Regulating the Coordination Environment of H2O in Hydrogel Electrolyte for a High-Environment-Adaptable and High-Stability Flexible Zn Devices
Corresponding Author: Yajie Liu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 292
Abstract
Aqueous zinc-ion batteries are promising candidates as stationary storage systems for power-grid applications due to their high safety and low cost. The practical implementation of Zn-ion batteries currently still faces formidable challenges because of Zn dendrite growth, hydrogen evolution, and inadequate environmental adaptability. Herein, to address these challenges, a strategy of regulation of water molecules coordination in electrolyte is proposed via developing a cross-linked hydrophilic hydrogel polymer electrolyte. Within this system, the continuous hydrogen bond among H2O molecules is disrupted and the isolated H2O molecules are strongly bound with a polymeric matrix comprised of polyacrylamide, carboxymethyl cellulose, and ethylene glycol, which can restrain the activity of H2O molecules, thus effectively alleviating Zn dendrite growth and hydrogen evolution and enhancing the anti-freezing ability. With this electrolyte, the Zn||Cu cell presents a high coulombic efficiency of 99.4% over 900 cycles and Zn||Zn symmetric cell exhibits high cycling stability, maintaining plating/stripping for over 1,700 h. Moreover, the assembled Zn||PANI device also demonstrates outstanding electrochemical performance over a wide-temperature range, including a long cycling life over 14,120 cycles at room temperature and an ultralong cycling surpassing 30,000 cycles even at − 40 °C. This showcases the manipulation of water coordination chemistry for advanced, highly adaptable batteries.
Highlights:
1 A hydrogel electrolyte regulation strategy of the water coordination environment can effectively restrain the hydrogen evolution reaction, Zn corrosion and dendrite formation in the wide-temperature ranges.
2 Prepared high-environment-adaptable hydrogel electrolytes (HEA-3) exhibits a high reversibility of zinc deposition/stripping (coulombic efficiency of 99.4% for Zn||Cu cell).
3 Zn-based device using HEA-3 electrolyte can do cycling over 30,000 cycles at a large current density of 2 A g−1 at − 40 °C and also can do normal cycling even at -70 °C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.-K. Liu, C.-Z. Zhao, J. Du, X.-Q. Zhang, A.-B. Chen et al., Research progresses of liquid electrolytes in lithium-ion batteries. Small 19(8), e2205315 (2023). https://doi.org/10.1002/smll.202205315
- L. Jiang, Y. Ding, L. Li, Y. Tang, P. Zhou et al., Cationic adsorption-induced microlevelling effect: a pathway to dendrite-free zinc anodes. Nano-Micro Lett. 17(1), 202 (2025). https://doi.org/10.1007/s40820-025-01709-0
- C. Nie, G. Wang, D. Wang, M. Wang, X. Gao et al., Recent progress on Zn anodes for advanced aqueous zinc-ion batteries. Adv. Energy Mater. 13(28), 2300606 (2023). https://doi.org/10.1002/aenm.202300606
- K. Xie, K. Ren, Q. Wang, Y. Lin, F. Ma et al., In situ construction of zinc-rich polymeric solid–electrolyte interface for high-performance zinc anode. eScience 3(4), 100153 (2023). https://doi.org/10.1016/j.esci.2023.100153
- J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin et al., Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ. Sci. 15(2), 499–528 (2022). https://doi.org/10.1039/D1EE03377H
- D. Lin, Y. Lin, R. Pan, J. Li, A. Zhu et al., Water-restrained hydrogel electrolytes with repulsion-driven cationic express pathways for durable zinc-ion batteries. Nano-Micro Lett. 17(1), 193 (2025). https://doi.org/10.1007/s40820-025-01704-5
