Mater. Chem. A 11(22), 11696–11703 (2023). https://doi.org/10.1039/D3TA00247K
- L.E. Vivanco-Benavides, C.L. Martínez-González, C. Mercado-Zúñiga, C. Torres-Torres, Machine learning and materials informatics approaches in the analysis of physical properties of carbon nanotubes: a review. Comput. Mater. Sci. 201, 110939 (2022). https://doi.org/10.1016/j.commatsci.2021.110939
- A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386
- P.Z. Moghadam, Y.G. Chung, R.Q. Snurr, Progress toward the computational discovery of new metal–organic framework adsorbents for energy applications. Nat. Energy 9(2), 121–133 (2024). https://doi.org/10.1038/s41560-023-01417-2
- T. Chen, Z. Pang, S. He, Y. Li, S. Shrestha et al., Machine intelligence-accelerated discovery of all-natural plastic substitutes. Nat. Nanotechnol. 19(6), 782–791 (2024). https://doi.org/10.1038/s41565-024-01635-z
- J. Benavides-Hernández, F. Dumeignil, From characterization to discovery: artificial intelligence, machine learning and high-throughput experiments for heterogeneous catalyst design. ACS Catal. 14(15), 11749–11779 (2024). https://doi.org/10.1021/acscatal.3c06293
- L. Xiang, J. Chen, X. Zhao, J. Hu, J. Yu et al., Synergistic machine learning accelerated discovery of nanoporous inorganic crystals as non-absorbable oral drugs. Adv. Mater. 36(32), 2404688 (2024). https://doi.org/10.1002/adma.202404688
- V. Stanev, K. Choudhary, A.G. Kusne, J. Paglione, I. Takeuchi, Artificial intelligence for search and discovery of quantum materials. Commun. Mater. 2, 105 (2021). https://doi.org/10.1038/s43246-021-00209-z
- Y. Wang, Z.-J. Jiang, D.-R. Wang, W. Lu, D. Li, Machine learning-assisted discovery of propane-selective metal–organic frameworks. J. Am. Chem. Soc. 146(10), 6955–6961 (2024). https://doi.org/10.1021/jacs.3c14610
- H.M. Johnson, F. Gusev, J.T. Dull, Y. Seo, R.D. Priestley et al., Discovery of crystallizable organic semiconductors with machine learning. J. Am. Chem. Soc. 146(31), 21583–21590 (2024). https://doi.org/10.1021/jacs.4c05245
- Z. Zhang, F. Pan, S.A. Mohamed, C. Ji, K. Zhang et al., Accelerating discovery of water stable metal−organic frameworks by machine learning. Small 20(42), 2405087 (2024). https://doi.org/10.1002/smll.202405087
- X. Zhou, C. Xu, X. Guo, P. Apostol, A. Vlad et al., Computational and machine learning-assisted discovery and experimental validation of conjugated sulfonamide cathodes for lithium-ion batteries. Adv. Energy Mater. 15(25), 2401658 (2025). https://doi.org/10.1002/aenm.202401658
- X. Liu, K. Fan, X. Huang, J. Ge, Y. Liu et al., Recent advances in artificial intelligence boosting materials design for electrochemical energy storage. Chem. Eng. J. 490, 151625 (2024). https://doi.org/10.1016/j.cej.2024.151625
- G. Xu, M. Jiang, J. Li, X. Xuan, J. Li et al., Machine learning-accelerated discovery and design of electrode materials and electrolytes for lithium ion batteries. Energy Storage Materials 72, 103710 (2024). https://doi.org/10.1016/j.ensm.2024.103710
- B.J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani et al., Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844), 89–96 (2021). https://doi.org/10.1038/s41586-021-03213-y
- T. He, H. Huo, C.J. Bartel, Z. Wang, K. Cruse et al., Precursor recommendation for inorganic synthesis by machine learning materials similarity from scientific literature. Sci. Adv. 9(23), eadg8180 (2023). https://doi.org/10.1126/sciadv.adg8180
- N.J. Szymanski, P. Nevatia, C.J. Bartel, Y. Zeng, G. Ceder, Autonomous and dynamic precursor selection for solid-state materials synthesis. Nat. Commun. 14, 6956 (2023). https://doi.org/10.1038/s41467-023-42329-9
- J. Li, S.G. Ballmer, E.P. Gillis, S. Fujii, M.J. Schmidt et al., Synthesis of many different types of organic small molecules using one automated process. Science 347(6227), 1221–1226 (2015). https://doi.org/10.1126/science.aaa5414
- P.J. Kitson, G. Marie, J.-P. Francoia, S.S. Zalesskiy, R.C. Sigerson et al., Digitization of multistep organic synthesis in reactionware for on-demand pharmaceuticals. Science 359(6373), 314–319 (2018). https://doi.org/10.1126/science.aao3466
- C.W. Coley, D.A. Thomas 3rd, J.A.M. Lummiss, J.N. Jaworski, C.P. Breen et al., A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365(6453), eaax1566 (2019). https://doi.org/10.1126/science.aax1566
- J.S. Manzano, W. Hou, S.S. Zalesskiy, P. Frei, H. Wang et al., An autonomous portable platform for universal chemical synthesis. Nat. Chem. 14(11), 1311–1318 (2022). https://doi.org/10.1038/s41557-022-01016-w
- A. Chen, Z. Wang, K.L.L. Vidaurre, Y. Han, S. Ye et al., Knowledge-reused transfer learning for molecular and materials science. J. Energy Chem. 98, 149–168 (2024). https://doi.org/10.1016/j.jechem.2024.06.013
- X.-Y. Liu, J. Wu, Z.-H. Zhou, Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst., Man, Cybern. B 39(2), 539–550 (2009). https://doi.org/10.1109/tsmcb.2008.2007853
- N. Qu, M. Chen, M. Liao, Y. Cheng, Z. Lai et al., Accelerating density functional calculation of adatom adsorption on graphene via machine learning. Materials 16(7), 2633 (2023). https://doi.org/10.3390/ma16072633
- M. Agarwal, P. Pasupathy, X. Wu, S.S. Recchia, A.A. Pelegri, Multiscale computational and artificial intelligence models of linear and nonlinear composites: a review. Small Science 4(5), 2300185 (2024). https://doi.org/10.1002/smsc.202300185
- W.L. Ng, G.L. Goh, G.D. Goh, J.S.J. Ten, W.Y. Yeong, Progress and opportunities for machine learning in materials and processes of additive manufacturing. Adv. Mater. 36(34), 2310006 (2024). https://doi.org/10.1002/adma.202310006
- K. Zhang, X. Gong, Y. Jiang, Machine learning in soft matter: from simulations to experiments. Adv. Funct. Mater. 34(24), 2315177 (2024). https://doi.org/10.1002/adfm.202315177
- M. Delpisheh, B. Ebrahimpour, A. Fattahi, M. Siavashi, H. Mir et al., Leveraging machine learning in porous media. J. Mater. Chem. A 12(32), 20717–20782 (2024). https://doi.org/10.1039/d4ta00251b
- V. Karkaria, A. Goeckner, R. Zha, J. Chen, J. Zhang et al., Towards a digital twin framework in additive manufacturing: machine learning and bayesian optimization for time series process optimization. J. Manuf. Syst. 75, 322–332 (2024). https://doi.org/10.1016/j.jmsy.2024.04.023
- Y. Ren, M. Cui, Y. Zhou, S. Sun, F. Guo et al., Utilizing machine learning for reactive material selection and width design in permeable reactive barrier (PRB). Water Res. 251, 121097 (2024). https://doi.org/10.1016/j.watres.2023.121097
- H. Wang, S.L. Gao, B.T. Wang, Y.T. Ma, Z.J. Guo et al., Recent advances in machine learning-assisted fatigue life prediction of additive manufactured metallic materials: a review. J. Mater. Sci. Technol. 198, 111–136 (2024). https://doi.org/10.1016/j.jmst.2024.01.086
