From Coils to Crawls: A Snake-Inspired Soft Robot for Multimodal Locomotion and Grasping
Corresponding Author: Xiaodong He
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 243
Abstract
Currently, numerous biomimetic robots inspired by natural biological systems have been developed. However, creating soft robots with versatile locomotion modes remains a significant challenge. Snakes, as invertebrate reptiles, exhibit diverse and powerful locomotion abilities, including prey constriction, sidewinding, accordion locomotion, and winding climbing, making them a focus of robotics research. In this study, we present a snake-inspired soft robot with an initial coiling structure, fabricated using MXene-cellulose nanofiber ink printed on pre-expanded polyethylene film through direct ink writing technology. The controllable fabrication of initial coiling structure soft robot (ICSBot) has been achieved through theoretical calculations and finite element analysis to predict and analyze the initial structure of ICSBot, and programmable ICSBot has been designed and fabricated. This robot functions as a coiling gripper capable of grasping objects with complex shapes under near infrared light stimulation. Additionally, it demonstrates multi-modal crawling locomotion in various environments, including confined spaces, unstructured terrains, and both inside and outside tubes. These results offer a novel strategy for designing and fabricating coiling-structured soft robots and highlight their potential applications in smart and multifunctional robotics.
Highlights:
1 A tunable initial coiling structure soft robot (ICSBot) has been developed by combining theoretical calculations, finite element analysis, and direct ink writing technology.
2 By mimicking the prey-handling behavior of snakes, ICSBot functions as a coiling gripper, capable of dynamic uncoiling, object grasping, and controlled release.
3 By simulating the multimodal movement of snakes, ICSBot demonstrated sidewinding locomotion to navigate unstructured environments, accordion locomotion to navigate narrow tubes, and winding climbing locomotion to traverse tubular structures under near-infrared light radiation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Yang, F. Zhang, S. Wang, Bioinspired strategies for biomimetic actuators from ultrafast to ultraslow. Nano Res. 17(2), 570–586 (2024). https://doi.org/10.1007/s12274-023-6092-1
- S. Yang, Y. Yang, X. Xia, B. Zou, B. Wang et al., Biomimetic stimulus responsiveness: from materials design to device integration. Adv. Funct. Mater. 34(33), 2400500 (2024). https://doi.org/10.1002/adfm.202400500
- H. Guo, A. Priimagi, H. Zeng, Optically controlled latching and launching in soft actuators. Adv. Funct. Mater. 32(17), 2108919 (2022). https://doi.org/10.1002/adfm.202108919
- Z. Chen, B. Gao, P. Li, X. Zhao, Q. Yan et al., Multistimuli-responsive actuators derived from natural materials for entirely biodegradable and programmable untethered soft robots. ACS Nano 17(22), 23032–23045 (2023). https://doi.org/10.1021/acsnano.3c08665
- X.-Q. Wang, K.H. Chan, Y. Cheng, T. Ding, T. Li et al., Somatosensory, light-driven, thin-film robots capable of integrated perception and motility. Adv. Mater. 32(21), 2000351 (2020). https://doi.org/10.1002/adma.202000351
