High-Entropy Materials: A New Paradigm in the Design of Advanced Batteries
Corresponding Author: Xinghui Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 1
Abstract
High-entropy materials (HEMs) have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability, enhanced ionic conductivity, superior mechanical strength, and outstanding catalytic activity. These distinctive characteristics render HEMs highly suitable for various battery components, such as electrodes, electrolytes, and catalysts. This review systematically examines recent advances in the application of HEMs for energy storage, beginning with fundamental concepts, historical development, and key definitions. Three principal categories of HEMs, namely high-entropy alloys, high-entropy oxides, and high-entropy MXenes, are analyzed with a focus on electrochemical performance metrics such as specific capacity, energy density, cycling stability, and rate capability. The underlying mechanisms by which these materials enhance battery performance are elucidated in the discussion. Furthermore, the pivotal role of machine learning in accelerating the discovery and optimization of novel high-entropy battery materials is highlighted. The review concludes by outlining future research directions and potential breakthroughs in HEM-based battery technologies.
Highlights:
1 The development history, characteristics and applications of high entropy alloys, high entropy oxides and high entropy MXenes are reviewed.
2 High entropy materials as cathode, anode and electrolyte to improve batteries capacity, cycle life and cycle stability are introduced systematically.
3 The latest progresses of employing machine learning in high entropy battery materials are highlighted and discussed in details.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Zeb, S.M. Ali, B. Khan, C.A. Mehmood, N. Tareen et al., A survey on waste heat recovery: Electric power generation and potential prospects within Pakistan. Renew. Sustain. Energy Rev. 75, 1142–1155 (2017). https://doi.org/10.1016/j.rser.2016.11.096
- M.R. Al Hassan, A. Sen, T. Zaman, M.S. Mostari, Emergence of graphene as a promising anode material for rechargeable batteries: A review. Mater. Today Chem. 11, 225–243 (2019). https://doi.org/10.1016/j.mtchem.2018.11.006
- Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv. Energy Mater. 7(23), 1700715 (2017). https://doi.org/10.1002/aenm.201700715
- F. Dou, L. Shi, G. Chen, D. Zhang, Silicon/carbon composite anode materials for lithium-ion batteries. Electrochem. Energy Rev. 2(1), 149–198 (2019). https://doi.org/10.1007/s41918-018-00028-w
- M.V. Reddy, G.V. Subba Rao, B.R. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113(7), 5364–5457 (2013). https://doi.org/10.1021/cr3001884
- B. Ke, X. Wang, Integratable all-solid-state thin-film microbatteries. Proc. Natl. Acad. Sci. U.S.A. 122(16), e2415693122 (2025). https://doi.org/10.1073/pnas.2415693122
- B. Ke, S. Cheng, C. Zhang, W. Li, J. Zhang et al., Low-temperature flexible integration of all-solid-state thin-film lithium batteries enabled by spin-coating electrode architecture. Adv. Energy Mater. 14(12), 2303757 (2024). https://doi.org/10.1002/aenm.202303757
- J. Zhang, W. Li, Z. Liu, Z. Huang, H. Wang et al., All-solid-state thin-film lithium-selenium batteries. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202503732
- M. Zhu, H. Jiang, A. Zhao, B. Chen, Z.K. Ng et al., Thermal boundary resistance and thermal rectification in VACNT arrays integrated with SnZn alloys. J. Alloys Compd. 969, 172480 (2023). https://doi.org/10.1016/j.jallcom.2023.172480
- Z. Leong, H. Jin, Z.M. Wong, K. Nemani, B. Anasori et al., Elucidating the chemical order and disorder in high-entropy MXenes: A high-throughput survey of the atomic configurations in TiVNbMoC3 and TiVCrMoC3. Chem. Mater. 34(20), 9062–9071 (2022). https://doi.org/10.1021/acs.chemmater.2c01673
- Y. Jia, S. Chen, X. Shao, J. Chen, D.-L. Fang et al., Synergetic effect of lattice distortion and oxygen vacancies on high-rate lithium-ion storage in high-entropy perovskite oxides. J. Adv. Ceram. 12(6), 1214–1227 (2023). https://doi.org/10.26599/jac.2023.9220751
- H. Raza, J. Cheng, C. Lin, S. Majumder, G. Zheng et al., High-entropy stabilized oxides derived via a low-temperature template route for high-performance lithium-sulfur batteries. EcoMat 5(4), e12324 (2023). https://doi.org/10.1002/eom2.12324
- Q. Dong, M. Hong, J. Gao, T. Li, M. Cui et al., Rapid synthesis of high-entropy oxide microps. Small 18(11), 2104761 (2022). https://doi.org/10.1002/smll.202104761
- Y. Bai, J. Li, H. Lu, J. Liu, C. Ma et al., Ultrafast high-temperature sintering of high-entropy oxides with refined microstructure and superior lithium-ion storage performance. J. Adv. Ceram. 12(10), 1857–1871 (2023). https://doi.org/10.26599/jac.2023.9220793
- W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao et al., Mechanical behavior of high-entropy alloys. Prog. Mater. Sci. 118, 100777 (2021). https://doi.org/10.1016/j.pmatsci.2021.100777
- B. Yang, Y. Zhang, H. Pan, W. Si, Q. Zhang et al., High-entropy enhanced capacitive energy storage. Nat. Mater. 21(9), 1074–1080 (2022). https://doi.org/10.1038/s41563-022-01274-6
- Z. Rao, P.Y. Tung, R. Xie, Y. Wei, H. Zhang et al., Machine learning-enabled high-entropy alloy discovery. Science 378(6615), 78–85 (2022). https://doi.org/10.1126/science.abo4940
- Z. Sun, Y. Zhao, C. Sun, Q. Ni, C. Wang et al., High entropy spinel-structure oxide for electrochemical application. Chem. Eng. J. 431, 133448 (2022). https://doi.org/10.1016/j.cej.2021.133448
- Q. Wang, A. Sarkar, Z. Li, Y. Lu, L. Velasco et al., High entropy oxides as anode material for Li-ion battery applications: A practical approach. Electrochem. Commun. 100, 121–125 (2019). https://doi.org/10.1016/j.elecom.2019.02.001
- X. Du, K. Zhang, Recent progress in fibrous high-entropy energy harvesting devices for wearable applications. Nano Energy 101, 107600 (2022). https://doi.org/10.1016/j.nanoen.2022.107600
- B. Cantor, Multicomponent and high entropy alloys. Entropy 16(9), 4749–4768 (2014). https://doi.org/10.3390/e16094749
- B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257
- J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004). https://doi.org/10.1002/adem.200300567
- L. He, M. Li, L. Qiu, S. Geng, Y. Liu et al., Single-atom Mo-tailored high-entropy-alloy ultrathin nanosheets with intrinsic tensile strain enhance electrocatalysis. Nat. Commun. 15(1), 2290 (2024). https://doi.org/10.1038/s41467-024-45874-z
- M. Feuerbacher, M. Heidelmann, C. Thomas, Hexagonal high-entropy alloys. Mater. Res. Lett. 3(1), 1–6 (2015). https://doi.org/10.1080/21663831.2014.951493
- C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey et al., Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015). https://doi.org/10.1038/ncomms9485
- D. Bérardan, S. Franger, A.K. Meena, N. Dragoe, Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 4(24), 9536–9541 (2016). https://doi.org/10.1039/c6ta03249d
- Y. Yao, Z. Huang, P. Xie, S.D. Lacey, R.J. Jacob et al., Carbothermal shock synthesis of high-entropy-alloy nanops. Science 359(6383), 1489–1494 (2018). https://doi.org/10.1126/science.aan5412
- J. Gild, M. Samiee, J.L. Braun, T. Harrington, H. Vega et al., High-entropy fluorite oxides. J. Eur. Ceram. Soc. 38(10), 3578–3584 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.04.010
- X. Wang, Q. Dong, H. Qiao, Z. Huang, M.T. Saray et al., Continuous synthesis of hollow high-entropy nanops for energy and catalysis applications. Adv. Mater. 32(46), 2002853 (2020). https://doi.org/10.1002/adma.202002853
- C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling et al., Rational design of layered oxide materials for sodium-ion batteries. Science 370(6517), 708–711 (2020). https://doi.org/10.1126/science.aay9972
- Y. Yao, Z. Huang, L.A. Hughes, J. Gao, T. Li et al., Extreme mixing in nanoscale transition metal alloys. Matter 4(7), 2340–2353 (2021). https://doi.org/10.1016/j.matt.2021.04.014
- S.K. Nemani, B. Zhang, B.C. Wyatt, Z.D. Hood, S. Manna et al., High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 15(8), 12815–12825 (2021). https://doi.org/10.1021/acsnano.1c02775
- J. Ren, Y. Zhang, D. Zhao, Y. Chen, S. Guan et al., Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing. Nature 608(7921), 62–68 (2022). https://doi.org/10.1038/s41586-022-04914-8
- M. Du, P. Geng, C. Pei, X. Jiang, Y. Shan et al., High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 61(41), e202209350 (2022). https://doi.org/10.1002/anie.202209350
- G. Cao, J. Liang, Z. Guo, K. Yang, G. Wang et al., Liquid metal for high-entropy alloy nanops synthesis. Nature 619(7968), 73–77 (2023). https://doi.org/10.1038/s41586-023-06082-9
- M.C. Folgueras, Y. Jiang, J. Jin, P. Yang, High-entropy halide perovskite single crystals stabilized by mild chemistry. Nature 621(7978), 282–288 (2023). https://doi.org/10.1038/s41586-023-06396-8
- P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 6(1–2), 74–78 (2004). https://doi.org/10.1002/adem.200300507
- J.-W. Yeh, Recent progress in high-entropy alloys. Ann. Chim. Sci. Mat. 31(6), 633–648 (2006). https://doi.org/10.3166/acsm.31.633-648
- A. Sarkar, Q. Wang, A. Schiele, M.R. Chellali, S.S. Bhattacharya et al., High-entropy oxides: Fundamental aspects and electrochemical properties. Adv. Mater. 31(26), e1806236 (2019). https://doi.org/10.1002/adma.201806236
- Z. Zhou, Y. Zhou, Q. He, Z. Ding, F. Li et al., Machine learning guided appraisal and exploration of phase design for high entropy alloys. NPJ Comput. Mater. 5, 128 (2019). https://doi.org/10.1038/s41524-019-0265-1
- A. Sarkar, B. Breitung, H. Hahn, High entropy oxides: The role of entropy, enthalpy and synergy. Scr. Mater. 187, 43–48 (2020). https://doi.org/10.1016/j.scriptamat.2020.05.019
- X. Zhao, Z. Fu, X. Zhang, X. Wang, B. Li et al., More is better: High-entropy electrolyte design in rechargeable batteries. Energy Environ. Sci. 17(7), 2406–2430 (2024). https://doi.org/10.1039/d3ee03821a
- Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: Challenges and prospects. Mater. Today 19(6), 349–362 (2016). https://doi.org/10.1016/j.mattod.2015.11.026
- D. Evans, J. Chen, G. Bokas, W. Chen, G. Hautier et al., Visualizing temperature-dependent phase stability in high entropy alloys. NPJ Comput. Mater. 7, 151 (2021). https://doi.org/10.1038/s41524-021-00626-1
- C. Oses, C. Toher, S. Curtarolo, High-entropy ceramics. Nat. Rev. Mater. 5(4), 295–309 (2020). https://doi.org/10.1038/s41578-019-0170-8
- Z. Wen, Z. Tang, Y. Liu, L. Zhuang, H. Yu et al., Ultrastrong and high thermal insulating porous high-entropy ceramics up to 2000 ℃. Adv. Mater. 36(14), 2311870 (2024). https://doi.org/10.1002/adma.202311870
- Y. Han, X. Liu, Q. Zhang, M. Huang, Y. Li et al., Ultra-dense dislocations stabilized in high entropy oxide ceramics. Nat. Commun. 13(1), 2871 (2022). https://doi.org/10.1038/s41467-022-30260-4
- Y. Tang, D. Zhang, R. Liu, D. Li, Designing high-entropy ceramics via incorporation of the bond-mechanical behavior correlation with the machine-learning methodology. Cell Rep. Phys. Sci. 2(11), 100640 (2021). https://doi.org/10.1016/j.xcrp.2021.100640
- Y. Xu, X. Xu, L. Bi, A high-entropy spinel ceramic oxide as the cathode for proton-conducting solid oxide fuel cells. J. Adv. Ceram. 11(5), 794–804 (2022). https://doi.org/10.1007/s40145-022-0573-7
- M.-H. Tsai, J.-W. Yeh, High-entropy alloys: A critical review. Mater. Res. Lett. 2(3), 107–123 (2014). https://doi.org/10.1080/21663831.2014.912690
- W.-L. Hsu, C.-W. Tsai, A.-C. Yeh, J.-W. Yeh, Clarifying the four core effects of high-entropy materials. Nat. Rev. Chem. 8(6), 471–485 (2024). https://doi.org/10.1038/s41570-024-00602-5
- K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61(13), 4887–4897 (2013). https://doi.org/10.1016/j.actamat.2013.04.058
- B. Xiao, J. Luan, S. Zhao, L. Zhang, S. Chen et al., Achieving thermally stable nanops in chemically complex alloys via controllable sluggish lattice diffusion. Nat. Commun. 13(1), 4870 (2022). https://doi.org/10.1038/s41467-022-32620-6
- D. Du, H. He, R. Zheng, L. Zeng, X. Wang et al., Single-atom immobilization boosting oxygen redox kinetics of high-entropy perovskite oxide toward high-performance lithium-oxygen batteries. Adv. Energy Mater. 14(17), 2304238 (2024). https://doi.org/10.1002/aenm.202304238
- T.X. Nguyen, Y.-C. Liao, C.-C. Lin, Y.-H. Su, J.-M. Ting, Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 31(27), 2101632 (2021). https://doi.org/10.1002/adfm.202101632
- Y. Wang, X.-Y. Zhang, H. He, J.-J. Chen, B. Liu, Ordered mesoporous high-entropy intermetallics for efficient oxygen reduction electrocatalysis. Adv. Energy Mater. 14(8), 2303923 (2024). https://doi.org/10.1002/aenm.202303923
- S. Liu, Y. Wang, T. Jiang, S. Jin, M. Sajid et al., Non-noble metal high-entropy alloy-based catalytic electrode for long-life hydrogen gas batteries. ACS Nano 18(5), 4229–4240 (2024). https://doi.org/10.1021/acsnano.3c09482
- X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132(2–3), 233–238 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.021
- S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109(10), 103505 (2011). https://doi.org/10.1063/1.3587228
- M.V. Kamal, S. Ragunath, M. Hema Sagar Reddy, N. Radhika, B. Saleh, Recent advancements in lightweight high entropy alloys–A comprehensive review. Int. J. Light. Mater. Manuf. 7(5), 699–720 (2024). https://doi.org/10.1016/j.ijlmm.2024.06.001
- F. Müller, B. Gorr, H.-J. Christ, J. Müller, B. Butz et al., On the oxidation mechanism of refractory high entropy alloys. Corros. Sci. 159, 108161 (2019). https://doi.org/10.1016/j.corsci.2019.108161
- F. Maresca, W.A. Curtin, Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K. Acta Mater. 182, 235–249 (2020). https://doi.org/10.1016/j.actamat.2019.10.015
- D. Han, B. Yang, W. Xu, H. Yang, G. Han et al., Significantly ameliorating room-temperature brittleness of refractory high-entropy alloys via in situ heterogeneous structure. J. Mater. Sci. Technol. 193, 1–17 (2024). https://doi.org/10.1016/j.jmst.2024.01.022
- L. Lin, K. Wang, A. Sarkar, C. Njel, G. Karkera et al., High-entropy sulfides as electrode materials for Li-ion batteries. Adv. Energy Mater. 12(8), 2103090 (2022). https://doi.org/10.1002/aenm.202103090