- Y. Zhang, S. Bi, Z. Niu, W. Zhou, S. Xie, Design of Zn anode protection materials for mild aqueous Zn-ion batteries. Energy Mater. 2(2), 200012 (2022). https://doi.org/10.20517/energymater.2022.08
- Y. Matsuki, M. Iwamoto, K. Mita, K. Shigemi, S. Matsunaga et al., Rectified proton grotthuss conduction across a long water-wire in the test nanotube of the polytheonamide B channel. J. Am. Chem. Soc. 138(12), 4168–4177 (2016). https://doi.org/10.1021/jacs.5b13377
- Z. Tian, J. Yin, T. Guo, Z. Zhao, Y. Zhu et al., A sustainable NH4+ ion battery by electrolyte engineering. Angew. Chem. Int. Ed. 61(51), e202213757 (2022). https://doi.org/10.1002/anie.202213757
- Y. Wang, T. Wang, D. Dong, J. Xie, Y. Guan et al., Enabling high-energy-density aqueous batteries with hydrogen bond-anchored electrolytes. Matter 5(1), 162–179 (2022). https://doi.org/10.1016/j.matt.2021.10.021
- L. Ma, S. Chen, N. Li, Z. Liu, Z. Tang et al., Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 32(14), e1908121 (2020). https://doi.org/10.1002/adma.201908121
- G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- X. Fan, L. Chen, Y. Wang, X. Xu, X. Jiao et al., Selection of negative charged acidic polar additives to regulate electric double layer for stable zinc ion battery. Nano-Micro Lett. 16(1), 270 (2024). https://doi.org/10.1007/s40820-024-01475-5
- L. Geng, J. Meng, X. Wang, W. Wu, K. Han et al., Organic-solvent-free primary solvation shell for low-temperature aqueous zinc batteries. Chem 11(2), 102302 (2025). https://doi.org/10.1016/j.chempr.2024.09.001
- M. Qiu, P. Sun, K. Han, Z. Pang, J. Du et al., Tailoring water structure with high-tetrahedral-entropy for antifreezing electrolytes and energy storage at − 80 °C. Nat. Commun. 14(1), 601 (2023). https://doi.org/10.1038/s41467-023-36198-5
- Q. Wang, Y. Liu, Z. Zhang, P. Cai, H. Li et al., Activating the intrinsic zincophilicity of PAM hydrogel to stabilize the metal-electrolyte dynamic interface for stable and long-life zinc metal batteries. Chemsuschem 17(18), e202400479 (2024). https://doi.org/10.1002/cssc.202400479
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
- J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field. J. Comput. Chem. 25(9), 1157–1174 (2004). https://doi.org/10.1002/jcc.20035
- A.W. Sousa da Silva, W.F. Vranken, ACPYPE - AnteChamber PYthon parser interface. BMC. Res. Notes 5, 367 (2012). https://doi.org/10.1186/1756-0500-5-367
- X. Zhang, L. Zhang, X. Jia, W. Song, Y. Liu, Design strategies for aqueous zinc metal batteries with high zinc utilization: from metal anodes to anode-free structures. Nano-Micro Lett. 16(1), 75 (2024). https://doi.org/10.1007/s40820-023-01304-1
- A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17(2), 1132–1139 (2017). https://doi.org/10.1021/acs.nanolett.6b04755
- Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
- R.M. Kumar, P. Baskar, K. Balamurugan, S. Das, V. Subramanian, On the perturbation of the H-bonding interaction in ethylene glycol clusters upon hydration. J. Phys. Chem. A 116(17), 4239–4247 (2012). https://doi.org/10.1021/jp300693r
- L.A. Taib, M. Keshavarz, A. Parhami, Solvent-free synthesis of compounds containing chromene core catalyzed by novel Brønsted acidic ionic liquids-ClO4. J. Chin. Chem. Soc. 68(6), 1128–1137 (2021). https://doi.org/10.1002/jccs.202000449
- N. Chang, T. Li, R. Li, S. Wang, Y. Yin et al., An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13(10), 3527–3535 (2020). https://doi.org/10.1039/d0ee01538e