- S. Wu, Y. Hong, Y. Zhao, J. Yin, Y. Zhu, Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation. Sci. Adv. 9(12), eadf8014 (2023). https://doi.org/10.1126/sciadv.adf8014
- B.C. Jayne, What defines different modes of snake locomotion? Integr. Comp. Biol. 60(1), 156–170 (2020). https://doi.org/10.1093/icb/icaa017
- J.L. Tingle, K.L. Garner, H.C. Astley, Functional diversity of snake locomotor behaviors: a review of the biological literature for bioinspiration. Ann. N. Y. Acad. Sci. 1533(1), 16–37 (2024). https://doi.org/10.1111/nyas.15109
- H. Marvi, C. Gong, N. Gravish, H. Astley, M. Travers et al., Sidewinding with minimal slip: snake and robot ascent of sandy slopes. Science 346(6206), 224–229 (2014). https://doi.org/10.1126/science.1255718
- T.S. Vaquero, G. Daddi, R. Thakker, M. Paton, A. Jasour et al., EELS: Autonomous snake-like robot with task and motion planning capabilities for ice world exploration. Sci. Robot. 9(88), eadh8332 (2024). https://doi.org/10.1126/scirobotics.adh8332
- A. Rafsanjani, Y. Zhang, B. Liu, S.M. Rubinstein, K. Bertoldi, Kirigami skins make a simple soft actuator crawl. Sci. Robot. 3(15), eaar7555 (2018). https://doi.org/10.1126/scirobotics.aar7555
- B. Liao, H. Zang, M. Chen, Y. Wang, X. Lang et al., Soft rod-climbing robot inspired by winding locomotion of snake. Soft Robot. 7(4), 500–511 (2020). https://doi.org/10.1089/soro.2019.0070
- Y.B. Kim, S. Yang, D.S. Kim, Sidewinder-inspired self-adjusting, lateral-rolling soft robots for autonomous terrain exploration. Adv. Sci. 11(14), e2308350 (2024). https://doi.org/10.1002/advs.202308350
- Y. Yang, M. Zhang, D. Li, Y. Shen, Graphene-based light-driven soft robot with snake-inspired Concertina and serpentine locomotion. Adv. Mater. Technol. 4(1), 1800366 (2019). https://doi.org/10.1002/admt.201800366
- Y.-Y. Xiao, Z.-C. Jiang, X. Tong, Y. Zhao, Biomimetic locomotion of electrically powered “Janus” soft robots using a liquid crystal polymer. Adv. Mater. 31(36), 1903452 (2019). https://doi.org/10.1002/adma.201903452
- Q. Li, Y. Jiao, Ultrafast photothermal actuators with a large helical curvature based on ultrathin GO and biaxially oriented PE films. ACS Appl. Mater. Interfaces 14(50), 55828–55838 (2022). https://doi.org/10.1021/acsami.2c18478
- Q. Chen, X. Qian, Y. Xu, Y. Yang, Y. Wei et al., Harnessing the day-night rhythm of humidity and sunlight into mechanical work using recyclable and reprogrammable soft actuators. ACS Appl. Mater. Interfaces 11(32), 29290–29297 (2019). https://doi.org/10.1021/acsami.9b09324
- Y. Chen, C. Valenzuela, Y. Liu, X. Yang, Y. Yang et al., Biomimetic artificial neuromuscular fiber bundles with built-in adaptive feedback. Matter 8(2), 101904 (2025). https://doi.org/10.1016/j.matt.2024.10.022
- X. Lu, S. Guo, X. Tong, H. Xia, Y. Zhao, Tunable photocontrolled motions using stored strain energy in malleable azobenzene liquid crystalline polymer actuators. Adv. Mater. 29(28), 1606467 (2017). https://doi.org/10.1002/adma.201606467
