Reducing the Voc Loss of Hole Transport Layer-Free Carbon-Based Perovskite Solar Cells via Dual Interfacial Passivation
Corresponding Author: Shijian Zheng
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 258
Abstract
The hole transport layer (HTL)-free carbon-based perovskite solar cells (C-PSCs) are promising for commercialization owing to their excellent operational stability and simple fabrication process. However, the power conversion efficiencies (PCE) of C-PSCs are inferior to the metal electrode-based devices due to their open-circuit voltage (Voc) loss. Herein, time-resolved confocal photoluminescence microscopy reveals that grain boundary defects at the perovskite/carbon interface are very likely to function as nonradiative recombination centers in HTL-free C-PSCs. A versatile additive Li2CO3 is used to modify the conformal tin oxide electron transport layer for HTL-free C-PSCs. Li2CO3 modification can result in enhanced charge extraction and optimized energy alignment at electron transport layer/perovskite interface, as well as suppressed defects at perovskite top surface due to Li2CO3-induced formation of PbI2 crystallites. Such dual interfacial passivation ultimately leads to significantly improved Voc up to 1.142 V, which is comparable to the metal electrode-based devices with HTL. Moreover, a record-high PCE of 33.2% is achieved for Li2CO3-modified C-PSCs under weak light illumination conditions, demonstrating excellent indoor photovoltaic performance. This work provides a practical approach to fabricate low-cost, highly efficient carbon-based perovskite solar cells.
Highlights:
1 Li2CO3 is used to modify conformal SnO2 as electron transport layer for hole transport layer-free carbon-based perovskite solar cells (C-PSCs).
2 CO32− can induce MA release from the perovskite layer, resulting in PbI2 at the grain boundary of top interface of perovskite film which can passivate the grain boundary and the top surface defects.
3 The Li2CO3-modified C-PSC exhibits a high power conversion efficiency (PCE) of 19.1%, with a Voc of 1.142 V. A record-high PCE of 33.2% is obtained under weak light-emitting diode illumination (2000 lx, 3000 K).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. De Wolf, J. Holovsky, S.J. Moon, P. Löper, B. Niesen et al., Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5(6), 1035–1039 (2014). https://doi.org/10.1021/jz500279b
- G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–988 (2014). https://doi.org/10.1039/C3EE43822H
- S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd et al., The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7(1), 399–407 (2014). https://doi.org/10.1039/C3EE43161D
- L.M. Herz, Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2(7), 1539–1548 (2017). https://doi.org/10.1021/acsenergylett.7b00276
- J.C. Yu, S. Badgujar, E.D. Jung, V.K. Singh, D.W. Kim et al., Highly efficient and stable inverted perovskite solar cell obtained via treatment by semiconducting chemical additive. Adv. Mater. 31(6), 1805554 (2019). https://doi.org/10.1002/adma.201805554
- https://www.nrel.gov/pv/interactive-cell-efficiency.html
- H. Lu, A. Krishna, S.M. Zakeeruddin, M. Grätzel, A. Hagfeldt, Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells. iScience 23(8), 101359 (2020). https://doi.org/10.1016/j.isci.2020.101359
- W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
- Q. Cao, Y. Li, H. Zhang, J. Yang, J. Han et al., Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer. Sci. Adv. 7(28), eabg0633 (2021). https://doi.org/10.1126/sciadv.abg0633
- Y. Deng, S. Xu, S. Chen, X. Xiao, J. Zhao et al., Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability. Nat. Energy 6(6), 633–641 (2021). https://doi.org/10.1038/s41560-021-00831-8
