Breaking Performance Limits of Zn Anodes in Aqueous Batteries by Tailoring Anion and Cation Additives
Corresponding Author: Chengxin Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 259
Abstract
Crystallographic engineering of Zn anodes to favor the exposure of (002) planes is an effective approach for improving stability in aqueous electrolytes. However, achieving non-epitaxial electrodeposition with a pronounced (002) texture and maintaining this orientation during extended cycling remains challenging. This study questions the prevailing notion that a single (002)-textured Zn anode inherently ensures superior stability, showing that such anodes cannot sustain their texture in ZnSO4 electrolytes. We then introduced a novel electrolyte additive, benzyltriethylammonium chloride (TEBAC), which preserves the (002) texture over prolonged cycling. Furthermore, we successfully converted commercial Zn foils into highly crystalline (002)-textured Zn without any pretreatment. Experiments and theoretical calculations revealed that the cationic TEBA+ selectively adsorbs onto the anode surface, promoting the exposure of the Zn(002) plane and suppressing dendrite formation. A critical discovery was the pitting corrosion caused by chloride ions from TEBAC, which we mitigated by anion substitution. This modification leads to a remarkable lifespan of 375 days for the Zn||Zn symmetric cells at 1 mA cm−2 and 1 mAh cm−2. Furthermore, a TEBA+-modified Zn||VO2 full cell demonstrates high specific capacity and robust cycle stability at 10.0 A g−1. These results provide valuable insights and strategies for developing long-life Zn ion batteries.
Highlights:
1 Cationic benzyltriethylammonium chloride enables high (002)-textured Zn via selective adsorption, outperforming prior additives.
2 In situ homogenization converts commercial Zn foil into highly (002)-textured Zn anodes without pretreatments.
3 Cl−-induced pitting corrosion mechanism uncovered, leading to a breakthrough in performance limits of Zn anodes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng et al., Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 49(13), 4203–4219 (2020). https://doi.org/10.1039/c9cs00349e
- Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin et al., Rechargeable batteries for grid scale energy storage. Chem. Rev. 122(22), 16610–16751 (2022). https://doi.org/10.1021/acs.chemrev.2c00289
- L. Tang, H. Peng, J. Kang, H. Chen, M. Zhang et al., Zn-based batteries for sustainable energy storage: strategies and mechanisms. Chem. Soc. Rev. 53(10), 4877–4925 (2024). https://doi.org/10.1039/D3CS00295K
- S. Liu, R. Zhang, C. Wang, J. Mao, D. Chao et al., Zinc ion batteries: bridging the gap from academia to industry for grid-scale energy storage. Angew. Chem. Int. Ed. 63(17), e202400045 (2024). https://doi.org/10.1002/anie.202400045
- G. Zampardi, F.L. Mantia, Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat. Commun. 13(1), 687 (2022). https://doi.org/10.1038/s41467-022-28381-x
- S.D. Pu, B. Hu, Z. Li, Y. Yuan, C. Gong et al., Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries. Joule 7(2), 366–379 (2023). https://doi.org/10.1016/j.joule.2023.01.010
- J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14(1), 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
- Z. Wu, Y. Wang, C. Zhi, Zinc-anode reversibility and capacity inflection as an evaluation criterion. Joule 8(9), 2442–2448 (2024). https://doi.org/10.1016/j.joule.2024.07.023
- H. Gan, H. Li, M. Xu, C. Han, H.-M. Cheng, Failure mechanisms and remedy of an ultrathin Zn metal anode in pouch cells. Joule 8(11), 3054–3071 (2024). https://doi.org/10.1016/j.joule.2024.07.013
- Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo et al., Dendrites in Zn-based batteries. Adv. Mater. 32(48), 2001854 (2020). https://doi.org/10.1002/adma.202001854
- H. Dai, T. Sun, J. Zhou, J. Wang, Z. Chen et al., Unraveling chemical origins of dendrite formation in zinc-ion batteries via in situ/operando X-ray spectroscopy and imaging. Nat. Commun. 15(1), 8577 (2024). https://doi.org/10.1038/s41467-024-52651-5
- J. Wei, P. Zhang, J. Sun, Y. Liu, F. Li et al., Advanced electrolytes for high-performance aqueous zinc-ion batteries. Chem. Soc. Rev. 53(20), 10335–10369 (2024). https://doi.org/10.1039/d4cs00584h
- Q. Deng, S. You, W. Min, Y. Xu, W. Lin et al., Polymer molecules adsorption-induced zincophilic-hydrophobic protective layer enables highly stable Zn metal anodes. Adv. Mater. 36(16), 2312924 (2024). https://doi.org/10.1002/adma.202312924
- D. Xu, X. Ren, H. Li, Y. Zhou, S. Chai et al., Chelating additive regulating Zn-ion solvation chemistry for highly efficient aqueous zinc-metal battery. Angew. Chem. Int. Ed. 63(21), e202402833 (2024). https://doi.org/10.1002/anie.202402833
- J. Zheng, L.A. Archer, Crystallographically textured electrodes for rechargeable batteries: symmetry, fabrication, and characterization. Chem. Rev. 122(18), 14440–14470 (2022). https://doi.org/10.1021/acs.chemrev.2c00022
- J. Zhang, W. Huang, L. Li, C. Chang, K. Yang et al., Nonepitaxial electrodeposition of (002)-textured Zn anode on textureless substrates for dendrite-free and hydrogen evolution-suppressed Zn batteries. Adv. Mater. 35(21), e2300073 (2023). https://doi.org/10.1002/adma.202300073
- X. Zhang, J. Li, Y. Liu, B. Lu, S. Liang et al., Single [0001]-oriented zinc metal anode enables sustainable zinc batteries. Nat. Commun. 15(1), 2735 (2024). https://doi.org/10.1038/s41467-024-47101-1
- Y. Yang, L. Qin, Q. He, C. Yin, Y. Lei et al., Electrochemically and chemically in situ interfacial protection layers towards stable and reversible Zn anodes. Sci. Bull. 70(1), 104–124 (2025). https://doi.org/10.1016/j.scib.2024.10.025
- H. Liu, Z. Xu, B. Cao, Z. Xin, H. Lai et al., Marangoni-driven self-assembly MXene as functional membrane enables dendrite-free and flexible zinc–iodine pouch cells. Adv. Energy Mater. 14(26), 2470109 (2024). https://doi.org/10.1002/aenm.202470109
- J. Cao, H. Wu, D. Zhang, D. Luo, L. Zhang et al., In-situ ultrafast construction of zinc tungstate interface layer for highly reversible zinc anodes. Angew. Chem. Int. Ed. 63(29), e202319661 (2024). https://doi.org/10.1002/anie.202319661
- Y. Zhu, G. Liang, X. Cui, X. Liu, H. Zhong et al., Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy Environ. Sci. 17(2), 369–385 (2024). https://doi.org/10.1039/d3ee03584k
- G. Li, Z. Liu, Q. Huang, Y. Gao, M. Regula et al., Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy 3(12), 1076–1083 (2018). https://doi.org/10.1038/s41560-018-0276-z
- X. Xu, S. Li, Z. Cao, S. Yang, B. Li, Boosting ion diffusion and charge transfer by zincophilic accordion arrays to achieve ultrafast aqueous zinc metal batteries. Adv. Energy Mater. 14(14), 2303971 (2024). https://doi.org/10.1002/aenm.202303971
- B. Li, Y. Zeng, W. Zhang, B. Lu, Q. Yang et al., Separator designs for aqueous zinc-ion batteries. Sci. Bull. 69(5), 688–703 (2024). https://doi.org/10.1016/j.scib.2024.01.011
- Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14(1), 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
- L. Yang, Y.-J. Zhu, H.-P. Yu, Z.-Y. Wang, L. Cheng et al., A five micron thick aramid nanofiber separator enables highly reversible Zn anode for energy-dense aqueous zinc-ion batteries. Adv. Energy Mater. 14(39), 2401858 (2024). https://doi.org/10.1002/aenm.202401858
