Bioinspired Structural Design Enables Synergistic Toughness and Conductivity in Hydrogels for Advanced Wearable Electronics
Corresponding Author: Dahua Shou
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 249
Abstract
Conductive hydrogels are revolutionizing the fields of wearable sensors, implantable bioelectronics, and soft robotics. However, achieving both mechanical robustness and high conductivity within a single system remains challenging. Here, inspired by the cooperative vascular–neural networks in biological tissues, we develop a nanofiber-reinforced conductive hydrogel composed of poly(vinyl alcohol) (PVA), aramid nanofibers (ANFs), and in situ polymerized PEDOT:PSS. Through solvent- and thermally induced structural reorganization, the hydrogel evolves into a bi-continuous architecture in which the mechanical and conductive networks are intimately coupled. The tough, ANF-reinforced porous PVA mimics the vascular system, providing mechanical support and maintaining toughness, while the poly(3,4-ethylenedioxythiophene) (PEDOT) network resembles neural pathways, enabling efficient electron transport. This structural evolution enables a rare synergy of high tensile strength (10.72 MPa) and ultrahigh conductivity (452.75 S m−1) with excellent biocompatibility. The hydrogel maintains stable conduction under impact and complex deformation, supporting multimodal sensing from large-amplitude joint motion to low-amplitude electrophysiological signals: electrocardiographic and electromyographic. When integrated with a convolutional neural network, it achieves 99.54% accuracy in recognizing five complex hand gestures. This bioinspired strategy paves the way for developing robust and conductive hydrogels toward next-generation intelligent wearable electronics.
Highlights:
1 A bioinspired design mimicking the cooperative vascular–neural networks in biological tissues was proposed to guide the development of conductive hydrogels.
2 Solvent- and thermally induced structural reorganization enhances poly(vinyl alcohol) crystallinity and poly(3,4-ethylenedioxythiophene) chain alignment, yielding a synergistic combination of high tensile strength (10.72 MPa) and ultrahigh conductivity (452.75 S m−1).
3 The hydrogel ensures stable electrical conduction and reliable multimodal sensing, enabling accurate and electromyographic/electrocardiographic monitoring and 99.54% gesture recognition accuracy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Gu, D. Li, Y. Ren, J. Li, X. Ji et al., Biomimetic strong and tough MXene fibers with synergy between micropores and dual interfaces. Nat. Commun. 16, 9645 (2025). https://doi.org/10.1038/s41467-025-64647-w
- X. Chen, Y. Feng, P. Zhang, Z. Ni, Y. Xue et al., Hydrogel fibers-based biointerfacing. Adv. Mater. 37(4), 2413476 (2025). https://doi.org/10.1002/adma.202413476
- G. Du, Y. Shao, B. Luo, T. Liu, J. Zhao et al., Compliant iontronic triboelectric gels with phase-locked structure enabled by competitive hydrogen bonding. Nano-Micro Lett. 16(1), 170 (2024). https://doi.org/10.1007/s40820-024-01387-4
- P. Wang, G. Wang, G. Sun, C. Bao, Y. Li et al., A flexible-integrated multimodal hydrogel-based sensing patch. Nano-Micro Lett. 17(1), 156 (2025). https://doi.org/10.1007/s40820-025-01656-w
- Y. She, H. Liu, H. Yuan, Y. Li, X. Liu et al., Artificial intelligence-assisted conductive hydrogel dressings for refractory wounds monitoring. Nano-Micro Lett. 17(1), 319 (2025). https://doi.org/10.1007/s40820-025-01834-w
- C. Xue, Y. Zhao, Y. Liao, H. Zhang, Bioinspired super-robust conductive hydrogels for machine learning-assisted tactile perception system. Adv. Mater. 37(10), e2416275 (2025). https://doi.org/10.1002/adma.202416275