- C.B. Godiya, X. Cheng, D. Li, Z. Chen, X. Lu, Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J. Hazard. Mater. 364, 28–38 (2019). https://doi.org/10.1016/j.jhazmat.2018.09.076
- Y. Mao, H. Ren, J. Zhang, T. Luo, N. Liu et al., Modifying hydrogel electrolyte to induce zinc deposition for dendrite-free zinc metal anode. Electrochim. Acta 393, 139094 (2021). https://doi.org/10.1016/j.electacta.2021.139094
- D. Jeong, C. Kim, Y. Kim, S. Jung, Dual crosslinked carboxymethyl cellulose/polyacrylamide interpenetrating hydrogels with highly enhanced mechanical strength and superabsorbent properties. Eur. Polym. J. 127, 109586 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109586
- S. Huang, L. Hou, T. Li, Y. Jiao, P. Wu, Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 34(14), 2110140 (2022). https://doi.org/10.1002/adma.202110140
- Y. Zhu, J. Yin, X. Zheng, A.-H. Emwas, Y. Lei et al., Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ. Sci. 14(8), 4463–4473 (2021). https://doi.org/10.1039/d1ee01472b
- Y. Sun, H. Ma, X. Zhang, B. Liu, L. Liu et al., Salty ice electrolyte with superior ionic conductivity towards low-temperature aqueous zinc ion hybrid capacitors. Adv. Funct. Mater. 31(28), 2101277 (2021). https://doi.org/10.1002/adfm.202101277
- Y. Peng, M. Pi, X. Zhang, B. Yan, Y. Li et al., High strength, antifreeze, and moisturizing conductive hydrogel for human-motion detection. Polymer 196, 122469 (2020). https://doi.org/10.1016/j.polymer.2020.122469
- D. Ma, X. Wu, Y. Wang, H. Liao, P. Wan et al., Wearable, antifreezing, and healable epidermal sensor assembled from long-lasting moist conductive nanocomposite organohydrogel. ACS Appl. Mater. Interfaces 11(44), 41701–41709 (2019). https://doi.org/10.1021/acsami.9b15412
- S. Huang, F. Wan, S. Bi, J. Zhu, Z. Niu et al., A self-healing integrated all-in-one zinc-ion battery. Angew. Chem. Int. Ed. 58(13), 4313–4317 (2019). https://doi.org/10.1002/anie.201814653
- M. Ravi, S. Song, J. Wang, R. Nadimicherla, Z. Zhang, Preparation and characterization of biodegradable poly(ε-caprolactone)-based gel polymer electrolyte films. Ionics 22(5), 661–670 (2016). https://doi.org/10.1007/s11581-015-1586-9
- L. Li, J. Wang, P. Yang, S. Guo, H. Wang et al., Preparation and characterization of gel polymer electrolytes containing N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide ionic liquid for lithium ion batteries. Electrochim. Acta 88, 147–156 (2013). https://doi.org/10.1016/j.electacta.2012.10.018
- X. Zhu, C. Ji, Q. Meng, H. Mi, Q. Yang et al., Freeze-tolerant hydrogel electrolyte with high strength for stable operation of flexible zinc-ion hybrid supercapacitors. Small 18(16), 2200055 (2022). https://doi.org/10.1002/smll.202200055
- K. Wu, J. Huang, J. Yi, X. Liu, Y. Liu et al., Recent advances in polymer electrolytes for zinc ion batteries: mechanisms, properties, and perspectives. Adv. Energy Mater. 10(12), 1903977 (2020). https://doi.org/10.1002/aenm.201903977
- X. Xu, Y. Xu, J. Zhang, Y. Zhong, Z. Li et al., Quasi-solid electrolyte interphase boosting charge and mass transfer for dendrite-free zinc battery. Nano-Micro Lett. 15(1), 56 (2023). https://doi.org/10.1007/s40820-023-01031-7
- L. Geng, J. Meng, X. Wang, C. Han, K. Han et al., Eutectic electrolyte with unique solvation structure for high-performance zinc-ion batteries. Angew. Chem. Int. Ed. 61(31), e202206717 (2022). https://doi.org/10.1002/anie.202206717
- W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4(7), 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