- R. Sato, Crystal growth of electrodeposited zinc. J. Electrochem. Soc. 106(3), 206 (1959). https://doi.org/10.1149/1.2427309
- X. Liu, Y. Guo, F. Ning, Y. Liu, S. Shi et al., Fundamental understanding of hydrogen evolution reaction on zinc anode surface: a first-principles study. Nano-Micro Lett. 16(1), 111 (2024). https://doi.org/10.1007/s40820-024-01337-0
- L. Ren, Z. Hu, C. Peng, L. Zhang, N. Wang et al., Suppressing metal corrosion through identification of optimal crystallographic plane for Zn batteries. Proc. Natl. Acad. Sci. USA 121(5), e2309981121 (2024). https://doi.org/10.1073/pnas.2309981121
- J. Zheng, Y. Deng, J. Yin, T. Tang, R. Garcia-Mendez et al., Textured electrodes: manipulating built-In crystallographic heterogeneity of metal electrodes via severe plastic deformation. Adv. Mater. 34(1), 2106867 (2022). https://doi.org/10.1002/adma.202106867
- Z. Chen, Q. Wu, X. Han, C. Wang, J. Chen et al., Converting commercial Zn foils into single (002)-textured Zn with millimeter-sized grains for highly reversible aqueous zinc batteries. Angew. Chem. Int. Ed. 63(17), e202401507 (2024). https://doi.org/10.1002/anie.202401507
- G. Ma, W. Yuan, X. Li, T. Bi, L. Niu et al., Organic cations texture zinc metal anodes for deep cycling aqueous zinc batteries. Adv. Mater. 36(35), 2408287 (2024). https://doi.org/10.1002/adma.202408287
- H. Zhang, Y. Zhong, J. Li, Y. Liao, J. Zeng et al., Inducing the preferential growth of Zn (002) plane for long cycle aqueous Zn-ion batteries. Adv. Energy Mater. 13(1), 2203254 (2023). https://doi.org/10.1002/aenm.202203254
- S. Zhou, X. Meng, Y. Chen, J. Li, S. Lin et al., Zinc-ion anchor induced highly reversible Zn anodes for high performance Zn-ion batteries. Angew. Chem. Int. Ed. 63(24), e202403050 (2024). https://doi.org/10.1002/anie.202403050
- Y. Huang, Y. Zhuang, L. Guo, C. Lei, Y. Jiang et al., Stabilizing anode-electrolyte interface for dendrite-free Zn-ion batteries through orientational plating with zinc aspartate additive. Small 20(10), 2306211 (2024). https://doi.org/10.1002/smll.202306211
- J. Hafner, Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29(13), 2044–2078 (2008). https://doi.org/10.1002/jcc.21057
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
- J. Hsin, A. Arkhipov, Y. Yin, J.E. Stone, K. Schulten, Using VMD: an introductory tutorial. Curr. Protoc. Bioinform. 24(1), 5–7 (2008). https://doi.org/10.1002/0471250953.bi0507s24
- G. Henkelman, A. Arnaldsson, H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36(3), 354–360 (2006). https://doi.org/10.1016/j.commatsci.2005.04.010
- A. Boucher, G. Jones, A. Roldan, Toward a new definition of surface energy for late transition metals. Phys. Chem. Chem. Phys. 25(3), 1977–1986 (2023). https://doi.org/10.1039/d2cp04024g
- L.P. Bérubé, G. L’Espérance, A quantitative method of determining the degree of texture of zinc electrodeposits. J. Electrochem. Soc. 136(8), 2314–2315 (1989). https://doi.org/10.1149/1.2097318
- Y. Lin, Z. Mai, H. Liang, Y. Li, G. Yang et al., Dendrite-free Zn anode enabled by anionic surfactant-induced horizontal growth for highly-stable aqueous Zn-ion pouch cells. Energy Environ. Sci. 16(2), 687–697 (2023). https://doi.org/10.1039/D2EE03528F
- Y. Lin, Y. Li, Z. Mai, G. Yang, C. Wang, Interfacial regulation via anionic surfactant electrolyte additive promotes stable (002)-textured zinc anodes at high depth of discharge. Adv. Energy Mater. 13(38), 2301999 (2023). https://doi.org/10.1002/aenm.202301999
