Enhancement of Li+ Transport Through Intermediate Phase in High-Content Inorganic Composite Quasi-Solid-State Electrolytes
Corresponding Author: Aishui Yu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 288
Abstract
Quasi-solid-state electrolytes, which integrate the safety characteristics of inorganic materials, the flexibility of polymers, and the high ionic conductivity of liquid electrolytes, represent a transitional solution for high-energy-density lithium batteries. However, the mechanisms by which inorganic fillers enhance multiphase interfacial conduction remain inadequately understood. In this work, we synthesized composite quasi-solid-state electrolytes with high inorganic content to investigate interfacial phenomena and achieve enhanced electrode interface stability. Li1.3Al0.3Ti1.7(PO4)3 particles, through surface anion anchoring, improve Li+ transference numbers and facilitate partial dissociation of solvated Li+ structures, resulting in superior ion transport kinetics that achieve an ionic conductivity of 0.51 mS cm−1 at room temperature. The high mass fraction of inorganic components additionally promotes the formation of more stable interfacial layers, enabling lithium-symmetric cells to operate without short-circuiting for 6000 h at 0.1 mA cm−2. Furthermore, this system demonstrates exceptional stability in 5 V-class lithium metal full cells, maintaining 80.5% capacity retention over 200 cycles at 0.5C. These findings guide the role of inorganic interfaces in composite electrolytes and demonstrate their potential for advancing high-voltage lithium battery technology.
Highlights:
1 A high-proportion inorganic composite quasi-solid-state electrolyte was fabricated through the integration of high-speed defoamed mixers with in situ polymerization methodology.
2 The intermediate phase, which exhibits an affinity for anion adsorption, facilitates the partial dissociation of lithium-ion solvation structures, thereby enhancing transport kinetics.
3 The exceptional interfacial stability was demonstrated through a lithium-symmetric cell operating without short-circuiting for 6000 h, while the 5 V-class lithium metal cell maintained 80.5% capacity retention after 200 cycles in 0.5C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Wan, J. Xu, C. Wang, Designing electrolytes and interphases for high-energy lithium batteries. Nat. Rev. Chem. 8(1), 30–44 (2024). https://doi.org/10.1038/s41570-023-00557-z
- S. Huang, K. Long, Y. Chen, T. Naren, P. Qing et al., In situ formed tribofilms as efficient organic/inorganic hybrid interlayers for stabilizing lithium metal anodes. Nano-Micro Lett. 15(1), 235 (2023). https://doi.org/10.1007/s40820-023-01210-6
- M. Wu, M. Li, Y. Jin, X. Chang, X. Zhao et al., In situ formed LiF-Li3N interface layer enables ultra-stable sulfide electrolyte-based all-solid-state lithium batteries. J. Energy Chem. 79, 272–278 (2023). https://doi.org/10.1016/j.jechem.2023.01.007
- S. Hess, M. Wohlfahrt-Mehrens, M. Wachtler, Flammability of Li-ion battery electrolytes: flash point and self-extinguishing time measurements. J. Electrochem. Soc. 162(2), A3084–A3097 (2015). https://doi.org/10.1149/2.0121502jes
- P. Jaumaux, J. Wu, D. Shanmukaraj, Y. Wang, D. Zhou et al., Non-flammable liquid and quasi-solid electrolytes toward highly-safe alkali metal-based batteries. Adv. Funct. Mater. 31(10), 2008644 (2021). https://doi.org/10.1002/adfm.202008644
- J. Guo, Y. Chen, Y. Xiao, C. Xi, G. Xu et al., Flame-retardant composite gel polymer electrolyte with a dual acceleration conduction mechanism for lithium ion batteries. Chem. Eng. J. 422, 130526 (2021). https://doi.org/10.1016/j.cej.2021.130526