- Z. Ku, Y. Rong, M. Xu, T. Liu, H. Han, Full printable processed mesoscopic CH₃NH₃PbI₃/TiO₂ heterojunction solar cells with carbon counter electrode. Sci. Rep. 3, 3132 (2013). https://doi.org/10.1038/srep03132
- H. Chen, S. Yang, Methods and strategies for achieving high-performance carbon-based perovskite solar cells without hole transport materials. J. Mater. Chem. A 7(26), 15476–15490 (2019). https://doi.org/10.1039/C9TA04707G
- X. Zhang, Y. Guan, Y. Zhang, W. Yu, C. Wu et al., Achieving small temperature coefficients in carbon-based perovskite solar cells by enhancing electron extraction. Adv. Opt. Mater. 10(23), 2201598 (2022). https://doi.org/10.1002/adom.202201598
- S. Zouhair, S.-M. Yoo, D. Bogachuk, J.P. Herterich, J. Lim et al., Employing 2D-perovskite as an electron blocking layer in highly efficient (18.5%) perovskite solar cells with printable low temperature carbon electrode. Adv. Energy Mater. 12(21), 2200837 (2022). https://doi.org/10.1002/aenm.202200837
- M. Duan, Y. Hu, A. Mei, Y. Rong, H. Han, Printable carbon-based hole-conductor-free mesoscopic perovskite solar cells: From lab to market. Mater. Today Energy 7, 221–231 (2018). https://doi.org/10.1016/j.mtener.2017.09.016
- Y. Li, X. Lu, Y. Mei, C. Dong, D.T. Gangadharan et al., Blade-coated carbon electrode perovskite solar cells to exceed 20% efficiency through protective buffer layers. Adv. Funct. Mater. 33(34), 2301920 (2023). https://doi.org/10.1002/adfm.202301920
- Y. Wang, W. Li, Y. Yin, M. Wang, W. Cai et al., Defective MWCNT enabled dual interface coupling for carbon-based perovskite solar cells with efficiency exceeding 22%. Adv. Funct. Mater. 32(31), 2204831 (2022). https://doi.org/10.1002/adfm.202204831
- Z. Wu, Z. Liu, Z. Hu, Z. Hawash, L. Qiu et al., Highly efficient and stable perovskite solar cells via modification of energy levels at the perovskite/carbon electrode interface. Adv. Mater. 31(11), e1804284 (2019). https://doi.org/10.1002/adma.201804284
- P. Jiang, Y. Xiong, M. Xu, A. Mei, Y. Sheng et al., The influence of the work function of hybrid carbon electrodes on printable mesoscopic perovskite solar cells. J. Phys. Chem. C 122(29), 16481–16487 (2018). https://doi.org/10.1021/acs.jpcc.8b02163
- A. Mei, X. Li, L. Liu, Z. Ku, T. Liu et al., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345(6194), 295–298 (2014). https://doi.org/10.1126/science.1254763
- A. Mahapatra, N. Parikh, H. Kumari, M.K. Pandey, M. Kumar et al., Reducing ion migration in methylammonium lead tri-bromide single crystal via lead sulfate passivation. J. Appl. Phys. 127(18), 185501 (2020). https://doi.org/10.1063/5.0005369
- Y. Vaynzof, Long live the perovskite module. Nat. Energy 6(6), 578–579 (2021). https://doi.org/10.1038/s41560-021-00859-w
- L. Luo, H. Zeng, Z. Wang, M. Li, S. You et al., Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat. Energy 8(3), 294–303 (2023). https://doi.org/10.1038/s41560-023-01205-y
- J. Liu, Q. Zhou, N.K. Thein, L. Tian, D. Jia et al., In situ growth of perovskite stacking layers for high-efficiency carbon-based hole conductor free perovskite solar cells. J. Mater. Chem. A 7(22), 13777–13786 (2019). https://doi.org/10.1039/C9TA02772F
- H. Xiao, C. Zuo, K. Yan, Z. Jin, Y. Cheng et al., Highly efficient and air-stable inorganic perovskite solar cells enabled by polylactic acid modification. Adv. Energy Mater. 13(32), 2300738 (2023). https://doi.org/10.1002/aenm.202300738
- H. Kim, M. Pei, Y. Lee, A.A. Sutanto, S. Paek et al., Self-crystallized multifunctional 2D perovskite for efficient and stable perovskite solar cells. Adv. Funct. Mater. 30(19), 1910620 (2020). https://doi.org/10.1002/adfm.201910620