- Q. Han, X. Gao, C. Zhang, Y. Tian, S. Liang et al., Acid-induced in situ phase separation and percolation for constructing bi-continuous phase hydrogel electrodes with motion-insensitive property. Adv. Mater. 37(6), e2415445 (2025). https://doi.org/10.1002/adma.202415445
- Y. Chen, Y. Zhou, Z. Hu, W. Lu, Z. Li et al., Gelatin-based metamaterial hydrogel films with high conformality for ultra-soft tissue monitoring. Nano-Micro Lett. 16(1), 34 (2023). https://doi.org/10.1007/s40820-023-01225-z
- C. Yang, Z. Suo, Hydrogel ionotronics. Nat. Rev. Mater. 3(6), 125–142 (2018). https://doi.org/10.1038/s41578-018-0018-7
- Y. Liu, J. Liu, S. Chen, T. Lei, Y. Kim et al., Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3(1), 58–68 (2019). https://doi.org/10.1038/s41551-018-0335-6
- G. Li, K. Huang, J. Deng, M. Guo, M. Cai et al., Highly conducting and stretchable double-network hydrogel for soft bioelectronics. Adv. Mater. 34(15), e2200261 (2022). https://doi.org/10.1002/adma.202200261
- A. Roy, S. Zenker, S. Jain, R. Afshari, Y. Oz et al., A highly stretchable, conductive, and transparent bioadhesive hydrogel as a flexible sensor for enhanced real-time human health monitoring. Adv. Mater. 36(35), e2404225 (2024). https://doi.org/10.1002/adma.202404225
- X. Ding, Y. Yu, W. Li, F. Bian, H. Gu et al., Multifunctional carbon nanotube hydrogels with on-demand removability for wearable electronics. Nano Today 54, 102124 (2024). https://doi.org/10.1016/j.nantod.2023.102124
- H. He, Y. Chen, A. Pu, L. Wang, W. Li et al., Strong and high-conductivity hydrogels with all-polymer nanofibrous networks for applications as high-capacitance flexible electrodes. NPJ Flex. Electron. 8, 56 (2024). https://doi.org/10.1038/s41528-024-00346-8
- Q. Zhou, J. Lyu, G. Wang, M. Robertson, Z. Qiang et al., Mechanically strong and multifunctional hybrid hydrogels with ultrahigh electrical conductivity. Adv. Funct. Mater. 31(40), 2104536 (2021). https://doi.org/10.1002/adfm.202104536
- S. Wang, X. Guo, S. Liao, J. Chen, Q. Wei, Aramid nanofiber-reinforced MXene/PEDOT: PSS hybrid fibers for high-performance fiber-shaped supercapacitors. Electrochim. Acta 466, 143062 (2023). https://doi.org/10.1016/j.electacta.2023.143062
- G. Yin, J. Wu, C. Qi, X. Zhou, Z.-Z. Yu et al., Pickering emulsion-driven MXene/silk fibroin hydrogels with programmable functional networks for EMI shielding and solar evaporation. Nano-Micro Lett. 17(1), 312 (2025). https://doi.org/10.1007/s40820-025-01818-w
- D. Ji, Z. Zhang, J. Sun, W. Cao, Z. Wang et al., Strong, tough, and biocompatible poly(vinyl alcohol)-poly(vinylpyrrolidone) multiscale network hydrogels reinforced by aramid nanofibers. ACS Appl. Mater. Interfaces 16(19), 25304–25316 (2024). https://doi.org/10.1021/acsami.4c02354
- C. Wang, Z. Zhu, L. Han, L. Xu, M. Wang et al., Poly(vinyl alcohol) hydrogels enhanced with Ti3C2Tx MXene nanosheets and aramid nanofibers for electromagnetic shielding and motion detection. ACS Appl. Nano Mater. 7(21), 24925–24937 (2024). https://doi.org/10.1021/acsanm.4c04840
- J. Ren, G. Chen, H. Yang, J. Zheng, S. Li et al., Super-tough, non-swelling zwitterionic hydrogel sensor based on the hofmeister effect for potential motion monitoring of marine animals. Adv. Mater. 36(48), e2412162 (2024). https://doi.org/10.1002/adma.202412162
- H. Shi, H. Huo, H. Yang, H. Li, J. Shen et al., Cellulose-based dual-network conductive hydrogel with exceptional adhesion. Adv. Funct. Mater. 34(48), 2408560 (2024). https://doi.org/10.1002/adfm.202408560
- S. Hong, J. Lee, T. Park, J. Jeong, J. Lee et al., Spider silk-inspired conductive hydrogels for enhanced toughness and environmental resilience via dense hierarchical structuring. Adv. Sci. 12(12), 2500397 (2025). https://doi.org/10.1002/advs.202500397