- W. Wang, G. Sun, X. Sun, Z. Zhang, J. Zhang et al., Electromagnetic wave absorbing properties of high-entropy transition metal carbides powders. Mater. Res. Bull. 163, 112212 (2023). https://doi.org/10.1016/j.materresbull.2023.112212
- H.W. Seong, M.S. Lee, H.J. Ryu, First-principles study for discovery of novel synthesizable 2D high-entropy transition metal carbides (MXenes). J. Mater. Chem. A 11(11), 5681–5695 (2023). https://doi.org/10.1039/D2TA09996A
- P. Das, Y. Dong, X. Wu, Y. Zhu, Z.-S. Wu, Perspective on high entropy MXenes for energy storage and catalysis. Sci. Bull. 68(16), 1735–1739 (2023). https://doi.org/10.1016/j.scib.2023.07.022
- L. Qiao, J. Bi, G. Liang, Y. Yang, H. Wang et al., Synthesis of high-entropy MXenes with high-efficiency electromagnetic wave absorption. J. Adv. Ceram. 12(10), 1902–1918 (2023). https://doi.org/10.26599/jac.2023.9220796
- A. Mao, H.-Z. Xiang, Z.-G. Zhang, K. Kuramoto, H. Yu et al., Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder. J. Magn. Magn. Mater. 484, 245–252 (2019). https://doi.org/10.1016/j.jmmm.2019.04.023
- M. Stygar, J. Dąbrowa, M. Moździerz, M. Zajusz, W. Skubida et al., Formation and properties of high entropy oxides in Co–Cr–Fe–Mg–Mn–Ni–O system: Novel (Cr, Fe, Mg, Mn, Ni)3O4 and (Co, Cr, Fe, Mg, Mn)3O4 high entropy spinels. J. Eur. Ceram. Soc. 40(4), 1644–1650 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.030
- T.X. Nguyen, J. Patra, J.-K. Chang, J.-M. Ting, High entropy spinel oxide nanops for superior lithiation–delithiation performance. J. Mater. Chem. A 8(36), 18963–18973 (2020). https://doi.org/10.1039/d0ta04844e
- S. Ye, J. Zhu, S. Zhu, Y. Zhao, M. Li et al., Design strategies for perovskite-type high-entropy oxides with applications in optics. ACS Appl. Mater. Interfaces 15(40), 47475–47486 (2023). https://doi.org/10.1021/acsami.3c09447
- T. Erdil, C. Toparli, B-site effect on high-entropy perovskite oxide as a bifunctional electrocatalyst for rechargeable zinc–air batteries. ACS Appl. Energy Mater. 6(21), 11255–11267 (2023). https://doi.org/10.1021/acsaem.3c02149
- L. Tian, Z. Zhang, S. Liu, G. Li, X. Gao, High-entropy perovskite oxide nanofibers as efficient bidirectional electrocatalyst of liquid-solid conversion processes in lithium–sulfur batteries. Nano Energy 106, 108037 (2023). https://doi.org/10.1016/j.nanoen.2022.108037
- K. Tian, H. He, X. Li, D. Wang, Z. Wang et al., Boosting electrochemical reaction and suppressing phase transition with a high-entropy O3-type layered oxide for sodium-ion batteries. J. Mater. Chem. A 10(28), 14943–14953 (2022). https://doi.org/10.1039/D2TA02451A
- A. Joshi, S. Chakrabarty, S.H. Akella, A. Saha, A. Mukherjee et al., High-entropy Co-free O3-Type layered oxyfluoride: A promising air-stable cathode for sodium-ion batteries. Adv. Mater. 35(51), 2304440 (2023). https://doi.org/10.1002/adma.202304440
- J. Liu, W. Huang, R. Liu, J. Lang, Y. Li et al., Entropy tuning stabilizing P2-type layered cathodes for sodium-ion batteries. Adv. Funct. Mater. 34(24), 2315437 (2024). https://doi.org/10.1002/adfm.202315437
- P. Zhou, Z. Che, J. Liu, J. Zhou, X. Wu et al., High-entropy P2/O3biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries. Energy Storage Mater. 57, 618–627 (2023). https://doi.org/10.1016/j.ensm.2023.03.007
- S. Ma, P. Zou, H.L. Xin, Extending phase-variation voltage zones in P2-type sodium cathodes through high-entropy doping for enhanced cycling stability and rate capability. Mater. Today Energy 38, 101446 (2023). https://doi.org/10.1016/j.mtener.2023.101446
- Y. Xiao, J. Xiao, H. Zhao, J. Li, G. Zhang et al., Prussian blue analogues for sodium-ion battery cathodes: A review of mechanistic insights, current challenges, and future pathways. Small 20(35), 2401957 (2024). https://doi.org/10.1002/smll.202401957
- C. Zhao, F. Ding, Y. Lu, L. Chen, Y.-S. Hu, High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed. 59(1), 264–269 (2020). https://doi.org/10.1002/anie.201912171
- Z. Lun, B. Ouyang, D.-H. Kwon, Y. Ha, E.E. Foley et al., Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater. 20(2), 214–221 (2021). https://doi.org/10.1038/s41563-020-00816-0
- M. Yuan, Y. Gao, L. Liu, J. Gao, Z. Wang et al., High entropy double perovskite cathodes with enhanced activity and operational stability for solid oxide fuel cells. J. Eur. Ceram. Soc. 44(5), 3267–3276 (2024). https://doi.org/10.1016/j.jeurceramsoc.2023.12.049
- Z. Wang, H. Ge, S. Liu, G. Li, X. Gao, High-entropy alloys to activate the sulfur cathode for lithium–sulfur batteries. Energy Environ. Mater. 6(3), e12358 (2023). https://doi.org/10.1002/eem2.12358
- Y. Cai, W. Liu, F. Chang, S. Jin, X. Yang et al., Entropy-stabilized layered K0.6Ni0.05Fe0.05Mg0.05Ti0.05Mn0.725O2 as a high-rate and stable cathode for potassium-ion batteries. ACS Appl. Mater. Interfaces 15(41), 48277–48286 (2023). https://doi.org/10.1021/acsami.3c11059
- S. Wang, K. Wang, Y. Zhang, Y. Jie, X. Li et al., High-entropy electrolyte enables high reversibility and long lifespan for magnesium metal anodes. Angew. Chem. Int. Ed. 62(31), e202304411 (2023). https://doi.org/10.1002/anie.202304411
- K. Wang, W. Hua, X. Huang, D. Stenzel, J. Wang et al., Synergy of cations in high entropy oxide lithium ion battery anode. Nat. Commun. 14(1), 1487 (2023). https://doi.org/10.1038/s41467-023-37034-6
- P. Edalati, A. Mohammadi, Y. Li, H.-W. Li, R. Floriano et al., High-entropy alloys as anode materials of nickel–metal hydride batteries. Scr. Mater. 209, 114387 (2022). https://doi.org/10.1016/j.scriptamat.2021.114387
- D. Chen, Y. Huan, G. Ma, M. Ma, X. Wang et al., High-entropy alloys FeCoNiCuX (X = Al, Mo)-Ce0.8Sm0.2O2 as high-performance solid oxide fuel cell anodes. ACS Appl. Energy Mater. 6(2), 1076–1084 (2023). https://doi.org/10.1021/acsaem.2c03655
- Q. Wang, C. Zhao, J. Wang, Z. Yao, S. Wang et al., High entropy liquid electrolytes for lithium batteries. Nat. Commun. 14, 440 (2023). https://doi.org/10.1038/s41467-023-36075-1
- S.C. Kim, J. Wang, R. Xu, P. Zhang, Y. Chen et al., High-entropy electrolytes for practical lithium metal batteries. Nat. Energy 8(8), 814–826 (2023). https://doi.org/10.1038/s41560-023-01280-1
- X. Cao, Y. Gao, Z. Wang, H. Zeng, Y. Song et al., FeNiCrCoMn high-entropy alloy nanops loaded on carbon nanotubes as bifunctional oxygen catalysts for rechargeable zinc-air batteries. ACS Appl. Mater. Interfaces 15(27), 32365–32375 (2023). https://doi.org/10.1021/acsami.3c04120
- J. Yan, S. Yin, M. Asta, R.O. Ritchie, J. Ding et al., Anomalous size effect on yield strength enabled by compositional heterogeneity in high-entropy alloy nanops. Nat. Commun. 13(1), 2789 (2022). https://doi.org/10.1038/s41467-022-30524-z
- S. Gao, S. Hao, Z. Huang, Y. Yuan, S. Han et al., Synthesis of high-entropy alloy nanops on supports by the fast moving bed pyrolysis. Nat. Commun. 11(1), 2016 (2020). https://doi.org/10.1038/s41467-020-15934-1
- Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang et al., Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563(7732), 546–550 (2018). https://doi.org/10.1038/s41586-018-0685-y
- Q. Pan, L. Zhang, R. Feng, Q. Lu, K. An et al., Gradient cell-structured high-entropy alloy with exceptional strength and ductility. Science 374(6570), 984–989 (2021). https://doi.org/10.1126/science.abj8114
- Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen et al., Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574(7777), 223–227 (2019). https://doi.org/10.1038/s41586-019-1617-1
- W. Xiong, A.X.Y. Guo, S. Zhan, C.-T. Liu, S.C. Cao, Refractory high-entropy alloys: A focused review of preparation methods and properties. J. Mater. Sci. Technol. 142, 196–215 (2023). https://doi.org/10.1016/j.jmst.2022.08.046
- S. Wang, D. Shu, P. Shi, X. Zhang, B. Mao et al., TiZrHfNb refractory high-entropy alloys with twinning-induced plasticity. J. Mater. Sci. Technol. 187, 72–85 (2024). https://doi.org/10.1016/j.jmst.2023.11.047
- D. Cui, Y. Zhang, L. Liu, Y. Li, L. Wang et al., Oxygen-assisted spinodal structure achieves 1.5 GPa yield strength in a ductile refractory high-entropy alloy. J. Mater. Sci. Technol. 157, 11–20 (2023). https://doi.org/10.1016/j.jmst.2023.01.038
- Y. Zhang, B. Qin, D. Ouyang, L. Liu, C. Feng et al., Strong yet ductile refractory high entropy alloy fabricated via additive manufacturing. Addit. Manuf. 81, 104009 (2024). https://doi.org/10.1016/j.addma.2024.104009
- C. Liu, Y. Wang, Y. Zhang, L.-C. Zhang, L. Wang, Deformation mechanisms of additively manufactured TiNbTaZrMo refractory high-entropy alloy: The role of cellular structure. Int. J. Plast. 173, 103884 (2024). https://doi.org/10.1016/j.ijplas.2024.103884
- M. Schneider, J.-P. Couzinié, A. Shalabi, F. Ibrahimkhel, A. Ferrari et al., Effect of stacking fault energy on the thickness and density of annealing twins in recrystallized FCC medium and high-entropy alloys. Scr. Mater. 240, 115844 (2024). https://doi.org/10.1016/j.scriptamat.2023.115844
- B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George et al., A fracture-resistant high-entropy alloy for cryogenic applications. Science 345(6201), 1153–1158 (2014). https://doi.org/10.1126/science.1254581
- E.-W. Huang, D. Yu, J.-W. Yeh, C. Lee, K. An et al., A study of lattice elasticity from low entropy metals to medium and high entropy alloys. Scr. Mater. 101, 32–35 (2015). https://doi.org/10.1016/j.scriptamat.2015.01.011
- J. Cai, Q. Du, Y. Zhang, Y. Wu, H. Wang et al., A metastable Fe48Co10Cr10Mn32 high-entropy alloy with good damping capacity within an ultra-large temperature regime. J. Mater. Sci. Technol. 184, 136–144 (2024). https://doi.org/10.1016/j.jmst.2023.10.031
- Y. Li, Y. Bai, Z. Liu, Q. Jiang, K. Zhang et al., Additive manufacturing-induced anisotropy in damping performance of a dual-phase high-entropy alloy. J. Mater. Res. Technol. 29, 5752–5764 (2024). https://doi.org/10.1016/j.jmrt.2024.02.203
- C.L.P. Pavithra, R.K.S.K. Janardhana, K.M. Reddy, C. Murapaka, J. Joardar et al., An advancement in the synthesis of unique soft magnetic CoCuFeNiZn high entropy alloy thin films. Sci. Rep. 11(1), 8836 (2021). https://doi.org/10.1038/s41598-021-87786-8
- L. Han, Z. Rao, I.R. Souza Filho, F. Maccari, Y. Wei et al., Ultrastrong and ductile soft magnetic high-entropy alloys via coherent ordered nanoprecipitates. Adv. Mater. 33(37), 2102139 (2021). https://doi.org/10.1002/adma.202102139
- O. El Atwani, H.T. Vo, M.A. Tunes, C. Lee, A. Alvarado et al., A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environments. Nat. Commun. 14(1), 2516 (2023). https://doi.org/10.1038/s41467-023-38000-y
- S.S. Nene, M. Frank, K. Liu, S. Sinha, R.S. Mishra et al., Corrosion-resistant high entropy alloy with high strength and ductility. Scr. Mater. 166, 168–172 (2019). https://doi.org/10.1016/j.scriptamat.2019.03.028
- C.-Y. Hsu, J.-W. Yeh, S.-K. Chen, T.-T. Shun, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A 35(5), 1465–1469 (2004). https://doi.org/10.1007/s11661-004-0254-x
- Q. Wang, Y. Zhou, X. Deng, Z. Wang, Achieving excellent mechanical properties and wear resistance in Fe49Mn30Co10Cr10C1 interstitial high-entropy alloy via tuning composition and stacking fault energy by Nb doping. Wear 534, 205149 (2023). https://doi.org/10.1016/j.wear.2023.205149
- C.L. Tracy, S. Park, D.R. Rittman, S.J. Zinkle, H. Bei et al., High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 8, 15634 (2017). https://doi.org/10.1038/ncomms15634
- F. Zhang, Y. Wu, H. Lou, Z. Zeng, V.B. Prakapenka et al., Polymorphism in a high-entropy alloy. Nat. Commun. 8, 15687 (2017). https://doi.org/10.1038/ncomms15687
- F. Han, Z. Wang, Q. Jin, L. Fan, K. Tao et al., High-entropy alloy electrocatalysts bidirectionally promote lithium polysulfide conversions for long-cycle-life lithium–sulfur batteries. ACS Nano 18(23), 15167–15176 (2024). https://doi.org/10.1021/acsnano.4c03031
- Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534(7606), 227–230 (2016). https://doi.org/10.1038/nature17981
- Y. Wei, Y. Zhao, Y. Chen, M. Zhang, Z. Zhang et al., Lithium storage characteristic of nanoporous high-entropy alloy@high-entropy oxide with spin-dependent synergism of cations. Chem. Eng. J. 476, 146881 (2023). https://doi.org/10.1016/j.cej.2023.146881
- Q. Zhang, R. Niu, Y. Liu, J. Jiang, F. Xu et al., Room-temperature super-elongation in high-entropy alloy nanopillars. Nat. Commun. 14(1), 7469 (2023). https://doi.org/10.1038/s41467-023-42894-z
- H.-X. Guo, W.-M. Wang, C.-Y. He, B.-H. Liu, D.-M. Yu et al., Entropy-assisted high-entropy oxide with a spinel structure toward high-temperature infrared radiation materials. ACS Appl. Mater. Interfaces 14(1), 1950–1960 (2022). https://doi.org/10.1021/acsami.1c20055
- D. Lin, X. Xi, X. Li, J. Hu, L. Xu et al., High-temperature mechanical properties of FeCoCrNi high-entropy alloys fabricated via selective laser melting. Mater. Sci. Eng. A 832, 142354 (2022). https://doi.org/10.1016/j.msea.2021.142354
- D. Liu, Q. Yu, S. Kabra, M. Jiang, P. Forna-Kreutzer et al., Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin. Science 378(6623), 978–983 (2022). https://doi.org/10.1126/science.abp8070
- D. Das, Y. Getahun, F.S. Escobar, R. Romero, A.A. El-Gendy et al., Unexpected superparamagnetic behavior in nanocrystalline niobium-based high-entropy alloys. J. Phys. Chem. C 126(33), 14255–14263 (2022). https://doi.org/10.1021/acs.jpcc.2c03111
- L. Zeng, J. Zhan, M. Boubeche, K. Li, L. Li et al., Superconductivity in the bcc-type high-entropy alloy TiHfNbTaMo. Adv. Quantum Technol. 6(12), 2300213 (2023). https://doi.org/10.1002/qute.202300213
- C.K.W. Leung, X. Zhang, F. von Rohr, R. Lortz, B. Jäck, Evidence for isotropic s-wave superconductivity in high-entropy alloys. Sci. Rep. 12(1), 12773 (2022). https://doi.org/10.1038/s41598-022-16355-4
- S. Wang, H. Yan, W. Huo, A. Davydok, M. Zając et al., Engineering multiple nano-twinned high entropy alloy electrocatalysts toward efficient water electrolysis. Appl. Catal. B Environ. Energy 363, 124791 (2025). https://doi.org/10.1016/j.apcatb.2024.124791
- Z. Huang, Y. Peng, L. Xing, M. Xu, M. Fang et al., Microenvironment regulation to synthesize sub-3 nm Pt-based high-entropy alloy nanops enabling compressed lattice to boost electrocatalysis. Appl. Catal. B Environ. Energy 363, 124775 (2025). https://doi.org/10.1016/j.apcatb.2024.124775