- X. Yun, Y. Chen, H. Gao, D. Lu, L. Zuo et al., Regulation of dipolar-dipolar and ion-dipolar interactions simultaneously in strong solvating electrolytes for all-temperature zinc-ion batteries. Adv. Energy Mater. 14(25), 2470102 (2024). https://doi.org/10.1002/aenm.202470102
- C. Meng, W. He, L. Jiang, Y. Huang, J. Zhang et al., Ultra-stable aqueous zinc batteries enabled by β-cyclodextrin: preferred zinc deposition and suppressed parasitic reactions. Adv. Funct. Mater. 32(47), 2207732 (2022). https://doi.org/10.1002/adfm.202207732
- Y. Yu, Q. Zhang, P. Zhang, X. Jia, H. Song et al., Massively reconstructing hydrogen bonding network and coordination structure enabled by a natural multifunctional co-solvent for practical aqueous Zn-ion batteries. Adv. Sci. 11(22), 2400336 (2024). https://doi.org/10.1002/advs.202400336
- C. Li, X. Zhang, G. Qu, S. Zhao, H. Qin et al., Highly reversible Zn metal anode securing by functional electrolyte modulation. Adv. Energy Mater. 14(34), 2400872 (2024). https://doi.org/10.1002/aenm.202400872
- K. Guan, L. Tao, R. Yang, H. Zhang, N. Wang et al., Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries. Adv. Energy Mater. 12(9), 2103557 (2022). https://doi.org/10.1002/aenm.202103557
- D. Kundu, S. Hosseini Vajargah, L. Wan, B. Adams, D. Prendergast et al., Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11(4), 881–892 (2018). https://doi.org/10.1039/C8EE00378E
- X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/C9EE03545A
- N. Wint, K. Khan, J.H. Sullivan, H.N. McMurray, Concentration effects on the spatial interaction of corrosion pits occurring on zinc in dilute aqueous sodium chloride. J. Electrochem. Soc. 166(11), C3028–C3038 (2019). https://doi.org/10.1149/2.0051911jes
- S. Anwar, F. Khan, S. Caines, R. Abbassi, Y. Zhang, Influence of chloride and pH on the pitting mechanism of Zn-Ni alloy coating in sodium chloride solutions. Can. J. Chem. Eng. 99(3), 680–694 (2021). https://doi.org/10.1002/cjce.23920
- H. Tang, N. Hu, L. Ma, H. Weng, D. Huang et al., Interfacial dual-modulation via cationic electrostatic shielding and anionic preferential adsorption toward planar and reversible zinc electrodeposition. Adv. Funct. Mater. 34(38), 2402484 (2024). https://doi.org/10.1002/adfm.202402484
- J. Wan, R. Wang, Z. Liu, L. Zhang, F. Liang et al., A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries. ACS Nano 17(2), 1610 (2023). https://doi.org/10.1021/acsnano.2c11357
- C. Yuan, J. Xiao, C. Liu, X. Zhan, Elucidating synergistic mechanisms of an anion–cation electrolyte additive for ultra-stable zinc metal anodes. J. Mater. Chem. A 12(30), 19060–19068 (2024). https://doi.org/10.1039/d4ta03414g
- X. Yang, Y. Zhao, S. Lv, L. Zhong, C. Yue et al., Anion-promoted CB[6] macromolecule dissolution for stable Zn-ion batteries. Energy Environ. Sci. 17(13), 4758–4769 (2024). https://doi.org/10.1039/d4ee01225a
- J. Xiao, C. Yuan, C. Liu, X. Sun, B. Cheng et al., A medicine-inspired hydroxyl-rich equimolar ZnSO4/d-mannitol electrolyte enables horizontally stacked Zn deposition for long-cycling aqueous batteries. RSC Appl. Interfaces 2(1), 61–68 (2025). https://doi.org/10.1039/D4LF00328D
- W. Du, X. Jiang, S. Li, P. Cao, L. Li et al., Maltodextrin as a commercial-grade electrolyte additive against dendrite formation and side reactions for aqueous zinc-ion batteries. Small Methods 8(12), e2400249 (2024). https://doi.org/10.1002/smtd.202400249
- Y. Ma, Q. Ma, Y. Liu, Y. Tan, Y. Zhang et al., Multiphilic-Zn group “adhesion” strategy toward highly stable and reversible zinc anodes. Energy Storage Mater. 63, 103032 (2023). https://doi.org/10.1016/j.ensm.2023.103032