- S.H. Cheng, C. Liu, F. Zhu, L. Zhao, R. Fan et al., (Oxalato)borate: The key ingredient for polyethylene oxide based composite electrolyte to achieve ultra-stable performance of high voltage solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal battery. Nano Energy 80, 105562 (2021). https://doi.org/10.1016/j.nanoen.2020.105562
- E.E. Ushakova, A.V. Sergeev, A. Morzhukhin, F.S. Napolskiy, O. Kristavchuk et al., Free-standing Li+-conductive films based on PEO–PVDF blends. RSC Adv. 10(27), 16118–16124 (2020). https://doi.org/10.1039/D0RA02325F
- J. Zhu, J. Zhao, Y. Xiang, M. Lin, H. Wang et al., Chemomechanical failure mechanism study in NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid-state lithium batteries. Chem. Mater. 32(12), 4998–5008 (2020). https://doi.org/10.1021/acs.chemmater.9b05295
- B. Liu, Y. Gong, K. Fu, X. Han, Y. Yao et al., Garnet solid electrolyte protected Li-metal batteries. ACS Appl. Mater. Interfaces 9(22), 18809–18815 (2017). https://doi.org/10.1021/acsami.7b03887
- M. Zheng, X. Li, J. Sun, X. Wang, G. Liu et al., Research progress on chloride solid electrolytes for all-solid-state batteries. J. Power. Sour. 595, 234051 (2024). https://doi.org/10.1016/j.jpowsour.2024.234051
- S. Zhang, Y. Xu, H. Wu, T. Pang, N. Zhang et al., A universal self-propagating synthesis of aluminum-based oxyhalide solid-state electrolytes. Angew. Chem. Int. Ed. 63(27), e202401373 (2024). https://doi.org/10.1002/anie.202401373
- Y. Li, S. Song, H. Kim, K. Nomoto, H. Kim et al., A lithium superionic conductor for millimeter-thick battery electrode. Science 381(6653), 50–53 (2023). https://doi.org/10.1126/science.add7138
- Y. Li, S. Daikuhara, S. Hori, X. Sun, K. Suzuki et al., Oxygen substitution for Li–Si–P–S–Cl solid electrolytes toward purified Li10GeP2S12-type phase with enhanced electrochemical stabilities for all-solid-state batteries. Chem. Mater. 32(20), 8860–8867 (2020). https://doi.org/10.1021/acs.chemmater.0c02351
- J. Yang, Z. Cao, Y. Chen, X. Liu, Y. Xiang et al., Dry-processable polymer electrolytes for solid manufactured batteries. ACS Nano 17(20), 19903–19913 (2023). https://doi.org/10.1021/acsnano.3c04610
- A.R. Symington, M. Molinari, J.A. Dawson, J.M. Statham, J. Purton et al., Elucidating the nature of grain boundary resistance in lithium lanthanum titanate. J. Mater. Chem. A 9(10), 6487–6498 (2021). https://doi.org/10.1039/D0TA11539H
- Y. Ye, J. Geng, D. Zuo, K. Niu, D. Chen et al., High-voltage long-cycling all-solid-state lithium batteries with high-valent-element-doped halide electrolytes. ACS Nano 18(28), 18368–18378 (2024). https://doi.org/10.1021/acsnano.4c02678
- G. Xu, L. Luo, J. Liang, S. Zhao, R. Yang et al., Origin of high electrochemical stability of multi-metal chloride solid electrolytes for high energy all-solid-state lithium-ion batteries. Nano Energy 92, 106674 (2022). https://doi.org/10.1016/j.nanoen.2021.106674
- T. Chen, D. Zeng, L. Zhang, M. Yang, D. Song et al., Sn-O dual-doped Li-argyrodite electrolytes with enhanced electrochemical performance. J. Energy Chem. 59, 530–537 (2021). https://doi.org/10.1016/j.jechem.2020.11.031
- Z. Zhang, W. Jia, Y. Feng, R. Ai, J. Yu et al., An ultraconformal chemo-mechanical stable cathode interface for high-performance all-solid-state batteries at wide temperatures. Energy Environ. Sci. 16(10), 4453–4463 (2023). https://doi.org/10.1039/D3EE01551C
- M. Ghafari, Z. Sanaee, A. Babaei, S. Mohajerzadeh, Realization of high-performance room temperature solid state Li-metal batteries using a LiF/PVDF-HFP composite membrane for protecting an LATP ceramic electrolyte. J. Mater. Chem. A 11(14), 7605–7616 (2023). https://doi.org/10.1039/D3TA00331K