- P. Kumar, S. Huang, D.H. Cook, K. Chen, U. Ramamurty et al., A strong fracture-resistant high-entropy alloy with nano-bridged honeycomb microstructure intrinsically toughened by 3D-printing. Nat. Commun. 15(1), 841 (2024). https://doi.org/10.1038/s41467-024-45178-2
- W. Dai, T. Lu, Y. Pan, Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. J. Power. Sources 430, 104–111 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.030
- L. Yao, F. Zhang, S. Yang, H. Zhang, Y. Li et al., Sub-2 nm IrRuNiMoCo high-entropy alloy with iridium-rich medium-entropy oxide shell to boost acidic oxygen evolution. Adv. Mater. 36(25), 2314049 (2024). https://doi.org/10.1002/adma.202314049
- T. Shen, D. Xiao, Z. Deng, S. Wang, L. An et al., Stabilizing diluted active sites of ultrasmall high-entropy intermetallics for efficient formic acid electrooxidation. Angew. Chem. Int. Ed. 63(20), e202403260 (2024). https://doi.org/10.1002/anie.202403260
- Q. Zhang, K. Lian, Q. Liu, G. Qi, S. Zhang et al., High entropy alloy nanops as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries. J. Colloid Interface Sci. 646, 844–854 (2023). https://doi.org/10.1016/j.jcis.2023.05.074
- Z.K. Ng, B. Li, M. Zhu, Z. Du, Y. Zhao et al., NiCo2O4 on monolithic 3DGF/CNT for high performance hybrid zinc batteries. Chem. Eng. J. 477, 146866 (2023). https://doi.org/10.1016/j.cej.2023.146866
- X. Zhang, J. Zhuang, C. Wei, C. Jin, M. Zhu et al., Enhancing osteogenic differentiation of dental pulp stem cells with covalently bonded all-carbon scaffolds. Adv. Funct. Mater. 34(30), 2400766 (2024). https://doi.org/10.1002/adfm.202400766
- Y. Su, X. Lei, W. Chen, Y. Su, H. Liu et al., Si-based all-lithium-reactive high-entropy alloy for thin-film lithium-ion battery anode. Chem. Eng. J. 500, 157197 (2024). https://doi.org/10.1016/j.cej.2024.157197
- H. Xu, R. Hu, Y. Zhang, H. Yan, Q. Zhu et al., Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries. Energy Storage Mater. 43, 212–220 (2021). https://doi.org/10.1016/j.ensm.2021.09.003
- L. Gao, X. Zhong, Z. Li, J. Hu, S. Cui et al., A multi-layer reduced graphene oxide catalyst encapsulating a high-entropy alloy for rechargeable zinc-air batteries. Chem. Commun. 60(10), 1269–1272 (2024). https://doi.org/10.1039/d3cc05069f
- J. Tian, Y. Rao, W. Shi, J. Yang, W. Ning et al., Sabatier relations in electrocatalysts based on high-entropy alloys with wide-distributed d-band centers for Li-O2 batteries. Angew. Chem. Int. Ed. 62(44), e202310894 (2023). https://doi.org/10.1002/anie.202310894
- P. Zhang, X. Hui, Y. Nie, R. Wang, C. Wang et al., New conceptual catalyst on spatial high-entropy alloy heterostructures for high-performance Li-O2 batteries. Small 19(15), 2206742 (2023). https://doi.org/10.1002/smll.202206742
- R. He, L. Yang, Y. Zhang, X. Wang, S. Lee et al., A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance. Energy Storage Mater. 58, 287–298 (2023). https://doi.org/10.1016/j.ensm.2023.03.022
- R. Zhang, H. Xue, D. Du, Y. Shen, J. Zheng et al., Regulation of configurational entropy to realize long cycle lifespan of high entropy alloy anodes for potassium batteries. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202422218
- A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila et al., High entropy oxides for reversible energy storage. Nat. Commun. 9, 3400 (2018). https://doi.org/10.1038/s41467-018-05774-5
- Y. Zheng, Y. Yi, M. Fan, H. Liu, X. Li et al., A high-entropy metal oxide as chemical anchor of polysulfide for lithium–sulfur batteries. Energy Storage Mater. 23, 678–683 (2019). https://doi.org/10.1016/j.ensm.2019.02.030
- B. Talluri, M.L. Aparna, N. Sreenivasulu, S.S. Bhattacharya, T. Thomas, High entropy spinel metal oxide (CoCrFeMnNi)3O4 nanops as a high-performance supercapacitor electrode material. J. Energy Storage 42, 103004 (2021). https://doi.org/10.1016/j.est.2021.103004
- X. Yang, H. Wang, Y. Song, K. Liu, T. Huang et al., Low-temperature synthesis of a porous high-entropy transition-metal oxide as an anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 14, 26873-26881 (2022). https://doi.org/10.1021/acsami.2c07576
- M. Li, C. Sun, Q. Ni, Z. Sun, Y. Liu et al., High entropy enabling the reversible redox reaction of V4+/V5+ couple in NASICON-type sodium ion cathode. Adv. Energy Mater. 13(12), 2203971 (2023). https://doi.org/10.1002/aenm.202203971
- M. Chen, W. Hua, J. Xiao, D. Cortie, W. Chen et al., NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nat. Commun. 10(1), 1480 (2019). https://doi.org/10.1038/s41467-019-09170-5
- M.T. Ahsan, D. Qiu, Z. Ali, Z. Fang, W. Zhao et al., Unraveling the fast Na diffusion kinetics of NASICON at high voltage via high entropy for sodium-ion battery. Adv. Energy Mater. 14(4), 2302733 (2024). https://doi.org/10.1002/aenm.202302733
- F. Strauss, J. Lin, M. Duffiet, K. Wang, T. Zinkevich et al., High-entropy polyanionic lithium superionic conductors. ACS Mater. Lett. 4(2), 418–423 (2022). https://doi.org/10.1021/acsmaterialslett.1c00817
- H. Nan, K. Song, J. Xu, S. Lv, S. Yu et al., Dual-ion (de)intercalation into high-entropy perovskite oxides for aqueous alkaline battery-supercapacitor hybrid devices. Acta Mater. 257, 119174 (2023). https://doi.org/10.1016/j.actamat.2023.119174
- C.-H. Kuo, A.-Y. Wang, H.-Y. Liu, S.-C. Huang, X.-R. Chen et al., A novel garnet-type high-entropy oxide as air-stable solid electrolyte for Li-ion batteries. APL Mater. 10(12), 121104 (2022). https://doi.org/10.1063/5.0123562
- M. Zhu, H. Zhang, S.W.L. Favier, Y. Zhao, H. Guo et al., A general strategy towards controllable replication of butterfly wings for robust light photocatalysis. J. Mater. Sci. Technol. 105, 286–292 (2022). https://doi.org/10.1016/j.jmst.2021.07.035
- Y. Xin, W. Zhang, Z. Gao, J. Xiu, D. Yu et al., Preparation of ZnGa2O4-based deep ultraviolet photodetector with high photodetectivity by magnetron sputtering. Vacuum 224, 113165 (2024). https://doi.org/10.1016/j.vacuum.2024.113165
- D. Wang, S. Jiang, C. Duan, J. Mao, Y. Dong et al., Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. J. Alloys Compd. 844, 156158 (2020). https://doi.org/10.1016/j.jallcom.2020.156158
- C. Triolo, M. Maisuradze, M. Li, Y. Liu, A. Ponti et al., Charge storage mechanism in electrospun spinel-structured high-entropy (Mn0.2Fe0.2Co0.2Ni0.2Zn0.2)3O4 oxide nanofibers as anode material for Li-ion batteries. Small 19(46), 2304585 (2023). https://doi.org/10.1002/smll.202304585
- H.-Z. Xiang, H.-X. Xie, Y.-X. Chen, H. Zhang, A. Mao et al., Porous spinel-type (Al0.2CoCrFeMnNi)0.58O4-δ high-entropy oxide as a novel high-performance anode material for lithium-ion batteries. J. Mater. Sci. 56(13), 8127–8142 (2021). https://doi.org/10.1007/s10853-021-05805-5
- G.H.J. Johnstone, M.U. González-Rivas, K.M. Taddei, R. Sutarto, G.A. Sawatzky et al., Entropy engineering and tunable magnetic order in the spinel high-entropy oxide. J. Am. Chem. Soc. 144(45), 20590–20600 (2022). https://doi.org/10.1021/jacs.2c06768
- C.-Y. Huang, C.-W. Huang, M.-C. Wu, J. Patra, T. Xuyen Nguyen et al., Atomic-scale investigation of lithiation/delithiation mechanism in high-entropy spinel oxide with superior electrochemical performance. Chem. Eng. J. 420, 129838 (2021). https://doi.org/10.1016/j.cej.2021.129838
- Y. Zheng, X. Wu, X. Lan, R. Hu, A spinel (FeNiCrMnMgAl)3O4 high entropy oxide as a cycling stable anode material for Li-ion batteries. Processes 10(1), 49 (2022). https://doi.org/10.3390/pr10010049
- C. Liu, J. Bi, L. Xie, X. Gao, L. Meng, Preparation and electrochemical properties of two novel high entropy spinel oxides (MgTiZnNiFe)3O4 and (CoTiZnNiFe)3O4 by solid state reaction. Mater. Today Commun. 35, 106315 (2023). https://doi.org/10.1016/j.mtcomm.2023.106315
- Q. An, S. Li, J. Zhou, S. Ji, Z. Wen et al., Novel spinel multicomponent high-entropy oxide as anode for lithium-ion batteries with excellent electrochemical performance. Adv. Eng. Mater. 25(20), 2300585 (2023). https://doi.org/10.1002/adem.202300585
- L. Tian, Z. Zhang, S. Liu, G. Li, X. Gao, High-entropy spinel oxide nanofibers as catalytic sulfur hosts promise the high gravimetric and volumetric capacities for lithium–sulfur batteries. Energy Environ. Mater. 5(2), 645–654 (2022). https://doi.org/10.1002/eem2.12215
- T.X. Nguyen, J. Patra, C.-C. Tsai, W.-Y. Xuan, H.T. Chen et al., Secondary-phase-induced charge–discharge performance enhancement of Co-free high entropy spinel oxide electrodes for Li-ion batteries. Adv. Funct. Mater. 33(30), 2300509 (2023). https://doi.org/10.1002/adfm.202300509
- G. Ma, Y. Zheng, F. Meng, R. Hu, Understanding the lithiation mechanism of Li2O-doped spinel high-entropy oxides as anode materials for Li-ion batteries. Energy Adv. 2(10), 1685–1692 (2023). https://doi.org/10.1039/D3YA00326D
- C. Duan, K. Tian, X. Li, D. Wang, H. Sun et al., New spinel high-entropy oxides (FeCoNiCrMnXLi)3O4 (X = Cu, Mg, Zn) as the anode material for lithium-ion batteries. Ceram. Int. 47(22), 32025–32032 (2021). https://doi.org/10.1016/j.ceramint.2021.08.091
- Y. Wang, J. Liu, Y. Song, J. Yu, Y. Tian et al., High-entropy perovskites for energy conversion and storage: Design, synthesis, and potential applications. Small Meth. 7(4), 2201138 (2023). https://doi.org/10.1002/smtd.202201138
- D.A. Vinnik, E.A. Trofimov, V.E. Zhivulin, S.A. Gudkova, O.V. Zaitseva et al., High entropy oxide phases with perovskite structure. Nanomaterials 10(2), 268 (2020). https://doi.org/10.3390/nano10020268
- S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie et al., A new class of high-entropy perovskite oxides. Scr. Mater. 142, 116–120 (2018). https://doi.org/10.1016/j.scriptamat.2017.08.040
- Q. Yang, G. Wang, H. Wu, B.A. Beshiwork, D. Tian et al., A high-entropy perovskite cathode for solid oxide fuel cells. J. Alloys Compd. 872, 159633 (2021). https://doi.org/10.1016/j.jallcom.2021.159633
- A. Chatterjee, D. Ganguly, R. Sundara, S.S. Bhattacharya, High-entropy cubic perovskite oxide-based solid electrolyte in quasi-solid-state Li–S battery. Energy Technol. 12(1), 2300576 (2024). https://doi.org/10.1002/ente.202300576
- X. Wang, G. Liu, C. Tang, H. Tang, W. Zhang et al., A novel high entropy perovskite fluoride anode with 3D cubic framework for advanced lithium-ion battery. J. Alloys Compd. 934, 167889 (2023). https://doi.org/10.1016/j.jallcom.2022.167889
- Z. Li, B. Guan, F. Xia, J. Nie, W. Li et al., High-entropy perovskite as a high-performing chromium-tolerant cathode for solid oxide fuel cells. ACS Appl. Mater. Interfaces 14(21), 24363–24373 (2022). https://doi.org/10.1021/acsami.2c03657
- L. Spiridigliozzi, C. Ferone, R. Cioffi, G. Dell’Agli, A simple and effective predictor to design novel fluorite-structured high entropy oxides (HEOs). Acta Mater. 202, 181–189 (2021). https://doi.org/10.1016/j.actamat.2020.10.061
- H. Xu, Z. Zhang, J. Liu, C.-L. Do-Thanh, H. Chen et al., Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 11(1), 3908 (2020). https://doi.org/10.1038/s41467-020-17738-9
- S. Yan, S. Luo, L. Yang, J. Feng, P. Li et al., Novel P2-type layered medium-entropy ceramics oxide as cathode material for sodium-ion batteries. J. Adv. Ceram. 11(1), 158–171 (2022). https://doi.org/10.1007/s40145-021-0524-8
- X. Zhao, Z. Xing, C. Huang, Investigation of high-entropy Prussian blue analog as cathode material for aqueous sodium-ion batteries. J. Mater. Chem. A 11(42), 22835–22844 (2023). https://doi.org/10.1039/D3TA04349E
- Y. Huang, X. Zhang, L. Ji, L. Wang, B.X. Ben et al., Boosting the sodium storage performance of Prussian blue analogs by single-crystal and high-entropy approach. Energy Storage Mater. 58, 1–8 (2023). https://doi.org/10.1016/j.ensm.2023.03.011
- H. Pan, S. Lan, S. Xu, Q. Zhang, H. Yao et al., Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science 374(6563), 100–104 (2021). https://doi.org/10.1126/science.abi7687
- Y. Sharma, M.-C. Lee, K.C. Pitike, K.K. Mishra, Q. Zheng et al., High entropy oxide relaxor ferroelectrics. ACS Appl. Mater. Interfaces 14(9), 11962–11970 (2022). https://doi.org/10.1021/acsami.2c00340
- J. Patra, T.X. Nguyen, C.-C. Tsai, O. Clemens, J. Li et al., Effects of elemental modulation on phase purity and electrochemical properties of Co-free high-entropy spinel oxide anodes for lithium-ion batteries. Adv. Funct. Mater. 32(17), 2110992 (2022). https://doi.org/10.1002/adfm.202110992
- Z.-Y. Gu, J.-Z. Guo, J.-M. Cao, X.-T. Wang, X.-X. Zhao et al., An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density. Adv. Mater. 34(14), 2110108 (2022). https://doi.org/10.1002/adma.202110108
- S. Sun, C. Dai, P. Zhao, S. Xi, Y. Ren et al., Spin-related Cu–Co pair to increase electrochemical ammonia generation on high-entropy oxides. Nat. Commun. 15(1), 260 (2024). https://doi.org/10.1038/s41467-023-44587-z
- J. Zhang, J. Yan, S. Calder, Q. Zheng, M.A. McGuire et al., Long-range antiferromagnetic order in a rocksalt high entropy oxide. Chem. Mater. 31(10), 3705–3711 (2019). https://doi.org/10.1021/acs.chemmater.9b00624
- M. Zhang, J. Ye, Y. Gao, X. Duan, J. Zhao et al., General synthesis of high-entropy oxide nanofibers. ACS Nano 18(2), 1449–1463 (2024). https://doi.org/10.1021/acsnano.3c07506
- X. Lei, Y. Wang, J. Wang, Y. Su, P. Ji et al., Si-based high-entropy anode for lithium-ion batteries. Small Meth. 8(1), 2300754 (2024). https://doi.org/10.1002/smtd.202300754
- B. Xiao, G. Wu, T. Wang, Z. Wei, Y. Sui et al., High-entropy oxides as advanced anode materials for long-life lithium-ion batteries. Nano Energy 95, 106962 (2022). https://doi.org/10.1016/j.nanoen.2022.106962
- W. Zhang, H. Xia, Z. Zhu, Z. Lv, S. Cao et al., Decimal solvent-based high-entropy electrolyte enabling the extended survival temperature of lithium-ion batteries to –130 °C. CCS Chem. 3(4), 1245–1255 (2021). https://doi.org/10.31635/ccschem.020.202000341
- S. Hou, L. Su, S. Wang, Y. Cui, J. Cao et al., Unlocking the origins of highly reversible lithium storage and stable cycling in a spinel high-entropy oxide anode for lithium-ion batteries. Adv. Funct. Mater. 34(4), 2307923 (2024). https://doi.org/10.1002/adfm.202307923
- S.-H. Chung, Y.-H. Wu, Y.-H. Tseng, T.X. Nguyen, J.-M. Ting, High entropy oxide (CrMnFeNiMg)3O4 with large compositional space shows long-term stability as cathode in lithium–sulfur batteries. Chemsuschem 16(8), e202300135 (2023). https://doi.org/10.1002/cssc.202300135
- Y.-Q. Wang, H.-M. Wang, Y.-C. Jiang, G.-R. Li, S. Liu et al., High-entropy oxide nanofibers as catalytic host promising high volumetric capacity of sulfur-based composites for lithium–sulfur batteries. ACS Appl. Energy Mater. 6(16), 8377–8387 (2023). https://doi.org/10.1021/acsaem.3c01087