- G. Ma, L. Miao, W. Yuan, K. Qiu, M. Liu et al., Non-flammable, dilute, and Hydrous organic electrolytes for reversible Zn batteries. Chem. Sci. 13(38), 11320–11329 (2022). https://doi.org/10.1039/d2sc04143j
- Z. Hu, F. Zhang, A. Zhou, X. Hu, Q. Yan et al., Highly reversible Zn metal anodes enabled by increased nucleation overpotential. Nano-Micro Lett. 15(1), 171 (2023). https://doi.org/10.1007/s40820-023-01136-z
- Y. Zhang, X. Han, R. Liu, Z. Yang, S. Zhang et al., Manipulating the zinc deposition behavior in hexagonal patterns at the preferential Zn (100) crystal plane to construct surficial dendrite-free zinc metal anode. Small 18(7), 2105978 (2022). https://doi.org/10.1002/smll.202105978
- C. Meng, W. He, L. Jiang, Y. Huang, J. Zhang et al., Ultra-stable aqueous zinc batteries enabled by β-cyclodextrin: preferred zinc deposition and suppressed parasitic reactions. Adv. Funct. Mater. 32(47), 2207732 (2022). https://doi.org/10.1002/adfm.202207732
- A. Bayaguud, X. Luo, Y. Fu, C. Zhu, Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 5(9), 3012–3020 (2020). https://doi.org/10.1021/acsenergylett.0c01792
- Z. Wang, S. Hu, D. Wang, J. Huang, J. Qi et al., A HER-inhibiting layer based on M-H bond regulation for achieving stable zinc anodes in aqueous zinc-ion batteries. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202502186
- P. Liu, W. Liu, Y. Huang, P. Li, J. Yan et al., Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-Ion energy storage. Energy Storage Mater. 25, 858–865 (2020). https://doi.org/10.1016/j.ensm.2019.09.004
- T. Brezesinski, J. Wang, J. Polleux, B. Dunn, S.H. Tolbert, Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 131(5), 1802–1809 (2009). https://doi.org/10.1021/ja8057309
- Z. Li, D. Chen, Y. An, C. Chen, L. Wu et al., Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Mater. 28, 307–314 (2020). https://doi.org/10.1016/j.ensm.2020.01.028
- S. Chen, L. Ma, K. Zhang, M. Kamruzzaman, C. Zhi et al., A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. J. Mater. Chem. A 7(13), 7784–7790 (2019). https://doi.org/10.1039/C9TA00733D
- L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 13, 96–102 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
- H. Wang, M. Wang, Y. Tang, A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 13, 1–7 (2018). https://doi.org/10.1016/j.ensm.2017.12.022
- J. Liu, Z. Khanam, S. Ahmed, T. Wang, H. Wang et al., Flexible antifreeze Zn-ion hybrid supercapacitor based on gel electrolyte with graphene electrodes. ACS Appl. Mater. Interfaces 13(14), 16454–16468 (2021). https://doi.org/10.1021/acsami.1c02242
- W. Xu, K. Zhao, Y. Wang, Electrochemical activated MoO2/Mo2N heterostructured nanobelts as superior zinc rechargeable battery cathode. Energy Storage Mater. 15, 374–379 (2018). https://doi.org/10.1016/j.ensm.2018.06.028
- L. Sheng, J. Chang, L. Jiang, Z. Jiang, Z. Liu et al., Multilayer-folded graphene ribbon film with ultrahigh areal capacitance and high rate performance for compressible supercapacitors. Adv. Funct. Mater. 28(21), 1800597 (2018). https://doi.org/10.1002/adfm.201800597
References
Y.-K. Liu, C.-Z. Zhao, J. Du, X.-Q. Zhang, A.-B. Chen et al., Research progresses of liquid electrolytes in lithium-ion batteries. Small 19(8), e2205315 (2023). https://doi.org/10.1002/smll.202205315
L. Jiang, Y. Ding, L. Li, Y. Tang, P. Zhou et al., Cationic adsorption-induced microlevelling effect: a pathway to dendrite-free zinc anodes. Nano-Micro Lett. 17(1), 202 (2025). https://doi.org/10.1007/s40820-025-01709-0
C. Nie, G. Wang, D. Wang, M. Wang, X. Gao et al., Recent progress on Zn anodes for advanced aqueous zinc-ion batteries. Adv. Energy Mater. 13(28), 2300606 (2023). https://doi.org/10.1002/aenm.202300606