- F. Zhai, Y. Feng, Z. Li, Y. Xie, J. Ge et al., 4D-printed untethered self-propelling soft robot with tactile perception: rolling, racing, and exploring. Matter 4(10), 3313–3326 (2021). https://doi.org/10.1016/j.matt.2021.08.014
- Z. Hu, Y. Li, J.-A. Lv, Phototunable self-oscillating system driven by a self-winding fiber actuator. Nat. Commun. 12(1), 3211 (2021). https://doi.org/10.1038/s41467-021-23562-6
- D. Luo, A. Maheshwari, A. Danielescu, J. Li, Y. Yang et al., Autonomous self-burying seed carriers for aerial seeding. Nature 614(7948), 463–470 (2023). https://doi.org/10.1038/s41586-022-05656-3
- L. Chang, D. Wang, Z. Huang, C. Wang, J. Torop et al., A versatile ionomer-based soft actuator with multi-stimulus responses, self-sustainable locomotion, and photoelectric conversion. Adv. Funct. Mater. 33(6), 2212341 (2023). https://doi.org/10.1002/adfm.202212341
- L. Li, J. Meng, C. Hou, Q. Zhang, Y. Li et al., Dual-mechanism and multimotion soft actuators based on commercial plastic film. ACS Appl. Mater. Interfaces 10(17), 15122–15128 (2018). https://doi.org/10.1021/acsami.8b00396
- J. Ding, H. Ma, X. Xiao, Q. Li, K. Liu et al., Flexible torsional photoactuators based on MXene-carbon nanotube-paraffin wax films. ACS Appl. Mater. Interfaces 14(51), 57171–57179 (2022). https://doi.org/10.1021/acsami.2c16838
- S. Wang, Y. Gao, A. Wei, P. Xiao, Y. Liang et al., Asymmetric elastoplasticity of stacked graphene assembly actualizes programmable untethered soft robotics. Nat. Commun. 11(1), 4359 (2020). https://doi.org/10.1038/s41467-020-18214-0
- C. Dong, A. Carnicer-Lombarte, F. Bonafè, B. Huang, S. Middya et al., Electrochemically actuated microelectrodes for minimally invasive peripheral nerve interfaces. Nat. Mater. 23(7), 969–976 (2024). https://doi.org/10.1038/s41563-024-01886-0
- Z. Zhao, J. Kumar, Y. Hwang, J. Deng, M.S.B. Ibrahim et al., Digital printing of shape-morphing natural materials. Proc. Natl. Acad. Sci. U.S.A. 118(43), e2113715118 (2021). https://doi.org/10.1073/pnas.2113715118
- Z. Chen, X. Zhao, B. Gao, L. Xu, H. Chen et al., Biobased inks based on cuttlefish ink and cellulose nanofibers for biodegradable patterned soft actuators. ACS Appl. Mater. Interfaces 16(17), 22547–22557 (2024). https://doi.org/10.1021/acsami.4c02775
- S. Ma, P. Xue, Y. Tang, R. Bi, X. Xu et al., Responsive soft actuators with MXene nanomaterials. Responsive Mater. 2(1), e20230026 (2024). https://doi.org/10.1002/rpm.20230026
- M. Yang, Y. Xu, X. Zhang, H.K. Bisoyi, P. Xue et al., Bioinspired phototropic MXene-reinforced soft tubular actuators for omnidirectional light-tracking and adaptive photovoltaics. Adv. Funct. Mater. 32(26), 2201884 (2022). https://doi.org/10.1002/adfm.202201884
- S. Ma, P. Xue, C. Valenzuela, X. Zhang, Y. Chen et al., Highly stretchable and conductive MXene-encapsulated liquid metal hydrogels for bioinspired self-sensing soft actuators. Adv. Funct. Mater. 34(7), 2309899 (2024). https://doi.org/10.1002/adfm.202309899
- L. Xu, H. Zheng, F. Xue, Q. Ji, C. Qiu et al., Bioinspired multi-stimulus responsive MXene-based soft actuator with self-sensing function and various biomimetic locomotion. Chem. Eng. J. 463, 142392 (2023). https://doi.org/10.1016/j.cej.2023.142392