- Y.-W. Kim, J.-M. Park, C.S. Park, H. Na, Y.-W. Kang et al., Anisotropically conductive hydrogels with directionally aligned PEDOT: PSS in a PVA matrix. ACS Appl. Mater. Interfaces 16(3), 4013–4023 (2024). https://doi.org/10.1021/acsami.3c16094
- H.J. Kim, H. Kim, Y.H. Choi, E.S. Lee, Y.H. Kim et al., Rapid fabrication of tendon-inspired ultrastrong, water-rich hydrogel fibers: synergistic engineering of cyano-p-aramid nanofibers and poly(vinyl alcohol). ACS Nano 19(8), 8316–8327 (2025). https://doi.org/10.1021/acsnano.4c18686
- J. Yang, Y. Wen, K. Wei, J. Yao, T. Yu et al., Improving electro-mechano-chemical performance of alginate hydrogel artificial muscles through micro-nano doping. Small 21(31), 2501415 (2025). https://doi.org/10.1002/smll.202501415
- K. Zheng, C. Zheng, L. Zhu, B. Yang, X. Jin et al., Machine learning enabled reusable adhesion, entangled network-based hydrogel for long-term, high-fidelity EEG recording and attention assessment. Nano-Micro Lett. 17(1), 281 (2025). https://doi.org/10.1007/s40820-025-01780-7
- G. Chen, Y. Zhang, S. Li, J. Zheng, H. Yang et al., Flexible artificial tactility with excellent robustness and temperature tolerance based on organohydrogel sensor array for robot motion detection and object shape recognition. Adv. Mater. 36(45), e2408193 (2024). https://doi.org/10.1002/adma.202408193
- V.R. Feig, H. Tran, M. Lee, Z. Bao, Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat. Commun. 9(1), 2740 (2018). https://doi.org/10.1038/s41467-018-05222-4
- D. Won, J. Kim, J. Choi, H. Kim, S. Han et al., Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Sci. Adv. 8(23), eabo3209 (2022). https://doi.org/10.1126/sciadv.abo3209
- B. Zhao, Z. Li, L. Zheng, Z. Ye, Y. Yuan et al., Recent progress in the biomedical application of PEDOT: PSS hydrogels. Chin. Chem. Lett. 35(10), 109810 (2024). https://doi.org/10.1016/j.cclet.2024.109810
- H. Montazerian, E. Davoodi, C. Wang, F. Lorestani, J. Li et al., Boosting hydrogel conductivity via water-dispersible conducting polymers for injectable bioelectronics. Nat. Commun. 16, 3755 (2025). https://doi.org/10.1038/s41467-025-59045-1
- B. Lu, H. Yuk, S. Lin, N. Jian, K. Qu et al., Pure PEDOT: PSS hydrogels. Nat. Commun. 10, 1043 (2019). https://doi.org/10.1038/s41467-019-09003-5
- M. Zeng, J. Ding, Y. Tian, Y. Zhang, X. Liu et al., Semipermeable membrane-mediated hydrogen bonding interface for fabricating high-performance pure PEDOT: PSS hydrogels. Adv. Mater. 37(32), e2505635 (2025). https://doi.org/10.1002/adma.202505635
- Z. Li, H. Yun, Y. Yan, Y. Zhao, F. Zhao, Boosting electronic charge transport in conductive hydrogels via rapid ion-electron transduction. Angew. Chem. Int. Ed. 64(27), e202506560 (2025). https://doi.org/10.1002/anie.202506560
- C. Zhang, M. Wang, C. Jiang, P. Zhu, B. Sun et al., Highly adhesive and self-healing γ-PGA/PEDOT: PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics. Nano Energy 95, 106991 (2022). https://doi.org/10.1016/j.nanoen.2022.106991
- N. Li, Q. Yu, S. Duan, Y. Du, X. Shi et al., Anti-swelling, high-strength, anisotropic conductive hydrogel with excellent biocompatibility for implantable electronic tendon. Adv. Funct. Mater. 34(12), 2309500 (2024). https://doi.org/10.1002/adfm.202309500
- J. Chong, C. Sung, K.S. Nam, T. Kang, H. Kim et al., Highly conductive tissue-like hydrogel interface through template-directed assembly. Nat. Commun. 14(1), 2206 (2023). https://doi.org/10.1038/s41467-023-37948-1
- Y. Wang, S. Zeng, S. Shi, Y. Jiang, Z. Du et al., Hybrid assembly of conducting nanofiber network for ultra-stretchable and highly sensitive conductive hydrogels. J. Mater. Sci. Technol. 169, 1–10 (2024). https://doi.org/10.1016/j.jmst.2023.05.064