K. Xie, K. Ren, Q. Wang, Y. Lin, F. Ma et al., In situ construction of zinc-rich polymeric solid–electrolyte interface for high-performance zinc anode. eScience 3(4), 100153 (2023). https://doi.org/10.1016/j.esci.2023.100153
J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin et al., Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ. Sci. 15(2), 499–528 (2022). https://doi.org/10.1039/D1EE03377H
D. Lin, Y. Lin, R. Pan, J. Li, A. Zhu et al., Water-restrained hydrogel electrolytes with repulsion-driven cationic express pathways for durable zinc-ion batteries. Nano-Micro Lett. 17(1), 193 (2025). https://doi.org/10.1007/s40820-025-01704-5
Y. Zhang, S. Bi, Z. Niu, W. Zhou, S. Xie, Design of Zn anode protection materials for mild aqueous Zn-ion batteries. Energy Mater. 2(2), 200012 (2022). https://doi.org/10.20517/energymater.2022.08
Y. Matsuki, M. Iwamoto, K. Mita, K. Shigemi, S. Matsunaga et al., Rectified proton grotthuss conduction across a long water-wire in the test nanotube of the polytheonamide B channel. J. Am. Chem. Soc. 138(12), 4168–4177 (2016). https://doi.org/10.1021/jacs.5b13377
Z. Tian, J. Yin, T. Guo, Z. Zhao, Y. Zhu et al., A sustainable NH4+ ion battery by electrolyte engineering. Angew. Chem. Int. Ed. 61(51), e202213757 (2022). https://doi.org/10.1002/anie.202213757
Y. Wang, T. Wang, D. Dong, J. Xie, Y. Guan et al., Enabling high-energy-density aqueous batteries with hydrogen bond-anchored electrolytes. Matter 5(1), 162–179 (2022). https://doi.org/10.1016/j.matt.2021.10.021
L. Ma, S. Chen, N. Li, Z. Liu, Z. Tang et al., Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 32(14), e1908121 (2020). https://doi.org/10.1002/adma.201908121
G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
X. Fan, L. Chen, Y. Wang, X. Xu, X. Jiao et al., Selection of negative charged acidic polar additives to regulate electric double layer for stable zinc ion battery. Nano-Micro Lett. 16(1), 270 (2024). https://doi.org/10.1007/s40820-024-01475-5
L. Geng, J. Meng, X. Wang, W. Wu, K. Han et al., Organic-solvent-free primary solvation shell for low-temperature aqueous zinc batteries. Chem 11(2), 102302 (2025). https://doi.org/10.1016/j.chempr.2024.09.001
M. Qiu, P. Sun, K. Han, Z. Pang, J. Du et al., Tailoring water structure with high-tetrahedral-entropy for antifreezing electrolytes and energy storage at − 80 °C. Nat. Commun. 14(1), 601 (2023). https://doi.org/10.1038/s41467-023-36198-5
Q. Wang, Y. Liu, Z. Zhang, P. Cai, H. Li et al., Activating the intrinsic zincophilicity of PAM hydrogel to stabilize the metal-electrolyte dynamic interface for stable and long-life zinc metal batteries. Chemsuschem 17(18), e202400479 (2024). https://doi.org/10.1002/cssc.202400479
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field. J. Comput. Chem. 25(9), 1157–1174 (2004). https://doi.org/10.1002/jcc.20035
A.W. Sousa da Silva, W.F. Vranken, ACPYPE - AnteChamber PYthon parser interface. BMC. Res. Notes 5, 367 (2012). https://doi.org/10.1186/1756-0500-5-367
X. Zhang, L. Zhang, X. Jia, W. Song, Y. Liu, Design strategies for aqueous zinc metal batteries with high zinc utilization: from metal anodes to anode-free structures. Nano-Micro Lett. 16(1), 75 (2024). https://doi.org/10.1007/s40820-023-01304-1
A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17(2), 1132–1139 (2017). https://doi.org/10.1021/acs.nanolett.6b04755
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