- T. Li, S. Hu, C. Wang, D. Wang, M. Xu et al., Engineering fluorine-rich double protective layer on Zn anode for highly reversible aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62(51), e202314883 (2023). https://doi.org/10.1002/anie.202314883
- P. Wang, H. Zhou, Y. Zhong, X. Sui, G. Sun et al., Dendrite-free Zn metal anodes with boosted stability achieved by four-in-one functional additive in aqueous rechargeable zinc batteries. Adv. Energy Mater. 14(33), 2401540 (2024). https://doi.org/10.1002/aenm.202401540
- C. Yuan, L. Yin, P. Du, Y. Yu, K. Zhang et al., Microgroove-patterned Zn metal anode enables ultra-stable and low-overpotential Zn deposition for long-cycling aqueous batteries. Chem. Eng. J. 442, 136231 (2022). https://doi.org/10.1016/j.cej.2022.136231
- B. Xie, Q. Hu, X. Liao, X. Zhang, H. Lang et al., Multifunctional electrolyte toward long-life zinc-ion batteries: synchronous regulation of solvation, cathode and anode interfaces. Adv. Funct. Mater. 34(6), 2311961 (2024). https://doi.org/10.1002/adfm.202311961
References
N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng et al., Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 49(13), 4203–4219 (2020). https://doi.org/10.1039/c9cs00349e
Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin et al., Rechargeable batteries for grid scale energy storage. Chem. Rev. 122(22), 16610–16751 (2022). https://doi.org/10.1021/acs.chemrev.2c00289
L. Tang, H. Peng, J. Kang, H. Chen, M. Zhang et al., Zn-based batteries for sustainable energy storage: strategies and mechanisms. Chem. Soc. Rev. 53(10), 4877–4925 (2024). https://doi.org/10.1039/D3CS00295K
S. Liu, R. Zhang, C. Wang, J. Mao, D. Chao et al., Zinc ion batteries: bridging the gap from academia to industry for grid-scale energy storage. Angew. Chem. Int. Ed. 63(17), e202400045 (2024). https://doi.org/10.1002/anie.202400045
G. Zampardi, F.L. Mantia, Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat. Commun. 13(1), 687 (2022). https://doi.org/10.1038/s41467-022-28381-x
S.D. Pu, B. Hu, Z. Li, Y. Yuan, C. Gong et al., Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries. Joule 7(2), 366–379 (2023). https://doi.org/10.1016/j.joule.2023.01.010
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14(1), 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
Z. Wu, Y. Wang, C. Zhi, Zinc-anode reversibility and capacity inflection as an evaluation criterion. Joule 8(9), 2442–2448 (2024). https://doi.org/10.1016/j.joule.2024.07.023
H. Gan, H. Li, M. Xu, C. Han, H.-M. Cheng, Failure mechanisms and remedy of an ultrathin Zn metal anode in pouch cells. Joule 8(11), 3054–3071 (2024). https://doi.org/10.1016/j.joule.2024.07.013
Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo et al., Dendrites in Zn-based batteries. Adv. Mater. 32(48), 2001854 (2020). https://doi.org/10.1002/adma.202001854
H. Dai, T. Sun, J. Zhou, J. Wang, Z. Chen et al., Unraveling chemical origins of dendrite formation in zinc-ion batteries via in situ/operando X-ray spectroscopy and imaging. Nat. Commun. 15(1), 8577 (2024). https://doi.org/10.1038/s41467-024-52651-5
J. Wei, P. Zhang, J. Sun, Y. Liu, F. Li et al., Advanced electrolytes for high-performance aqueous zinc-ion batteries. Chem. Soc. Rev. 53(20), 10335–10369 (2024). https://doi.org/10.1039/d4cs00584h
Q. Deng, S. You, W. Min, Y. Xu, W. Lin et al., Polymer molecules adsorption-induced zincophilic-hydrophobic protective layer enables highly stable Zn metal anodes. Adv. Mater. 36(16), 2312924 (2024). https://doi.org/10.1002/adma.202312924