- D. Liu, Y. Cao, P. Jiang, Y. Wang, Y. Lu et al., Tough, transparent, and slippery PVA hydrogel led by syneresis. Small 19(14), 2206819 (2023). https://doi.org/10.1002/smll.202206819
- S. Lin, X. Liu, J. Liu, H. Yuk, H.-C. Loh et al., Anti-fatigue-fracture hydrogels. Sci. Adv. 5, eaau8528 (2019). https://doi.org/10.1126/sciadv.aau8528
- J. Teng, X. Jia, Z. Qiu, H. Yang, H. Li, Amino-ended hyperbranched polyamide-cross-linked conducting polymer hydrogels with enhanced performance for wearable electronics. Nanoscale 17(15), 9427–9435 (2025). https://doi.org/10.1039/d4nr05041j
- J. Zheng, J. Zhou, Y. Zhao, C. Wang, M. Fan et al., A low-cost hydrogel electrode for multifunctional sensing: strain, temperature, and electrophysiology. Biosensors 15(3), 177 (2025). https://doi.org/10.3390/bios15030177
- S. Aisyah Nurmaulia Entifar, N. Aqilla Ellenahaya Entifar, A. Fitrian Wibowo, J. Ha Kim, Y. Shara br Sembiring et al., Extremely-low electrical-hysteresis hydrogels for multifunctional wearable sensors and osmotic power generators. Chem. Eng. J. 509, 160971 (2025). https://doi.org/10.1016/j.cej.2025.160971
- Z. Bi, W. Yuan, Deep-learning-assisted and self-powered hydrogels sensor with high mechanical strength, good biocompatibility and stretchability for information transmission, motion monitoring, health and Huntington’s disease detection. Chem. Eng. J. 507, 160609 (2025). https://doi.org/10.1016/j.cej.2025.160609
- X. Zhang, D. Li, G. Liu, 3D printed ultrasoft and adhesive PEDOT: PSS-based hydrogel for bioelectronics. ACS Appl. Polym. Mater. 7(3), 1531–1539 (2025). https://doi.org/10.1021/acsapm.4c03275
- A. Khadka, S. Pradhan, E. Samuel, B. Joshi, H. Gao et al., Rapidly self-healing, highly conductive, stretchable, body-attachable hydrogel sensor for soft electronics. Compos. Commun. 52, 102158 (2024). https://doi.org/10.1016/j.coco.2024.102158
- G. Li, R. Wan, S. Liu, L. Wang, M. Yu et al., High-performance multipedal shape strain sensors for human motion and electrophysiological signal monitoring. Macromol. Chem. Phys. 225(22), 2400224 (2024). https://doi.org/10.1002/macp.202400224
- K. Zhao, Y. Zhao, J. Xu, R. Qian, Z. Yu et al., Stretchable, adhesive and self-healing conductive hydrogels based on PEDOT: PSS-stabilized liquid metals for human motion detection. Chem. Eng. J. 494, 152971 (2024). https://doi.org/10.1016/j.cej.2024.152971
- L. Zhao, C. Fang, B. Qin, X. Yang, P. Poechmueller, Conductive dual-network hydrogel-based multifunctional triboelectric nanogenerator for temperature and pressure distribution sensing. Nano Energy 127, 109772 (2024). https://doi.org/10.1016/j.nanoen.2024.109772
- Z. Zheng, W. Xu, Y. Wang, W. Xiong, C. Xiong et al., High-conductivity and long-term stability strain sensor based on silk fibroin and polyvinyl alcohol hydrogels. Mater. Today Commun. 38, 108465 (2024). https://doi.org/10.1016/j.mtcomm.2024.108465
- D. Bi, N. Qu, W. Sheng, T. Lin, S. Huang et al., Tough and strain-sensitive organohydrogels based on MXene and PEDOT/PSS and their effects on mechanical properties and strain-sensing performance. ACS Appl. Mater. Interfaces 16(9), 11914–11929 (2024). https://doi.org/10.1021/acsami.3c18631
- J. Yu, R. Wan, F. Tian, J. Cao, W. Wang et al., 3D printing of robust high-performance conducting polymer hydrogel-based electrical bioadhesive interface for soft bioelectronics. Small 20(19), e2308778 (2024). https://doi.org/10.1002/smll.202308778
- C. Gao, D. Zheng, B. Long, Z. Chen, J. Zhu et al., Anti-swelling and adhesive γ-PGA/PVA/PEDOT: PSS/TA composite conductive hydrogels for underwater wearable sensors. Eur. Polym. J. 201, 112590 (2023). https://doi.org/10.1016/j.eurpolymj.2023.112590