R.M. Kumar, P. Baskar, K. Balamurugan, S. Das, V. Subramanian, On the perturbation of the H-bonding interaction in ethylene glycol clusters upon hydration. J. Phys. Chem. A 116(17), 4239–4247 (2012). https://doi.org/10.1021/jp300693r
L.A. Taib, M. Keshavarz, A. Parhami, Solvent-free synthesis of compounds containing chromene core catalyzed by novel Brønsted acidic ionic liquids-ClO4. J. Chin. Chem. Soc. 68(6), 1128–1137 (2021). https://doi.org/10.1002/jccs.202000449
N. Chang, T. Li, R. Li, S. Wang, Y. Yin et al., An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13(10), 3527–3535 (2020). https://doi.org/10.1039/d0ee01538e
C.B. Godiya, X. Cheng, D. Li, Z. Chen, X. Lu, Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J. Hazard. Mater. 364, 28–38 (2019). https://doi.org/10.1016/j.jhazmat.2018.09.076
Y. Mao, H. Ren, J. Zhang, T. Luo, N. Liu et al., Modifying hydrogel electrolyte to induce zinc deposition for dendrite-free zinc metal anode. Electrochim. Acta 393, 139094 (2021). https://doi.org/10.1016/j.electacta.2021.139094
D. Jeong, C. Kim, Y. Kim, S. Jung, Dual crosslinked carboxymethyl cellulose/polyacrylamide interpenetrating hydrogels with highly enhanced mechanical strength and superabsorbent properties. Eur. Polym. J. 127, 109586 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109586
S. Huang, L. Hou, T. Li, Y. Jiao, P. Wu, Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 34(14), 2110140 (2022). https://doi.org/10.1002/adma.202110140
Y. Zhu, J. Yin, X. Zheng, A.-H. Emwas, Y. Lei et al., Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ. Sci. 14(8), 4463–4473 (2021). https://doi.org/10.1039/d1ee01472b
Y. Sun, H. Ma, X. Zhang, B. Liu, L. Liu et al., Salty ice electrolyte with superior ionic conductivity towards low-temperature aqueous zinc ion hybrid capacitors. Adv. Funct. Mater. 31(28), 2101277 (2021). https://doi.org/10.1002/adfm.202101277
Y. Peng, M. Pi, X. Zhang, B. Yan, Y. Li et al., High strength, antifreeze, and moisturizing conductive hydrogel for human-motion detection. Polymer 196, 122469 (2020). https://doi.org/10.1016/j.polymer.2020.122469
D. Ma, X. Wu, Y. Wang, H. Liao, P. Wan et al., Wearable, antifreezing, and healable epidermal sensor assembled from long-lasting moist conductive nanocomposite organohydrogel. ACS Appl. Mater. Interfaces 11(44), 41701–41709 (2019). https://doi.org/10.1021/acsami.9b15412
S. Huang, F. Wan, S. Bi, J. Zhu, Z. Niu et al., A self-healing integrated all-in-one zinc-ion battery. Angew. Chem. Int. Ed. 58(13), 4313–4317 (2019). https://doi.org/10.1002/anie.201814653
M. Ravi, S. Song, J. Wang, R. Nadimicherla, Z. Zhang, Preparation and characterization of biodegradable poly(ε-caprolactone)-based gel polymer electrolyte films. Ionics 22(5), 661–670 (2016). https://doi.org/10.1007/s11581-015-1586-9
L. Li, J. Wang, P. Yang, S. Guo, H. Wang et al., Preparation and characterization of gel polymer electrolytes containing N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide ionic liquid for lithium ion batteries. Electrochim. Acta 88, 147–156 (2013). https://doi.org/10.1016/j.electacta.2012.10.018
X. Zhu, C. Ji, Q. Meng, H. Mi, Q. Yang et al., Freeze-tolerant hydrogel electrolyte with high strength for stable operation of flexible zinc-ion hybrid supercapacitors. Small 18(16), 2200055 (2022). https://doi.org/10.1002/smll.202200055
K. Wu, J. Huang, J. Yi, X. Liu, Y. Liu et al., Recent advances in polymer electrolytes for zinc ion batteries: mechanisms, properties, and perspectives. Adv. Energy Mater. 10(12), 1903977 (2020). https://doi.org/10.1002/aenm.201903977