- B. Lu, Y. Xia, Y. Ren, M. Xie, L. Zhou et al., When machine learning meets 2D materials: a review. Adv. Sci. 11(13), 2305277 (2024). https://doi.org/10.1002/advs.202305277
- S.V. Thummalapalli, D. Patil, A. Ramanathan, D. Ravichandran, Y. Zhu et al., Machine learning–enabled direct ink writing of conductive polymer composites for enhanced performance in thermal management and current protection. Energy Storage Materials 71, 103670 (2024). https://doi.org/10.1016/j.ensm.2024.103670
- H. Zhang, Y. Li, S. Zheng, Z. Lu, X. Gui et al., Battery lifetime prediction across diverse ageing conditions with inter-cell deep learning. Nat. Mach. Intell. 7(2), 270–277 (2025). https://doi.org/10.1038/s42256-024-00972-x
- A. Keddouda, R. Ihaddadene, A. Boukhari, A. Atia, M. Arıcı et al., Photovoltaic module temperature prediction using various machine learning algorithms: performance evaluation. Appl. Energy 363, 123064 (2024). https://doi.org/10.1016/j.apenergy.2024.123064
- M.F. Tahir, M.Z. Yousaf, A. Tzes, M.S. El Moursi, T.H.M. El-Fouly, Enhanced solar photovoltaic power prediction using diverse machine learning algorithms with hyperparameter optimization. Renew. Sustain. Energy Rev. 200, 114581 (2024). https://doi.org/10.1016/j.rser.2024.114581
- B. Bai, L. Wang, F. Guan, Y. Cui, M. Bao et al., Prediction models for bioavailability of Cu and Zn during composting: insights into machine learning. J. Hazard. Mater. 471, 134392 (2024). https://doi.org/10.1016/j.jhazmat.2024.134392
- G. Yin, F.J.I. Alazzawi, S. Mironov, F. Reegu, A.S. El-Shafay et al., Machine learning method for simulation of adsorption separation: comparisons of model’s performance in predicting equilibrium concentrations. Arab. J. Chem. 15(3), 103612 (2022). https://doi.org/10.1016/j.arabjc.2021.103612
- R. Lyu, C.E. Moore, T. Liu, Y. Yu, Y. Wu, Predictive design model for low-dimensional organic–inorganic halide perovskites assisted by machine learning. J. Am. Chem. Soc. 143(32), 12766–12776 (2021). https://doi.org/10.1021/jacs.1c05441
- S. Lu, Q. Zhou, Y. Ouyang, Y. Guo, Q. Li et al., Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nat. Commun. 9(1), 3405 (2018). https://doi.org/10.1038/s41467-018-05761-w
- A.J. Myles, R.N. Feudale, Y. Liu, N.A. Woody, S.D. Brown, An introduction to decision tree modeling. J. Chemom. 18(6), 275–285 (2004). https://doi.org/10.1002/cem.873
- V. Rodriguez-Galiano, M. Sanchez-Castillo, M. Chica-Olmo, M. Chica-Rivas, Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev. 71, 804–818 (2015). https://doi.org/10.1016/j.oregeorev.2015.01.001
- A.V. Konstantinov, L.V. Utkin, Interpretable machine learning with an ensemble of gradient boosting machines. Knowl. Based Syst. 222, 106993 (2021). https://doi.org/10.1016/j.knosys.2021.106993
- P. Li, L. Dong, C. Li, Y. Li, J. Zhao et al., Machine learning to promote efficient screening of low-contact electrode for 2D semiconductor transistor under limited data. Adv. Mater. 36(26), 2312887 (2024). https://doi.org/10.1002/adma.202312887
- A.P. Bartók, J. Kermode, N. Bernstein, G. Csányi, Machine learning a general-purpose interatomic potential for silicon. Phys. Rev. X 8(4), 041048 (2018). https://doi.org/10.1103/physrevx.8.041048
- L.C. Erhard, J. Rohrer, K. Albe, V.L. Deringer, A machine-learned interatomic potential for silica and its relation to empirical models. NPJ Comput. Mater. 8, 90 (2022). https://doi.org/10.1038/s41524-022-00768-w
- Z. Liu, M. Jiang, T. Luo, Leveraging low-fidelity data to improve machine learning of sparse high-fidelity thermal conductivity data via transfer learning. Mater. Today Phys. 28, 100868 (2022). https://doi.org/10.1016/j.mtphys.2022.100868
- Y. Kang, H. Park, B. Smit, J. Kim, A multi-modal pre-training transformer for universal transfer learning in metal–organic frameworks. Nat. Mach. Intell. 5(3), 309–318 (2023). https://doi.org/10.1038/s42256-023-00628-2
- H. Wang, T. Fu, Y. Du, W. Gao, K. Huang et al., Scientific discovery in the age of artificial intelligence. Nature 620(7972), 47–60 (2023). https://doi.org/10.1038/s41586-023-06221-2
- B. Dou, Z. Zhu, E. Merkurjev, L. Ke, L. Chen et al., Machine learning methods for small data challenges in molecular science. Chem. Rev. 123(13), 8736–8780 (2023). https://doi.org/10.1021/acs.chemrev.3c00189
- D. Azzimonti, C. Rottondi, A. Giusti, M. Tornatore, A. Bianco, Comparison of domain adaptation and active learning techniques for quality of transmission estimation with small-sized training datasets. J. Opt. Commun. Netw. 13(1), A56 (2021). https://doi.org/10.1364/jocn.401918
- Y. Jia, R. Zhang, C. Fang, J. Zheng, Interpretable machine learning to accelerate the analysis of doping effect on Li/Ni exchange in Ni-rich layered oxide cathodes. J. Phys. Chem. Lett. 15(6), 1765–1773 (2024). https://doi.org/10.1021/acs.jpclett.3c03294
- J. Bai, L. Cao, S. Mosbach, J. Akroyd, A.A. Lapkin et al., From platform to knowledge graph: evolution of laboratory automation. JACS Au 2(2), 292–309 (2022). https://doi.org/10.1021/jacsau.1c00438
- O. Bayley, E. Savino, A. Slattery, T. Noël, Autonomous chemistry: navigating self-driving labs in chemical and material sciences. Matter 7(7), 2382–2398 (2024). https://doi.org/10.1016/j.matt.2024.06.003
- P. Chen, R. Jiao, J. Liu, Y. Liu, Y. Lu, Interpretable graph transformer network for predicting adsorption isotherms of metal–organic frameworks. J. Chem. Inf. Model. 62(22), 5446–5456 (2022). https://doi.org/10.1021/acs.jcim.2c00876
- K.M. Jablonka, D. Ongari, S.M. Moosavi, B. Smit, Using collective knowledge to assign oxidation states of metal cations in metal–organic frameworks. Nat. Chem. 13(8), 771–777 (2021). https://doi.org/10.1038/s41557-021-00717-y
- Y. Guo, M. Yang, G. Huang, Y. Zheng, Machine-learning-enabled exploitation of gas-sensing descriptors: a case study of five pristine metal oxides. Chem. Eng. J. 492, 152280 (2024). https://doi.org/10.1016/j.cej.2024.152280
- H. Li, X. Li, P. Wang, Z. Zhang, K. Davey et al., Machine learning big data set analysis reveals C-C electro-coupling mechanism. J. Am. Chem. Soc. 146(32), 22850–22858 (2024). https://doi.org/10.1021/jacs.4c09079
- Y. Sun, P. Sun, J. Jia, Z. Liu, L. Huo et al., Machine learning in clarifying complex relationships: biochar preparation procedures and capacitance characteristics. Chem. Eng. J. 485, 149975 (2024). https://doi.org/10.1016/j.cej.2024.149975
- Y. Zhou, Lifecycle battery carbon footprint analysis for battery sustainability with energy digitalization and artificial intelligence. Appl. Energy 371, 123665 (2024). https://doi.org/10.1016/j.apenergy.2024.123665
- H. Zhang, X. Gui, S. Zheng, Z. Lu, Y. Li, J. Bian. Batteryml: An open-source platform for machine learning on battery degradation. arXiv preprint arXiv:231014714. (2023).