- C. Tian, C. Bai, T. Wang, Z. Yan, Z. Zhang et al., Thermogalvanic hydrogel electrolyte for harvesting biothermal energy enabled by a novel redox couple of SO4/32- ions. Nano Energy 106, 108077 (2023). https://doi.org/10.1016/j.nanoen.2022.108077
- Z. Zhang, G. Chen, Y. Xue, Q. Duan, X. Liang et al., Fatigue-resistant conducting polymer hydrogels as strain sensor for underwater robotics. Adv. Funct. Mater. 33(42), 2305705 (2023). https://doi.org/10.1002/adfm.202305705
- F. Wang, Y. Xue, X. Chen, P. Zhang, L. Shan et al., 3D printed implantable hydrogel bioelectronics for electrophysiological monitoring and electrical modulation. Adv. Funct. Mater. 34(21), 2314471 (2024). https://doi.org/10.1002/adfm.202314471
- Y. Xue, X. Chen, F. Wang, J. Lin, J. Liu, Mechanically-compliant bioelectronic interfaces through fatigue-resistant conducting polymer hydrogel coating. Adv. Mater. 35(40), e2304095 (2023). https://doi.org/10.1002/adma.202304095
- S. Guo, S. Zhang, H. Li, S. Liu, J.J. Koh et al., Precisely manipulating polymer chain interactions for multifunctional hydrogels. Matter 8(4), 101785 (2025). https://doi.org/10.1016/j.matt.2024.06.024
- B. Shao, Y. Huang, F. Han, Electronic conductivity of lithium solid electrolytes. Adv. Energy Mater. 13(16), 2204098 (2023). https://doi.org/10.1002/aenm.202204098
References
J. Gu, D. Li, Y. Ren, J. Li, X. Ji et al., Biomimetic strong and tough MXene fibers with synergy between micropores and dual interfaces. Nat. Commun. 16, 9645 (2025). https://doi.org/10.1038/s41467-025-64647-w
X. Chen, Y. Feng, P. Zhang, Z. Ni, Y. Xue et al., Hydrogel fibers-based biointerfacing. Adv. Mater. 37(4), 2413476 (2025). https://doi.org/10.1002/adma.202413476
G. Du, Y. Shao, B. Luo, T. Liu, J. Zhao et al., Compliant iontronic triboelectric gels with phase-locked structure enabled by competitive hydrogen bonding. Nano-Micro Lett. 16(1), 170 (2024). https://doi.org/10.1007/s40820-024-01387-4
P. Wang, G. Wang, G. Sun, C. Bao, Y. Li et al., A flexible-integrated multimodal hydrogel-based sensing patch. Nano-Micro Lett. 17(1), 156 (2025). https://doi.org/10.1007/s40820-025-01656-w
Y. She, H. Liu, H. Yuan, Y. Li, X. Liu et al., Artificial intelligence-assisted conductive hydrogel dressings for refractory wounds monitoring. Nano-Micro Lett. 17(1), 319 (2025). https://doi.org/10.1007/s40820-025-01834-w
C. Xue, Y. Zhao, Y. Liao, H. Zhang, Bioinspired super-robust conductive hydrogels for machine learning-assisted tactile perception system. Adv. Mater. 37(10), e2416275 (2025). https://doi.org/10.1002/adma.202416275
Q. Han, X. Gao, C. Zhang, Y. Tian, S. Liang et al., Acid-induced in situ phase separation and percolation for constructing bi-continuous phase hydrogel electrodes with motion-insensitive property. Adv. Mater. 37(6), e2415445 (2025). https://doi.org/10.1002/adma.202415445
Y. Chen, Y. Zhou, Z. Hu, W. Lu, Z. Li et al., Gelatin-based metamaterial hydrogel films with high conformality for ultra-soft tissue monitoring. Nano-Micro Lett. 16(1), 34 (2023). https://doi.org/10.1007/s40820-023-01225-z
C. Yang, Z. Suo, Hydrogel ionotronics. Nat. Rev. Mater. 3(6), 125–142 (2018). https://doi.org/10.1038/s41578-018-0018-7
Y. Liu, J. Liu, S. Chen, T. Lei, Y. Kim et al., Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3(1), 58–68 (2019). https://doi.org/10.1038/s41551-018-0335-6
G. Li, K. Huang, J. Deng, M. Guo, M. Cai et al., Highly conducting and stretchable double-network hydrogel for soft bioelectronics. Adv. Mater. 34(15), e2200261 (2022). https://doi.org/10.1002/adma.202200261
A. Roy, S. Zenker, S. Jain, R. Afshari, Y. Oz et al., A highly stretchable, conductive, and transparent bioadhesive hydrogel as a flexible sensor for enhanced real-time human health monitoring. Adv. Mater. 36(35), e2404225 (2024). https://doi.org/10.1002/adma.202404225