D. Xu, X. Ren, H. Li, Y. Zhou, S. Chai et al., Chelating additive regulating Zn-ion solvation chemistry for highly efficient aqueous zinc-metal battery. Angew. Chem. Int. Ed. 63(21), e202402833 (2024). https://doi.org/10.1002/anie.202402833
J. Zheng, L.A. Archer, Crystallographically textured electrodes for rechargeable batteries: symmetry, fabrication, and characterization. Chem. Rev. 122(18), 14440–14470 (2022). https://doi.org/10.1021/acs.chemrev.2c00022
J. Zhang, W. Huang, L. Li, C. Chang, K. Yang et al., Nonepitaxial electrodeposition of (002)-textured Zn anode on textureless substrates for dendrite-free and hydrogen evolution-suppressed Zn batteries. Adv. Mater. 35(21), e2300073 (2023). https://doi.org/10.1002/adma.202300073
X. Zhang, J. Li, Y. Liu, B. Lu, S. Liang et al., Single [0001]-oriented zinc metal anode enables sustainable zinc batteries. Nat. Commun. 15(1), 2735 (2024). https://doi.org/10.1038/s41467-024-47101-1
Y. Yang, L. Qin, Q. He, C. Yin, Y. Lei et al., Electrochemically and chemically in situ interfacial protection layers towards stable and reversible Zn anodes. Sci. Bull. 70(1), 104–124 (2025). https://doi.org/10.1016/j.scib.2024.10.025
H. Liu, Z. Xu, B. Cao, Z. Xin, H. Lai et al., Marangoni-driven self-assembly MXene as functional membrane enables dendrite-free and flexible zinc–iodine pouch cells. Adv. Energy Mater. 14(26), 2470109 (2024). https://doi.org/10.1002/aenm.202470109
J. Cao, H. Wu, D. Zhang, D. Luo, L. Zhang et al., In-situ ultrafast construction of zinc tungstate interface layer for highly reversible zinc anodes. Angew. Chem. Int. Ed. 63(29), e202319661 (2024). https://doi.org/10.1002/anie.202319661
Y. Zhu, G. Liang, X. Cui, X. Liu, H. Zhong et al., Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy Environ. Sci. 17(2), 369–385 (2024). https://doi.org/10.1039/d3ee03584k
G. Li, Z. Liu, Q. Huang, Y. Gao, M. Regula et al., Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy 3(12), 1076–1083 (2018). https://doi.org/10.1038/s41560-018-0276-z
X. Xu, S. Li, Z. Cao, S. Yang, B. Li, Boosting ion diffusion and charge transfer by zincophilic accordion arrays to achieve ultrafast aqueous zinc metal batteries. Adv. Energy Mater. 14(14), 2303971 (2024). https://doi.org/10.1002/aenm.202303971
B. Li, Y. Zeng, W. Zhang, B. Lu, Q. Yang et al., Separator designs for aqueous zinc-ion batteries. Sci. Bull. 69(5), 688–703 (2024). https://doi.org/10.1016/j.scib.2024.01.011
Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14(1), 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
L. Yang, Y.-J. Zhu, H.-P. Yu, Z.-Y. Wang, L. Cheng et al., A five micron thick aramid nanofiber separator enables highly reversible Zn anode for energy-dense aqueous zinc-ion batteries. Adv. Energy Mater. 14(39), 2401858 (2024). https://doi.org/10.1002/aenm.202401858
R. Sato, Crystal growth of electrodeposited zinc. J. Electrochem. Soc. 106(3), 206 (1959). https://doi.org/10.1149/1.2427309
X. Liu, Y. Guo, F. Ning, Y. Liu, S. Shi et al., Fundamental understanding of hydrogen evolution reaction on zinc anode surface: a first-principles study. Nano-Micro Lett. 16(1), 111 (2024). https://doi.org/10.1007/s40820-024-01337-0
L. Ren, Z. Hu, C. Peng, L. Zhang, N. Wang et al., Suppressing metal corrosion through identification of optimal crystallographic plane for Zn batteries. Proc. Natl. Acad. Sci. USA 121(5), e2309981121 (2024). https://doi.org/10.1073/pnas.2309981121
J. Zheng, Y. Deng, J. Yin, T. Tang, R. Garcia-Mendez et al., Textured electrodes: manipulating built-In crystallographic heterogeneity of metal electrodes via severe plastic deformation. Adv. Mater. 34(1), 2106867 (2022). https://doi.org/10.1002/adma.202106867