X. Xu, Y. Xu, J. Zhang, Y. Zhong, Z. Li et al., Quasi-solid electrolyte interphase boosting charge and mass transfer for dendrite-free zinc battery. Nano-Micro Lett. 15(1), 56 (2023). https://doi.org/10.1007/s40820-023-01031-7
L. Geng, J. Meng, X. Wang, C. Han, K. Han et al., Eutectic electrolyte with unique solvation structure for high-performance zinc-ion batteries. Angew. Chem. Int. Ed. 61(31), e202206717 (2022). https://doi.org/10.1002/anie.202206717
W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4(7), 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
G. Ma, L. Miao, W. Yuan, K. Qiu, M. Liu et al., Non-flammable, dilute, and Hydrous organic electrolytes for reversible Zn batteries. Chem. Sci. 13(38), 11320–11329 (2022). https://doi.org/10.1039/d2sc04143j
Z. Hu, F. Zhang, A. Zhou, X. Hu, Q. Yan et al., Highly reversible Zn metal anodes enabled by increased nucleation overpotential. Nano-Micro Lett. 15(1), 171 (2023). https://doi.org/10.1007/s40820-023-01136-z
Y. Zhang, X. Han, R. Liu, Z. Yang, S. Zhang et al., Manipulating the zinc deposition behavior in hexagonal patterns at the preferential Zn (100) crystal plane to construct surficial dendrite-free zinc metal anode. Small 18(7), 2105978 (2022). https://doi.org/10.1002/smll.202105978
C. Meng, W. He, L. Jiang, Y. Huang, J. Zhang et al., Ultra-stable aqueous zinc batteries enabled by β-cyclodextrin: preferred zinc deposition and suppressed parasitic reactions. Adv. Funct. Mater. 32(47), 2207732 (2022). https://doi.org/10.1002/adfm.202207732
A. Bayaguud, X. Luo, Y. Fu, C. Zhu, Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 5(9), 3012–3020 (2020). https://doi.org/10.1021/acsenergylett.0c01792
Z. Wang, S. Hu, D. Wang, J. Huang, J. Qi et al., A HER-inhibiting layer based on M-H bond regulation for achieving stable zinc anodes in aqueous zinc-ion batteries. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202502186
P. Liu, W. Liu, Y. Huang, P. Li, J. Yan et al., Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-Ion energy storage. Energy Storage Mater. 25, 858–865 (2020). https://doi.org/10.1016/j.ensm.2019.09.004
T. Brezesinski, J. Wang, J. Polleux, B. Dunn, S.H. Tolbert, Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 131(5), 1802–1809 (2009). https://doi.org/10.1021/ja8057309
Z. Li, D. Chen, Y. An, C. Chen, L. Wu et al., Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Mater. 28, 307–314 (2020). https://doi.org/10.1016/j.ensm.2020.01.028
S. Chen, L. Ma, K. Zhang, M. Kamruzzaman, C. Zhi et al., A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. J. Mater. Chem. A 7(13), 7784–7790 (2019). https://doi.org/10.1039/C9TA00733D
L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 13, 96–102 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
H. Wang, M. Wang, Y. Tang, A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 13, 1–7 (2018). https://doi.org/10.1016/j.ensm.2017.12.022
J. Liu, Z. Khanam, S. Ahmed, T. Wang, H. Wang et al., Flexible antifreeze Zn-ion hybrid supercapacitor based on gel electrolyte with graphene electrodes. ACS Appl. Mater. Interfaces 13(14), 16454–16468 (2021). https://doi.org/10.1021/acsami.1c02242
W. Xu, K. Zhao, Y. Wang, Electrochemical activated MoO2/Mo2N heterostructured nanobelts as superior zinc rechargeable battery cathode. Energy Storage Mater. 15, 374–379 (2018). https://doi.org/10.1016/j.ensm.2018.06.028
L. Sheng, J. Chang, L. Jiang, Z. Jiang, Z. Liu et al., Multilayer-folded graphene ribbon film with ultrahigh areal capacitance and high rate performance for compressible supercapacitors. Adv. Funct. Mater. 28(21), 1800597 (2018). https://doi.org/10.1002/adfm.201800597