X. Ding, Y. Yu, W. Li, F. Bian, H. Gu et al., Multifunctional carbon nanotube hydrogels with on-demand removability for wearable electronics. Nano Today 54, 102124 (2024). https://doi.org/10.1016/j.nantod.2023.102124
H. He, Y. Chen, A. Pu, L. Wang, W. Li et al., Strong and high-conductivity hydrogels with all-polymer nanofibrous networks for applications as high-capacitance flexible electrodes. NPJ Flex. Electron. 8, 56 (2024). https://doi.org/10.1038/s41528-024-00346-8
Q. Zhou, J. Lyu, G. Wang, M. Robertson, Z. Qiang et al., Mechanically strong and multifunctional hybrid hydrogels with ultrahigh electrical conductivity. Adv. Funct. Mater. 31(40), 2104536 (2021). https://doi.org/10.1002/adfm.202104536
S. Wang, X. Guo, S. Liao, J. Chen, Q. Wei, Aramid nanofiber-reinforced MXene/PEDOT: PSS hybrid fibers for high-performance fiber-shaped supercapacitors. Electrochim. Acta 466, 143062 (2023). https://doi.org/10.1016/j.electacta.2023.143062
G. Yin, J. Wu, C. Qi, X. Zhou, Z.-Z. Yu et al., Pickering emulsion-driven MXene/silk fibroin hydrogels with programmable functional networks for EMI shielding and solar evaporation. Nano-Micro Lett. 17(1), 312 (2025). https://doi.org/10.1007/s40820-025-01818-w
D. Ji, Z. Zhang, J. Sun, W. Cao, Z. Wang et al., Strong, tough, and biocompatible poly(vinyl alcohol)-poly(vinylpyrrolidone) multiscale network hydrogels reinforced by aramid nanofibers. ACS Appl. Mater. Interfaces 16(19), 25304–25316 (2024). https://doi.org/10.1021/acsami.4c02354
C. Wang, Z. Zhu, L. Han, L. Xu, M. Wang et al., Poly(vinyl alcohol) hydrogels enhanced with Ti3C2Tx MXene nanosheets and aramid nanofibers for electromagnetic shielding and motion detection. ACS Appl. Nano Mater. 7(21), 24925–24937 (2024). https://doi.org/10.1021/acsanm.4c04840
J. Ren, G. Chen, H. Yang, J. Zheng, S. Li et al., Super-tough, non-swelling zwitterionic hydrogel sensor based on the hofmeister effect for potential motion monitoring of marine animals. Adv. Mater. 36(48), e2412162 (2024). https://doi.org/10.1002/adma.202412162
H. Shi, H. Huo, H. Yang, H. Li, J. Shen et al., Cellulose-based dual-network conductive hydrogel with exceptional adhesion. Adv. Funct. Mater. 34(48), 2408560 (2024). https://doi.org/10.1002/adfm.202408560
S. Hong, J. Lee, T. Park, J. Jeong, J. Lee et al., Spider silk-inspired conductive hydrogels for enhanced toughness and environmental resilience via dense hierarchical structuring. Adv. Sci. 12(12), 2500397 (2025). https://doi.org/10.1002/advs.202500397
Y.-W. Kim, J.-M. Park, C.S. Park, H. Na, Y.-W. Kang et al., Anisotropically conductive hydrogels with directionally aligned PEDOT: PSS in a PVA matrix. ACS Appl. Mater. Interfaces 16(3), 4013–4023 (2024). https://doi.org/10.1021/acsami.3c16094
H.J. Kim, H. Kim, Y.H. Choi, E.S. Lee, Y.H. Kim et al., Rapid fabrication of tendon-inspired ultrastrong, water-rich hydrogel fibers: synergistic engineering of cyano-p-aramid nanofibers and poly(vinyl alcohol). ACS Nano 19(8), 8316–8327 (2025). https://doi.org/10.1021/acsnano.4c18686
J. Yang, Y. Wen, K. Wei, J. Yao, T. Yu et al., Improving electro-mechano-chemical performance of alginate hydrogel artificial muscles through micro-nano doping. Small 21(31), 2501415 (2025). https://doi.org/10.1002/smll.202501415
K. Zheng, C. Zheng, L. Zhu, B. Yang, X. Jin et al., Machine learning enabled reusable adhesion, entangled network-based hydrogel for long-term, high-fidelity EEG recording and attention assessment. Nano-Micro Lett. 17(1), 281 (2025). https://doi.org/10.1007/s40820-025-01780-7