- B. Yang, J. Suo, F. Di Giacomo, S. Olthof, D. Bogachuk et al., Interfacial passivation engineering of perovskite solar cells with fill factor over 82% and outstanding operational stability on n-i-p architecture. ACS Energy Lett. 6(11), 3916–3923 (2021). https://doi.org/10.1021/acsenergylett.1c01811
- J. Tang, Y. Lin, H. Yan, J. Lin, H. Rao et al., 20.1% certified efficiency of planar hole transport layer-free carbon-based perovskite solar cells by spacer cation chain length engineering of 2D perovskites. Angew. Chem. Int. Ed. 63(33), e202406167 (2024). https://doi.org/10.1002/anie.202406167
- Q.-Q. Chu, Z. Sun, B. Ding, K.-S. Moon, G.-J. Yang et al., Greatly enhanced power conversion efficiency of hole-transport-layer-free perovskite solar cell via coherent interfaces of perovskite and carbon layers. Nano Energy 77, 105110 (2020). https://doi.org/10.1016/j.nanoen.2020.105110
- R. Chen, Y. Feng, C. Zhang, M. Wang, L. Jing et al., Carbon-based HTL-free modular perovskite solar cells with improved contact at perovskite/carbon interfaces. J. Mater. Chem. C 8(27), 9262–9270 (2020). https://doi.org/10.1039/D0TC02226H
- T. Tian, J.-X. Zhong, M. Yang, W. Feng, C. Zhang et al., Interfacial linkage and carbon encapsulation enable full solution-printed perovskite photovoltaics with prolonged lifespan. Angew. Chem. Int. Ed. 60(44), 23735–23742 (2021). https://doi.org/10.1002/anie.202108495
- J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
- B. Ding, L. Gao, L. Liang, Q. Chu, X. Song et al., Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method. ACS Appl. Mater. Interfaces 8(31), 20067–20073 (2016). https://doi.org/10.1021/acsami.6b05862
- X. Li, D. Bi, C. Yi, J.D. Décoppet, J. Luo et al., A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353(6294), 58–62 (2016). https://doi.org/10.1126/science.aaf8060
- H. Chen, S. Yang, Carbon-based perovskite solar cells without hole transport materials: the front runner to the market? Adv. Mater. 29(24), 1603994 (2017). https://doi.org/10.1002/adma.201603994
- D.W. DeQuilettes, S. Jariwala, S. Burke, M.E. Ziffer, J.T. Wang et al., Tracking photoexcited carriers in hybrid perovskite semiconductors: trap-dominated spatial heterogeneity and diffusion. ACS Nano 11(11), 11488–11496 (2017). https://doi.org/10.1021/acsnano.7b06242
- M. Yang, Y. Zeng, Z. Li, D.H. Kim, C.-S. Jiang et al., Do grain boundaries dominate non-radiative recombination in CH3NH3PbI3 perovskite thin films? Phys. Chem. Chem. Phys. 19(7), 5043–5050 (2017). https://doi.org/10.1039/C6CP08770A
- Y. Zhang, T. Kong, H. Xie, J. Song, Y. Li et al., Molecularly tailored SnO2/perovskite interface enabling efficient and stable FAPbI3 solar cells. ACS Energy Lett. 7(3), 929–938 (2022). https://doi.org/10.1021/acsenergylett.1c02545
- C. Chen, W. Huang, Y. Li, M. Zhang, K. Nie et al., P2/O3 biphasic Fe/Mn-based layered oxide cathode with ultrahigh capacity and great cyclability for sodium ion batteries. Nano Energy 90, 106504 (2021). https://doi.org/10.1016/j.nanoen.2021.106504
- J. Szuber, G. Czempik, R. Larciprete, D. Koziej, B. Adamowicz, XPS study of the L-CVD deposited SnO2 thin films exposed to oxygen and hydrogen. Thin Solid Films 391(2), 198–203 (2001). https://doi.org/10.1016/S0040-6090(01)00982-8
- M. Yu, L. Chen, G. Li, C. Xu, C. Luo et al., Effect of guanidinium chloride in eliminating O2− electron extraction barrier on a SnO2 surface to enhance the efficiency of perovskite solar cells. RSC Adv. 10(33), 19513–19520 (2020). https://doi.org/10.1039/D0RA01501F
- V.-H. Tran, S.H. Eom, S.C. Yoon, S.-K. Kim, S.-H. Lee, Enhancing device performance of inverted organic solar cells with SnO2/Cs2CO3 as dual electron transport layers. Org. Electron. 68, 85–95 (2019). https://doi.org/10.1016/j.orgel.2019.02.006