- A. Chatterjee, D. Ganguly, R. Sundara, S.S. Bhattacharya, Rare-earth doped configurational entropy stabilized high entropy spinel oxide as an efficient anchoring/catalyst functional interlayer for high-performance lithium-sulfur battery. Batter. Supercaps 6(7), e202300082 (2023). https://doi.org/10.1002/batt.202300082
- M. Li, L. Wang, Y. Shi, J. Zhang, Q. Zhu et al., High-entropy metal oxide containing hybrid electrolyte for long-life Li-metal batteries. Oxf. Open. Mater. Sci. (2022). https://doi.org/10.1093/oxfmat/itac011
- K. Du, Y. Liu, Y. Yang, F. Cui, J. Wang et al., High entropy oxides modulate atomic-level interactions for high-performance aqueous zinc-ion batteries. Adv. Mater. 35(51), 2301538 (2023). https://doi.org/10.1002/adma.202301538
- C. Ozgur, T. Erdil, U. Geyikci, C. Okuyucu, E. Lokcu et al., Engineering oxygen vacancies in (FeCrCoMnZn)3O4-δ high entropy spinel oxides through altering fabrication atmosphere for high-performance rechargeable zinc-air batteries. Glob. Chall. 8(1), 2300199 (2024). https://doi.org/10.1002/gch2.202300199
- H. Wang, X. Gao, S. Zhang, Y. Mei, L. Ni et al., High-entropy Na-deficient layered oxides for sodium-ion batteries. ACS Nano 17(13), 12530–12543 (2023). https://doi.org/10.1021/acsnano.3c02290
- L. Yao, P. Zou, C. Wang, J. Jiang, L. Ma et al., High-entropy and superstructure-stabilized layered oxide cathodes for sodium-ion batteries. Adv. Energy Mater. 12(41), 2201989 (2022). https://doi.org/10.1002/aenm.202201989
- B. Wang, J. Ma, K. Wang, D. Wang, G. Xu et al., High-entropy phase stabilization engineering enables high-performance layered cathode for sodium-ion batteries. Adv. Energy Mater. 14(23), 2401090 (2024). https://doi.org/10.1002/aenm.202401090
- T. Cai, M. Cai, J. Mu, S. Zhao, H. Bi et al., High-entropy layered oxide cathode enabling high-rate for solid-state sodium-ion batteries. Nano-Micro Lett. 16(1), 10 (2023). https://doi.org/10.1007/s40820-023-01232-0
- J. Mu, T. Cai, W. Dong, C. Zhou, Z. Han et al., Biphasic high-entropy layered oxide as a stable and high-rate cathode for sodium-ion batteries. Chem. Eng. J. 471, 144403 (2023). https://doi.org/10.1016/j.cej.2023.144403
- C.-C. Lin, H.-Y. Liu, J.-W. Kang, C.-C. Yang, C.-H. Li et al., In-situ X-ray studies of high-entropy layered oxide cathode for sodium-ion batteries. Energy Storage Mater. 51, 159–171 (2022). https://doi.org/10.1016/j.ensm.2022.06.035
- J. Dai, S. Tan, L. Wang, F. Ling, F. Duan et al., High-voltage potassium hexacyanoferrate cathode via high-entropy and potassium incorporation for stable sodium-ion batteries. ACS Nano 17(21), 20949–20961 (2023). https://doi.org/10.1021/acsnano.3c02323
- Y. Dang, Z. Xu, H. Yang, K. Tian, Z. Wang et al., Designing water/air-stable Co-free high-entropy oxide cathodes with suppressed irreversible phase transition for sodium-ion batteries. Appl. Surf. Sci. 636, 157856 (2023). https://doi.org/10.1016/j.apsusc.2023.157856
- J.-Z. Yen, Y.-C. Yang, H.-Y. Tuan, Interface engineering of high entropy oxide@polyaniline heterojunction enables highly stable and excellent lithium ion storage performance. Chem. Eng. J. 450, 137924 (2022). https://doi.org/10.1016/j.cej.2022.137924
- Y. Zhang, R. Wang, W. Song, M. Lei, Y. Zhang et al., Enhancing electrochemical performance of high-entropy Co/Ni-free P2/O3 hybrid-phase layered metal oxide cathode for sodium-ion batteries. Chem. Eng. J. 500, 157005 (2024). https://doi.org/10.1016/j.cej.2024.157005
- M. Barsoum, T. El-Raghy, The MAX phases: Unique new carbide and nitride materials. Am. Sci. 89(4), 334 (2001). https://doi.org/10.1511/2001.28.736
- M. Pogorielov, K. Smyrnova, S. Kyrylenko, O. Gogotsi, V. Zahorodna et al., MXenes-a new class of two-dimensional materials: Structure, properties and potential applications. Nanomaterials 11(12), 3412 (2021). https://doi.org/10.3390/nano11123412
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- K. Li, P. Hao, Q. Zhang, J. Zhang, S. Dmytro et al., First-principles calculation on the lithium storage properties of high-entropy MXene Ti3C2(N0.25O0.25F0.25S0.25)2. Dalton Trans. 52(48), 18323–18331 (2023). https://doi.org/10.1039/D3DT02869K
- L. Zhang, J. Shi, K. Niu, P. Jia, Y. Gao et al., First-principles studies on high-entropy Ti0.75V0.75Cr0.75Mo0.75C2 MXene nanosheets as anode materials in zinc-ion batteries. ACS Appl. Nano Mater. 6(22), 20812–20822 (2023). https://doi.org/10.1021/acsanm.3c03797
- L. Chen, Y. Li, K. Liang, K. Chen, M. Li et al., Two-dimensional MXenes derived from medium/high-entropy MAX phases M2GaC (M = Ti/V/Nb/Ta/Mo) and their electrochemical performance. Small Meth. 7(8), 2300054 (2023). https://doi.org/10.1002/smtd.202300054
- W. Ma, M. Wang, Q. Yi, D. Huang, J. Dang et al., A new Ti2V0.9Cr0.1C2Tx MXene with ultrahigh gravimetric capacitance. Nano Energy 96, 107129 (2022). https://doi.org/10.1016/j.nanoen.2022.107129
- A.S. Etman, J. Zhou, J. Rosen, Ti1.1V0.7CrxNb1.0Ta0.6C3Tz high-entropy MXene freestanding films for charge storage applications. Electrochem. Commun. 137, 107264 (2022). https://doi.org/10.1016/j.elecom.2022.107264
- Z. Du, C. Wu, Y. Chen, Z. Cao, R. Hu et al., High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater. 33(39), 2101473 (2021). https://doi.org/10.1002/adma.202101473
- J. Zhou, Q. Tao, B. Ahmed, J. Palisaitis, I. Persson et al., High-entropy laminate metal carbide (MAX phase) and its two-dimensional derivative MXene. Chem. Mater. 34(5), 2098–2106 (2022). https://doi.org/10.1021/acs.chemmater.1c03348
- X. He, Y. Qian, C. Wu, J. Feng, X. Sun et al., Entropy-mediated high-entropy MXenes nanotherapeutics: NIR-II-enhanced intrinsic oxidase mimic activity to combat methicillin-resistant staphylococcus aureus infection. Adv. Mater. 35(26), 2211432 (2023). https://doi.org/10.1002/adma.202211432
- S. Choi, W. Feng, Y. Xia, High entropy and Co-free high nickel based layered LiNi0.9Mn0.1O2 cathode for Li-ion batteries. ACS Appl. Energy Mater. 7(8), 3339–3346 (2024). https://doi.org/10.1021/acsaem.4c00095
- B. Yu, Y. Wang, J. Li, Y. Jin, Z. Liang et al., Recent advances on low-Co and Co-free high entropy layered oxide cathodes for lithium-ion batteries. Nanotechnology 34(45), 452501 (2023). https://doi.org/10.1088/1361-6528/acec4f
- J. Kuai, J. Xie, J.D. Wang, J.Y. Chen, J. Wang et al., Optimizing hard carbon materials for sodium-ion batteries: Insights from p size and soft carbon-coating strategy. J. Power. Sources 627, 235792 (2025). https://doi.org/10.1016/j.jpowsour.2024.235792
- W. Li, J. Li, B.W. Biney, Y. Yan, X. Lu et al., Innovative synthesis and sodium storage enhancement of closed-pore hard carbon for sodium-ion batteries. Energy Storage Mater. 74, 103867 (2025). https://doi.org/10.1016/j.ensm.2024.103867
- J. Fu, J. Wang, W. Yan, S. Cui, T. Zhang et al., Metalation of porphyrin units in a porous organic polymer stabilizing its anodic cycling performance in lithium-ion battery. J. Power. Sources 628, 235909 (2025). https://doi.org/10.1016/j.jpowsour.2024.235909
- B. Feng, T. Long, R. Li, Y.-L. Ding, Rationally constructing metallic Sn-ZnO heterostructure via in situ Mn doping for high-rate Na-ion batteries. Chin. Chem. Lett. 36(2), 110273 (2025). https://doi.org/10.1016/j.cclet.2024.110273
- R. Song, L. Yang, J. Luan, H. Yuan, S. Ji et al., MgSiO3 doped, carbon-coated SiOx anode with enhanced initial coulombic efficiency for lithium-ion battery. J. Energy Storage 105, 114687 (2025). https://doi.org/10.1016/j.est.2024.114687
- J. Bai, J.H. Jia, Y. Wang, C.C. Yang, Q. Jiang, Ideal bi-based hybrid anode material for ultrafast charging of sodium-ion batteries at extremely low temperatures. Nano-Micro Lett. 17(1), 60 (2024). https://doi.org/10.1007/s40820-024-01560-9
- M. Lechner, S. Wölfl, E. Kurz, R. Daub, Identification of critical moisture exposure for nickel-rich cathode active materials in lithium-ion battery production. J. Power. Sources 626, 235661 (2025). https://doi.org/10.1016/j.jpowsour.2024.235661
- H. Zhao, Y. Wang, R. Liu, W. Cheng, Y. Wu et al., Preparation and electrochemical properties of porous organic polymer with high ionic diffusion coefficient as cathode material for lithium-ion batteries. J. Power. Sources 626, 235733 (2025). https://doi.org/10.1016/j.jpowsour.2024.235733
- Z. Wu, Y. Guo, M. Zhao, F. Yang, D. Shen et al., Synergistic mechanisms of nitrogen configurations in sulfur hosts and their enhancement of electrochemical performance in lithium–sulfur batteries. J. Energy Storage 106, 114803 (2025). https://doi.org/10.1016/j.est.2024.114803
- Y. Yuan, J. Ma, C. Ma, X. Zhou, Y. Zhou, Multifactor induction of pseudocapacitive in manganese oxide cathode enabling high-performance aqueous zinc ion batteries. J. Energy Storage 105, 114595 (2025). https://doi.org/10.1016/j.est.2024.114595
- J. Hu, X. Li, Q. Liang, L. Xu, C. Ding et al., Optimization strategies of Na3V2(PO4)3 cathode materials for sodium-ion batteries. Nano-Micro Lett. 17(1), 33 (2024). https://doi.org/10.1007/s40820-024-01526-x
- Z. Zheng, X. Li, Y. Wang, Y. Zhang, Y. Jiang et al., Self-limited and reversible surface hydration of Na2Fe(SO4)2 cathodes for long-cycle-life Na-ion batteries. Energy Storage Mater. 74, 103882 (2025). https://doi.org/10.1016/j.ensm.2024.103882
- A. Zeng, Y. He, M. Qin, C. Hu, F. Huang et al., Robust interface for O3-type layered cathode towards stable ether-based sodium-ion full batteries. Energy Storage Mater. 74, 103894 (2025). https://doi.org/10.1016/j.ensm.2024.103894
- P. Dai, J. Huang, X. Cao, J. Zhao, L. Xue et al., Central metal coordination environment optimization enhances Na diffusion and structural stability in Prussian blue analogues. Energy Storage Mater. 74, 103890 (2025). https://doi.org/10.1016/j.ensm.2024.103890
- B. Xiao, G. Wu, T. Wang, Z. Wei, Z. Xie et al., Enhanced Li-ion diffusion and cycling stability of Ni-free high-entropy spinel oxide anodes with high-concentration oxygen vacancies. ACS Appl. Mater. Interfaces 15(2), 2792–2803 (2023). https://doi.org/10.1021/acsami.2c12374
- G. Liang, Z. Wu, C. Didier, W. Zhang, J. Cuan et al., A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping. Angew. Chem. Int. Ed. 59(26), 10594–10602 (2020). https://doi.org/10.1002/anie.202001454
- Q. Wang, C. Zhao, Z. Yao, J. Wang, F. Wu et al., Entropy-driven liquid electrolytes for lithium batteries. Adv. Mater. 35(17), 2210677 (2023). https://doi.org/10.1002/adma.202210677
- S. Li, J. Lin, M. Schaller, S. Indris, X. Zhang et al., High-entropy lithium argyrodite solid electrolytes enabling stable all-solid-state batteries. Angew. Chem. Int. Ed. 62(50), e202314155 (2023). https://doi.org/10.1002/anie.202314155
- G. Sun, H. Lin, S. Yao, Z. Wei, N. Chen et al., High-entropy solid-state Na-ion conductor for stable sodium-metal batteries. Chem. Eur. J. 29(28), e202300413 (2023). https://doi.org/10.1002/chem.202300413
- H. Jia, Y. Li, U. Ali, B. Liu, Z. Jin et al., High-entropy doping strategy towards reinforced Mn-O bond for durable aqueous zinc ion batteries. Nano Energy 122, 109348 (2024). https://doi.org/10.1016/j.nanoen.2024.109348
- B. Hu, G. Lau, K.X. Lee, S. Belko, P. Singh et al., Ethanol-fueled metal supported solid oxide fuel cells with a high entropy alloy internal reforming catalyst. J. Power. Sources 582, 233544 (2023). https://doi.org/10.1016/j.jpowsour.2023.233544
- Z. Jin, J. Lyu, Y.-L. Zhao, H. Li, X. Lin et al., Rugged high-entropy alloy nanowires with in situ formed surface spinel oxide as highly stable electrocatalyst in Zn–air batteries. ACS Mater. Lett. 2(12), 1698–1706 (2020). https://doi.org/10.1021/acsmaterialslett.0c00434
- J. Feng, Y. Liu, D. Fang, J. Li, Reusing the steel slag to design a gradient-doped high-entropy oxide for high-performance sodium ion batteries. Nano Energy 118, 109030 (2023). https://doi.org/10.1016/j.nanoen.2023.109030
- Y. Ding, Z.P. Cano, A. Yu, J. Lu, Z. Chen, Automotive Li-ion batteries: Current status and future perspectives. Electrochem. Energy Rev. 2(1), 1–28 (2019). https://doi.org/10.1007/s41918-018-0022-z
- L. Zhao, B. Ding, X.-Y. Qin, Z. Wang, W. Lv et al., Revisiting the roles of natural graphite in ongoing lithium-ion batteries. Adv. Mater. 34(18), e2106704 (2022). https://doi.org/10.1002/adma.202106704
- M.R. Esmaeili, S. Noorsina, S.K. Sadrnezhaad, High-entropy spinel-structured (VCrNiCoMn)3O4 anode for Li-ion batteries. J. Energy Storage 105, 114796 (2025). https://doi.org/10.1016/j.est.2024.114796
- F. Zhai, X. Zhu, W. Zhang, G. Cao, H. Zhang et al., Insight of the evolution of structure and energy storage mechanism of (FeCoNiCrMn)3O4 spinel high entropy oxide in life-cycle span as lithium-ion battery anode. J. Power. Sources 603, 234418 (2024). https://doi.org/10.1016/j.jpowsour.2024.234418
- N. Qiu, H. Chen, Z. Yang, S. Sun, Y. Wang et al., A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. J. Alloys Compd. 777, 767–774 (2019). https://doi.org/10.1016/j.jallcom.2018.11.049
- R. Ren, Y. Xiong, Z. Xu, J. Zhang, Y. Zhang et al., Fast synthesis of high-entropy oxides for lithium-ion storage. Chem. Eng. J. 479, 147896 (2024). https://doi.org/10.1016/j.cej.2023.147896
- Y.-J. Liao, W.-W. Shen, C.-B. Chang, H.-Y. Tuan, High-entropy transition metal disulfide colloid clusters: Synergistic atomic scale interaction and interconnected network for ultra-stable potassium ion storage. Chem. Eng. J. 469, 143942 (2023). https://doi.org/10.1016/j.cej.2023.143942
- N. Ci, Y. Hu, Q. Li, J. Cheng, H. Zhang et al., Cycling reconstructed hierarchical nanoporous high-entropy oxides with continuously increasing capacity for Li storage. Small Meth. 8(8), 2301322 (2024). https://doi.org/10.1002/smtd.202301322
- C. Zhang, M. Su, Y. Luo, X. Zhang, S. Li et al., High entropy oxide duplex yolk–shell structure with isogenic amorphous/crystalline heterophase as a promising anode material for lithium-ion batteries. Small 21(3), 2407361 (2025). https://doi.org/10.1002/smll.202407361
- J. Wang, Y. Wang, X. Lu, J. Qian, C. Yang et al., Ultra-sleek high entropy alloy tights: Realizing superior cyclability for anode-free battery. Adv. Mater. 36(11), 2308257 (2024). https://doi.org/10.1002/adma.202308257
- S. Li, Z. Peng, X. Fu, Zn0.5Co0.5Mn0.5Fe0.5Al0.5Mg0.5O4 high-entropy oxide with high capacity and ultra-long life for Li-ion battery anodes. J. Adv. Ceram. 12(1), 59–71 (2023). https://doi.org/10.26599/jac.2023.9220666