G. Chen, Y. Zhang, S. Li, J. Zheng, H. Yang et al., Flexible artificial tactility with excellent robustness and temperature tolerance based on organohydrogel sensor array for robot motion detection and object shape recognition. Adv. Mater. 36(45), e2408193 (2024). https://doi.org/10.1002/adma.202408193
V.R. Feig, H. Tran, M. Lee, Z. Bao, Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat. Commun. 9(1), 2740 (2018). https://doi.org/10.1038/s41467-018-05222-4
D. Won, J. Kim, J. Choi, H. Kim, S. Han et al., Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Sci. Adv. 8(23), eabo3209 (2022). https://doi.org/10.1126/sciadv.abo3209
B. Zhao, Z. Li, L. Zheng, Z. Ye, Y. Yuan et al., Recent progress in the biomedical application of PEDOT: PSS hydrogels. Chin. Chem. Lett. 35(10), 109810 (2024). https://doi.org/10.1016/j.cclet.2024.109810
H. Montazerian, E. Davoodi, C. Wang, F. Lorestani, J. Li et al., Boosting hydrogel conductivity via water-dispersible conducting polymers for injectable bioelectronics. Nat. Commun. 16, 3755 (2025). https://doi.org/10.1038/s41467-025-59045-1
B. Lu, H. Yuk, S. Lin, N. Jian, K. Qu et al., Pure PEDOT: PSS hydrogels. Nat. Commun. 10, 1043 (2019). https://doi.org/10.1038/s41467-019-09003-5
M. Zeng, J. Ding, Y. Tian, Y. Zhang, X. Liu et al., Semipermeable membrane-mediated hydrogen bonding interface for fabricating high-performance pure PEDOT: PSS hydrogels. Adv. Mater. 37(32), e2505635 (2025). https://doi.org/10.1002/adma.202505635
Z. Li, H. Yun, Y. Yan, Y. Zhao, F. Zhao, Boosting electronic charge transport in conductive hydrogels via rapid ion-electron transduction. Angew. Chem. Int. Ed. 64(27), e202506560 (2025). https://doi.org/10.1002/anie.202506560
C. Zhang, M. Wang, C. Jiang, P. Zhu, B. Sun et al., Highly adhesive and self-healing γ-PGA/PEDOT: PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics. Nano Energy 95, 106991 (2022). https://doi.org/10.1016/j.nanoen.2022.106991
N. Li, Q. Yu, S. Duan, Y. Du, X. Shi et al., Anti-swelling, high-strength, anisotropic conductive hydrogel with excellent biocompatibility for implantable electronic tendon. Adv. Funct. Mater. 34(12), 2309500 (2024). https://doi.org/10.1002/adfm.202309500
J. Chong, C. Sung, K.S. Nam, T. Kang, H. Kim et al., Highly conductive tissue-like hydrogel interface through template-directed assembly. Nat. Commun. 14(1), 2206 (2023). https://doi.org/10.1038/s41467-023-37948-1
Y. Wang, S. Zeng, S. Shi, Y. Jiang, Z. Du et al., Hybrid assembly of conducting nanofiber network for ultra-stretchable and highly sensitive conductive hydrogels. J. Mater. Sci. Technol. 169, 1–10 (2024). https://doi.org/10.1016/j.jmst.2023.05.064
D. Liu, Y. Cao, P. Jiang, Y. Wang, Y. Lu et al., Tough, transparent, and slippery PVA hydrogel led by syneresis. Small 19(14), 2206819 (2023). https://doi.org/10.1002/smll.202206819
S. Lin, X. Liu, J. Liu, H. Yuk, H.-C. Loh et al., Anti-fatigue-fracture hydrogels. Sci. Adv. 5, eaau8528 (2019). https://doi.org/10.1126/sciadv.aau8528
J. Teng, X. Jia, Z. Qiu, H. Yang, H. Li, Amino-ended hyperbranched polyamide-cross-linked conducting polymer hydrogels with enhanced performance for wearable electronics. Nanoscale 17(15), 9427–9435 (2025). https://doi.org/10.1039/d4nr05041j
J. Zheng, J. Zhou, Y. Zhao, C. Wang, M. Fan et al., A low-cost hydrogel electrode for multifunctional sensing: strain, temperature, and electrophysiology. Biosensors 15(3), 177 (2025). https://doi.org/10.3390/bios15030177
S. Aisyah Nurmaulia Entifar, N. Aqilla Ellenahaya Entifar, A. Fitrian Wibowo, J. Ha Kim, Y. Shara br Sembiring et al., Extremely-low electrical-hysteresis hydrogels for multifunctional wearable sensors and osmotic power generators. Chem. Eng. J. 509, 160971 (2025). https://doi.org/10.1016/j.cej.2025.160971