- Y. Yoon, D. Ha, I.J. Park, P.M. Haney, S. Lee et al., Nanoscale photocurrent mapping in perovskite solar cells. Nano Energy 48, 543–550 (2018). https://doi.org/10.1016/j.nanoen.2018.04.010
- C. Luo, Y. Zhao, X. Wang, F. Gao, Q. Zhao, Self-induced type-I band alignment at surface grain boundaries for highly efficient and stable perovskite solar cells. Adv. Mater. 33(40), 2103231 (2021). https://doi.org/10.1002/adma.202103231
- L. Shi, M.P. Bucknall, T.L. Young, M. Zhang, L. Hu et al., Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells. Science 368(6497), eaba2412 (2020). https://doi.org/10.1126/science.aba2412
- X. He, J. Chen, X. Ren, L. Zhang, Y. Liu et al., 40.1% record low-light solar-cell efficiency by holistic trap-passivation using micrometer-thick perovskite film. Adv. Mater. 33(27), 2100770 (2021). https://doi.org/10.1002/adma.202100770
- S. Pitchaiya, N. Eswaramoorthy, V. Madurai Ramakrishnan, M. Natarajan, D. Velauthapillai, Bio-inspired graphitic carbon-based large-area (10 × 10 cm2) perovskite solar cells: stability assessments under indoor, outdoor, and water-soaked conditions. ACS Appl. Mater. Interfaces 14(38), 43050–43066 (2022). https://doi.org/10.1021/acsami.2c02463
- C.M.T. Kim, M.A.N. Perera, M. Katz, D. Martineau, S.G. Hashmi, Performance evaluation of carbon-based printed perovskite solar cells under low-light intensity conditions. Adv. Eng. Mater. 24(10), 2200747 (2022). https://doi.org/10.1002/adem.202200747
- C. Teixeira, P. Spinelli, L.A. Castriotta, D. Müller, S. Öz et al., Charge extraction in flexible perovskite solar cell architectures for indoor applications–with up to 31% efficiency. Adv. Funct. Mater. 32(40), 2206761 (2022). https://doi.org/10.1002/adfm.202206761
- C.K. Vipin, S. Chandra Pradhan, K.N. Narayanan Unni, S. Soman, Enhancing stability and efficiency in SnO2 based HTL-free, printable carbon-based perovskite solar cells for outdoor/indoor photovoltaics. Sol. Energy 276, 112705 (2024). https://doi.org/10.1016/j.solener.2024.112705
- S. Gharibzadeh, P. Fassl, I.M. Hossain, P. Rohrbeck, M. Frericks et al., Two birds with one stone: dual grain-boundary and interface passivation enables >22% efficient inverted methylammonium-free perovskite solar cells. Energy Environ. Sci. 14(11), 5875–5893 (2021). https://doi.org/10.1039/D1EE01508G
- D. Wang, C. Wu, X. Qi, W. Luo, Y. Zhang et al., Highly efficient perovskite solar cells with neglectable hysteresis and increased open circuit voltage via a nickel chloride interface modification. ACS Appl. Energy Mater. 2(8), 5883–5888 (2019). https://doi.org/10.1021/acsaem.9b01009
- C. Zhang, H. Wang, H. Li, Q. Zhuang, C. Gong et al., Simultaneous passivation of bulk and interface defects through synergistic effect of anion and cation toward efficient and stable planar perovskite solar cells. J. Energy Chem. 63, 452–460 (2021). https://doi.org/10.1016/j.jechem.2021.07.011
- W. Abu Laban, L. Etgar, Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 6(11), 3249 (2013). https://doi.org/10.1039/c3ee42282h
References
S. De Wolf, J. Holovsky, S.J. Moon, P. Löper, B. Niesen et al., Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5(6), 1035–1039 (2014). https://doi.org/10.1021/jz500279b
G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–988 (2014). https://doi.org/10.1039/C3EE43822H
S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd et al., The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7(1), 399–407 (2014). https://doi.org/10.1039/C3EE43161D
L.M. Herz, Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2(7), 1539–1548 (2017). https://doi.org/10.1021/acsenergylett.7b00276