- X. Li, J.M. Hoffman, M.G. Kanatzidis, The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121(4), 2230–2291 (2021). https://doi.org/10.1021/acs.chemrev.0c01006
- R. Ouyang, E. Ahmetcik, C. Carbogno, M. Scheffler, L.M. Ghiringhelli, Simultaneous learning of several materials properties from incomplete databases with multi-task SISSO. J. Phys. Mater. 2(2), 024002 (2019). https://doi.org/10.1088/2515-7639/ab077b
- R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler, L.M. Ghiringhelli, SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys. Rev. Mater. 2(8), 083802 (2018). https://doi.org/10.1103/physrevmaterials.2.083802
- A. Ludwig, Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods. NPJ Comput. Mater. 5, 70 (2019). https://doi.org/10.1038/s41524-019-0205-0
- Z. Ren, F. Oviedo, M. Thway, S.I.P. Tian, Y. Wang et al., Embedding physics domain knowledge into a Bayesian network enables layer-by-layer process innovation for photovoltaics. NPJ Comput. Mater. 6, 9 (2020). https://doi.org/10.1038/s41524-020-0277-x
- J. Tian, R. Xiong, W. Shen, J. Lu, X.-G. Yang, Deep neural network battery charging curve prediction using 30 points collected in 10 min. Joule 5(6), 1521–1534 (2021). https://doi.org/10.1016/j.joule.2021.05.012
- Z. Fu, P. Huang, X. Wang, W.-D. Liu, L. Kong et al., Artificial intelligence-assisted ultrafast high-throughput screening of high-entropy hydrogen evolution reaction catalysts. Adv. Energy Mater. 15(30), 2500744 (2025). https://doi.org/10.1002/aenm.202500744
- S. Singh, J.M. Hernández-Lobato, A meta-learning approach for selectivity prediction in asymmetric catalysis. Nat. Commun. 16, 3599 (2025). https://doi.org/10.1038/s41467-025-58854-8
- H. Liao, S. Hu, H. Yang, L. Wang, S. Tanaka et al., Data-driven de novo design of super-adhesive hydrogels. Nature 644(8075), 89–95 (2025). https://doi.org/10.1038/s41586-025-09269-4
- H. Li, H. Zheng, T. Yue, Z. Xie, S. Yu et al., Machine learning-accelerated discovery of heat-resistant polysulfates for electrostatic energy storage. Nat. Energy 10(1), 90–100 (2025). https://doi.org/10.1038/s41560-024-01670-z
- L. Zhang, X. Zhang, C. Chen, J. Zhang, W. Tan et al., Machine learning-aided discovery of low-Pt high entropy intermetallic compounds for electrochemical oxygen reduction reaction. Angew. Chem. Int. Ed. 63(51), e202411123 (2024). https://doi.org/10.1002/anie.202411123
- X. Duan, Y. Li, J. Zhao, M. Zhang, X. Wang et al., Machine learning accelerated discovery of entropy-stabilized oxide catalysts for catalytic oxidation. J. Am. Chem. Soc. 147(1), 651–661 (2025). https://doi.org/10.1021/jacs.4c12838
- G. Lin, Z. University, T. Guo, Z. University et al., Machine learning accelerated screening advanced single-atom anchored MXenes electrocatalyst for nitrogen fixation. ACS Catal. 15(15), 13534–13548 (2025). https://doi.org/10.1021/acscatal.4c06914
References
A.M. Mroz, V. Posligua, A. Tarzia, E.H. Wolpert, K.E. Jelfs, Into the unknown: how computation can help explore uncharted material space. J. Am. Chem. Soc. 144(41), 18730–18743 (2022). https://doi.org/10.1021/jacs.2c06833
J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen et al., A library of atomically thin metal chalcogenides. Nature 556(7701), 355–359 (2018). https://doi.org/10.1038/s41586-018-0008-3
S. Jiang, Y. Zhou, W. Xu, Q. Xia, M. Yi et al., Machine learning-driven optimization and application of bimetallic catalysts in peroxymonosulfate activation for degradation of fluoroquinolone antibiotics. Chem. Eng. J. 486, 150297 (2024). https://doi.org/10.1016/j.cej.2024.150297
T. Jing, B. Xu, Y. Yang, M. Li, Y. Gao, Organogel electrode enables highly transparent and stretchable triboelectric nanogenerators of high power density for robust and reliable energy harvesting. Nano Energy 78, 105373 (2020). https://doi.org/10.1016/j.nanoen.2020.105373
Y. Liu, B. Xie, Q. Hu, R. Zhao, Q. Zheng et al., Regulating the Helmholtz plane by trace polarity additive for long-life Zn ion batteries. Energy Storage Mater. 66, 103202 (2024). https://doi.org/10.1016/j.ensm.2024.103202
J. Wen, B. Xu, J. Zhou, Toward flexible and wearable embroidered supercapacitors from cobalt phosphides-decorated conductive fibers. Nano-Micro Lett. 11(1), 89 (2019). https://doi.org/10.1007/s40820-019-0321-x
J. Li, B. Xu, Novel highly sensitive and wearable pressure sensors from conductive three-dimensional fabric structures. Smart Mater. Struct. 24(12), 125022 (2015). https://doi.org/10.1088/0964-1726/24/12/125022
X. Guan, B. Xu, J. Huang, T. Jing, Y. Gao, Fiber-shaped stretchable triboelectric nanogenerator with a novel synergistic structure of opposite Poisson’s ratios. Chem. Eng. J. 427, 131698 (2022). https://doi.org/10.1016/j.cej.2021.131698
B. Niu, T. Hua, B. Xu, Robust deposition of silver nanops on paper assisted by polydopamine for green and flexible electrodes. ACS Sustainable Chem. Eng. 8(34), 12842–12851 (2020). https://doi.org/10.1021/acssuschemeng.0c03098
K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Machine learning for molecular and materials science. Nature 559(7715), 547–555 (2018). https://doi.org/10.1038/s41586-018-0337-2
P.M. Attia, A. Grover, N. Jin, K.A. Severson, T.M. Markov et al., Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 578(7795), 397–402 (2020). https://doi.org/10.1038/s41586-020-1994-5
Q. Zhou, S. Lu, Y. Wu, J. Wang, Property-oriented material design based on a data-driven machine learning technique. J. Phys. Chem. Lett. 11(10), 3920–3927 (2020). https://doi.org/10.1021/acs.jpclett.0c00665
S. Lu, Q. Zhou, X. Chen, Z. Song, J. Wang, Inverse design with deep generative models: next step in materials discovery. Natl. Sci. Rev. 9(8), nwac111 (2022). https://doi.org/10.1093/nsr/nwac111
H. Shi, Y. Shi, Z. Liang, S. Zhao, B. Qiao et al., Machine learning-enabled discovery of multi-resonance TADF molecules: unraveling PLQY predictions from molecular structures. Chem. Eng. J. 494, 153150 (2024). https://doi.org/10.1016/j.cej.2024.153150
J. Sun, D. Li, Y. Wang, T. Xie, Y. Zou et al., Accelerating the generation and discovery of high-performance donor materials for organic solar cells by deep learning. J. Mater. Chem. A 12(33), 21813–21823 (2024). https://doi.org/10.1039/D4TA03944K
Y. Li, X. Zhang, T. Li, Y. Chen, Y. Liu et al., Accelerating materials discovery for electrocatalytic water oxidation via center-environment deep learning in spinel oxides. J. Mater. Chem. A 12(30), 19362–19377 (2024). https://doi.org/10.1039/d4ta02771j
M. Omidvar, H. Zhang, A.A. Ihalage, T.G. Saunders, H. Giddens et al., Accelerated discovery of perovskite solid solutions through automated materials synthesis and characterization. Nat. Commun. 15(1), 6554 (2024). https://doi.org/10.1038/s41467-024-50884-y
M. Kim, W.-H. Yeo, K. Min, Co-free and low strain cathode materials for sodium-ion batteries: machine learning-based materials discovery. Energy Storage Mater. 69, 103405 (2024). https://doi.org/10.1016/j.ensm.2024.103405
H. Wang, M. Jiang, G. Xu, C. Wang, X. Xu et al., Machine learning-guided prediction of desalination capacity and rate of porous carbons for capacitive deionization. Small 20(42), e2401214 (2024). https://doi.org/10.1002/smll.202401214
J. Liu, R. Sun, X. Bao, J. Yang, Y. Chen et al., Machine learning driven atom-thin materials for fragrance sensing. Small 21(28), 2401066 (2025). https://doi.org/10.1002/smll.202401066
M. Wu, Z. Song, Y. Cui, Z. Fu, K. Hong et al., Machine learning-assisted design of nitrogen-rich covalent triazine frameworks photocatalysts. Adv. Funct. Mater. 35(3), 2413453 (2025). https://doi.org/10.1002/adfm.202413453