- N. Boaretto, P. Ghorbanzade, H. Perez-Furundarena, L. Meabe, J.M. López Del Amo et al., Transport properties and local ions dynamics in LATP-based hybrid solid electrolytes. Small 20(10), e2305769 (2024). https://doi.org/10.1002/smll.202305769
- K. Zhang, F. Wu, X. Wang, S. Weng, X. Yang et al., 85 µm-thick flexible-rigid hybrid solid–electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries (adv. energy mater. 24/2022). Adv. Energy Mater. 12(24), 2270100 (2022). https://doi.org/10.1002/aenm.202270100
- X. Yu, Y. Liu, J.B. Goodenough, A. Manthiram, Rationally designed PEGDA–LLZTO composite electrolyte for solid-state lithium batteries. ACS Appl. Mater. Interfaces 13(26), 30703–30711 (2021). https://doi.org/10.1021/acsami.1c07547
- J. Park, Y. Shim, J.H. Chang, S.-H. Kim, Y. Kang et al., Rational design of hybrid electrolyte for all-solid-state lithium battery based on investigation of lithium-ion transport mechanism. Chem. Eng. J. 496, 153847 (2024). https://doi.org/10.1016/j.cej.2024.153847
- M.R. Bonilla, F.A. García, H.A. Daza, J.C. Cortés, E. Akhmatskaya, On the interfacial lithium dynamics in Li7La3Zr2O12: poly(ethylene oxide) (LiTFSI) composite polymer-ceramic solid electrolytes under strong polymer phase confinement. J. Colloid Interface Sci. 623, 870–882 (2022). https://doi.org/10.1016/j.jcis.2022.05.069
- C. Tian, J. Tang, L. Wang, R. Huang, C. Ai et al., Effect of residual solvents on properties of composite solid electrolytes. ACS Sustainable Chem. Eng. 11(27), 10164–10171 (2023). https://doi.org/10.1021/acssuschemeng.3c02345
- C. Liu, R.L. Sacci, R. Sahore, G.M. Veith, N.J. Dudney et al., Polyacrylonitrile-based electrolytes: How processing and residual solvent affect ion transport and stability. J. Power. Sources 527, 231165 (2022). https://doi.org/10.1016/j.jpowsour.2022.231165
- X. Huang, J. Wu, X. Wang, Y. Tian, F. Zhang et al., In situ synthesis of a Li6.4La3Zr1.4Ta0.6O12/poly(vinylene carbonate) hybrid solid-state electrolyte with enhanced ionic conductivity and stability. ACS Appl. Energy Mater. 4(9), 9368–9375 (2021). https://doi.org/10.1021/acsaem.1c01570
- R.-A. Tong, Y. Huang, C. Feng, Y. Dong, C.-A. Wang, In-situ polymerization confined PEGDME-based composite quasi-solid-state electrolytes for lithium metal batteries. Adv. Funct. Mater. 34(30), 2315777 (2024). https://doi.org/10.1002/adfm.202315777
- K. Luo, L. Yi, X. Chen, L. Yang, C. Zou et al., PVDF-HFP-modified gel polymer electrolyte for the stable cycling lithium metal batteries. J. Electroanal. Chem. 895, 115462 (2021). https://doi.org/10.1016/j.jelechem.2021.115462
- D. Cai, X. Wu, J. Xiang, M. Li, H. Su et al., Ionic-liquid-containing polymer interlayer modified PEO-based electrolyte for stable high-voltage solid-state lithium metal battery. Chem. Eng. J. 424, 130522 (2021). https://doi.org/10.1016/j.cej.2021.130522
- Y. Liu, B. Xu, W. Zhang, L. Li, Y. Lin et al., Composition modulation and structure design of inorganic-in-polymer composite solid electrolytes for advanced lithium batteries. Small 16(15), 1902813 (2020). https://doi.org/10.1002/smll.201902813
- T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim. Acta 184, 483–499 (2015). https://doi.org/10.1016/j.electacta.2015.09.097
- Q. Lin, D. Kundu, M. Skyllas-Kazacos, J. Lu, D. Zhao et al., Perspective on lewis acid-base interactions in emerging batteries. Adv. Mater. 36(42), e2406151 (2024). https://doi.org/10.1002/adma.202406151
- Z. Zhang, J. Wang, H. Qin, B. Zhang, H. Lin et al., Constructing an anion-braking separator to regulate local Li+ solvation structure for stabilizing lithium metal batteries. ACS Nano 18(3), 2250–2260 (2024). https://doi.org/10.1021/acsnano.3c09849