J.C. Yu, S. Badgujar, E.D. Jung, V.K. Singh, D.W. Kim et al., Highly efficient and stable inverted perovskite solar cell obtained via treatment by semiconducting chemical additive. Adv. Mater. 31(6), 1805554 (2019). https://doi.org/10.1002/adma.201805554
https://www.nrel.gov/pv/interactive-cell-efficiency.html
H. Lu, A. Krishna, S.M. Zakeeruddin, M. Grätzel, A. Hagfeldt, Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells. iScience 23(8), 101359 (2020). https://doi.org/10.1016/j.isci.2020.101359
W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
Q. Cao, Y. Li, H. Zhang, J. Yang, J. Han et al., Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer. Sci. Adv. 7(28), eabg0633 (2021). https://doi.org/10.1126/sciadv.abg0633
Y. Deng, S. Xu, S. Chen, X. Xiao, J. Zhao et al., Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability. Nat. Energy 6(6), 633–641 (2021). https://doi.org/10.1038/s41560-021-00831-8
Z. Ku, Y. Rong, M. Xu, T. Liu, H. Han, Full printable processed mesoscopic CH₃NH₃PbI₃/TiO₂ heterojunction solar cells with carbon counter electrode. Sci. Rep. 3, 3132 (2013). https://doi.org/10.1038/srep03132
H. Chen, S. Yang, Methods and strategies for achieving high-performance carbon-based perovskite solar cells without hole transport materials. J. Mater. Chem. A 7(26), 15476–15490 (2019). https://doi.org/10.1039/C9TA04707G
X. Zhang, Y. Guan, Y. Zhang, W. Yu, C. Wu et al., Achieving small temperature coefficients in carbon-based perovskite solar cells by enhancing electron extraction. Adv. Opt. Mater. 10(23), 2201598 (2022). https://doi.org/10.1002/adom.202201598
S. Zouhair, S.-M. Yoo, D. Bogachuk, J.P. Herterich, J. Lim et al., Employing 2D-perovskite as an electron blocking layer in highly efficient (18.5%) perovskite solar cells with printable low temperature carbon electrode. Adv. Energy Mater. 12(21), 2200837 (2022). https://doi.org/10.1002/aenm.202200837
M. Duan, Y. Hu, A. Mei, Y. Rong, H. Han, Printable carbon-based hole-conductor-free mesoscopic perovskite solar cells: From lab to market. Mater. Today Energy 7, 221–231 (2018). https://doi.org/10.1016/j.mtener.2017.09.016
Y. Li, X. Lu, Y. Mei, C. Dong, D.T. Gangadharan et al., Blade-coated carbon electrode perovskite solar cells to exceed 20% efficiency through protective buffer layers. Adv. Funct. Mater. 33(34), 2301920 (2023). https://doi.org/10.1002/adfm.202301920
Y. Wang, W. Li, Y. Yin, M. Wang, W. Cai et al., Defective MWCNT enabled dual interface coupling for carbon-based perovskite solar cells with efficiency exceeding 22%. Adv. Funct. Mater. 32(31), 2204831 (2022). https://doi.org/10.1002/adfm.202204831
Z. Wu, Z. Liu, Z. Hu, Z. Hawash, L. Qiu et al., Highly efficient and stable perovskite solar cells via modification of energy levels at the perovskite/carbon electrode interface. Adv. Mater. 31(11), e1804284 (2019). https://doi.org/10.1002/adma.201804284
P. Jiang, Y. Xiong, M. Xu, A. Mei, Y. Sheng et al., The influence of the work function of hybrid carbon electrodes on printable mesoscopic perovskite solar cells. J. Phys. Chem. C 122(29), 16481–16487 (2018). https://doi.org/10.1021/acs.jpcc.8b02163
A. Mei, X. Li, L. Liu, Z. Ku, T. Liu et al., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345(6194), 295–298 (2014). https://doi.org/10.1126/science.1254763
A. Mahapatra, N. Parikh, H. Kumari, M.K. Pandey, M. Kumar et al., Reducing ion migration in methylammonium lead tri-bromide single crystal via lead sulfate passivation. J. Appl. Phys. 127(18), 185501 (2020). https://doi.org/10.1063/5.0005369
Y. Vaynzof, Long live the perovskite module. Nat. Energy 6(6), 578–579 (2021). https://doi.org/10.1038/s41560-021-00859-w
L. Luo, H. Zeng, Z. Wang, M. Li, S. You et al., Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat. Energy 8(3), 294–303 (2023). https://doi.org/10.1038/s41560-023-01205-y