Z. Bi, W. Yuan, Deep-learning-assisted and self-powered hydrogels sensor with high mechanical strength, good biocompatibility and stretchability for information transmission, motion monitoring, health and Huntington’s disease detection. Chem. Eng. J. 507, 160609 (2025). https://doi.org/10.1016/j.cej.2025.160609
X. Zhang, D. Li, G. Liu, 3D printed ultrasoft and adhesive PEDOT: PSS-based hydrogel for bioelectronics. ACS Appl. Polym. Mater. 7(3), 1531–1539 (2025). https://doi.org/10.1021/acsapm.4c03275
A. Khadka, S. Pradhan, E. Samuel, B. Joshi, H. Gao et al., Rapidly self-healing, highly conductive, stretchable, body-attachable hydrogel sensor for soft electronics. Compos. Commun. 52, 102158 (2024). https://doi.org/10.1016/j.coco.2024.102158
G. Li, R. Wan, S. Liu, L. Wang, M. Yu et al., High-performance multipedal shape strain sensors for human motion and electrophysiological signal monitoring. Macromol. Chem. Phys. 225(22), 2400224 (2024). https://doi.org/10.1002/macp.202400224
K. Zhao, Y. Zhao, J. Xu, R. Qian, Z. Yu et al., Stretchable, adhesive and self-healing conductive hydrogels based on PEDOT: PSS-stabilized liquid metals for human motion detection. Chem. Eng. J. 494, 152971 (2024). https://doi.org/10.1016/j.cej.2024.152971
L. Zhao, C. Fang, B. Qin, X. Yang, P. Poechmueller, Conductive dual-network hydrogel-based multifunctional triboelectric nanogenerator for temperature and pressure distribution sensing. Nano Energy 127, 109772 (2024). https://doi.org/10.1016/j.nanoen.2024.109772
Z. Zheng, W. Xu, Y. Wang, W. Xiong, C. Xiong et al., High-conductivity and long-term stability strain sensor based on silk fibroin and polyvinyl alcohol hydrogels. Mater. Today Commun. 38, 108465 (2024). https://doi.org/10.1016/j.mtcomm.2024.108465
D. Bi, N. Qu, W. Sheng, T. Lin, S. Huang et al., Tough and strain-sensitive organohydrogels based on MXene and PEDOT/PSS and their effects on mechanical properties and strain-sensing performance. ACS Appl. Mater. Interfaces 16(9), 11914–11929 (2024). https://doi.org/10.1021/acsami.3c18631
J. Yu, R. Wan, F. Tian, J. Cao, W. Wang et al., 3D printing of robust high-performance conducting polymer hydrogel-based electrical bioadhesive interface for soft bioelectronics. Small 20(19), e2308778 (2024). https://doi.org/10.1002/smll.202308778
C. Gao, D. Zheng, B. Long, Z. Chen, J. Zhu et al., Anti-swelling and adhesive γ-PGA/PVA/PEDOT: PSS/TA composite conductive hydrogels for underwater wearable sensors. Eur. Polym. J. 201, 112590 (2023). https://doi.org/10.1016/j.eurpolymj.2023.112590
C. Tian, C. Bai, T. Wang, Z. Yan, Z. Zhang et al., Thermogalvanic hydrogel electrolyte for harvesting biothermal energy enabled by a novel redox couple of SO4/32- ions. Nano Energy 106, 108077 (2023). https://doi.org/10.1016/j.nanoen.2022.108077
Z. Zhang, G. Chen, Y. Xue, Q. Duan, X. Liang et al., Fatigue-resistant conducting polymer hydrogels as strain sensor for underwater robotics. Adv. Funct. Mater. 33(42), 2305705 (2023). https://doi.org/10.1002/adfm.202305705
F. Wang, Y. Xue, X. Chen, P. Zhang, L. Shan et al., 3D printed implantable hydrogel bioelectronics for electrophysiological monitoring and electrical modulation. Adv. Funct. Mater. 34(21), 2314471 (2024). https://doi.org/10.1002/adfm.202314471
Y. Xue, X. Chen, F. Wang, J. Lin, J. Liu, Mechanically-compliant bioelectronic interfaces through fatigue-resistant conducting polymer hydrogel coating. Adv. Mater. 35(40), e2304095 (2023). https://doi.org/10.1002/adma.202304095
S. Guo, S. Zhang, H. Li, S. Liu, J.J. Koh et al., Precisely manipulating polymer chain interactions for multifunctional hydrogels. Matter 8(4), 101785 (2025). https://doi.org/10.1016/j.matt.2024.06.024
B. Shao, Y. Huang, F. Han, Electronic conductivity of lithium solid electrolytes. Adv. Energy Mater. 13(16), 2204098 (2023). https://doi.org/10.1002/aenm.202204098