- T.Y. Yun, B.D. Chandler, Surface hydroxyl chemistry of titania- and alumina-based supports: quantitative titration and temperature dependence of surface Brønsted acid–base parameters. ACS Appl. Mater. Interfaces 15(5), 6868–6876 (2023). https://doi.org/10.1021/acsami.2c20370
- F. Liu, J. Wang, W. Chen, M. Yuan, Q. Wang et al., Polymer-ion interaction prompted quasi-solid electrolyte for room-temperature high-performance lithium-ion batteries. Adv. Mater. 36(45), 2409838 (2024). https://doi.org/10.1002/adma.202409838
- L. Zhu, J. Chen, Y. Wang, W. Feng, Y. Zhu et al., Tunneling interpenetrative lithium ion conduction channels in polymer-in-ceramic composite solid electrolytes. J. Am. Chem. Soc. 146(10), 6591–6603 (2024). https://doi.org/10.1021/jacs.3c11988
- J. Zheng, H. Dang, X. Feng, P.-H. Chien, Y.-Y. Hu, Li-ion transport in a representative ceramic–polymer–plasticizer composite electrolyte: Li7La3Zr2O12–polyethylene oxide–tetraethylene glycol dimethyl ether. J. Mater. Chem. A 5(35), 18457–18463 (2017). https://doi.org/10.1039/C7TA05832B
- C. Luo, M. Yi, L. Xu et al., Low-temperature sintering high-density NASICON-type solid electrolytes boosting the performance of solid–liquid electrolyte interphases. ACS Appl. Energy Mater. 8(5), 2869–2880 (2025). https://doi.org/10.1021/acsaem.4c02952
References
H. Wan, J. Xu, C. Wang, Designing electrolytes and interphases for high-energy lithium batteries. Nat. Rev. Chem. 8(1), 30–44 (2024). https://doi.org/10.1038/s41570-023-00557-z
S. Huang, K. Long, Y. Chen, T. Naren, P. Qing et al., In situ formed tribofilms as efficient organic/inorganic hybrid interlayers for stabilizing lithium metal anodes. Nano-Micro Lett. 15(1), 235 (2023). https://doi.org/10.1007/s40820-023-01210-6
M. Wu, M. Li, Y. Jin, X. Chang, X. Zhao et al., In situ formed LiF-Li3N interface layer enables ultra-stable sulfide electrolyte-based all-solid-state lithium batteries. J. Energy Chem. 79, 272–278 (2023). https://doi.org/10.1016/j.jechem.2023.01.007
S. Hess, M. Wohlfahrt-Mehrens, M. Wachtler, Flammability of Li-ion battery electrolytes: flash point and self-extinguishing time measurements. J. Electrochem. Soc. 162(2), A3084–A3097 (2015). https://doi.org/10.1149/2.0121502jes
P. Jaumaux, J. Wu, D. Shanmukaraj, Y. Wang, D. Zhou et al., Non-flammable liquid and quasi-solid electrolytes toward highly-safe alkali metal-based batteries. Adv. Funct. Mater. 31(10), 2008644 (2021). https://doi.org/10.1002/adfm.202008644
J. Guo, Y. Chen, Y. Xiao, C. Xi, G. Xu et al., Flame-retardant composite gel polymer electrolyte with a dual acceleration conduction mechanism for lithium ion batteries. Chem. Eng. J. 422, 130526 (2021). https://doi.org/10.1016/j.cej.2021.130526
S.H. Cheng, C. Liu, F. Zhu, L. Zhao, R. Fan et al., (Oxalato)borate: The key ingredient for polyethylene oxide based composite electrolyte to achieve ultra-stable performance of high voltage solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal battery. Nano Energy 80, 105562 (2021). https://doi.org/10.1016/j.nanoen.2020.105562
E.E. Ushakova, A.V. Sergeev, A. Morzhukhin, F.S. Napolskiy, O. Kristavchuk et al., Free-standing Li+-conductive films based on PEO–PVDF blends. RSC Adv. 10(27), 16118–16124 (2020). https://doi.org/10.1039/D0RA02325F
J. Zhu, J. Zhao, Y. Xiang, M. Lin, H. Wang et al., Chemomechanical failure mechanism study in NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid-state lithium batteries. Chem. Mater. 32(12), 4998–5008 (2020). https://doi.org/10.1021/acs.chemmater.9b05295
B. Liu, Y. Gong, K. Fu, X. Han, Y. Yao et al., Garnet solid electrolyte protected Li-metal batteries. ACS Appl. Mater. Interfaces 9(22), 18809–18815 (2017). https://doi.org/10.1021/acsami.7b03887
M. Zheng, X. Li, J. Sun, X. Wang, G. Liu et al., Research progress on chloride solid electrolytes for all-solid-state batteries. J. Power. Sour. 595, 234051 (2024). https://doi.org/10.1016/j.jpowsour.2024.234051