- T. Dai, Y. Liu, D. Rong, M. Wang, Z. Qi et al., Bioinspired dynamic matrix based on developable structure of MXene-cellulose nanofibers (CNF) soft actuators. Adv. Funct. Mater. 34(29), 2400459 (2024). https://doi.org/10.1002/adfm.202400459
- J.-N. Ma, B. Ma, Z.-X. Wang, P. Song, D.-D. Han et al., Multiresponsive MXene actuators with asymmetric quantum-confined superfluidic structures. Adv. Funct. Mater. 34(8), 2308317 (2024). https://doi.org/10.1002/adfm.202308317
- Y. Hu, Q. Ji, M. Huang, L. Chang, C. Zhang et al., Light-driven self-oscillating actuators with phototactic locomotion based on black phosphorus heterostructure. Angew. Chem. Int. Ed. 60(37), 20511–20517 (2021). https://doi.org/10.1002/anie.202108058
- Z. Tian, J. Xue, X. Xiao, C. Du, Y. Liu, Optomagnetic coordination helical robot with shape transformation and multimodal motion capabilities. Nano Lett. 24(9), 2885–2893 (2024). https://doi.org/10.1021/acs.nanolett.4c00047
- Z. Guan, L. Wang, J. Bae, Advances in 4D printing of liquid crystalline elastomers: materials, techniques, and applications. Mater. Horiz. 9(7), 1825–1849 (2022). https://doi.org/10.1039/D2MH00232A
- Y. Chen, C. Valenzuela, X. Zhang, X. Yang, L. Wang et al., Light-driven dandelion-inspired microfliers. Nat. Commun. 14(1), 3036 (2023). https://doi.org/10.1038/s41467-023-38792-z
- Y. Wang, T. Guo, Z. Tian, L. Shi, S.C. Barman et al., MXenes for soft robotics. Matter 6(9), 2807–2833 (2023). https://doi.org/10.1016/j.matt.2023.07.013
- J. Xiong, X. Zhao, Z. Liu, H. Chen, Q. Yan et al., Multifunctional nacre-like nanocomposite papers for electromagnetic interference shielding via heterocyclic aramid/MXene template-assisted in situ polypyrrole assembly. Nano-Micro Lett. 17(1), 53 (2024). https://doi.org/10.1007/s40820-024-01552-9
- P. Xue, Y. Chen, Y. Xu, C. Valenzuela, X. Zhang et al., Bioinspired MXene-based soft actuators exhibiting angle-independent structural color. Nano-Micro Lett. 15(1), 1 (2022). https://doi.org/10.1007/s40820-022-00977-4
- W. Zhang, X.-X. Ji, M.-G. Ma, Emerging MXene/cellulose composites: design strategies and diverse applications. Chem. Eng. J. 458, 141402 (2023). https://doi.org/10.1016/j.cej.2023.141402
- S. Zeng, Y. Ye, P. Zhou, S. Yi, Q. Guo et al., Programmable and reconfigurable humidity-driven actuators made with MXene (Ti3C2Tx)-cellulose nanofiber composites for biomimetic applications. Nano Res. 17(7), 6619–6629 (2024). https://doi.org/10.1007/s12274-024-6542-4
- G. Zhou, X. Liu, C. Liu, Z. Li, C. Liu et al., 3D printed MXene-based films and cellulose nanofiber reinforced hydrogel electrolyte to enable high-performance flexible supercapacitors. J. Mater. Chem. A 12(6), 3734–3744 (2024). https://doi.org/10.1039/d3ta06925g
- J. Ha, S.M. Choi, B. Shin, M. Lee, W. Jung et al., Hygroresponsive coiling of seed awns and soft actuators. Extreme Mech. Lett. 38, 100746 (2020). https://doi.org/10.1016/j.eml.2020.100746
- L. Cecchini, S. Mariani, M. Ronzan, A. Mondini, N.M. Pugno et al., 4D printing of humidity-driven seed inspired soft robots. Adv. Sci. 10(9), 2205146 (2023). https://doi.org/10.1002/advs.202205146
- J. Shintake, V. Cacucciolo, D. Floreano, H. Shea, Soft robotic grippers. Adv. Mater. 30(29), 1707035 (2018). https://doi.org/10.1002/adma.201707035