A. Maqbool, A. Khalad, N.Z. Khan, Prediction of corrosion rate for friction stir processed WE43 alloy by combining PSO-based virtual sample generation and machine learning. J. Magnes. Alloys 12(4), 1518–1528 (2024). https://doi.org/10.1016/j.jma.2024.04.012
C. Li, L. Bao, Y. Ji, Z. Tian, M. Cui et al., Combining machine learning and metal–organic frameworks research: novel modeling, performance prediction, and materials discovery. Coord. Chem. Rev. 514, 215888 (2024). https://doi.org/10.1016/j.ccr.2024.215888
G. Huang, F. Huang, W. Dong, Machine learning in energy storage material discovery and performance prediction. Chem. Eng. J. 492, 152294 (2024). https://doi.org/10.1016/j.cej.2024.152294
Y. She, H. Liu, H. Yuan, Y. Li, X. Liu et al., Artificial intelligence-assisted conductive hydrogel dressings for refractory wounds monitoring. Nano-Micro Lett. 17(1), 319 (2025). https://doi.org/10.1007/s40820-025-01834-w
S. Wang, J. Liu, X. Song, H. Xu, Y. Gu et al., Artificial intelligence empowers solid-state batteries for material screening and performance evaluation. Nano-Micro Lett. 17(1), 287 (2025). https://doi.org/10.1007/s40820-025-01797-y
K. Zheng, C. Zheng, L. Zhu, B. Yang, X. Jin et al., Machine learning enabled reusable adhesion, entangled network-based hydrogel for long-term, high-fidelity EEG recording and attention assessment. Nano-Micro Lett. 17(1), 281 (2025). https://doi.org/10.1007/s40820-025-01780-7
F. Zheng, B. Yuan, Y. Cai, H. Xiang, C. Tang et al., Machine learning tailored anodes for efficient hydrogen energy generation in proton-conducting solid oxide electrolysis cells. Nano-Micro Lett. 17(1), 274 (2025). https://doi.org/10.1007/s40820-025-01764-7
J. Chang, J. Li, J. Ye, B. Zhang, J. Chen et al., AI-enabled piezoelectric wearable for joint torque monitoring. Nano-Micro Lett. 17(1), 247 (2025). https://doi.org/10.1007/s40820-025-01753-w
Y. Xiao, H. Li, T. Gu, X. Jia, S. Sun et al., Ti3C2Tx composite aerogels enable pressure sensors for dialect speech recognition assisted by deep learning. Nano-Micro Lett. 17(1), 101 (2024). https://doi.org/10.1007/s40820-024-01605-z
B.H. Jeong, J. Lee, M. Ku, J. Lee, D. Kim et al., RGB color-discriminable photonic synapse for neuromorphic vision system. Nano-Micro Lett 17(1), 78 (2024). https://doi.org/10.1007/s40820-024-01579-y
Z. Zhou, Z. Zhang, P. Li, Z. Guan, Y. Li et al., Low energy consumption photoelectric memristors with multi-level linear conductance modulation in artificial visual systems application. Nano-Micro Lett. 17(1), 317 (2025). https://doi.org/10.1007/s40820-025-01816-y
J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov et al., Highly accurate protein structure prediction with AlphaFold. Nature 596(7873), 583–589 (2021). https://doi.org/10.1038/s41586-021-03819-2
R. Unni, M. Zhou, P.R. Wiecha, Y. Zheng, Advancing materials science through next-generation machine learning. Curr. Opin. Solid State Mater. Sci. 30, 101157 (2024). https://doi.org/10.1016/j.cossms.2024.101157
Y. Wang, K. Wang, C. Zhang, Applications of artificial intelligence/machine learning to high-performance composites. Compos. Part B Eng. 285, 111740 (2024). https://doi.org/10.1016/j.compositesb.2024.111740
R. Du, R. Xin, H. Wang, W. Zhu, R. Li et al., Machine learning: an accelerator for the exploration and application of advanced metal-organic frameworks. Chem. Eng. J. 490, 151828 (2024). https://doi.org/10.1016/j.cej.2024.151828
N. Ling, Y. Wang, S. Song, C. Liu, F. Yang et al., Experimentally validated screening strategy for alloys as anode in Mg-air battery with multi-target machine learning predictions. Chem. Eng. J. 496, 153824 (2024). https://doi.org/10.1016/j.cej.2024.153824
S. Gao, Y. Cheng, L. Chen, S. Huang, Rapid discovery of gas response in materials via density functional theory and machine learning. Energy Environ. Mater. 8(1), e12816 (2025). https://doi.org/10.1002/eem2.12816
S. Poudel, R. Thapa, R. Basnet, A. Timofiejczuk, A. Kunwar, PiezoTensorNet: Crystallography informed multi-scale hierarchical machine learning model for rapid piezoelectric performance finetuning. Appl. Energy 361, 122901 (2024). https://doi.org/10.1016/j.apenergy.2024.122901
L. Wang, H. Chen, L. Yang, J. Li, Y. Li et al., Single-atom catalysts property prediction via supervised and self-supervised pre-training models. Chem. Eng. J. 487, 150626 (2024). https://doi.org/10.1016/j.cej.2024.150626
P. Guo, W. Meng, Y. Bao, Knowledge-guided data-driven design of ultra-high-performance geopolymer (UHPG). Cem. Concr. Compos. 153, 105723 (2024). https://doi.org/10.1016/j.cemconcomp.2024.105723
L. Chen, M. Ren, J. Zhou, X. Zhou, F. Liu et al., Bioinspired iontronic synapse fibers for ultralow-power multiplexing neuromorphic sensorimotor textiles. Proc. Natl. Acad. Sci. U.S.A. 121(33), e2407971121 (2024). https://doi.org/10.1073/pnas.2407971121
Y. Li, Z. Qiu, H. Kan, Y. Yang, J. Liu et al., A human-computer interaction strategy for an FPGA platform boosted integrated “perception-memory” system based on electronic tattoos and memristors. Adv. Sci. 11(39), e2402582 (2024). https://doi.org/10.1002/advs.202402582
H. Zhang, H. Li, Y. Li, Biomimetic electronic skin for robots aiming at superior dynamic-static perception and material cognition based on triboelectric-piezoresistive effects. Nano Lett. 24(13), 4002–4011 (2024). https://doi.org/10.1021/acs.nanolett.4c00623
Y. Li, Q. Lin, T. Sun, M. Qin, W. Yue et al., A perceptual and interactive integration strategy toward telemedicine healthcare based on electroluminescent display and triboelectric sensing 3d stacked device. Adv. Funct. Mater. 34(40), 2402356 (2024). https://doi.org/10.1002/adfm.202402356
W. Yang, H. Kan, G. Shen, Y. Li, A network intrusion detection system with broadband WO3–x/WO3–x-Ag/WO3–x optoelectronic memristor. Adv. Funct. Mater. 34(23), 2312885 (2024). https://doi.org/10.1002/adfm.202312885
S. Deng, B. Xu, J. Zhao, C.W. Kan, X. Liu, Unlocking double redox reaction of metal–organic framework for aqueous zinc-ion battery. Angew. Chem. Int. Ed. 63(17), e202401996 (2024). https://doi.org/10.1002/anie.202401996
B. Niu, T. Hua, H. Hu, B. Xu, X. Tian et al., A highly durable textile-based sensor as a human-worn material interface for long-term multiple mechanical deformation sensing. J. Mater. Chem. C 7(46), 14651–14663 (2019). https://doi.org/10.1039/C9TC04006D
J. Xu, K.K. Wang, T. Liu, Y. Peng, B.G. Xu, Br-doped Bi2O2CO3 exposed (001) crystal facets with enhanced photocatalytic activity. CrystEngComm 19(34), 5001–5007 (2017). https://doi.org/10.1039/c7ce00924k
Y. Wang, Z. Li, H. Fu, B. Xu, Sustainable triboelectric nanogenerators based on recycled materials for biomechanical energy harvesting and self-powered sensing. Nano Energy 115, 108717 (2023). https://doi.org/10.1016/j.nanoen.2023.108717
A. Merchant, S. Batzner, S.S. Schoenholz, M. Aykol, G. Cheon et al., Scaling deep learning for materials discovery. Nature 624(7990), 80–85 (2023). https://doi.org/10.1038/s41586-023-06735-9
E. Alibagheri, A. Ranjbar, M. Khazaei, T.D. Kühne, S.M. Vaez Allaei, Remarkable optoelectronic characteristics of synthesizable square-octagon haeckelite structures: machine learning materials discovery. Adv. Funct. Mater. 34(27), 2402390 (2024). https://doi.org/10.1002/adfm.202402390
B.K. Lee, E.J. Mayhew, B. Sanchez-Lengeling, J.N. Wei, W.W. Qian et al., A principal odor map unifies diverse tasks in olfactory perception. Science 381(6661), 999–1006 (2023). https://doi.org/10.1126/science.ade4401