S. Zhang, Y. Xu, H. Wu, T. Pang, N. Zhang et al., A universal self-propagating synthesis of aluminum-based oxyhalide solid-state electrolytes. Angew. Chem. Int. Ed. 63(27), e202401373 (2024). https://doi.org/10.1002/anie.202401373
Y. Li, S. Song, H. Kim, K. Nomoto, H. Kim et al., A lithium superionic conductor for millimeter-thick battery electrode. Science 381(6653), 50–53 (2023). https://doi.org/10.1126/science.add7138
Y. Li, S. Daikuhara, S. Hori, X. Sun, K. Suzuki et al., Oxygen substitution for Li–Si–P–S–Cl solid electrolytes toward purified Li10GeP2S12-type phase with enhanced electrochemical stabilities for all-solid-state batteries. Chem. Mater. 32(20), 8860–8867 (2020). https://doi.org/10.1021/acs.chemmater.0c02351
J. Yang, Z. Cao, Y. Chen, X. Liu, Y. Xiang et al., Dry-processable polymer electrolytes for solid manufactured batteries. ACS Nano 17(20), 19903–19913 (2023). https://doi.org/10.1021/acsnano.3c04610
A.R. Symington, M. Molinari, J.A. Dawson, J.M. Statham, J. Purton et al., Elucidating the nature of grain boundary resistance in lithium lanthanum titanate. J. Mater. Chem. A 9(10), 6487–6498 (2021). https://doi.org/10.1039/D0TA11539H
Y. Ye, J. Geng, D. Zuo, K. Niu, D. Chen et al., High-voltage long-cycling all-solid-state lithium batteries with high-valent-element-doped halide electrolytes. ACS Nano 18(28), 18368–18378 (2024). https://doi.org/10.1021/acsnano.4c02678
G. Xu, L. Luo, J. Liang, S. Zhao, R. Yang et al., Origin of high electrochemical stability of multi-metal chloride solid electrolytes for high energy all-solid-state lithium-ion batteries. Nano Energy 92, 106674 (2022). https://doi.org/10.1016/j.nanoen.2021.106674
T. Chen, D. Zeng, L. Zhang, M. Yang, D. Song et al., Sn-O dual-doped Li-argyrodite electrolytes with enhanced electrochemical performance. J. Energy Chem. 59, 530–537 (2021). https://doi.org/10.1016/j.jechem.2020.11.031
Z. Zhang, W. Jia, Y. Feng, R. Ai, J. Yu et al., An ultraconformal chemo-mechanical stable cathode interface for high-performance all-solid-state batteries at wide temperatures. Energy Environ. Sci. 16(10), 4453–4463 (2023). https://doi.org/10.1039/D3EE01551C
M. Ghafari, Z. Sanaee, A. Babaei, S. Mohajerzadeh, Realization of high-performance room temperature solid state Li-metal batteries using a LiF/PVDF-HFP composite membrane for protecting an LATP ceramic electrolyte. J. Mater. Chem. A 11(14), 7605–7616 (2023). https://doi.org/10.1039/D3TA00331K
N. Boaretto, P. Ghorbanzade, H. Perez-Furundarena, L. Meabe, J.M. López Del Amo et al., Transport properties and local ions dynamics in LATP-based hybrid solid electrolytes. Small 20(10), e2305769 (2024). https://doi.org/10.1002/smll.202305769
K. Zhang, F. Wu, X. Wang, S. Weng, X. Yang et al., 85 µm-thick flexible-rigid hybrid solid–electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries (adv. energy mater. 24/2022). Adv. Energy Mater. 12(24), 2270100 (2022). https://doi.org/10.1002/aenm.202270100
X. Yu, Y. Liu, J.B. Goodenough, A. Manthiram, Rationally designed PEGDA–LLZTO composite electrolyte for solid-state lithium batteries. ACS Appl. Mater. Interfaces 13(26), 30703–30711 (2021). https://doi.org/10.1021/acsami.1c07547
J. Park, Y. Shim, J.H. Chang, S.-H. Kim, Y. Kang et al., Rational design of hybrid electrolyte for all-solid-state lithium battery based on investigation of lithium-ion transport mechanism. Chem. Eng. J. 496, 153847 (2024). https://doi.org/10.1016/j.cej.2024.153847
M.R. Bonilla, F.A. García, H.A. Daza, J.C. Cortés, E. Akhmatskaya, On the interfacial lithium dynamics in Li7La3Zr2O12: poly(ethylene oxide) (LiTFSI) composite polymer-ceramic solid electrolytes under strong polymer phase confinement. J. Colloid Interface Sci. 623, 870–882 (2022). https://doi.org/10.1016/j.jcis.2022.05.069