- J. Qu, B. Mao, Z. Li, Y. Xu, K. Zhou et al., Recent progress in advanced tactile sensing technologies for soft grippers. Adv. Funct. Mater. 33(41), 2306249 (2023). https://doi.org/10.1002/adfm.202306249
- Z. Zheng, J. Han, Q. Shi, S.O. Demir, W. Jiang et al., Single-step precision programming of decoupled multiresponsive soft millirobots. Proc. Natl. Acad. Sci. U.S.A. 121(13), e2320386121 (2024). https://doi.org/10.1073/pnas.2320386121
- N. Qian, H.K. Bisoyi, M. Wang, S. Huang, Z. Liu et al., A visible and near-infrared light-fueled omnidirectional twist-bend crawling robot. Adv. Funct. Mater. 33(16), 2214205 (2023). https://doi.org/10.1002/adfm.202214205
- M. Zheng, D. Wang, D. Zhu, S. Cao, X. Wang et al., PiezoClimber: versatile and self-transitional climbing soft robot with bioinspired highly directional footpads. Adv. Funct. Mater. 34(6), 2308384 (2024). https://doi.org/10.1002/adfm.202308384
- H. Yang, S. Ding, J. Wang, S. Sun, R. Swaminathan et al., Computational design of ultra-robust strain sensors for soft robot perception and autonomy. Nat. Commun. 15(1), 1636 (2024). https://doi.org/10.1038/s41467-024-45786-y
References
M. Yang, F. Zhang, S. Wang, Bioinspired strategies for biomimetic actuators from ultrafast to ultraslow. Nano Res. 17(2), 570–586 (2024). https://doi.org/10.1007/s12274-023-6092-1
S. Yang, Y. Yang, X. Xia, B. Zou, B. Wang et al., Biomimetic stimulus responsiveness: from materials design to device integration. Adv. Funct. Mater. 34(33), 2400500 (2024). https://doi.org/10.1002/adfm.202400500
H. Guo, A. Priimagi, H. Zeng, Optically controlled latching and launching in soft actuators. Adv. Funct. Mater. 32(17), 2108919 (2022). https://doi.org/10.1002/adfm.202108919
Z. Chen, B. Gao, P. Li, X. Zhao, Q. Yan et al., Multistimuli-responsive actuators derived from natural materials for entirely biodegradable and programmable untethered soft robots. ACS Nano 17(22), 23032–23045 (2023). https://doi.org/10.1021/acsnano.3c08665
X.-Q. Wang, K.H. Chan, Y. Cheng, T. Ding, T. Li et al., Somatosensory, light-driven, thin-film robots capable of integrated perception and motility. Adv. Mater. 32(21), 2000351 (2020). https://doi.org/10.1002/adma.202000351
S. Wu, Y. Hong, Y. Zhao, J. Yin, Y. Zhu, Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation. Sci. Adv. 9(12), eadf8014 (2023). https://doi.org/10.1126/sciadv.adf8014
B.C. Jayne, What defines different modes of snake locomotion? Integr. Comp. Biol. 60(1), 156–170 (2020). https://doi.org/10.1093/icb/icaa017
J.L. Tingle, K.L. Garner, H.C. Astley, Functional diversity of snake locomotor behaviors: a review of the biological literature for bioinspiration. Ann. N. Y. Acad. Sci. 1533(1), 16–37 (2024). https://doi.org/10.1111/nyas.15109
H. Marvi, C. Gong, N. Gravish, H. Astley, M. Travers et al., Sidewinding with minimal slip: snake and robot ascent of sandy slopes. Science 346(6206), 224–229 (2014). https://doi.org/10.1126/science.1255718
T.S. Vaquero, G. Daddi, R. Thakker, M. Paton, A. Jasour et al., EELS: Autonomous snake-like robot with task and motion planning capabilities for ice world exploration. Sci. Robot. 9(88), eadh8332 (2024). https://doi.org/10.1126/scirobotics.adh8332