Z. Chen, Q. Wu, X. Han, C. Wang, J. Chen et al., Converting commercial Zn foils into single (002)-textured Zn with millimeter-sized grains for highly reversible aqueous zinc batteries. Angew. Chem. Int. Ed. 63(17), e202401507 (2024). https://doi.org/10.1002/anie.202401507
G. Ma, W. Yuan, X. Li, T. Bi, L. Niu et al., Organic cations texture zinc metal anodes for deep cycling aqueous zinc batteries. Adv. Mater. 36(35), 2408287 (2024). https://doi.org/10.1002/adma.202408287
H. Zhang, Y. Zhong, J. Li, Y. Liao, J. Zeng et al., Inducing the preferential growth of Zn (002) plane for long cycle aqueous Zn-ion batteries. Adv. Energy Mater. 13(1), 2203254 (2023). https://doi.org/10.1002/aenm.202203254
S. Zhou, X. Meng, Y. Chen, J. Li, S. Lin et al., Zinc-ion anchor induced highly reversible Zn anodes for high performance Zn-ion batteries. Angew. Chem. Int. Ed. 63(24), e202403050 (2024). https://doi.org/10.1002/anie.202403050
Y. Huang, Y. Zhuang, L. Guo, C. Lei, Y. Jiang et al., Stabilizing anode-electrolyte interface for dendrite-free Zn-ion batteries through orientational plating with zinc aspartate additive. Small 20(10), 2306211 (2024). https://doi.org/10.1002/smll.202306211
J. Hafner, Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29(13), 2044–2078 (2008). https://doi.org/10.1002/jcc.21057
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
J. Hsin, A. Arkhipov, Y. Yin, J.E. Stone, K. Schulten, Using VMD: an introductory tutorial. Curr. Protoc. Bioinform. 24(1), 5–7 (2008). https://doi.org/10.1002/0471250953.bi0507s24
G. Henkelman, A. Arnaldsson, H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36(3), 354–360 (2006). https://doi.org/10.1016/j.commatsci.2005.04.010
A. Boucher, G. Jones, A. Roldan, Toward a new definition of surface energy for late transition metals. Phys. Chem. Chem. Phys. 25(3), 1977–1986 (2023). https://doi.org/10.1039/d2cp04024g
L.P. Bérubé, G. L’Espérance, A quantitative method of determining the degree of texture of zinc electrodeposits. J. Electrochem. Soc. 136(8), 2314–2315 (1989). https://doi.org/10.1149/1.2097318
Y. Lin, Z. Mai, H. Liang, Y. Li, G. Yang et al., Dendrite-free Zn anode enabled by anionic surfactant-induced horizontal growth for highly-stable aqueous Zn-ion pouch cells. Energy Environ. Sci. 16(2), 687–697 (2023). https://doi.org/10.1039/D2EE03528F
Y. Lin, Y. Li, Z. Mai, G. Yang, C. Wang, Interfacial regulation via anionic surfactant electrolyte additive promotes stable (002)-textured zinc anodes at high depth of discharge. Adv. Energy Mater. 13(38), 2301999 (2023). https://doi.org/10.1002/aenm.202301999
X. Yun, Y. Chen, H. Gao, D. Lu, L. Zuo et al., Regulation of dipolar-dipolar and ion-dipolar interactions simultaneously in strong solvating electrolytes for all-temperature zinc-ion batteries. Adv. Energy Mater. 14(25), 2470102 (2024). https://doi.org/10.1002/aenm.202470102
C. Meng, W. He, L. Jiang, Y. Huang, J. Zhang et al., Ultra-stable aqueous zinc batteries enabled by β-cyclodextrin: preferred zinc deposition and suppressed parasitic reactions. Adv. Funct. Mater. 32(47), 2207732 (2022). https://doi.org/10.1002/adfm.202207732
Y. Yu, Q. Zhang, P. Zhang, X. Jia, H. Song et al., Massively reconstructing hydrogen bonding network and coordination structure enabled by a natural multifunctional co-solvent for practical aqueous Zn-ion batteries. Adv. Sci. 11(22), 2400336 (2024). https://doi.org/10.1002/advs.202400336
C. Li, X. Zhang, G. Qu, S. Zhao, H. Qin et al., Highly reversible Zn metal anode securing by functional electrolyte modulation. Adv. Energy Mater. 14(34), 2400872 (2024). https://doi.org/10.1002/aenm.202400872