V.S. Tuchin, E.A. Stepanidenko, A.A. Vedernikova, S.A. Cherevkov, D. Li et al., Optical properties prediction for red and near-infrared emitting carbon dots using machine learning. Small 20(29), 2310402 (2024). https://doi.org/10.1002/smll.202310402
S. Lu, A. Jayaraman, Machine learning for analyses and automation of structural characterization of polymer materials. Prog. Polym. Sci. 153, 101828 (2024). https://doi.org/10.1016/j.progpolymsci.2024.101828
Y. Srivastava, A. Jain, Accelerating thermal conductivity prediction through machine-learning: two orders of magnitude reduction in phonon-phonon scattering rates calculation. Mater. Today Phys. 41, 101345 (2024). https://doi.org/10.1016/j.mtphys.2024.101345
L. Guo, X. Xu, Q. Wang, J. Park, H. Lei et al., Machine learning-based prediction of heavy metal immobilization rate in the solidification/stabilization of municipal solid waste incineration fly ash (MSWIFA) by geopolymers. J. Hazard. Mater. 467, 133682 (2024). https://doi.org/10.1016/j.jhazmat.2024.133682
Q. Liu, W. Chen, V. Yakubov, J.J. Kruzic, C.H. Wang et al., Interpretable machine learning approach for exploring process-structure-property relationships in metal additive manufacturing. Addit. Manuf. 85, 104187 (2024). https://doi.org/10.1016/j.addma.2024.104187
X. Chen, S. Lu, Q. Chen, Q. Zhou, J. Wang, From bulk effective mass to 2D carrier mobility accurate prediction via adversarial transfer learning. Nat. Commun. 15(1), 5391 (2024). https://doi.org/10.1038/s41467-024-49686-z
D. Kwon, D. Kim, Machine learning interatomic potentials in engineering perspective for developing cathode materials. J. Mater. Chem. A 12(35), 23837–23847 (2024). https://doi.org/10.1039/D4TA03452J
W.A. Dunlap-Shohl, Y. Meng, P.P. Sunkari, D.A.C. Beck, M. Meilă et al., Physiochemical machine learning models predict operational lifetimes of CH3NH3PbI3 perovskite solar cells. J. Mater. Chem. A 12(16), 9730–9746 (2024). https://doi.org/10.1039/D3TA06668A
Z. Wang, L. Wang, H. Zhang, H. Xu, X. He, Materials descriptors of machine learning to boost development of lithium-ion batteries. Nano Convergence 11(1), 8 (2024). https://doi.org/10.1186/s40580-024-00417-6
C. Jin, C. Zhang, P. Yan, M. Jiang, R. Yin et al., A superhuman sensing triboelectric nanogenerator with boosted power density and durability via a bio-inspired Janus structure. Adv. Funct. Mater. 34(37), 2402233 (2024). https://doi.org/10.1002/adfm.202402233
J. Li, M. Zhou, H.-H. Wu, L. Wang, J. Zhang et al., Machine learning-assisted property prediction of solid-state electrolyte. Adv. Energy Mater. 14(20), 2304480 (2024). https://doi.org/10.1002/aenm.202304480
X. Zhang, B. Ding, Y. Wang, Y. Liu, G. Zhang et al., Machine learning for screening small molecules as passivation materials for enhanced perovskite solar cells. Adv. Funct. Mater. 34(30), 2314529 (2024). https://doi.org/10.1002/adfm.202314529
Z. Zheng, J. Zhou, Y. Zhu, Computational approach inspired advancements of solid-state electrolytes for lithium secondary batteries: from first-principles to machine learning. Chem. Soc. Rev. 53(6), 3134–3166 (2024). https://doi.org/10.1039/D3CS00572K
H. Mai, X. Wen, X. Li, N.S.L. Dissanayake, X. Sun et al., Data driven high quantum yield halide perovskite phosphors design and fabrication. Mater. Today 74, 12–21 (2024). https://doi.org/10.1016/j.mattod.2024.02.002
Y. Liu, X. Tan, P. Xiang, Y. Tu, T. Shao et al., Machine learning as a characterization method for analysis and design of perovskite solar cells. Mater. Today Phys. 42, 101359 (2024). https://doi.org/10.1016/j.mtphys.2024.101359
Y. Haghshenas, W.P. Wong, V. Sethu, R. Amal, P.V. Kumar et al., Full prediction of band potentials in semiconductor materials. Mater. Today Phys. 46, 101519 (2024). https://doi.org/10.1016/j.mtphys.2024.101519
H. Ji, Y. Tian, C. Fu, H. Ye, Transfer learning enables prediction of steel corrosion in concrete under natural environments. Cem. Concr. Compos. 148, 105488 (2024). https://doi.org/10.1016/j.cemconcomp.2024.105488
P. Akbari, M. Zamani, A. Mostafaei, Machine learning prediction of mechanical properties in metal additive manufacturing. Addit. Manuf. 91, 104320 (2024). https://doi.org/10.1016/j.addma.2024.104320
Y. Fu, A. Howard, C. Zeng, Y. Chen, P. Gao et al., Physics-guided continual learning for predicting emerging aqueous organic redox flow battery material performance. ACS Energy Lett. 9(6), 2767–2774 (2024). https://doi.org/10.1021/acsenergylett.4c00493
X. Mei, T. Miyoshi, Y. Suzuki, A dynamic model of wrist-worn rotational electret energy harvester: theoretical investigation and experimental validations. Appl. Energy 373, 123888 (2024). https://doi.org/10.1016/j.apenergy.2024.123888
W. Hamada, M. Hishida, R. Sugiura, H. Tobita, H. Imai et al., Efficient design and synthesis of an amorphous conjugated polymer network for a metal-free electrocatalyst of hydrogen evolution reaction. J. Mater. Chem. A 12(6), 3294–3303 (2024). https://doi.org/10.1039/D3TA06447F
Y. Gu, S. Tang, X. Liu, X. Liang, Q. Zhu et al., Stability prediction of gold nanoclusters with different ligands and doped metals: deep learning and experimental tests. J. Mater. Chem. A 12(8), 4460–4472 (2024). https://doi.org/10.1039/d3ta06892g
Z.-P. Lin, Y. Li, S.A. Haque, A.M. Ganose, A. Kafizas, Insights from experiment and machine learning for enhanced TiO2 coated glazing for photocatalytic NOx remediation. J. Mater. Chem. A 12(22), 13281–13298 (2024). https://doi.org/10.1039/D4TA01319K
W. Li, Y. Wen, K. Wang, Z. Ding, L. Wang et al., Developing a machine learning model for accurate nucleoside hydrogels prediction based on descriptors. Nat. Commun. 15(1), 2603 (2024). https://doi.org/10.1038/s41467-024-46866-9
X. Sun, L. Yue, L. Yu, C.T. Forte, C.D. Armstrong et al., Machine learning-enabled forward prediction and inverse design of 4D-printed active plates. Nat. Commun. 15(1), 5509 (2024). https://doi.org/10.1038/s41467-024-49775-z
L. Gao, J. Lin, L. Wang et al., Machine learning-assisted design of advanced polymeric materials. Acc. Mater. Res. 5(5), 571–584 (2024). https://doi.org/10.1021/accountsmr.3c00288
S. Jiang, W. Xu, Q. Xia, M. Yi, Y. Zhou et al., Application of machine learning in the study of cobalt-based oxide catalysts for antibiotic degradation: an innovative reverse synthesis strategy. J. Hazard. Mater. 471, 134309 (2024). https://doi.org/10.1016/j.jhazmat.2024.134309
Y. Zhang, C. Wen, P. Dang, T. Lookman, D. Xue et al., Toward ultra-high strength high entropy alloys via feature engineering. J. Mater. Sci. Technol. 200, 243–252 (2024). https://doi.org/10.1016/j.jmst.2024.02.058
D. Park, J. Lee, H. Lee, G.X. Gu, S. Ryu, Deep generative spatiotemporal learning for integrating fracture mechanics in composite materials: inverse design, discovery, and optimization. Mater. Horiz. 11(13), 3048–3065 (2024). https://doi.org/10.1039/D4MH00337C
M. Seifrid, S. Lo, D.G. Choi, G. Tom, M.L. Le et al., Beyond molecular structure: critically assessing machine learning for designing organic photovoltaic materials and devices. J. Mater. Chem. A 12(24), 14540–14558 (2024). https://doi.org/10.1039/D4TA01942C
K. Li, K. Choudhary, B. DeCost, M. Greenwood, J. Hattrick-Simpers, Efficient first principles based modeling via machine learning: from simple representations to high entropy materials. J. Mater. Chem. A 12(21), 12412–12422 (2024). https://doi.org/10.1039/D4TA00982G