- Y. Li, Z. Chen, J. Liu, R. Liu, C. Zhang et al., Novel high entropy oxide as anode for high performance lithium-ion capacitors. Ceram. Int. 49(23), 38439–38447 (2023). https://doi.org/10.1016/j.ceramint.2023.09.173
- K.-H. Tian, C.-Q. Duan, Q. Ma, X.-L. Li, Z.-Y. Wang et al., High-entropy chemistry stabilizing spinel oxide (CoNiZnXMnLi)3O4 (X = Fe, Cr) for high-performance anode of Li-ion batteries. Rare Met. 41(4), 1265–1275 (2022). https://doi.org/10.1007/s12598-021-01872-4
- D. Shin, S. Chae, S. Park, B. Seo, W. Choi, Rational engineering of high-entropy oxides for Li-ion battery anodes with finely tuned combustion syntheses. NPG Asia Mater. 15, 54 (2023). https://doi.org/10.1038/s41427-023-00502-y
- E. Lökçü, Ç. Toparli, M. Anik, Electrochemical performance of (MgCoNiZn)1-xLixO high-entropy oxides in lithium-ion batteries. ACS Appl. Mater. Interfaces 12(21), 23860–23866 (2020). https://doi.org/10.1021/acsami.0c03562
- Y. Wei, X. Liu, R. Yao, J. Qian, Y. Yin et al., Embedding the high entropy alloy nanops into carbon matrix toward high performance Li-ion batteries. J. Alloys Compd. 938, 168610 (2023). https://doi.org/10.1016/j.jallcom.2022.168610
- X.L. Wang, E.M. Kim, T.G. Senthamaraikannan, D.-H. Lim, S.M. Jeong, Porous hollow high entropy metal oxides (NiCoCuFeMg)3O4 nanofiber anode for high-performance lithium-ion batteries. Chem. Eng. J. 484, 149509 (2024). https://doi.org/10.1016/j.cej.2024.149509
- J. Zhao, X. Yang, Y. Huang, F. Du, Y. Zeng, Entropy stabilization effect and oxygen vacancies enabling spinel oxide highly reversible lithium-ion storage. ACS Appl. Mater. Interfaces 13(49), 58674–58681 (2021). https://doi.org/10.1021/acsami.1c18362
- J. Yang, X. Liang, H.-H. Ryu, C.S. Yoon, Y.-K. Sun, Ni-rich layered cathodes for lithium-ion batteries: From challenges to the future. Energy Storage Mater. 63, 102969 (2023). https://doi.org/10.1016/j.ensm.2023.102969
- Q. Zheng, Z. Ren, Y. Zhang, T. Qin, J. Qi et al., Surface phase conversion in a high-entropy layered oxide cathode material. ACS Appl. Mater. Interfaces 15(3), 4643–4651 (2023). https://doi.org/10.1021/acsami.2c16194
- R. Zhang, C. Wang, P. Zou, R. Lin, L. Ma et al., Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 610(7930), 67–73 (2022). https://doi.org/10.1038/s41586-022-05115-z
- Q. Zheng, Z. Ren, Y. Zhang, X. Liu, J. Ma et al., Surface-stabilized high-entropy layered oxyfluoride cathode for lithium-ion batteries. J. Phys. Chem. Lett. 14(24), 5553–5559 (2023). https://doi.org/10.1021/acs.jpclett.3c00891
- Y. Ma, Z. Zhou, T. Brezesinski, Y. Ma, Y. Wu, Stabilizing layered cathodes by high-entropy doping. Research 7, 0503 (2024). https://doi.org/10.34133/research.0503
- K. Yuan, T. Tu, C. Shen, L. Zhou, J. Liu et al., Self-ball milling strategy to construct high-entropy oxide coated LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance. J. Adv. Ceram. 11(6), 882–892 (2022). https://doi.org/10.1007/s40145-022-0582-6
- S. Zeng, Y. Zhu, J. Si, H. Liu, Y. Wang et al., High-entropy doping for high-voltage LiCoO2 with enhanced electrochemical performances. J. Power. Sources 626, 235726 (2025). https://doi.org/10.1016/j.jpowsour.2024.235726
- Z. Song, T. Wang, H. Yang, W.H. Kan, Y. Chen et al., Promoting high-voltage stability through local lattice distortion of halide solid electrolytes. Nat. Commun. 15, 1481 (2024). https://doi.org/10.1038/s41467-024-45864-1
- H. Yang, L. He, Q. Chen, J. Zhu, G. Jiang et al., Phase-selective defects engineering in dual-phase high entropy oxide for Li-ion storage. Chem. Eng. J. 488, 151113 (2024). https://doi.org/10.1016/j.cej.2024.151113
- J. Kim, S. Yang, Y. Zhong, G. Tompsett, S. Jeong et al., High-entropy Li-rich layered oxide cathode for Li-ion batteries. J. Power. Sources 628, 235915 (2025). https://doi.org/10.1016/j.jpowsour.2024.235915
- R. Deng, B. Ke, Y. Xie, S. Cheng, C. Zhang et al., All-solid-state thin-film lithiumss-sulfur batteries. Nano-Micro Lett. 15(1), 73 (2023). https://doi.org/10.1007/s40820-023-01064-y
- S. Liao, Y. Xie, W. Zheng, Z. Huang, H. Zhang et al., Enhancing rate performance in lithium–sulfur batteries via synergistic bidirectional catalysis and improved conductivity. Chem. Eng. J. 506, 160022 (2025). https://doi.org/10.1016/j.cej.2025.160022
- Z. Huang, L. Deng, W. Li, J. Zhang, S. Liao et al., Towards high performance inorganic all-solid-state lithium–sulfur batteries: Strategies for enhancing reaction kinetics and solid-solid contact. Sci. China Mater. 68(5), 1530–1541 (2025). https://doi.org/10.1007/s40843-024-3276-3
- Y. Xie, W. Zheng, J. Ao, Y. Shao, X. Huang et al., Multifunctional Ni-doped CoSe2 nanops decorated bilayer carbon structures for polysulfide conversion and dendrite-free lithium toward high-performance Li-S full cell. Energy Storage Mater. 62, 102925 (2023). https://doi.org/10.1016/j.ensm.2023.102925
- Y. Xie, J. Cao, X. Wang, W. Li, L. Deng et al., MOF-derived bifunctional Co0.85Se nanops embedded in N-doped carbon nanosheet arrays as efficient sulfur hosts for lithium–sulfur batteries. Nano Lett. 21(20), 8579–8586 (2021). https://doi.org/10.1021/acs.nanolett.1c02037
- J. Cao, Y. Xie, Y. Yang, X. Wang, W. Li et al., Achieving uniform Li plating/stripping at ultrahigh currents and capacities by optimizing 3D nucleation sites and Li2Se-enriched SEI. Adv. Sci. 9(9), 2104689 (2022). https://doi.org/10.1002/advs.202104689
- H. Fan, Y. Si, Y. Zhang, F. Zhu, X. Wang et al., Grapevine-like high entropy oxide composites boost high-performance lithium sulfur batteries as bifunctional interlayers. Green Energy Environ. 9(3), 565–572 (2024). https://doi.org/10.1016/j.gee.2022.11.001
- Q. Liang, S. Wang, X. Lu, X. Jia, J. Yang et al., High-entropy MXene as bifunctional mediator toward advanced Li-S full batteries. ACS Nano 18(3), 2395–2408 (2024). https://doi.org/10.1021/acsnano.3c10731
- Y. Ma, Y. Ren, D. Sun, B. Wang, H. Wu et al., High entropy alloy nanops dual-decorated with nitrogen-doped carbon and carbon nanotubes as promising electrocatalysts for lithium–sulfur batteries. J. Mater. Sci. Technol. 188, 98–104 (2024). https://doi.org/10.1016/j.jmst.2023.11.063
- Z. Wang, L. Fang, X. Fu, S. Zhang, H. Kong et al., A Ni/Co-free high-entropy layered cathode with suppressed phase transition and near-zero strain for high-voltage sodium-ion batteries. Chem. Eng. J. 480, 148130 (2024). https://doi.org/10.1016/j.cej.2023.148130
- K. Walczak, A. Plewa, C. Ghica, W. Zając, A. Trenczek-Zając et al., NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 high-entropy layered oxide–experimental and theoretical evidence of high electrochemical performance in sodium batteries. Energy Storage Mater. 47, 500–514 (2022). https://doi.org/10.1016/j.ensm.2022.02.038
- Y.-H. Tseng, Y.-C. Lin, Y.-H. Wu, J.-M. Ting, S.-H. Chung, High-entropy oxide/phase-inverted carbon for enhanced lithium–sulfur batteries. J. Energy Storage 68, 107767 (2023). https://doi.org/10.1016/j.est.2023.107767
- R. Colombo, N. Garino, D. Versaci, J. Amici, M.L. Para et al., Designing a double-coated cathode with high entropy oxides by microwave-assisted hydrothermal synthesis for highly stable Li-S batteries. J. Mater. Sci. 57(33), 15690–15704 (2022). https://doi.org/10.1007/s10853-022-07625-7
- Z. Zhou, Z. Chen, H. Lv, Y. Zhao, H. Wei et al., High-entropy nanop constructed porous honeycomb as a 3D sulfur host for lithium polysulfide adsorption and catalytic conversion in Li–S batteries. J. Mater. Chem. A 11(11), 5883–5
References
K. Zeb, S.M. Ali, B. Khan, C.A. Mehmood, N. Tareen et al., A survey on waste heat recovery: Electric power generation and potential prospects within Pakistan. Renew. Sustain. Energy Rev. 75, 1142–1155 (2017). https://doi.org/10.1016/j.rser.2016.11.096
M.R. Al Hassan, A. Sen, T. Zaman, M.S. Mostari, Emergence of graphene as a promising anode material for rechargeable batteries: A review. Mater. Today Chem. 11, 225–243 (2019). https://doi.org/10.1016/j.mtchem.2018.11.006
Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv. Energy Mater. 7(23), 1700715 (2017). https://doi.org/10.1002/aenm.201700715
F. Dou, L. Shi, G. Chen, D. Zhang, Silicon/carbon composite anode materials for lithium-ion batteries. Electrochem. Energy Rev. 2(1), 149–198 (2019). https://doi.org/10.1007/s41918-018-00028-w
M.V. Reddy, G.V. Subba Rao, B.R. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113(7), 5364–5457 (2013). https://doi.org/10.1021/cr3001884
B. Ke, X. Wang, Integratable all-solid-state thin-film microbatteries. Proc. Natl. Acad. Sci. U.S.A. 122(16), e2415693122 (2025). https://doi.org/10.1073/pnas.2415693122
B. Ke, S. Cheng, C. Zhang, W. Li, J. Zhang et al., Low-temperature flexible integration of all-solid-state thin-film lithium batteries enabled by spin-coating electrode architecture. Adv. Energy Mater. 14(12), 2303757 (2024). https://doi.org/10.1002/aenm.202303757
J. Zhang, W. Li, Z. Liu, Z. Huang, H. Wang et al., All-solid-state thin-film lithium-selenium batteries. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202503732
M. Zhu, H. Jiang, A. Zhao, B. Chen, Z.K. Ng et al., Thermal boundary resistance and thermal rectification in VACNT arrays integrated with SnZn alloys. J. Alloys Compd. 969, 172480 (2023). https://doi.org/10.1016/j.jallcom.2023.172480
Z. Leong, H. Jin, Z.M. Wong, K. Nemani, B. Anasori et al., Elucidating the chemical order and disorder in high-entropy MXenes: A high-throughput survey of the atomic configurations in TiVNbMoC3 and TiVCrMoC3. Chem. Mater. 34(20), 9062–9071 (2022). https://doi.org/10.1021/acs.chemmater.2c01673
Y. Jia, S. Chen, X. Shao, J. Chen, D.-L. Fang et al., Synergetic effect of lattice distortion and oxygen vacancies on high-rate lithium-ion storage in high-entropy perovskite oxides. J. Adv. Ceram. 12(6), 1214–1227 (2023). https://doi.org/10.26599/jac.2023.9220751
H. Raza, J. Cheng, C. Lin, S. Majumder, G. Zheng et al., High-entropy stabilized oxides derived via a low-temperature template route for high-performance lithium-sulfur batteries. EcoMat 5(4), e12324 (2023). https://doi.org/10.1002/eom2.12324
Q. Dong, M. Hong, J. Gao, T. Li, M. Cui et al., Rapid synthesis of high-entropy oxide microps. Small 18(11), 2104761 (2022). https://doi.org/10.1002/smll.202104761
Y. Bai, J. Li, H. Lu, J. Liu, C. Ma et al., Ultrafast high-temperature sintering of high-entropy oxides with refined microstructure and superior lithium-ion storage performance. J. Adv. Ceram. 12(10), 1857–1871 (2023). https://doi.org/10.26599/jac.2023.9220793
W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao et al., Mechanical behavior of high-entropy alloys. Prog. Mater. Sci. 118, 100777 (2021). https://doi.org/10.1016/j.pmatsci.2021.100777
B. Yang, Y. Zhang, H. Pan, W. Si, Q. Zhang et al., High-entropy enhanced capacitive energy storage. Nat. Mater. 21(9), 1074–1080 (2022). https://doi.org/10.1038/s41563-022-01274-6
Z. Rao, P.Y. Tung, R. Xie, Y. Wei, H. Zhang et al., Machine learning-enabled high-entropy alloy discovery. Science 378(6615), 78–85 (2022). https://doi.org/10.1126/science.abo4940
Z. Sun, Y. Zhao, C. Sun, Q. Ni, C. Wang et al., High entropy spinel-structure oxide for electrochemical application. Chem. Eng. J. 431, 133448 (2022). https://doi.org/10.1016/j.cej.2021.133448
Q. Wang, A. Sarkar, Z. Li, Y. Lu, L. Velasco et al., High entropy oxides as anode material for Li-ion battery applications: A practical approach. Electrochem. Commun. 100, 121–125 (2019). https://doi.org/10.1016/j.elecom.2019.02.001
X. Du, K. Zhang, Recent progress in fibrous high-entropy energy harvesting devices for wearable applications. Nano Energy 101, 107600 (2022). https://doi.org/10.1016/j.nanoen.2022.107600
B. Cantor, Multicomponent and high entropy alloys. Entropy 16(9), 4749–4768 (2014). https://doi.org/10.3390/e16094749
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004). https://doi.org/10.1002/adem.200300567
L. He, M. Li, L. Qiu, S. Geng, Y. Liu et al., Single-atom Mo-tailored high-entropy-alloy ultrathin nanosheets with intrinsic tensile strain enhance electrocatalysis. Nat. Commun. 15(1), 2290 (2024). https://doi.org/10.1038/s41467-024-45874-z
M. Feuerbacher, M. Heidelmann, C. Thomas, Hexagonal high-entropy alloys. Mater. Res. Lett. 3(1), 1–6 (2015). https://doi.org/10.1080/21663831.2014.951493
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey et al., Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015). https://doi.org/10.1038/ncomms9485
D. Bérardan, S. Franger, A.K. Meena, N. Dragoe, Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 4(24), 9536–9541 (2016). https://doi.org/10.1039/c6ta03249d
Y. Yao, Z. Huang, P. Xie, S.D. Lacey, R.J. Jacob et al., Carbothermal shock synthesis of high-entropy-alloy nanops. Science 359(6383), 1489–1494 (2018). https://doi.org/10.1126/science.aan5412
J. Gild, M. Samiee, J.L. Braun, T. Harrington, H. Vega et al., High-entropy fluorite oxides. J. Eur. Ceram. Soc. 38(10), 3578–3584 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.04.010
X. Wang, Q. Dong, H. Qiao, Z. Huang, M.T. Saray et al., Continuous synthesis of hollow high-entropy nanops for energy and catalysis applications. Adv. Mater. 32(46), 2002853 (2020). https://doi.org/10.1002/adma.202002853
C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling et al., Rational design of layered oxide materials for sodium-ion batteries. Science 370(6517), 708–711 (2020). https://doi.org/10.1126/science.aay9972
Y. Yao, Z. Huang, L.A. Hughes, J. Gao, T. Li et al., Extreme mixing in nanoscale transition metal alloys. Matter 4(7), 2340–2353 (2021). https://doi.org/10.1016/j.matt.2021.04.014
S.K. Nemani, B. Zhang, B.C. Wyatt, Z.D. Hood, S. Manna et al., High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 15(8), 12815–12825 (2021). https://doi.org/10.1021/acsnano.1c02775
J. Ren, Y. Zhang, D. Zhao, Y. Chen, S. Guan et al., Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing. Nature 608(7921), 62–68 (2022). https://doi.org/10.1038/s41586-022-04914-8
M. Du, P. Geng, C. Pei, X. Jiang, Y. Shan et al., High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 61(41), e202209350 (2022). https://doi.org/10.1002/anie.202209350
G. Cao, J. Liang, Z. Guo, K. Yang, G. Wang et al., Liquid metal for high-entropy alloy nanops synthesis. Nature 619(7968), 73–77 (2023). https://doi.org/10.1038/s41586-023-06082-9