A. Rafsanjani, Y. Zhang, B. Liu, S.M. Rubinstein, K. Bertoldi, Kirigami skins make a simple soft actuator crawl. Sci. Robot. 3(15), eaar7555 (2018). https://doi.org/10.1126/scirobotics.aar7555
B. Liao, H. Zang, M. Chen, Y. Wang, X. Lang et al., Soft rod-climbing robot inspired by winding locomotion of snake. Soft Robot. 7(4), 500–511 (2020). https://doi.org/10.1089/soro.2019.0070
Y.B. Kim, S. Yang, D.S. Kim, Sidewinder-inspired self-adjusting, lateral-rolling soft robots for autonomous terrain exploration. Adv. Sci. 11(14), e2308350 (2024). https://doi.org/10.1002/advs.202308350
Y. Yang, M. Zhang, D. Li, Y. Shen, Graphene-based light-driven soft robot with snake-inspired Concertina and serpentine locomotion. Adv. Mater. Technol. 4(1), 1800366 (2019). https://doi.org/10.1002/admt.201800366
Y.-Y. Xiao, Z.-C. Jiang, X. Tong, Y. Zhao, Biomimetic locomotion of electrically powered “Janus” soft robots using a liquid crystal polymer. Adv. Mater. 31(36), 1903452 (2019). https://doi.org/10.1002/adma.201903452
Q. Li, Y. Jiao, Ultrafast photothermal actuators with a large helical curvature based on ultrathin GO and biaxially oriented PE films. ACS Appl. Mater. Interfaces 14(50), 55828–55838 (2022). https://doi.org/10.1021/acsami.2c18478
Q. Chen, X. Qian, Y. Xu, Y. Yang, Y. Wei et al., Harnessing the day-night rhythm of humidity and sunlight into mechanical work using recyclable and reprogrammable soft actuators. ACS Appl. Mater. Interfaces 11(32), 29290–29297 (2019). https://doi.org/10.1021/acsami.9b09324
Y. Chen, C. Valenzuela, Y. Liu, X. Yang, Y. Yang et al., Biomimetic artificial neuromuscular fiber bundles with built-in adaptive feedback. Matter 8(2), 101904 (2025). https://doi.org/10.1016/j.matt.2024.10.022
X. Lu, S. Guo, X. Tong, H. Xia, Y. Zhao, Tunable photocontrolled motions using stored strain energy in malleable azobenzene liquid crystalline polymer actuators. Adv. Mater. 29(28), 1606467 (2017). https://doi.org/10.1002/adma.201606467
F. Zhai, Y. Feng, Z. Li, Y. Xie, J. Ge et al., 4D-printed untethered self-propelling soft robot with tactile perception: rolling, racing, and exploring. Matter 4(10), 3313–3326 (2021). https://doi.org/10.1016/j.matt.2021.08.014
Z. Hu, Y. Li, J.-A. Lv, Phototunable self-oscillating system driven by a self-winding fiber actuator. Nat. Commun. 12(1), 3211 (2021). https://doi.org/10.1038/s41467-021-23562-6
D. Luo, A. Maheshwari, A. Danielescu, J. Li, Y. Yang et al., Autonomous self-burying seed carriers for aerial seeding. Nature 614(7948), 463–470 (2023). https://doi.org/10.1038/s41586-022-05656-3
L. Chang, D. Wang, Z. Huang, C. Wang, J. Torop et al., A versatile ionomer-based soft actuator with multi-stimulus responses, self-sustainable locomotion, and photoelectric conversion. Adv. Funct. Mater. 33(6), 2212341 (2023). https://doi.org/10.1002/adfm.202212341
L. Li, J. Meng, C. Hou, Q. Zhang, Y. Li et al., Dual-mechanism and multimotion soft actuators based on commercial plastic film. ACS Appl. Mater. Interfaces 10(17), 15122–15128 (2018). https://doi.org/10.1021/acsami.8b00396