K. Guan, L. Tao, R. Yang, H. Zhang, N. Wang et al., Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries. Adv. Energy Mater. 12(9), 2103557 (2022). https://doi.org/10.1002/aenm.202103557
D. Kundu, S. Hosseini Vajargah, L. Wan, B. Adams, D. Prendergast et al., Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11(4), 881–892 (2018). https://doi.org/10.1039/C8EE00378E
X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/C9EE03545A
N. Wint, K. Khan, J.H. Sullivan, H.N. McMurray, Concentration effects on the spatial interaction of corrosion pits occurring on zinc in dilute aqueous sodium chloride. J. Electrochem. Soc. 166(11), C3028–C3038 (2019). https://doi.org/10.1149/2.0051911jes
S. Anwar, F. Khan, S. Caines, R. Abbassi, Y. Zhang, Influence of chloride and pH on the pitting mechanism of Zn-Ni alloy coating in sodium chloride solutions. Can. J. Chem. Eng. 99(3), 680–694 (2021). https://doi.org/10.1002/cjce.23920
H. Tang, N. Hu, L. Ma, H. Weng, D. Huang et al., Interfacial dual-modulation via cationic electrostatic shielding and anionic preferential adsorption toward planar and reversible zinc electrodeposition. Adv. Funct. Mater. 34(38), 2402484 (2024). https://doi.org/10.1002/adfm.202402484
J. Wan, R. Wang, Z. Liu, L. Zhang, F. Liang et al., A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries. ACS Nano 17(2), 1610 (2023). https://doi.org/10.1021/acsnano.2c11357
C. Yuan, J. Xiao, C. Liu, X. Zhan, Elucidating synergistic mechanisms of an anion–cation electrolyte additive for ultra-stable zinc metal anodes. J. Mater. Chem. A 12(30), 19060–19068 (2024). https://doi.org/10.1039/d4ta03414g
X. Yang, Y. Zhao, S. Lv, L. Zhong, C. Yue et al., Anion-promoted CB[6] macromolecule dissolution for stable Zn-ion batteries. Energy Environ. Sci. 17(13), 4758–4769 (2024). https://doi.org/10.1039/d4ee01225a
J. Xiao, C. Yuan, C. Liu, X. Sun, B. Cheng et al., A medicine-inspired hydroxyl-rich equimolar ZnSO4/d-mannitol electrolyte enables horizontally stacked Zn deposition for long-cycling aqueous batteries. RSC Appl. Interfaces 2(1), 61–68 (2025). https://doi.org/10.1039/D4LF00328D
W. Du, X. Jiang, S. Li, P. Cao, L. Li et al., Maltodextrin as a commercial-grade electrolyte additive against dendrite formation and side reactions for aqueous zinc-ion batteries. Small Methods 8(12), e2400249 (2024). https://doi.org/10.1002/smtd.202400249
Y. Ma, Q. Ma, Y. Liu, Y. Tan, Y. Zhang et al., Multiphilic-Zn group “adhesion” strategy toward highly stable and reversible zinc anodes. Energy Storage Mater. 63, 103032 (2023). https://doi.org/10.1016/j.ensm.2023.103032
T. Li, S. Hu, C. Wang, D. Wang, M. Xu et al., Engineering fluorine-rich double protective layer on Zn anode for highly reversible aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62(51), e202314883 (2023). https://doi.org/10.1002/anie.202314883
P. Wang, H. Zhou, Y. Zhong, X. Sui, G. Sun et al., Dendrite-free Zn metal anodes with boosted stability achieved by four-in-one functional additive in aqueous rechargeable zinc batteries. Adv. Energy Mater. 14(33), 2401540 (2024). https://doi.org/10.1002/aenm.202401540
C. Yuan, L. Yin, P. Du, Y. Yu, K. Zhang et al., Microgroove-patterned Zn metal anode enables ultra-stable and low-overpotential Zn deposition for long-cycling aqueous batteries. Chem. Eng. J. 442, 136231 (2022). https://doi.org/10.1016/j.cej.2022.136231
B. Xie, Q. Hu, X. Liao, X. Zhang, H. Lang et al., Multifunctional electrolyte toward long-life zinc-ion batteries: synchronous regulation of solvation, cathode and anode interfaces. Adv. Funct. Mater. 34(6), 2311961 (2024). https://doi.org/10.1002/adfm.202311961