M.C. Folgueras, Y. Jiang, J. Jin, P. Yang, High-entropy halide perovskite single crystals stabilized by mild chemistry. Nature 621(7978), 282–288 (2023). https://doi.org/10.1038/s41586-023-06396-8
P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 6(1–2), 74–78 (2004). https://doi.org/10.1002/adem.200300507
J.-W. Yeh, Recent progress in high-entropy alloys. Ann. Chim. Sci. Mat. 31(6), 633–648 (2006). https://doi.org/10.3166/acsm.31.633-648
A. Sarkar, Q. Wang, A. Schiele, M.R. Chellali, S.S. Bhattacharya et al., High-entropy oxides: Fundamental aspects and electrochemical properties. Adv. Mater. 31(26), e1806236 (2019). https://doi.org/10.1002/adma.201806236
Z. Zhou, Y. Zhou, Q. He, Z. Ding, F. Li et al., Machine learning guided appraisal and exploration of phase design for high entropy alloys. NPJ Comput. Mater. 5, 128 (2019). https://doi.org/10.1038/s41524-019-0265-1
A. Sarkar, B. Breitung, H. Hahn, High entropy oxides: The role of entropy, enthalpy and synergy. Scr. Mater. 187, 43–48 (2020). https://doi.org/10.1016/j.scriptamat.2020.05.019
X. Zhao, Z. Fu, X. Zhang, X. Wang, B. Li et al., More is better: High-entropy electrolyte design in rechargeable batteries. Energy Environ. Sci. 17(7), 2406–2430 (2024). https://doi.org/10.1039/d3ee03821a
Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: Challenges and prospects. Mater. Today 19(6), 349–362 (2016). https://doi.org/10.1016/j.mattod.2015.11.026
D. Evans, J. Chen, G. Bokas, W. Chen, G. Hautier et al., Visualizing temperature-dependent phase stability in high entropy alloys. NPJ Comput. Mater. 7, 151 (2021). https://doi.org/10.1038/s41524-021-00626-1
C. Oses, C. Toher, S. Curtarolo, High-entropy ceramics. Nat. Rev. Mater. 5(4), 295–309 (2020). https://doi.org/10.1038/s41578-019-0170-8
Z. Wen, Z. Tang, Y. Liu, L. Zhuang, H. Yu et al., Ultrastrong and high thermal insulating porous high-entropy ceramics up to 2000 ℃. Adv. Mater. 36(14), 2311870 (2024). https://doi.org/10.1002/adma.202311870
Y. Han, X. Liu, Q. Zhang, M. Huang, Y. Li et al., Ultra-dense dislocations stabilized in high entropy oxide ceramics. Nat. Commun. 13(1), 2871 (2022). https://doi.org/10.1038/s41467-022-30260-4
Y. Tang, D. Zhang, R. Liu, D. Li, Designing high-entropy ceramics via incorporation of the bond-mechanical behavior correlation with the machine-learning methodology. Cell Rep. Phys. Sci. 2(11), 100640 (2021). https://doi.org/10.1016/j.xcrp.2021.100640
Y. Xu, X. Xu, L. Bi, A high-entropy spinel ceramic oxide as the cathode for proton-conducting solid oxide fuel cells. J. Adv. Ceram. 11(5), 794–804 (2022). https://doi.org/10.1007/s40145-022-0573-7
M.-H. Tsai, J.-W. Yeh, High-entropy alloys: A critical review. Mater. Res. Lett. 2(3), 107–123 (2014). https://doi.org/10.1080/21663831.2014.912690
W.-L. Hsu, C.-W. Tsai, A.-C. Yeh, J.-W. Yeh, Clarifying the four core effects of high-entropy materials. Nat. Rev. Chem. 8(6), 471–485 (2024). https://doi.org/10.1038/s41570-024-00602-5
K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61(13), 4887–4897 (2013). https://doi.org/10.1016/j.actamat.2013.04.058
B. Xiao, J. Luan, S. Zhao, L. Zhang, S. Chen et al., Achieving thermally stable nanops in chemically complex alloys via controllable sluggish lattice diffusion. Nat. Commun. 13(1), 4870 (2022). https://doi.org/10.1038/s41467-022-32620-6
D. Du, H. He, R. Zheng, L. Zeng, X. Wang et al., Single-atom immobilization boosting oxygen redox kinetics of high-entropy perovskite oxide toward high-performance lithium-oxygen batteries. Adv. Energy Mater. 14(17), 2304238 (2024). https://doi.org/10.1002/aenm.202304238
T.X. Nguyen, Y.-C. Liao, C.-C. Lin, Y.-H. Su, J.-M. Ting, Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 31(27), 2101632 (2021). https://doi.org/10.1002/adfm.202101632
Y. Wang, X.-Y. Zhang, H. He, J.-J. Chen, B. Liu, Ordered mesoporous high-entropy intermetallics for efficient oxygen reduction electrocatalysis. Adv. Energy Mater. 14(8), 2303923 (2024). https://doi.org/10.1002/aenm.202303923
S. Liu, Y. Wang, T. Jiang, S. Jin, M. Sajid et al., Non-noble metal high-entropy alloy-based catalytic electrode for long-life hydrogen gas batteries. ACS Nano 18(5), 4229–4240 (2024). https://doi.org/10.1021/acsnano.3c09482
X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132(2–3), 233–238 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.021
S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109(10), 103505 (2011). https://doi.org/10.1063/1.3587228
M.V. Kamal, S. Ragunath, M. Hema Sagar Reddy, N. Radhika, B. Saleh, Recent advancements in lightweight high entropy alloys–A comprehensive review. Int. J. Light. Mater. Manuf. 7(5), 699–720 (2024). https://doi.org/10.1016/j.ijlmm.2024.06.001
F. Müller, B. Gorr, H.-J. Christ, J. Müller, B. Butz et al., On the oxidation mechanism of refractory high entropy alloys. Corros. Sci. 159, 108161 (2019). https://doi.org/10.1016/j.corsci.2019.108161
F. Maresca, W.A. Curtin, Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K. Acta Mater. 182, 235–249 (2020). https://doi.org/10.1016/j.actamat.2019.10.015
D. Han, B. Yang, W. Xu, H. Yang, G. Han et al., Significantly ameliorating room-temperature brittleness of refractory high-entropy alloys via in situ heterogeneous structure. J. Mater. Sci. Technol. 193, 1–17 (2024). https://doi.org/10.1016/j.jmst.2024.01.022
L. Lin, K. Wang, A. Sarkar, C. Njel, G. Karkera et al., High-entropy sulfides as electrode materials for Li-ion batteries. Adv. Energy Mater. 12(8), 2103090 (2022). https://doi.org/10.1002/aenm.202103090
W. Wang, G. Sun, X. Sun, Z. Zhang, J. Zhang et al., Electromagnetic wave absorbing properties of high-entropy transition metal carbides powders. Mater. Res. Bull. 163, 112212 (2023). https://doi.org/10.1016/j.materresbull.2023.112212
H.W. Seong, M.S. Lee, H.J. Ryu, First-principles study for discovery of novel synthesizable 2D high-entropy transition metal carbides (MXenes). J. Mater. Chem. A 11(11), 5681–5695 (2023). https://doi.org/10.1039/D2TA09996A
P. Das, Y. Dong, X. Wu, Y. Zhu, Z.-S. Wu, Perspective on high entropy MXenes for energy storage and catalysis. Sci. Bull. 68(16), 1735–1739 (2023). https://doi.org/10.1016/j.scib.2023.07.022
L. Qiao, J. Bi, G. Liang, Y. Yang, H. Wang et al., Synthesis of high-entropy MXenes with high-efficiency electromagnetic wave absorption. J. Adv. Ceram. 12(10), 1902–1918 (2023). https://doi.org/10.26599/jac.2023.9220796
A. Mao, H.-Z. Xiang, Z.-G. Zhang, K. Kuramoto, H. Yu et al., Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder. J. Magn. Magn. Mater. 484, 245–252 (2019). https://doi.org/10.1016/j.jmmm.2019.04.023
M. Stygar, J. Dąbrowa, M. Moździerz, M. Zajusz, W. Skubida et al., Formation and properties of high entropy oxides in Co–Cr–Fe–Mg–Mn–Ni–O system: Novel (Cr, Fe, Mg, Mn, Ni)3O4 and (Co, Cr, Fe, Mg, Mn)3O4 high entropy spinels. J. Eur. Ceram. Soc. 40(4), 1644–1650 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.030
T.X. Nguyen, J. Patra, J.-K. Chang, J.-M. Ting, High entropy spinel oxide nanops for superior lithiation–delithiation performance. J. Mater. Chem. A 8(36), 18963–18973 (2020). https://doi.org/10.1039/d0ta04844e
S. Ye, J. Zhu, S. Zhu, Y. Zhao, M. Li et al., Design strategies for perovskite-type high-entropy oxides with applications in optics. ACS Appl. Mater. Interfaces 15(40), 47475–47486 (2023). https://doi.org/10.1021/acsami.3c09447
T. Erdil, C. Toparli, B-site effect on high-entropy perovskite oxide as a bifunctional electrocatalyst for rechargeable zinc–air batteries. ACS Appl. Energy Mater. 6(21), 11255–11267 (2023). https://doi.org/10.1021/acsaem.3c02149
L. Tian, Z. Zhang, S. Liu, G. Li, X. Gao, High-entropy perovskite oxide nanofibers as efficient bidirectional electrocatalyst of liquid-solid conversion processes in lithium–sulfur batteries. Nano Energy 106, 108037 (2023). https://doi.org/10.1016/j.nanoen.2022.108037
K. Tian, H. He, X. Li, D. Wang, Z. Wang et al., Boosting electrochemical reaction and suppressing phase transition with a high-entropy O3-type layered oxide for sodium-ion batteries. J. Mater. Chem. A 10(28), 14943–14953 (2022). https://doi.org/10.1039/D2TA02451A
A. Joshi, S. Chakrabarty, S.H. Akella, A. Saha, A. Mukherjee et al., High-entropy Co-free O3-Type layered oxyfluoride: A promising air-stable cathode for sodium-ion batteries. Adv. Mater. 35(51), 2304440 (2023). https://doi.org/10.1002/adma.202304440
J. Liu, W. Huang, R. Liu, J. Lang, Y. Li et al., Entropy tuning stabilizing P2-type layered cathodes for sodium-ion batteries. Adv. Funct. Mater. 34(24), 2315437 (2024). https://doi.org/10.1002/adfm.202315437
P. Zhou, Z. Che, J. Liu, J. Zhou, X. Wu et al., High-entropy P2/O3biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries. Energy Storage Mater. 57, 618–627 (2023). https://doi.org/10.1016/j.ensm.2023.03.007
S. Ma, P. Zou, H.L. Xin, Extending phase-variation voltage zones in P2-type sodium cathodes through high-entropy doping for enhanced cycling stability and rate capability. Mater. Today Energy 38, 101446 (2023). https://doi.org/10.1016/j.mtener.2023.101446
Y. Xiao, J. Xiao, H. Zhao, J. Li, G. Zhang et al., Prussian blue analogues for sodium-ion battery cathodes: A review of mechanistic insights, current challenges, and future pathways. Small 20(35), 2401957 (2024). https://doi.org/10.1002/smll.202401957
C. Zhao, F. Ding, Y. Lu, L. Chen, Y.-S. Hu, High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed. 59(1), 264–269 (2020). https://doi.org/10.1002/anie.201912171
Z. Lun, B. Ouyang, D.-H. Kwon, Y. Ha, E.E. Foley et al., Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater. 20(2), 214–221 (2021). https://doi.org/10.1038/s41563-020-00816-0
M. Yuan, Y. Gao, L. Liu, J. Gao, Z. Wang et al., High entropy double perovskite cathodes with enhanced activity and operational stability for solid oxide fuel cells. J. Eur. Ceram. Soc. 44(5), 3267–3276 (2024). https://doi.org/10.1016/j.jeurceramsoc.2023.12.049
Z. Wang, H. Ge, S. Liu, G. Li, X. Gao, High-entropy alloys to activate the sulfur cathode for lithium–sulfur batteries. Energy Environ. Mater. 6(3), e12358 (2023). https://doi.org/10.1002/eem2.12358
Y. Cai, W. Liu, F. Chang, S. Jin, X. Yang et al., Entropy-stabilized layered K0.6Ni0.05Fe0.05Mg0.05Ti0.05Mn0.725O2 as a high-rate and stable cathode for potassium-ion batteries. ACS Appl. Mater. Interfaces 15(41), 48277–48286 (2023). https://doi.org/10.1021/acsami.3c11059
S. Wang, K. Wang, Y. Zhang, Y. Jie, X. Li et al., High-entropy electrolyte enables high reversibility and long lifespan for magnesium metal anodes. Angew. Chem. Int. Ed. 62(31), e202304411 (2023). https://doi.org/10.1002/anie.202304411
K. Wang, W. Hua, X. Huang, D. Stenzel, J. Wang et al., Synergy of cations in high entropy oxide lithium ion battery anode. Nat. Commun. 14(1), 1487 (2023). https://doi.org/10.1038/s41467-023-37034-6
P. Edalati, A. Mohammadi, Y. Li, H.-W. Li, R. Floriano et al., High-entropy alloys as anode materials of nickel–metal hydride batteries. Scr. Mater. 209, 114387 (2022). https://doi.org/10.1016/j.scriptamat.2021.114387
D. Chen, Y. Huan, G. Ma, M. Ma, X. Wang et al., High-entropy alloys FeCoNiCuX (X = Al, Mo)-Ce0.8Sm0.2O2 as high-performance solid oxide fuel cell anodes. ACS Appl. Energy Mater. 6(2), 1076–1084 (2023). https://doi.org/10.1021/acsaem.2c03655
Q. Wang, C. Zhao, J. Wang, Z. Yao, S. Wang et al., High entropy liquid electrolytes for lithium batteries. Nat. Commun. 14, 440 (2023). https://doi.org/10.1038/s41467-023-36075-1
S.C. Kim, J. Wang, R. Xu, P. Zhang, Y. Chen et al., High-entropy electrolytes for practical lithium metal batteries. Nat. Energy 8(8), 814–826 (2023). https://doi.org/10.1038/s41560-023-01280-1
X. Cao, Y. Gao, Z. Wang, H. Zeng, Y. Song et al., FeNiCrCoMn high-entropy alloy nanops loaded on carbon nanotubes as bifunctional oxygen catalysts for rechargeable zinc-air batteries. ACS Appl. Mater. Interfaces 15(27), 32365–32375 (2023). https://doi.org/10.1021/acsami.3c04120
J. Yan, S. Yin, M. Asta, R.O. Ritchie, J. Ding et al., Anomalous size effect on yield strength enabled by compositional heterogeneity in high-entropy alloy nanops. Nat. Commun. 13(1), 2789 (2022). https://doi.org/10.1038/s41467-022-30524-z
S. Gao, S. Hao, Z. Huang, Y. Yuan, S. Han et al., Synthesis of high-entropy alloy nanops on supports by the fast moving bed pyrolysis. Nat. Commun. 11(1), 2016 (2020). https://doi.org/10.1038/s41467-020-15934-1
Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang et al., Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563(7732), 546–550 (2018). https://doi.org/10.1038/s41586-018-0685-y
Q. Pan, L. Zhang, R. Feng, Q. Lu, K. An et al., Gradient cell-structured high-entropy alloy with exceptional strength and ductility. Science 374(6570), 984–989 (2021). https://doi.org/10.1126/science.abj8114
Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen et al., Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574(7777), 223–227 (2019). https://doi.org/10.1038/s41586-019-1617-1
W. Xiong, A.X.Y. Guo, S. Zhan, C.-T. Liu, S.C. Cao, Refractory high-entropy alloys: A focused review of preparation methods and properties. J. Mater. Sci. Technol. 142, 196–215 (2023). https://doi.org/10.1016/j.jmst.2022.08.046
S. Wang, D. Shu, P. Shi, X. Zhang, B. Mao et al., TiZrHfNb refractory high-entropy alloys with twinning-induced plasticity. J. Mater. Sci. Technol. 187, 72–85 (2024). https://doi.org/10.1016/j.jmst.2023.11.047
D. Cui, Y. Zhang, L. Liu, Y. Li, L. Wang et al., Oxygen-assisted spinodal structure achieves 1.5 GPa yield strength in a ductile refractory high-entropy alloy. J. Mater. Sci. Technol. 157, 11–20 (2023). https://doi.org/10.1016/j.jmst.2023.01.038
Y. Zhang, B. Qin, D. Ouyang, L. Liu, C. Feng et al., Strong yet ductile refractory high entropy alloy fabricated via additive manufacturing. Addit. Manuf. 81, 104009 (2024). https://doi.org/10.1016/j.addma.2024.104009
C. Liu, Y. Wang, Y. Zhang, L.-C. Zhang, L. Wang, Deformation mechanisms of additively manufactured TiNbTaZrMo refractory high-entropy alloy: The role of cellular structure. Int. J. Plast. 173, 103884 (2024). https://doi.org/10.1016/j.ijplas.2024.103884
M. Schneider, J.-P. Couzinié, A. Shalabi, F. Ibrahimkhel, A. Ferrari et al., Effect of stacking fault energy on the thickness and density of annealing twins in recrystallized FCC medium and high-entropy alloys. Scr. Mater. 240, 115844 (2024). https://doi.org/10.1016/j.scriptamat.2023.115844