M. Chen, Z. Yin, Z. Shan, X. Zheng, L. Liu et al., Application of machine learning in perovskite materials and devices: a review. J. Energy Chem. 94, 254–272 (2024). https://doi.org/10.1016/j.jechem.2024.02.035
R.-L. Liu, J. Wang, Z.-H. Shen, Y. Shen, Ai for dielectric capacitors. Energy Storage Mater. 71, 103612 (2024). https://doi.org/10.1016/j.ensm.2024.103612
Y. Wu, C.-F. Wang, M.-G. Ju, Q. Jia, Q. Zhou et al., Universal machine learning aided synthesis approach of two-dimensional perovskites in a typical laboratory. Nat. Commun. 15(1), 138 (2024). https://doi.org/10.1038/s41467-023-44236-5
J. Chen, S.R. Cross, L.J. Miara, J.-J. Cho, Y. Wang et al., Navigating phase diagram complexity to guide robotic inorganic materials synthesis. Nat. Synth. 3(5), 606–614 (2024). https://doi.org/10.1038/s44160-024-00502-y
Y. Jiang, D. Salley, A. Sharma, G. Keenan, M. Mullin et al., An artificial intelligence enabled chemical synthesis robot for exploration and optimization of nanomaterials. Sci. Adv. 8(40), eabo2626 (2022). https://doi.org/10.1126/sciadv.abo2626
L.C. Erhard, J. Rohrer, K. Albe, V.L. Deringer, Modelling atomic and nanoscale structure in the silicon–oxygen system through active machine learning. Nat. Commun. 15, 1927 (2024). https://doi.org/10.1038/s41467-024-45840-9
R. Miyazaki, K.S. Belthle, H. Tüysüz, L. Foppa, M. Scheffler, Materials genes of CO2 hydrogenation on supported cobalt catalysts: an artificial intelligence approach integrating theoretical and experimental data. J. Am. Chem. Soc. 146(8), 5433–5444 (2024). https://doi.org/10.1021/jacs.3c12984
Q. Zhai, H. Jiang, N. Long, Q. Kang, X. Meng et al., Machine learning for full lifecycle management of lithium-ion batteries. Renew. Sustain. Energy Rev. 202, 114647 (2024). https://doi.org/10.1016/j.rser.2024.114647
L. Ma, J. Tian, T. Zhang, Q. Guo, C. Hu, Accurate and efficient remaining useful life prediction of batteries enabled by physics-informed machine learning. J. Energy Chem. 91, 512–521 (2024). https://doi.org/10.1016/j.jechem.2023.12.043
T. Zheng, Z. Huang, H. Ge, P. Hu, X. Fan et al., Applying machine learning to design delicate amorphous micro-nano materials for rechargeable batteries. Energy Storage Mater. 71, 103614 (2024). https://doi.org/10.1016/j.ensm.2024.103614
Y. Wang, X. Feng, D. Guo, H. Hsu, J. Hou et al., Temperature excavation to boost machine learning battery thermochemical predictions. Joule 8(9), 2639–2651 (2024). https://doi.org/10.1016/j.joule.2024.07.002
S. Varun, A.M. Chandran, K.P. Minhaj, V. Shaju, L.A. Varghese et al., Unveiling predictive insights for enhanced performance of PVDF-based nanogenerators via machine learning modeling. Chem. Eng. J. 484, 149661 (2024). https://doi.org/10.1016/j.cej.2024.149661
X. Zhang, D. Mu, S. Lu, Y. Zhang, Y. Zhang et al., Ab initio design of Ni-rich cathode material with assistance of machine learning for high energy lithium-ion batteries. Energy Environ. Mater. 7(6), e12744 (2024). https://doi.org/10.1002/eem2.12744
X. Zhang, B. Ding, Y. Wang, Y. Liu, G. Zhang et al., Machine learning for screening small molecules as passivation materials for enhanced perovskite solar cells. Adv. Funct. Mater. 34(30), 2314529 (2024). https://doi.org/10.1002/adfm.202314529
C. Chen, D.T. Nguyen, S.J. Lee, N.A. Baker, A.S. Karakoti et al., Accelerating computational materials discovery with machine learning and cloud high-performance computing: from large-scale screening to experimental validation. J. Am. Chem. Soc. 146(29), 20009–20018 (2024). https://doi.org/10.1021/jacs.4c03849
J. Liu, M. Liu, J.-P. Liu, Z. Ye, Y. Wang et al., Towards provably efficient quantum algorithms for large-scale machine-learning models. Nat. Commun. 15, 434 (2024). https://doi.org/10.1038/s41467-023-43957-x
N.J. Szymanski, B. Rendy, Y. Fei, R.E. Kumar, T. He et al., An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624(7990), 86–91 (2023). https://doi.org/10.1038/s41586-023-06734-w
J. Cui, F. Wu, W. Zhang, L. Yang, J. Hu et al., Direct prediction of gas adsorption via spatial atom interaction learning. Nat. Commun. 14(1), 7043 (2023). https://doi.org/10.1038/s41467-023-42863-6
V.L. Deringer, N. Bernstein, G. Csányi, C. Ben Mahmoud, M. Ceriotti et al., Origins of structural and electronic transitions in disordered silicon. Nature 589(7840), 59–64 (2021). https://doi.org/10.1038/s41586-020-03072-z
H. Yin, M. Xu, Z. Luo, X. Bi, J. Li et al., Machine learning for membrane design and discovery. Green Energy Environ. 9(1), 54–70 (2024). https://doi.org/10.1016/j.gee.2022.12.001
N. Han, B.-L. Su, Ai-driven material discovery for energy, catalysis and sustainability. Natl. Sci. Rev. 12(5), nwaf110 (2025). https://doi.org/10.1093/nsr/nwaf110
A. Jaison, A. Mohan, Y.-C. Lee, Machine learning-enhanced photocatalysis for environmental sustainability: integration and applications. Mater. Sci. Eng. R. Rep. 161, 100880 (2024). https://doi.org/10.1016/j.mser.2024.100880
X. Jiang, H. Fu, Y. Bai, L. Jiang, H. Zhang et al., Interpretable machine learning applications: a promising prospect of AI for materials. Adv. Funct. Mater. 2507734 (2025). https://doi.org/10.1002/adfm.202507734
Y. Aoki, S. Wu, T. Tsurimoto, Y. Hayashi, S. Minami et al., Multitask machine learning to predict polymer–solvent miscibility using flory–huggins interaction parameters. Macromolecules 56(14), 5446–5456 (2023). https://doi.org/10.1021/acs.macromol.2c02600
V. Kuznetsova, Á. Coogan, D. Botov, Y. Gromova, E.V. Ushakova et al., Expanding the horizons of machine learning in nanomaterials to chiral nanostructures. Adv. Mater. 36(18), 2308912 (2024). https://doi.org/10.1002/adma.202308912
A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards et al., Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013). https://doi.org/10.1063/1.4812323
J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65(11), 1501–1509 (2013). https://doi.org/10.1007/s11837-013-0755-4
C. Draxl, M. Scheffler, The NOMAD laboratory: from data sharing to artificial intelligence. J. Phys. Mater. 2(3), 036001 (2019). https://doi.org/10.1088/2515-7639/ab13bb
S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang et al., AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012). https://doi.org/10.1016/j.commatsci.2012.02.002
K. Bi, Y. Wang, G. Zhou, Hierarchical porous N/S-doped carbon with machine learning to predict advanced potassium-ion batteries. J. Mater. Chem. A 11(22), 11696–11703 (2023). https://doi.org/10.1039/D3TA00247K
L.E. Vivanco-Benavides, C.L. Martínez-González, C. Mercado-Zúñiga, C. Torres-Torres, Machine learning and materials informatics approaches in the analysis of physical properties of carbon nanotubes: a review. Comput. Mater. Sci. 201, 110939 (2022). https://doi.org/10.1016/j.commatsci.2021.110939
A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386
P.Z. Moghadam, Y.G. Chung, R.Q. Snurr, Progress toward the computational discovery of new metal–organic framework adsorbents for energy applications. Nat. Energy 9(2), 121–133 (2024). https://doi.org/10.1038/s41560-023-01417-2
T. Chen, Z. Pang, S. He, Y. Li, S. Shrestha et al., Machine intelligence-accelerated discovery of all-natural plastic substitutes. Nat. Nanotechnol. 19(6), 782–791 (2024). https://doi.org/10.1038/s41565-024-01635-z
J. Benavides-Hernández, F. Dumeignil, From characterization to discovery: artificial intelligence, machine learning and high-throughput experiments for heterogeneous catalyst design. ACS Catal. 14(15), 11749–11779 (2024). https://doi.org/10.1021/acscatal.3c06293