J. Ding, H. Ma, X. Xiao, Q. Li, K. Liu et al., Flexible torsional photoactuators based on MXene-carbon nanotube-paraffin wax films. ACS Appl. Mater. Interfaces 14(51), 57171–57179 (2022). https://doi.org/10.1021/acsami.2c16838
S. Wang, Y. Gao, A. Wei, P. Xiao, Y. Liang et al., Asymmetric elastoplasticity of stacked graphene assembly actualizes programmable untethered soft robotics. Nat. Commun. 11(1), 4359 (2020). https://doi.org/10.1038/s41467-020-18214-0
C. Dong, A. Carnicer-Lombarte, F. Bonafè, B. Huang, S. Middya et al., Electrochemically actuated microelectrodes for minimally invasive peripheral nerve interfaces. Nat. Mater. 23(7), 969–976 (2024). https://doi.org/10.1038/s41563-024-01886-0
Z. Zhao, J. Kumar, Y. Hwang, J. Deng, M.S.B. Ibrahim et al., Digital printing of shape-morphing natural materials. Proc. Natl. Acad. Sci. U.S.A. 118(43), e2113715118 (2021). https://doi.org/10.1073/pnas.2113715118
Z. Chen, X. Zhao, B. Gao, L. Xu, H. Chen et al., Biobased inks based on cuttlefish ink and cellulose nanofibers for biodegradable patterned soft actuators. ACS Appl. Mater. Interfaces 16(17), 22547–22557 (2024). https://doi.org/10.1021/acsami.4c02775
S. Ma, P. Xue, Y. Tang, R. Bi, X. Xu et al., Responsive soft actuators with MXene nanomaterials. Responsive Mater. 2(1), e20230026 (2024). https://doi.org/10.1002/rpm.20230026
M. Yang, Y. Xu, X. Zhang, H.K. Bisoyi, P. Xue et al., Bioinspired phototropic MXene-reinforced soft tubular actuators for omnidirectional light-tracking and adaptive photovoltaics. Adv. Funct. Mater. 32(26), 2201884 (2022). https://doi.org/10.1002/adfm.202201884
S. Ma, P. Xue, C. Valenzuela, X. Zhang, Y. Chen et al., Highly stretchable and conductive MXene-encapsulated liquid metal hydrogels for bioinspired self-sensing soft actuators. Adv. Funct. Mater. 34(7), 2309899 (2024). https://doi.org/10.1002/adfm.202309899
L. Xu, H. Zheng, F. Xue, Q. Ji, C. Qiu et al., Bioinspired multi-stimulus responsive MXene-based soft actuator with self-sensing function and various biomimetic locomotion. Chem. Eng. J. 463, 142392 (2023). https://doi.org/10.1016/j.cej.2023.142392
T. Dai, Y. Liu, D. Rong, M. Wang, Z. Qi et al., Bioinspired dynamic matrix based on developable structure of MXene-cellulose nanofibers (CNF) soft actuators. Adv. Funct. Mater. 34(29), 2400459 (2024). https://doi.org/10.1002/adfm.202400459
J.-N. Ma, B. Ma, Z.-X. Wang, P. Song, D.-D. Han et al., Multiresponsive MXene actuators with asymmetric quantum-confined superfluidic structures. Adv. Funct. Mater. 34(8), 2308317 (2024). https://doi.org/10.1002/adfm.202308317
Y. Hu, Q. Ji, M. Huang, L. Chang, C. Zhang et al., Light-driven self-oscillating actuators with phototactic locomotion based on black phosphorus heterostructure. Angew. Chem. Int. Ed. 60(37), 20511–20517 (2021). https://doi.org/10.1002/anie.202108058
Z. Tian, J. Xue, X. Xiao, C. Du, Y. Liu, Optomagnetic coordination helical robot with shape transformation and multimodal motion capabilities. Nano Lett. 24(9), 2885–2893 (2024). https://doi.org/10.1021/acs.nanolett.4c00047
Z. Guan, L. Wang, J. Bae, Advances in 4D printing of liquid crystalline elastomers: materials, techniques, and applications. Mater. Horiz. 9(7), 1825–1849 (2022). https://doi.org/10.1039/D2MH00232A