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George et al., A fracture-resistant high-entropy alloy for cryogenic applications. Science 345(6201), 1153–1158 (2014). https://doi.org/10.1126/science.1254581
E.-W. Huang, D. Yu, J.-W. Yeh, C. Lee, K. An et al., A study of lattice elasticity from low entropy metals to medium and high entropy alloys. Scr. Mater. 101, 32–35 (2015). https://doi.org/10.1016/j.scriptamat.2015.01.011
J. Cai, Q. Du, Y. Zhang, Y. Wu, H. Wang et al., A metastable Fe48Co10Cr10Mn32 high-entropy alloy with good damping capacity within an ultra-large temperature regime. J. Mater. Sci. Technol. 184, 136–144 (2024). https://doi.org/10.1016/j.jmst.2023.10.031
Y. Li, Y. Bai, Z. Liu, Q. Jiang, K. Zhang et al., Additive manufacturing-induced anisotropy in damping performance of a dual-phase high-entropy alloy. J. Mater. Res. Technol. 29, 5752–5764 (2024). https://doi.org/10.1016/j.jmrt.2024.02.203
C.L.P. Pavithra, R.K.S.K. Janardhana, K.M. Reddy, C. Murapaka, J. Joardar et al., An advancement in the synthesis of unique soft magnetic CoCuFeNiZn high entropy alloy thin films. Sci. Rep. 11(1), 8836 (2021). https://doi.org/10.1038/s41598-021-87786-8
L. Han, Z. Rao, I.R. Souza Filho, F. Maccari, Y. Wei et al., Ultrastrong and ductile soft magnetic high-entropy alloys via coherent ordered nanoprecipitates. Adv. Mater. 33(37), 2102139 (2021). https://doi.org/10.1002/adma.202102139
O. El Atwani, H.T. Vo, M.A. Tunes, C. Lee, A. Alvarado et al., A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environments. Nat. Commun. 14(1), 2516 (2023). https://doi.org/10.1038/s41467-023-38000-y
S.S. Nene, M. Frank, K. Liu, S. Sinha, R.S. Mishra et al., Corrosion-resistant high entropy alloy with high strength and ductility. Scr. Mater. 166, 168–172 (2019). https://doi.org/10.1016/j.scriptamat.2019.03.028
C.-Y. Hsu, J.-W. Yeh, S.-K. Chen, T.-T. Shun, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A 35(5), 1465–1469 (2004). https://doi.org/10.1007/s11661-004-0254-x
Q. Wang, Y. Zhou, X. Deng, Z. Wang, Achieving excellent mechanical properties and wear resistance in Fe49Mn30Co10Cr10C1 interstitial high-entropy alloy via tuning composition and stacking fault energy by Nb doping. Wear 534, 205149 (2023). https://doi.org/10.1016/j.wear.2023.205149
C.L. Tracy, S. Park, D.R. Rittman, S.J. Zinkle, H. Bei et al., High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 8, 15634 (2017). https://doi.org/10.1038/ncomms15634
F. Zhang, Y. Wu, H. Lou, Z. Zeng, V.B. Prakapenka et al., Polymorphism in a high-entropy alloy. Nat. Commun. 8, 15687 (2017). https://doi.org/10.1038/ncomms15687
F. Han, Z. Wang, Q. Jin, L. Fan, K. Tao et al., High-entropy alloy electrocatalysts bidirectionally promote lithium polysulfide conversions for long-cycle-life lithium–sulfur batteries. ACS Nano 18(23), 15167–15176 (2024). https://doi.org/10.1021/acsnano.4c03031
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534(7606), 227–230 (2016). https://doi.org/10.1038/nature17981
Y. Wei, Y. Zhao, Y. Chen, M. Zhang, Z. Zhang et al., Lithium storage characteristic of nanoporous high-entropy alloy@high-entropy oxide with spin-dependent synergism of cations. Chem. Eng. J. 476, 146881 (2023). https://doi.org/10.1016/j.cej.2023.146881
Q. Zhang, R. Niu, Y. Liu, J. Jiang, F. Xu et al., Room-temperature super-elongation in high-entropy alloy nanopillars. Nat. Commun. 14(1), 7469 (2023). https://doi.org/10.1038/s41467-023-42894-z
H.-X. Guo, W.-M. Wang, C.-Y. He, B.-H. Liu, D.-M. Yu et al., Entropy-assisted high-entropy oxide with a spinel structure toward high-temperature infrared radiation materials. ACS Appl. Mater. Interfaces 14(1), 1950–1960 (2022). https://doi.org/10.1021/acsami.1c20055
D. Lin, X. Xi, X. Li, J. Hu, L. Xu et al., High-temperature mechanical properties of FeCoCrNi high-entropy alloys fabricated via selective laser melting. Mater. Sci. Eng. A 832, 142354 (2022). https://doi.org/10.1016/j.msea.2021.142354
D. Liu, Q. Yu, S. Kabra, M. Jiang, P. Forna-Kreutzer et al., Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin. Science 378(6623), 978–983 (2022). https://doi.org/10.1126/science.abp8070
D. Das, Y. Getahun, F.S. Escobar, R. Romero, A.A. El-Gendy et al., Unexpected superparamagnetic behavior in nanocrystalline niobium-based high-entropy alloys. J. Phys. Chem. C 126(33), 14255–14263 (2022). https://doi.org/10.1021/acs.jpcc.2c03111
L. Zeng, J. Zhan, M. Boubeche, K. Li, L. Li et al., Superconductivity in the bcc-type high-entropy alloy TiHfNbTaMo. Adv. Quantum Technol. 6(12), 2300213 (2023). https://doi.org/10.1002/qute.202300213
C.K.W. Leung, X. Zhang, F. von Rohr, R. Lortz, B. Jäck, Evidence for isotropic s-wave superconductivity in high-entropy alloys. Sci. Rep. 12(1), 12773 (2022). https://doi.org/10.1038/s41598-022-16355-4
S. Wang, H. Yan, W. Huo, A. Davydok, M. Zając et al., Engineering multiple nano-twinned high entropy alloy electrocatalysts toward efficient water electrolysis. Appl. Catal. B Environ. Energy 363, 124791 (2025). https://doi.org/10.1016/j.apcatb.2024.124791
Z. Huang, Y. Peng, L. Xing, M. Xu, M. Fang et al., Microenvironment regulation to synthesize sub-3 nm Pt-based high-entropy alloy nanops enabling compressed lattice to boost electrocatalysis. Appl. Catal. B Environ. Energy 363, 124775 (2025). https://doi.org/10.1016/j.apcatb.2024.124775
P. Kumar, S. Huang, D.H. Cook, K. Chen, U. Ramamurty et al., A strong fracture-resistant high-entropy alloy with nano-bridged honeycomb microstructure intrinsically toughened by 3D-printing. Nat. Commun. 15(1), 841 (2024). https://doi.org/10.1038/s41467-024-45178-2
W. Dai, T. Lu, Y. Pan, Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. J. Power. Sources 430, 104–111 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.030
L. Yao, F. Zhang, S. Yang, H. Zhang, Y. Li et al., Sub-2 nm IrRuNiMoCo high-entropy alloy with iridium-rich medium-entropy oxide shell to boost acidic oxygen evolution. Adv. Mater. 36(25), 2314049 (2024). https://doi.org/10.1002/adma.202314049
T. Shen, D. Xiao, Z. Deng, S. Wang, L. An et al., Stabilizing diluted active sites of ultrasmall high-entropy intermetallics for efficient formic acid electrooxidation. Angew. Chem. Int. Ed. 63(20), e202403260 (2024). https://doi.org/10.1002/anie.202403260
Q. Zhang, K. Lian, Q. Liu, G. Qi, S. Zhang et al., High entropy alloy nanops as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries. J. Colloid Interface Sci. 646, 844–854 (2023). https://doi.org/10.1016/j.jcis.2023.05.074
Z.K. Ng, B. Li, M. Zhu, Z. Du, Y. Zhao et al., NiCo2O4 on monolithic 3DGF/CNT for high performance hybrid zinc batteries. Chem. Eng. J. 477, 146866 (2023). https://doi.org/10.1016/j.cej.2023.146866
X. Zhang, J. Zhuang, C. Wei, C. Jin, M. Zhu et al., Enhancing osteogenic differentiation of dental pulp stem cells with covalently bonded all-carbon scaffolds. Adv. Funct. Mater. 34(30), 2400766 (2024). https://doi.org/10.1002/adfm.202400766
Y. Su, X. Lei, W. Chen, Y. Su, H. Liu et al., Si-based all-lithium-reactive high-entropy alloy for thin-film lithium-ion battery anode. Chem. Eng. J. 500, 157197 (2024). https://doi.org/10.1016/j.cej.2024.157197
H. Xu, R. Hu, Y. Zhang, H. Yan, Q. Zhu et al., Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries. Energy Storage Mater. 43, 212–220 (2021). https://doi.org/10.1016/j.ensm.2021.09.003
L. Gao, X. Zhong, Z. Li, J. Hu, S. Cui et al., A multi-layer reduced graphene oxide catalyst encapsulating a high-entropy alloy for rechargeable zinc-air batteries. Chem. Commun. 60(10), 1269–1272 (2024). https://doi.org/10.1039/d3cc05069f
J. Tian, Y. Rao, W. Shi, J. Yang, W. Ning et al., Sabatier relations in electrocatalysts based on high-entropy alloys with wide-distributed d-band centers for Li-O2 batteries. Angew. Chem. Int. Ed. 62(44), e202310894 (2023). https://doi.org/10.1002/anie.202310894
P. Zhang, X. Hui, Y. Nie, R. Wang, C. Wang et al., New conceptual catalyst on spatial high-entropy alloy heterostructures for high-performance Li-O2 batteries. Small 19(15), 2206742 (2023). https://doi.org/10.1002/smll.202206742
R. He, L. Yang, Y. Zhang, X. Wang, S. Lee et al., A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance. Energy Storage Mater. 58, 287–298 (2023). https://doi.org/10.1016/j.ensm.2023.03.022
R. Zhang, H. Xue, D. Du, Y. Shen, J. Zheng et al., Regulation of configurational entropy to realize long cycle lifespan of high entropy alloy anodes for potassium batteries. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202422218
A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila et al., High entropy oxides for reversible energy storage. Nat. Commun. 9, 3400 (2018). https://doi.org/10.1038/s41467-018-05774-5
Y. Zheng, Y. Yi, M. Fan, H. Liu, X. Li et al., A high-entropy metal oxide as chemical anchor of polysulfide for lithium–sulfur batteries. Energy Storage Mater. 23, 678–683 (2019). https://doi.org/10.1016/j.ensm.2019.02.030
B. Talluri, M.L. Aparna, N. Sreenivasulu, S.S. Bhattacharya, T. Thomas, High entropy spinel metal oxide (CoCrFeMnNi)3O4 nanops as a high-performance supercapacitor electrode material. J. Energy Storage 42, 103004 (2021). https://doi.org/10.1016/j.est.2021.103004
X. Yang, H. Wang, Y. Song, K. Liu, T. Huang et al., Low-temperature synthesis of a porous high-entropy transition-metal oxide as an anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 14, 26873-26881 (2022). https://doi.org/10.1021/acsami.2c07576
M. Li, C. Sun, Q. Ni, Z. Sun, Y. Liu et al., High entropy enabling the reversible redox reaction of V4+/V5+ couple in NASICON-type sodium ion cathode. Adv. Energy Mater. 13(12), 2203971 (2023). https://doi.org/10.1002/aenm.202203971
M. Chen, W. Hua, J. Xiao, D. Cortie, W. Chen et al., NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nat. Commun. 10(1), 1480 (2019). https://doi.org/10.1038/s41467-019-09170-5
M.T. Ahsan, D. Qiu, Z. Ali, Z. Fang, W. Zhao et al., Unraveling the fast Na diffusion kinetics of NASICON at high voltage via high entropy for sodium-ion battery. Adv. Energy Mater. 14(4), 2302733 (2024). https://doi.org/10.1002/aenm.202302733
F. Strauss, J. Lin, M. Duffiet, K. Wang, T. Zinkevich et al., High-entropy polyanionic lithium superionic conductors. ACS Mater. Lett. 4(2), 418–423 (2022). https://doi.org/10.1021/acsmaterialslett.1c00817
H. Nan, K. Song, J. Xu, S. Lv, S. Yu et al., Dual-ion (de)intercalation into high-entropy perovskite oxides for aqueous alkaline battery-supercapacitor hybrid devices. Acta Mater. 257, 119174 (2023). https://doi.org/10.1016/j.actamat.2023.119174
C.-H. Kuo, A.-Y. Wang, H.-Y. Liu, S.-C. Huang, X.-R. Chen et al., A novel garnet-type high-entropy oxide as air-stable solid electrolyte for Li-ion batteries. APL Mater. 10(12), 121104 (2022). https://doi.org/10.1063/5.0123562
M. Zhu, H. Zhang, S.W.L. Favier, Y. Zhao, H. Guo et al., A general strategy towards controllable replication of butterfly wings for robust light photocatalysis. J. Mater. Sci. Technol. 105, 286–292 (2022). https://doi.org/10.1016/j.jmst.2021.07.035
Y. Xin, W. Zhang, Z. Gao, J. Xiu, D. Yu et al., Preparation of ZnGa2O4-based deep ultraviolet photodetector with high photodetectivity by magnetron sputtering. Vacuum 224, 113165 (2024). https://doi.org/10.1016/j.vacuum.2024.113165
D. Wang, S. Jiang, C. Duan, J. Mao, Y. Dong et al., Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. J. Alloys Compd. 844, 156158 (2020). https://doi.org/10.1016/j.jallcom.2020.156158
C. Triolo, M. Maisuradze, M. Li, Y. Liu, A. Ponti et al., Charge storage mechanism in electrospun spinel-structured high-entropy (Mn0.2Fe0.2Co0.2Ni0.2Zn0.2)3O4 oxide nanofibers as anode material for Li-ion batteries. Small 19(46), 2304585 (2023). https://doi.org/10.1002/smll.202304585
H.-Z. Xiang, H.-X. Xie, Y.-X. Chen, H. Zhang, A. Mao et al., Porous spinel-type (Al0.2CoCrFeMnNi)0.58O4-δ high-entropy oxide as a novel high-performance anode material for lithium-ion batteries. J. Mater. Sci. 56(13), 8127–8142 (2021). https://doi.org/10.1007/s10853-021-05805-5
G.H.J. Johnstone, M.U. González-Rivas, K.M. Taddei, R. Sutarto, G.A. Sawatzky et al., Entropy engineering and tunable magnetic order in the spinel high-entropy oxide. J. Am. Chem. Soc. 144(45), 20590–20600 (2022). https://doi.org/10.1021/jacs.2c06768
C.-Y. Huang, C.-W. Huang, M.-C. Wu, J. Patra, T. Xuyen Nguyen et al., Atomic-scale investigation of lithiation/delithiation mechanism in high-entropy spinel oxide with superior electrochemical performance. Chem. Eng. J. 420, 129838 (2021). https://doi.org/10.1016/j.cej.2021.129838
Y. Zheng, X. Wu, X. Lan, R. Hu, A spinel (FeNiCrMnMgAl)3O4 high entropy oxide as a cycling stable anode material for Li-ion batteries. Processes 10(1), 49 (2022). https://doi.org/10.3390/pr10010049
C. Liu, J. Bi, L. Xie, X. Gao, L. Meng, Preparation and electrochemical properties of two novel high entropy spinel oxides (MgTiZnNiFe)3O4 and (CoTiZnNiFe)3O4 by solid state reaction. Mater. Today Commun. 35, 106315 (2023). https://doi.org/10.1016/j.mtcomm.2023.106315
Q. An, S. Li, J. Zhou, S. Ji, Z. Wen et al., Novel spinel multicomponent high-entropy oxide as anode for lithium-ion batteries with excellent electrochemical performance. Adv. Eng. Mater. 25(20), 2300585 (2023). https://doi.org/10.1002/adem.202300585
L. Tian, Z. Zhang, S. Liu, G. Li, X. Gao, High-entropy spinel oxide nanofibers as catalytic sulfur hosts promise the high gravimetric and volumetric capacities for lithium–sulfur batteries. Energy Environ. Mater. 5(2), 645–654 (2022). https://doi.org/10.1002/eem2.12215
T.X. Nguyen, J. Patra, C.-C. Tsai, W.-Y. Xuan, H.T. Chen et al., Secondary-phase-induced charge–discharge performance enhancement of Co-free high entropy spinel oxide electrodes for Li-ion batteries. Adv. Funct. Mater. 33(30), 2300509 (2023). https://doi.org/10.1002/adfm.202300509
G. Ma, Y. Zheng, F. Meng, R. Hu, Understanding the lithiation mechanism of Li2O-doped spinel high-entropy oxides as anode materials for Li-ion batteries. Energy Adv. 2(10), 1685–1692 (2023). https://doi.org/10.1039/D3YA00326D
C. Duan, K. Tian, X. Li, D. Wang, H. Sun et al., New spinel high-entropy oxides (FeCoNiCrMnXLi)3O4 (X = Cu, Mg, Zn) as the anode material for lithium-ion batteries. Ceram. Int. 47(22), 32025–32032 (2021). https://doi.org/10.1016/j.ceramint.2021.08.091
Y. Wang, J. Liu, Y. Song, J. Yu, Y. Tian et al., High-entropy perovskites for energy conversion and storage: Design, synthesis, and potential applications. Small Meth. 7(4), 2201138 (2023). https://doi.org/10.1002/smtd.202201138