L. Xiang, J. Chen, X. Zhao, J. Hu, J. Yu et al., Synergistic machine learning accelerated discovery of nanoporous inorganic crystals as non-absorbable oral drugs. Adv. Mater. 36(32), 2404688 (2024). https://doi.org/10.1002/adma.202404688
V. Stanev, K. Choudhary, A.G. Kusne, J. Paglione, I. Takeuchi, Artificial intelligence for search and discovery of quantum materials. Commun. Mater. 2, 105 (2021). https://doi.org/10.1038/s43246-021-00209-z
Y. Wang, Z.-J. Jiang, D.-R. Wang, W. Lu, D. Li, Machine learning-assisted discovery of propane-selective metal–organic frameworks. J. Am. Chem. Soc. 146(10), 6955–6961 (2024). https://doi.org/10.1021/jacs.3c14610
H.M. Johnson, F. Gusev, J.T. Dull, Y. Seo, R.D. Priestley et al., Discovery of crystallizable organic semiconductors with machine learning. J. Am. Chem. Soc. 146(31), 21583–21590 (2024). https://doi.org/10.1021/jacs.4c05245
Z. Zhang, F. Pan, S.A. Mohamed, C. Ji, K. Zhang et al., Accelerating discovery of water stable metal−organic frameworks by machine learning. Small 20(42), 2405087 (2024). https://doi.org/10.1002/smll.202405087
X. Zhou, C. Xu, X. Guo, P. Apostol, A. Vlad et al., Computational and machine learning-assisted discovery and experimental validation of conjugated sulfonamide cathodes for lithium-ion batteries. Adv. Energy Mater. 15(25), 2401658 (2025). https://doi.org/10.1002/aenm.202401658
X. Liu, K. Fan, X. Huang, J. Ge, Y. Liu et al., Recent advances in artificial intelligence boosting materials design for electrochemical energy storage. Chem. Eng. J. 490, 151625 (2024). https://doi.org/10.1016/j.cej.2024.151625
G. Xu, M. Jiang, J. Li, X. Xuan, J. Li et al., Machine learning-accelerated discovery and design of electrode materials and electrolytes for lithium ion batteries. Energy Storage Materials 72, 103710 (2024). https://doi.org/10.1016/j.ensm.2024.103710
B.J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani et al., Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844), 89–96 (2021). https://doi.org/10.1038/s41586-021-03213-y
T. He, H. Huo, C.J. Bartel, Z. Wang, K. Cruse et al., Precursor recommendation for inorganic synthesis by machine learning materials similarity from scientific literature. Sci. Adv. 9(23), eadg8180 (2023). https://doi.org/10.1126/sciadv.adg8180
N.J. Szymanski, P. Nevatia, C.J. Bartel, Y. Zeng, G. Ceder, Autonomous and dynamic precursor selection for solid-state materials synthesis. Nat. Commun. 14, 6956 (2023). https://doi.org/10.1038/s41467-023-42329-9
J. Li, S.G. Ballmer, E.P. Gillis, S. Fujii, M.J. Schmidt et al., Synthesis of many different types of organic small molecules using one automated process. Science 347(6227), 1221–1226 (2015). https://doi.org/10.1126/science.aaa5414
P.J. Kitson, G. Marie, J.-P. Francoia, S.S. Zalesskiy, R.C. Sigerson et al., Digitization of multistep organic synthesis in reactionware for on-demand pharmaceuticals. Science 359(6373), 314–319 (2018). https://doi.org/10.1126/science.aao3466
C.W. Coley, D.A. Thomas 3rd, J.A.M. Lummiss, J.N. Jaworski, C.P. Breen et al., A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365(6453), eaax1566 (2019). https://doi.org/10.1126/science.aax1566
J.S. Manzano, W. Hou, S.S. Zalesskiy, P. Frei, H. Wang et al., An autonomous portable platform for universal chemical synthesis. Nat. Chem. 14(11), 1311–1318 (2022). https://doi.org/10.1038/s41557-022-01016-w
A. Chen, Z. Wang, K.L.L. Vidaurre, Y. Han, S. Ye et al., Knowledge-reused transfer learning for molecular and materials science. J. Energy Chem. 98, 149–168 (2024). https://doi.org/10.1016/j.jechem.2024.06.013
X.-Y. Liu, J. Wu, Z.-H. Zhou, Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst., Man, Cybern. B 39(2), 539–550 (2009). https://doi.org/10.1109/tsmcb.2008.2007853
N. Qu, M. Chen, M. Liao, Y. Cheng, Z. Lai et al., Accelerating density functional calculation of adatom adsorption on graphene via machine learning. Materials 16(7), 2633 (2023). https://doi.org/10.3390/ma16072633
M. Agarwal, P. Pasupathy, X. Wu, S.S. Recchia, A.A. Pelegri, Multiscale computational and artificial intelligence models of linear and nonlinear composites: a review. Small Science 4(5), 2300185 (2024). https://doi.org/10.1002/smsc.202300185
W.L. Ng, G.L. Goh, G.D. Goh, J.S.J. Ten, W.Y. Yeong, Progress and opportunities for machine learning in materials and processes of additive manufacturing. Adv. Mater. 36(34), 2310006 (2024). https://doi.org/10.1002/adma.202310006
K. Zhang, X. Gong, Y. Jiang, Machine learning in soft matter: from simulations to experiments. Adv. Funct. Mater. 34(24), 2315177 (2024). https://doi.org/10.1002/adfm.202315177
M. Delpisheh, B. Ebrahimpour, A. Fattahi, M. Siavashi, H. Mir et al., Leveraging machine learning in porous media. J. Mater. Chem. A 12(32), 20717–20782 (2024). https://doi.org/10.1039/d4ta00251b
V. Karkaria, A. Goeckner, R. Zha, J. Chen, J. Zhang et al., Towards a digital twin framework in additive manufacturing: machine learning and bayesian optimization for time series process optimization. J. Manuf. Syst. 75, 322–332 (2024). https://doi.org/10.1016/j.jmsy.2024.04.023
Y. Ren, M. Cui, Y. Zhou, S. Sun, F. Guo et al., Utilizing machine learning for reactive material selection and width design in permeable reactive barrier (PRB). Water Res. 251, 121097 (2024). https://doi.org/10.1016/j.watres.2023.121097
H. Wang, S.L. Gao, B.T. Wang, Y.T. Ma, Z.J. Guo et al., Recent advances in machine learning-assisted fatigue life prediction of additive manufactured metallic materials: a review. J. Mater. Sci. Technol. 198, 111–136 (2024). https://doi.org/10.1016/j.jmst.2024.01.086
B. Lu, Y. Xia, Y. Ren, M. Xie, L. Zhou et al., When machine learning meets 2D materials: a review. Adv. Sci. 11(13), 2305277 (2024). https://doi.org/10.1002/advs.202305277
S.V. Thummalapalli, D. Patil, A. Ramanathan, D. Ravichandran, Y. Zhu et al., Machine learning–enabled direct ink writing of conductive polymer composites for enhanced performance in thermal management and current protection. Energy Storage Materials 71, 103670 (2024). https://doi.org/10.1016/j.ensm.2024.103670
H. Zhang, Y. Li, S. Zheng, Z. Lu, X. Gui et al., Battery lifetime prediction across diverse ageing conditions with inter-cell deep learning. Nat. Mach. Intell. 7(2), 270–277 (2025). https://doi.org/10.1038/s42256-024-00972-x
A. Keddouda, R. Ihaddadene, A. Boukhari, A. Atia, M. Arıcı et al., Photovoltaic module temperature prediction using various machine learning algorithms: performance evaluation. Appl. Energy 363, 123064 (2024). https://doi.org/10.1016/j.apenergy.2024.123064
M.F. Tahir, M.Z. Yousaf, A. Tzes, M.S. El Moursi, T.H.M. El-Fouly, Enhanced solar photovoltaic power prediction using diverse machine learning algorithms with hyperparameter optimization. Renew. Sustain. Energy Rev. 200, 114581 (2024). https://doi.org/10.1016/j.rser.2024.114581
B. Bai, L. Wang, F. Guan, Y. Cui, M. Bao et al., Prediction models for bioavailability of Cu and Zn during composting: insights into machine learning. J. Hazard. Mater. 471, 134392 (2024). https://doi.org/10.1016/j.jhazmat.2024.134392
G. Yin, F.J.I. Alazzawi, S. Mironov, F. Reegu, A.S. El-Shafay et al., Machine learning method for simulation of adsorption separation: comparisons of model’s performance in predicting equilibrium concentrations. Arab. J. Chem. 15(3), 103612 (2022). https://doi.org/10.1016/j.arabjc.2021.103612
R. Lyu, C.E. Moore, T. Liu, Y. Yu, Y. Wu, Predictive design model for low-dimensional organic–inorganic halide perovskites assisted by machine learning. J. Am. Chem. Soc. 143(32), 12766–12776 (2021). https://doi.org/10.1021/jacs.1c05441