Y. Chen, C. Valenzuela, X. Zhang, X. Yang, L. Wang et al., Light-driven dandelion-inspired microfliers. Nat. Commun. 14(1), 3036 (2023). https://doi.org/10.1038/s41467-023-38792-z
Y. Wang, T. Guo, Z. Tian, L. Shi, S.C. Barman et al., MXenes for soft robotics. Matter 6(9), 2807–2833 (2023). https://doi.org/10.1016/j.matt.2023.07.013
J. Xiong, X. Zhao, Z. Liu, H. Chen, Q. Yan et al., Multifunctional nacre-like nanocomposite papers for electromagnetic interference shielding via heterocyclic aramid/MXene template-assisted in situ polypyrrole assembly. Nano-Micro Lett. 17(1), 53 (2024). https://doi.org/10.1007/s40820-024-01552-9
P. Xue, Y. Chen, Y. Xu, C. Valenzuela, X. Zhang et al., Bioinspired MXene-based soft actuators exhibiting angle-independent structural color. Nano-Micro Lett. 15(1), 1 (2022). https://doi.org/10.1007/s40820-022-00977-4
W. Zhang, X.-X. Ji, M.-G. Ma, Emerging MXene/cellulose composites: design strategies and diverse applications. Chem. Eng. J. 458, 141402 (2023). https://doi.org/10.1016/j.cej.2023.141402
S. Zeng, Y. Ye, P. Zhou, S. Yi, Q. Guo et al., Programmable and reconfigurable humidity-driven actuators made with MXene (Ti3C2Tx)-cellulose nanofiber composites for biomimetic applications. Nano Res. 17(7), 6619–6629 (2024). https://doi.org/10.1007/s12274-024-6542-4
G. Zhou, X. Liu, C. Liu, Z. Li, C. Liu et al., 3D printed MXene-based films and cellulose nanofiber reinforced hydrogel electrolyte to enable high-performance flexible supercapacitors. J. Mater. Chem. A 12(6), 3734–3744 (2024). https://doi.org/10.1039/d3ta06925g
J. Ha, S.M. Choi, B. Shin, M. Lee, W. Jung et al., Hygroresponsive coiling of seed awns and soft actuators. Extreme Mech. Lett. 38, 100746 (2020). https://doi.org/10.1016/j.eml.2020.100746
L. Cecchini, S. Mariani, M. Ronzan, A. Mondini, N.M. Pugno et al., 4D printing of humidity-driven seed inspired soft robots. Adv. Sci. 10(9), 2205146 (2023). https://doi.org/10.1002/advs.202205146
J. Shintake, V. Cacucciolo, D. Floreano, H. Shea, Soft robotic grippers. Adv. Mater. 30(29), 1707035 (2018). https://doi.org/10.1002/adma.201707035
J. Qu, B. Mao, Z. Li, Y. Xu, K. Zhou et al., Recent progress in advanced tactile sensing technologies for soft grippers. Adv. Funct. Mater. 33(41), 2306249 (2023). https://doi.org/10.1002/adfm.202306249
Z. Zheng, J. Han, Q. Shi, S.O. Demir, W. Jiang et al., Single-step precision programming of decoupled multiresponsive soft millirobots. Proc. Natl. Acad. Sci. U.S.A. 121(13), e2320386121 (2024). https://doi.org/10.1073/pnas.2320386121
N. Qian, H.K. Bisoyi, M. Wang, S. Huang, Z. Liu et al., A visible and near-infrared light-fueled omnidirectional twist-bend crawling robot. Adv. Funct. Mater. 33(16), 2214205 (2023). https://doi.org/10.1002/adfm.202214205
M. Zheng, D. Wang, D. Zhu, S. Cao, X. Wang et al., PiezoClimber: versatile and self-transitional climbing soft robot with bioinspired highly directional footpads. Adv. Funct. Mater. 34(6), 2308384 (2024). https://doi.org/10.1002/adfm.202308384
H. Yang, S. Ding, J. Wang, S. Sun, R. Swaminathan et al., Computational design of ultra-robust strain sensors for soft robot perception and autonomy. Nat. Commun. 15(1), 1636 (2024). https://doi.org/10.1038/s41467-024-45786-y