C. Tian, J. Tang, L. Wang, R. Huang, C. Ai et al., Effect of residual solvents on properties of composite solid electrolytes. ACS Sustainable Chem. Eng. 11(27), 10164–10171 (2023). https://doi.org/10.1021/acssuschemeng.3c02345
C. Liu, R.L. Sacci, R. Sahore, G.M. Veith, N.J. Dudney et al., Polyacrylonitrile-based electrolytes: How processing and residual solvent affect ion transport and stability. J. Power. Sources 527, 231165 (2022). https://doi.org/10.1016/j.jpowsour.2022.231165
X. Huang, J. Wu, X. Wang, Y. Tian, F. Zhang et al., In situ synthesis of a Li6.4La3Zr1.4Ta0.6O12/poly(vinylene carbonate) hybrid solid-state electrolyte with enhanced ionic conductivity and stability. ACS Appl. Energy Mater. 4(9), 9368–9375 (2021). https://doi.org/10.1021/acsaem.1c01570
R.-A. Tong, Y. Huang, C. Feng, Y. Dong, C.-A. Wang, In-situ polymerization confined PEGDME-based composite quasi-solid-state electrolytes for lithium metal batteries. Adv. Funct. Mater. 34(30), 2315777 (2024). https://doi.org/10.1002/adfm.202315777
K. Luo, L. Yi, X. Chen, L. Yang, C. Zou et al., PVDF-HFP-modified gel polymer electrolyte for the stable cycling lithium metal batteries. J. Electroanal. Chem. 895, 115462 (2021). https://doi.org/10.1016/j.jelechem.2021.115462
D. Cai, X. Wu, J. Xiang, M. Li, H. Su et al., Ionic-liquid-containing polymer interlayer modified PEO-based electrolyte for stable high-voltage solid-state lithium metal battery. Chem. Eng. J. 424, 130522 (2021). https://doi.org/10.1016/j.cej.2021.130522
Y. Liu, B. Xu, W. Zhang, L. Li, Y. Lin et al., Composition modulation and structure design of inorganic-in-polymer composite solid electrolytes for advanced lithium batteries. Small 16(15), 1902813 (2020). https://doi.org/10.1002/smll.201902813
T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim. Acta 184, 483–499 (2015). https://doi.org/10.1016/j.electacta.2015.09.097
Q. Lin, D. Kundu, M. Skyllas-Kazacos, J. Lu, D. Zhao et al., Perspective on lewis acid-base interactions in emerging batteries. Adv. Mater. 36(42), e2406151 (2024). https://doi.org/10.1002/adma.202406151
Z. Zhang, J. Wang, H. Qin, B. Zhang, H. Lin et al., Constructing an anion-braking separator to regulate local Li+ solvation structure for stabilizing lithium metal batteries. ACS Nano 18(3), 2250–2260 (2024). https://doi.org/10.1021/acsnano.3c09849
T.Y. Yun, B.D. Chandler, Surface hydroxyl chemistry of titania- and alumina-based supports: quantitative titration and temperature dependence of surface Brønsted acid–base parameters. ACS Appl. Mater. Interfaces 15(5), 6868–6876 (2023). https://doi.org/10.1021/acsami.2c20370
F. Liu, J. Wang, W. Chen, M. Yuan, Q. Wang et al., Polymer-ion interaction prompted quasi-solid electrolyte for room-temperature high-performance lithium-ion batteries. Adv. Mater. 36(45), 2409838 (2024). https://doi.org/10.1002/adma.202409838
L. Zhu, J. Chen, Y. Wang, W. Feng, Y. Zhu et al., Tunneling interpenetrative lithium ion conduction channels in polymer-in-ceramic composite solid electrolytes. J. Am. Chem. Soc. 146(10), 6591–6603 (2024). https://doi.org/10.1021/jacs.3c11988
J. Zheng, H. Dang, X. Feng, P.-H. Chien, Y.-Y. Hu, Li-ion transport in a representative ceramic–polymer–plasticizer composite electrolyte: Li7La3Zr2O12–polyethylene oxide–tetraethylene glycol dimethyl ether. J. Mater. Chem. A 5(35), 18457–18463 (2017). https://doi.org/10.1039/C7TA05832B
C. Luo, M. Yi, L. Xu et al., Low-temperature sintering high-density NASICON-type solid electrolytes boosting the performance of solid–liquid electrolyte interphases. ACS Appl. Energy Mater. 8(5), 2869–2880 (2025). https://doi.org/10.1021/acsaem.4c02952