S. Lu, Q. Zhou, Y. Ouyang, Y. Guo, Q. Li et al., Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nat. Commun. 9(1), 3405 (2018). https://doi.org/10.1038/s41467-018-05761-w
A.J. Myles, R.N. Feudale, Y. Liu, N.A. Woody, S.D. Brown, An introduction to decision tree modeling. J. Chemom. 18(6), 275–285 (2004). https://doi.org/10.1002/cem.873
V. Rodriguez-Galiano, M. Sanchez-Castillo, M. Chica-Olmo, M. Chica-Rivas, Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev. 71, 804–818 (2015). https://doi.org/10.1016/j.oregeorev.2015.01.001
A.V. Konstantinov, L.V. Utkin, Interpretable machine learning with an ensemble of gradient boosting machines. Knowl. Based Syst. 222, 106993 (2021). https://doi.org/10.1016/j.knosys.2021.106993
P. Li, L. Dong, C. Li, Y. Li, J. Zhao et al., Machine learning to promote efficient screening of low-contact electrode for 2D semiconductor transistor under limited data. Adv. Mater. 36(26), 2312887 (2024). https://doi.org/10.1002/adma.202312887
A.P. Bartók, J. Kermode, N. Bernstein, G. Csányi, Machine learning a general-purpose interatomic potential for silicon. Phys. Rev. X 8(4), 041048 (2018). https://doi.org/10.1103/physrevx.8.041048
L.C. Erhard, J. Rohrer, K. Albe, V.L. Deringer, A machine-learned interatomic potential for silica and its relation to empirical models. NPJ Comput. Mater. 8, 90 (2022). https://doi.org/10.1038/s41524-022-00768-w
Z. Liu, M. Jiang, T. Luo, Leveraging low-fidelity data to improve machine learning of sparse high-fidelity thermal conductivity data via transfer learning. Mater. Today Phys. 28, 100868 (2022). https://doi.org/10.1016/j.mtphys.2022.100868
Y. Kang, H. Park, B. Smit, J. Kim, A multi-modal pre-training transformer for universal transfer learning in metal–organic frameworks. Nat. Mach. Intell. 5(3), 309–318 (2023). https://doi.org/10.1038/s42256-023-00628-2
H. Wang, T. Fu, Y. Du, W. Gao, K. Huang et al., Scientific discovery in the age of artificial intelligence. Nature 620(7972), 47–60 (2023). https://doi.org/10.1038/s41586-023-06221-2
B. Dou, Z. Zhu, E. Merkurjev, L. Ke, L. Chen et al., Machine learning methods for small data challenges in molecular science. Chem. Rev. 123(13), 8736–8780 (2023). https://doi.org/10.1021/acs.chemrev.3c00189
D. Azzimonti, C. Rottondi, A. Giusti, M. Tornatore, A. Bianco, Comparison of domain adaptation and active learning techniques for quality of transmission estimation with small-sized training datasets. J. Opt. Commun. Netw. 13(1), A56 (2021). https://doi.org/10.1364/jocn.401918
Y. Jia, R. Zhang, C. Fang, J. Zheng, Interpretable machine learning to accelerate the analysis of doping effect on Li/Ni exchange in Ni-rich layered oxide cathodes. J. Phys. Chem. Lett. 15(6), 1765–1773 (2024). https://doi.org/10.1021/acs.jpclett.3c03294
J. Bai, L. Cao, S. Mosbach, J. Akroyd, A.A. Lapkin et al., From platform to knowledge graph: evolution of laboratory automation. JACS Au 2(2), 292–309 (2022). https://doi.org/10.1021/jacsau.1c00438
O. Bayley, E. Savino, A. Slattery, T. Noël, Autonomous chemistry: navigating self-driving labs in chemical and material sciences. Matter 7(7), 2382–2398 (2024). https://doi.org/10.1016/j.matt.2024.06.003
P. Chen, R. Jiao, J. Liu, Y. Liu, Y. Lu, Interpretable graph transformer network for predicting adsorption isotherms of metal–organic frameworks. J. Chem. Inf. Model. 62(22), 5446–5456 (2022). https://doi.org/10.1021/acs.jcim.2c00876
K.M. Jablonka, D. Ongari, S.M. Moosavi, B. Smit, Using collective knowledge to assign oxidation states of metal cations in metal–organic frameworks. Nat. Chem. 13(8), 771–777 (2021). https://doi.org/10.1038/s41557-021-00717-y
Y. Guo, M. Yang, G. Huang, Y. Zheng, Machine-learning-enabled exploitation of gas-sensing descriptors: a case study of five pristine metal oxides. Chem. Eng. J. 492, 152280 (2024). https://doi.org/10.1016/j.cej.2024.152280
H. Li, X. Li, P. Wang, Z. Zhang, K. Davey et al., Machine learning big data set analysis reveals C-C electro-coupling mechanism. J. Am. Chem. Soc. 146(32), 22850–22858 (2024). https://doi.org/10.1021/jacs.4c09079
Y. Sun, P. Sun, J. Jia, Z. Liu, L. Huo et al., Machine learning in clarifying complex relationships: biochar preparation procedures and capacitance characteristics. Chem. Eng. J. 485, 149975 (2024). https://doi.org/10.1016/j.cej.2024.149975
Y. Zhou, Lifecycle battery carbon footprint analysis for battery sustainability with energy digitalization and artificial intelligence. Appl. Energy 371, 123665 (2024). https://doi.org/10.1016/j.apenergy.2024.123665
H. Zhang, X. Gui, S. Zheng, Z. Lu, Y. Li, J. Bian. Batteryml: An open-source platform for machine learning on battery degradation. arXiv preprint arXiv:231014714. (2023).
X. Li, J.M. Hoffman, M.G. Kanatzidis, The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121(4), 2230–2291 (2021). https://doi.org/10.1021/acs.chemrev.0c01006
R. Ouyang, E. Ahmetcik, C. Carbogno, M. Scheffler, L.M. Ghiringhelli, Simultaneous learning of several materials properties from incomplete databases with multi-task SISSO. J. Phys. Mater. 2(2), 024002 (2019). https://doi.org/10.1088/2515-7639/ab077b
R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler, L.M. Ghiringhelli, SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys. Rev. Mater. 2(8), 083802 (2018). https://doi.org/10.1103/physrevmaterials.2.083802
A. Ludwig, Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods. NPJ Comput. Mater. 5, 70 (2019). https://doi.org/10.1038/s41524-019-0205-0
Z. Ren, F. Oviedo, M. Thway, S.I.P. Tian, Y. Wang et al., Embedding physics domain knowledge into a Bayesian network enables layer-by-layer process innovation for photovoltaics. NPJ Comput. Mater. 6, 9 (2020). https://doi.org/10.1038/s41524-020-0277-x
J. Tian, R. Xiong, W. Shen, J. Lu, X.-G. Yang, Deep neural network battery charging curve prediction using 30 points collected in 10 min. Joule 5(6), 1521–1534 (2021). https://doi.org/10.1016/j.joule.2021.05.012
Z. Fu, P. Huang, X. Wang, W.-D. Liu, L. Kong et al., Artificial intelligence-assisted ultrafast high-throughput screening of high-entropy hydrogen evolution reaction catalysts. Adv. Energy Mater. 15(30), 2500744 (2025). https://doi.org/10.1002/aenm.202500744
S. Singh, J.M. Hernández-Lobato, A meta-learning approach for selectivity prediction in asymmetric catalysis. Nat. Commun. 16, 3599 (2025). https://doi.org/10.1038/s41467-025-58854-8
H. Liao, S. Hu, H. Yang, L. Wang, S. Tanaka et al., Data-driven de novo design of super-adhesive hydrogels. Nature 644(8075), 89–95 (2025). https://doi.org/10.1038/s41586-025-09269-4
H. Li, H. Zheng, T. Yue, Z. Xie, S. Yu et al., Machine learning-accelerated discovery of heat-resistant polysulfates for electrostatic energy storage. Nat. Energy 10(1), 90–100 (2025). https://doi.org/10.1038/s41560-024-01670-z
L. Zhang, X. Zhang, C. Chen, J. Zhang, W. Tan et al., Machine learning-aided discovery of low-Pt high entropy intermetallic compounds for electrochemical oxygen reduction reaction. Angew. Chem. Int. Ed. 63(51), e202411123 (2024). https://doi.org/10.1002/anie.202411123
X. Duan, Y. Li, J. Zhao, M. Zhang, X. Wang et al., Machine learning accelerated discovery of entropy-stabilized oxide catalysts for catalytic oxidation. J. Am. Chem. Soc. 147(1), 651–661 (2025). https://doi.org/10.1021/jacs.4c12838
G. Lin, Z. University, T. Guo, Z. University et al., Machine learning accelerated screening advanced single-atom anchored MXenes electrocatalyst for nitrogen fixation. ACS Catal. 15(15), 13534–13548 (2025). https://doi.org/10.1021/acscatal.4c06914