J. Liu, Q. Zhou, N.K. Thein, L. Tian, D. Jia et al., In situ growth of perovskite stacking layers for high-efficiency carbon-based hole conductor free perovskite solar cells. J. Mater. Chem. A 7(22), 13777–13786 (2019). https://doi.org/10.1039/C9TA02772F
H. Xiao, C. Zuo, K. Yan, Z. Jin, Y. Cheng et al., Highly efficient and air-stable inorganic perovskite solar cells enabled by polylactic acid modification. Adv. Energy Mater. 13(32), 2300738 (2023). https://doi.org/10.1002/aenm.202300738
H. Kim, M. Pei, Y. Lee, A.A. Sutanto, S. Paek et al., Self-crystallized multifunctional 2D perovskite for efficient and stable perovskite solar cells. Adv. Funct. Mater. 30(19), 1910620 (2020). https://doi.org/10.1002/adfm.201910620
B. Yang, J. Suo, F. Di Giacomo, S. Olthof, D. Bogachuk et al., Interfacial passivation engineering of perovskite solar cells with fill factor over 82% and outstanding operational stability on n-i-p architecture. ACS Energy Lett. 6(11), 3916–3923 (2021). https://doi.org/10.1021/acsenergylett.1c01811
J. Tang, Y. Lin, H. Yan, J. Lin, H. Rao et al., 20.1% certified efficiency of planar hole transport layer-free carbon-based perovskite solar cells by spacer cation chain length engineering of 2D perovskites. Angew. Chem. Int. Ed. 63(33), e202406167 (2024). https://doi.org/10.1002/anie.202406167
Q.-Q. Chu, Z. Sun, B. Ding, K.-S. Moon, G.-J. Yang et al., Greatly enhanced power conversion efficiency of hole-transport-layer-free perovskite solar cell via coherent interfaces of perovskite and carbon layers. Nano Energy 77, 105110 (2020). https://doi.org/10.1016/j.nanoen.2020.105110
R. Chen, Y. Feng, C. Zhang, M. Wang, L. Jing et al., Carbon-based HTL-free modular perovskite solar cells with improved contact at perovskite/carbon interfaces. J. Mater. Chem. C 8(27), 9262–9270 (2020). https://doi.org/10.1039/D0TC02226H
T. Tian, J.-X. Zhong, M. Yang, W. Feng, C. Zhang et al., Interfacial linkage and carbon encapsulation enable full solution-printed perovskite photovoltaics with prolonged lifespan. Angew. Chem. Int. Ed. 60(44), 23735–23742 (2021). https://doi.org/10.1002/anie.202108495
J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
B. Ding, L. Gao, L. Liang, Q. Chu, X. Song et al., Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method. ACS Appl. Mater. Interfaces 8(31), 20067–20073 (2016). https://doi.org/10.1021/acsami.6b05862
X. Li, D. Bi, C. Yi, J.D. Décoppet, J. Luo et al., A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353(6294), 58–62 (2016). https://doi.org/10.1126/science.aaf8060
H. Chen, S. Yang, Carbon-based perovskite solar cells without hole transport materials: the front runner to the market? Adv. Mater. 29(24), 1603994 (2017). https://doi.org/10.1002/adma.201603994
D.W. DeQuilettes, S. Jariwala, S. Burke, M.E. Ziffer, J.T. Wang et al., Tracking photoexcited carriers in hybrid perovskite semiconductors: trap-dominated spatial heterogeneity and diffusion. ACS Nano 11(11), 11488–11496 (2017). https://doi.org/10.1021/acsnano.7b06242
M. Yang, Y. Zeng, Z. Li, D.H. Kim, C.-S. Jiang et al., Do grain boundaries dominate non-radiative recombination in CH3NH3PbI3 perovskite thin films? Phys. Chem. Chem. Phys. 19(7), 5043–5050 (2017). https://doi.org/10.1039/C6CP08770A
Y. Zhang, T. Kong, H. Xie, J. Song, Y. Li et al., Molecularly tailored SnO2/perovskite interface enabling efficient and stable FAPbI3 solar cells. ACS Energy Lett. 7(3), 929–938 (2022). https://doi.org/10.1021/acsenergylett.1c02545
C. Chen, W. Huang, Y. Li, M. Zhang, K. Nie et al., P2/O3 biphasic Fe/Mn-based layered oxide cathode with ultrahigh capacity and great cyclability for sodium ion batteries. Nano Energy 90, 106504 (2021). https://doi.org/10.1016/j.nanoen.2021.106504
J. Szuber, G. Czempik, R. Larciprete, D. Koziej, B. Adamowicz, XPS study of the L-CVD deposited SnO2 thin films exposed to oxygen and hydrogen. Thin Solid Films 391(2), 198–203 (2001). https://doi.org/10.1016/S0040-6090(01)00982-8
M. Yu, L. Chen, G. Li, C. Xu, C. Luo et al., Effect of guanidinium chloride in eliminating O2− electron extraction barrier on a SnO2 surface to enhance the efficiency of perovskite solar cells. RSC Adv. 10(33), 19513–19520 (2020). https://doi.org/10.1039/D0RA01501F
V.-H. Tran, S.H. Eom, S.C. Yoon, S.-K. Kim, S.-H. Lee, Enhancing device performance of inverted organic solar cells with SnO2/Cs2CO3 as dual electron transport layers. Org. Electron. 68, 85–95 (2019). https://doi.org/10.1016/j.orgel.2019.02.006
Y. Yoon, D. Ha, I.J. Park, P.M. Haney, S. Lee et al., Nanoscale photocurrent mapping in perovskite solar cells. Nano Energy 48, 543–550 (2018). https://doi.org/10.1016/j.nanoen.2018.04.010
C. Luo, Y. Zhao, X. Wang, F. Gao, Q. Zhao, Self-induced type-I band alignment at surface grain boundaries for highly efficient and stable perovskite solar cells. Adv. Mater. 33(40), 2103231 (2021). https://doi.org/10.1002/adma.202103231
L. Shi, M.P. Bucknall, T.L. Young, M. Zhang, L. Hu et al., Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells. Science 368(6497), eaba2412 (2020). https://doi.org/10.1126/science.aba2412
X. He, J. Chen, X. Ren, L. Zhang, Y. Liu et al., 40.1% record low-light solar-cell efficiency by holistic trap-passivation using micrometer-thick perovskite film. Adv. Mater. 33(27), 2100770 (2021). https://doi.org/10.1002/adma.202100770
S. Pitchaiya, N. Eswaramoorthy, V. Madurai Ramakrishnan, M. Natarajan, D. Velauthapillai, Bio-inspired graphitic carbon-based large-area (10 × 10 cm2) perovskite solar cells: stability assessments under indoor, outdoor, and water-soaked conditions. ACS Appl. Mater. Interfaces 14(38), 43050–43066 (2022). https://doi.org/10.1021/acsami.2c02463
C.M.T. Kim, M.A.N. Perera, M. Katz, D. Martineau, S.G. Hashmi, Performance evaluation of carbon-based printed perovskite solar cells under low-light intensity conditions. Adv. Eng. Mater. 24(10), 2200747 (2022). https://doi.org/10.1002/adem.202200747
C. Teixeira, P. Spinelli, L.A. Castriotta, D. Müller, S. Öz et al., Charge extraction in flexible perovskite solar cell architectures for indoor applications–with up to 31% efficiency. Adv. Funct. Mater. 32(40), 2206761 (2022). https://doi.org/10.1002/adfm.202206761
C.K. Vipin, S. Chandra Pradhan, K.N. Narayanan Unni, S. Soman, Enhancing stability and efficiency in SnO2 based HTL-free, printable carbon-based perovskite solar cells for outdoor/indoor photovoltaics. Sol. Energy 276, 112705 (2024). https://doi.org/10.1016/j.solener.2024.112705
S. Gharibzadeh, P. Fassl, I.M. Hossain, P. Rohrbeck, M. Frericks et al., Two birds with one stone: dual grain-boundary and interface passivation enables >22% efficient inverted methylammonium-free perovskite solar cells. Energy Environ. Sci. 14(11), 5875–5893 (2021). https://doi.org/10.1039/D1EE01508G
D. Wang, C. Wu, X. Qi, W. Luo, Y. Zhang et al., Highly efficient perovskite solar cells with neglectable hysteresis and increased open circuit voltage via a nickel chloride interface modification. ACS Appl. Energy Mater. 2(8), 5883–5888 (2019). https://doi.org/10.1021/acsaem.9b01009
C. Zhang, H. Wang, H. Li, Q. Zhuang, C. Gong et al., Simultaneous passivation of bulk and interface defects through synergistic effect of anion and cation toward efficient and stable planar perovskite solar cells. J. Energy Chem. 63, 452–460 (2021). https://doi.org/10.1016/j.jechem.2021.07.011
W. Abu Laban, L. Etgar, Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 6(11), 3249 (2013). https://doi.org/10.1039/c3ee42282h