D.A. Vinnik, E.A. Trofimov, V.E. Zhivulin, S.A. Gudkova, O.V. Zaitseva et al., High entropy oxide phases with perovskite structure. Nanomaterials 10(2), 268 (2020). https://doi.org/10.3390/nano10020268
S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie et al., A new class of high-entropy perovskite oxides. Scr. Mater. 142, 116–120 (2018). https://doi.org/10.1016/j.scriptamat.2017.08.040
Q. Yang, G. Wang, H. Wu, B.A. Beshiwork, D. Tian et al., A high-entropy perovskite cathode for solid oxide fuel cells. J. Alloys Compd. 872, 159633 (2021). https://doi.org/10.1016/j.jallcom.2021.159633
A. Chatterjee, D. Ganguly, R. Sundara, S.S. Bhattacharya, High-entropy cubic perovskite oxide-based solid electrolyte in quasi-solid-state Li–S battery. Energy Technol. 12(1), 2300576 (2024). https://doi.org/10.1002/ente.202300576
X. Wang, G. Liu, C. Tang, H. Tang, W. Zhang et al., A novel high entropy perovskite fluoride anode with 3D cubic framework for advanced lithium-ion battery. J. Alloys Compd. 934, 167889 (2023). https://doi.org/10.1016/j.jallcom.2022.167889
Z. Li, B. Guan, F. Xia, J. Nie, W. Li et al., High-entropy perovskite as a high-performing chromium-tolerant cathode for solid oxide fuel cells. ACS Appl. Mater. Interfaces 14(21), 24363–24373 (2022). https://doi.org/10.1021/acsami.2c03657
L. Spiridigliozzi, C. Ferone, R. Cioffi, G. Dell’Agli, A simple and effective predictor to design novel fluorite-structured high entropy oxides (HEOs). Acta Mater. 202, 181–189 (2021). https://doi.org/10.1016/j.actamat.2020.10.061
H. Xu, Z. Zhang, J. Liu, C.-L. Do-Thanh, H. Chen et al., Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 11(1), 3908 (2020). https://doi.org/10.1038/s41467-020-17738-9
S. Yan, S. Luo, L. Yang, J. Feng, P. Li et al., Novel P2-type layered medium-entropy ceramics oxide as cathode material for sodium-ion batteries. J. Adv. Ceram. 11(1), 158–171 (2022). https://doi.org/10.1007/s40145-021-0524-8
X. Zhao, Z. Xing, C. Huang, Investigation of high-entropy Prussian blue analog as cathode material for aqueous sodium-ion batteries. J. Mater. Chem. A 11(42), 22835–22844 (2023). https://doi.org/10.1039/D3TA04349E
Y. Huang, X. Zhang, L. Ji, L. Wang, B.X. Ben et al., Boosting the sodium storage performance of Prussian blue analogs by single-crystal and high-entropy approach. Energy Storage Mater. 58, 1–8 (2023). https://doi.org/10.1016/j.ensm.2023.03.011
H. Pan, S. Lan, S. Xu, Q. Zhang, H. Yao et al., Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science 374(6563), 100–104 (2021). https://doi.org/10.1126/science.abi7687
Y. Sharma, M.-C. Lee, K.C. Pitike, K.K. Mishra, Q. Zheng et al., High entropy oxide relaxor ferroelectrics. ACS Appl. Mater. Interfaces 14(9), 11962–11970 (2022). https://doi.org/10.1021/acsami.2c00340
J. Patra, T.X. Nguyen, C.-C. Tsai, O. Clemens, J. Li et al., Effects of elemental modulation on phase purity and electrochemical properties of Co-free high-entropy spinel oxide anodes for lithium-ion batteries. Adv. Funct. Mater. 32(17), 2110992 (2022). https://doi.org/10.1002/adfm.202110992
Z.-Y. Gu, J.-Z. Guo, J.-M. Cao, X.-T. Wang, X.-X. Zhao et al., An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density. Adv. Mater. 34(14), 2110108 (2022). https://doi.org/10.1002/adma.202110108
S. Sun, C. Dai, P. Zhao, S. Xi, Y. Ren et al., Spin-related Cu–Co pair to increase electrochemical ammonia generation on high-entropy oxides. Nat. Commun. 15(1), 260 (2024). https://doi.org/10.1038/s41467-023-44587-z
J. Zhang, J. Yan, S. Calder, Q. Zheng, M.A. McGuire et al., Long-range antiferromagnetic order in a rocksalt high entropy oxide. Chem. Mater. 31(10), 3705–3711 (2019). https://doi.org/10.1021/acs.chemmater.9b00624
M. Zhang, J. Ye, Y. Gao, X. Duan, J. Zhao et al., General synthesis of high-entropy oxide nanofibers. ACS Nano 18(2), 1449–1463 (2024). https://doi.org/10.1021/acsnano.3c07506
X. Lei, Y. Wang, J. Wang, Y. Su, P. Ji et al., Si-based high-entropy anode for lithium-ion batteries. Small Meth. 8(1), 2300754 (2024). https://doi.org/10.1002/smtd.202300754
B. Xiao, G. Wu, T. Wang, Z. Wei, Y. Sui et al., High-entropy oxides as advanced anode materials for long-life lithium-ion batteries. Nano Energy 95, 106962 (2022). https://doi.org/10.1016/j.nanoen.2022.106962
W. Zhang, H. Xia, Z. Zhu, Z. Lv, S. Cao et al., Decimal solvent-based high-entropy electrolyte enabling the extended survival temperature of lithium-ion batteries to –130 °C. CCS Chem. 3(4), 1245–1255 (2021). https://doi.org/10.31635/ccschem.020.202000341
S. Hou, L. Su, S. Wang, Y. Cui, J. Cao et al., Unlocking the origins of highly reversible lithium storage and stable cycling in a spinel high-entropy oxide anode for lithium-ion batteries. Adv. Funct. Mater. 34(4), 2307923 (2024). https://doi.org/10.1002/adfm.202307923
S.-H. Chung, Y.-H. Wu, Y.-H. Tseng, T.X. Nguyen, J.-M. Ting, High entropy oxide (CrMnFeNiMg)3O4 with large compositional space shows long-term stability as cathode in lithium–sulfur batteries. Chemsuschem 16(8), e202300135 (2023). https://doi.org/10.1002/cssc.202300135
Y.-Q. Wang, H.-M. Wang, Y.-C. Jiang, G.-R. Li, S. Liu et al., High-entropy oxide nanofibers as catalytic host promising high volumetric capacity of sulfur-based composites for lithium–sulfur batteries. ACS Appl. Energy Mater. 6(16), 8377–8387 (2023). https://doi.org/10.1021/acsaem.3c01087
A. Chatterjee, D. Ganguly, R. Sundara, S.S. Bhattacharya, Rare-earth doped configurational entropy stabilized high entropy spinel oxide as an efficient anchoring/catalyst functional interlayer for high-performance lithium-sulfur battery. Batter. Supercaps 6(7), e202300082 (2023). https://doi.org/10.1002/batt.202300082
M. Li, L. Wang, Y. Shi, J. Zhang, Q. Zhu et al., High-entropy metal oxide containing hybrid electrolyte for long-life Li-metal batteries. Oxf. Open. Mater. Sci. (2022). https://doi.org/10.1093/oxfmat/itac011
K. Du, Y. Liu, Y. Yang, F. Cui, J. Wang et al., High entropy oxides modulate atomic-level interactions for high-performance aqueous zinc-ion batteries. Adv. Mater. 35(51), 2301538 (2023). https://doi.org/10.1002/adma.202301538
C. Ozgur, T. Erdil, U. Geyikci, C. Okuyucu, E. Lokcu et al., Engineering oxygen vacancies in (FeCrCoMnZn)3O4-δ high entropy spinel oxides through altering fabrication atmosphere for high-performance rechargeable zinc-air batteries. Glob. Chall. 8(1), 2300199 (2024). https://doi.org/10.1002/gch2.202300199
H. Wang, X. Gao, S. Zhang, Y. Mei, L. Ni et al., High-entropy Na-deficient layered oxides for sodium-ion batteries. ACS Nano 17(13), 12530–12543 (2023). https://doi.org/10.1021/acsnano.3c02290
L. Yao, P. Zou, C. Wang, J. Jiang, L. Ma et al., High-entropy and superstructure-stabilized layered oxide cathodes for sodium-ion batteries. Adv. Energy Mater. 12(41), 2201989 (2022). https://doi.org/10.1002/aenm.202201989
B. Wang, J. Ma, K. Wang, D. Wang, G. Xu et al., High-entropy phase stabilization engineering enables high-performance layered cathode for sodium-ion batteries. Adv. Energy Mater. 14(23), 2401090 (2024). https://doi.org/10.1002/aenm.202401090
T. Cai, M. Cai, J. Mu, S. Zhao, H. Bi et al., High-entropy layered oxide cathode enabling high-rate for solid-state sodium-ion batteries. Nano-Micro Lett. 16(1), 10 (2023). https://doi.org/10.1007/s40820-023-01232-0
J. Mu, T. Cai, W. Dong, C. Zhou, Z. Han et al., Biphasic high-entropy layered oxide as a stable and high-rate cathode for sodium-ion batteries. Chem. Eng. J. 471, 144403 (2023). https://doi.org/10.1016/j.cej.2023.144403
C.-C. Lin, H.-Y. Liu, J.-W. Kang, C.-C. Yang, C.-H. Li et al., In-situ X-ray studies of high-entropy layered oxide cathode for sodium-ion batteries. Energy Storage Mater. 51, 159–171 (2022). https://doi.org/10.1016/j.ensm.2022.06.035
J. Dai, S. Tan, L. Wang, F. Ling, F. Duan et al., High-voltage potassium hexacyanoferrate cathode via high-entropy and potassium incorporation for stable sodium-ion batteries. ACS Nano 17(21), 20949–20961 (2023). https://doi.org/10.1021/acsnano.3c02323
Y. Dang, Z. Xu, H. Yang, K. Tian, Z. Wang et al., Designing water/air-stable Co-free high-entropy oxide cathodes with suppressed irreversible phase transition for sodium-ion batteries. Appl. Surf. Sci. 636, 157856 (2023). https://doi.org/10.1016/j.apsusc.2023.157856
J.-Z. Yen, Y.-C. Yang, H.-Y. Tuan, Interface engineering of high entropy oxide@polyaniline heterojunction enables highly stable and excellent lithium ion storage performance. Chem. Eng. J. 450, 137924 (2022). https://doi.org/10.1016/j.cej.2022.137924
Y. Zhang, R. Wang, W. Song, M. Lei, Y. Zhang et al., Enhancing electrochemical performance of high-entropy Co/Ni-free P2/O3 hybrid-phase layered metal oxide cathode for sodium-ion batteries. Chem. Eng. J. 500, 157005 (2024). https://doi.org/10.1016/j.cej.2024.157005
M. Barsoum, T. El-Raghy, The MAX phases: Unique new carbide and nitride materials. Am. Sci. 89(4), 334 (2001). https://doi.org/10.1511/2001.28.736
M. Pogorielov, K. Smyrnova, S. Kyrylenko, O. Gogotsi, V. Zahorodna et al., MXenes-a new class of two-dimensional materials: Structure, properties and potential applications. Nanomaterials 11(12), 3412 (2021). https://doi.org/10.3390/nano11123412
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
K. Li, P. Hao, Q. Zhang, J. Zhang, S. Dmytro et al., First-principles calculation on the lithium storage properties of high-entropy MXene Ti3C2(N0.25O0.25F0.25S0.25)2. Dalton Trans. 52(48), 18323–18331 (2023). https://doi.org/10.1039/D3DT02869K
L. Zhang, J. Shi, K. Niu, P. Jia, Y. Gao et al., First-principles studies on high-entropy Ti0.75V0.75Cr0.75Mo0.75C2 MXene nanosheets as anode materials in zinc-ion batteries. ACS Appl. Nano Mater. 6(22), 20812–20822 (2023). https://doi.org/10.1021/acsanm.3c03797
L. Chen, Y. Li, K. Liang, K. Chen, M. Li et al., Two-dimensional MXenes derived from medium/high-entropy MAX phases M2GaC (M = Ti/V/Nb/Ta/Mo) and their electrochemical performance. Small Meth. 7(8), 2300054 (2023). https://doi.org/10.1002/smtd.202300054
W. Ma, M. Wang, Q. Yi, D. Huang, J. Dang et al., A new Ti2V0.9Cr0.1C2Tx MXene with ultrahigh gravimetric capacitance. Nano Energy 96, 107129 (2022). https://doi.org/10.1016/j.nanoen.2022.107129
A.S. Etman, J. Zhou, J. Rosen, Ti1.1V0.7CrxNb1.0Ta0.6C3Tz high-entropy MXene freestanding films for charge storage applications. Electrochem. Commun. 137, 107264 (2022). https://doi.org/10.1016/j.elecom.2022.107264
Z. Du, C. Wu, Y. Chen, Z. Cao, R. Hu et al., High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater. 33(39), 2101473 (2021). https://doi.org/10.1002/adma.202101473
J. Zhou, Q. Tao, B. Ahmed, J. Palisaitis, I. Persson et al., High-entropy laminate metal carbide (MAX phase) and its two-dimensional derivative MXene. Chem. Mater. 34(5), 2098–2106 (2022). https://doi.org/10.1021/acs.chemmater.1c03348
X. He, Y. Qian, C. Wu, J. Feng, X. Sun et al., Entropy-mediated high-entropy MXenes nanotherapeutics: NIR-II-enhanced intrinsic oxidase mimic activity to combat methicillin-resistant staphylococcus aureus infection. Adv. Mater. 35(26), 2211432 (2023). https://doi.org/10.1002/adma.202211432
S. Choi, W. Feng, Y. Xia, High entropy and Co-free high nickel based layered LiNi0.9Mn0.1O2 cathode for Li-ion batteries. ACS Appl. Energy Mater. 7(8), 3339–3346 (2024). https://doi.org/10.1021/acsaem.4c00095
B. Yu, Y. Wang, J. Li, Y. Jin, Z. Liang et al., Recent advances on low-Co and Co-free high entropy layered oxide cathodes for lithium-ion batteries. Nanotechnology 34(45), 452501 (2023). https://doi.org/10.1088/1361-6528/acec4f
J. Kuai, J. Xie, J.D. Wang, J.Y. Chen, J. Wang et al., Optimizing hard carbon materials for sodium-ion batteries: Insights from p size and soft carbon-coating strategy. J. Power. Sources 627, 235792 (2025). https://doi.org/10.1016/j.jpowsour.2024.235792
W. Li, J. Li, B.W. Biney, Y. Yan, X. Lu et al., Innovative synthesis and sodium storage enhancement of closed-pore hard carbon for sodium-ion batteries. Energy Storage Mater. 74, 103867 (2025). https://doi.org/10.1016/j.ensm.2024.103867
J. Fu, J. Wang, W. Yan, S. Cui, T. Zhang et al., Metalation of porphyrin units in a porous organic polymer stabilizing its anodic cycling performance in lithium-ion battery. J. Power. Sources 628, 235909 (2025). https://doi.org/10.1016/j.jpowsour.2024.235909
B. Feng, T. Long, R. Li, Y.-L. Ding, Rationally constructing metallic Sn-ZnO heterostructure via in situ Mn doping for high-rate Na-ion batteries. Chin. Chem. Lett. 36(2), 110273 (2025). https://doi.org/10.1016/j.cclet.2024.110273
R. Song, L. Yang, J. Luan, H. Yuan, S. Ji et al., MgSiO3 doped, carbon-coated SiOx anode with enhanced initial coulombic efficiency for lithium-ion battery. J. Energy Storage 105, 114687 (2025). https://doi.org/10.1016/j.est.2024.114687
J. Bai, J.H. Jia, Y. Wang, C.C. Yang, Q. Jiang, Ideal bi-based hybrid anode material for ultrafast charging of sodium-ion batteries at extremely low temperatures. Nano-Micro Lett. 17(1), 60 (2024). https://doi.org/10.1007/s40820-024-01560-9
M. Lechner, S. Wölfl, E. Kurz, R. Daub, Identification of critical moisture exposure for nickel-rich cathode active materials in lithium-ion battery production. J. Power. Sources 626, 235661 (2025). https://doi.org/10.1016/j.jpowsour.2024.235661
H. Zhao, Y. Wang, R. Liu, W. Cheng, Y. Wu et al., Preparation and electrochemical properties of porous organic polymer with high ionic diffusion coefficient as cathode material for lithium-ion batteries. J. Power. Sources 626, 235733 (2025). https://doi.org/10.1016/j.jpowsour.2024.235733
Z. Wu, Y. Guo, M. Zhao, F. Yang, D. Shen et al., Synergistic mechanisms of nitrogen configurations in sulfur hosts and their enhancement of electrochemical performance in lithium–sulfur batteries. J. Energy Storage 106, 114803 (2025). https://doi.org/10.1016/j.est.2024.114803
Y. Yuan, J. Ma, C. Ma, X. Zhou, Y. Zhou, Multifactor induction of pseudocapacitive in manganese oxide cathode enabling high-performance aqueous zinc ion batteries. J. Energy Storage 105, 114595 (2025). https://doi.org/10.1016/j.est.2024.114595
J. Hu, X. Li, Q. Liang, L. Xu, C. Ding et al., Optimization strategies of Na3V2(PO4)3 cathode materials for sodium-ion batteries. Nano-Micro Lett. 17(1), 33 (2024). https://doi.org/10.1007/s40820-024-01526-x
Z. Zheng, X. Li, Y. Wang, Y. Zhang, Y. Jiang et al., Self-limited and reversible surface hydration of Na2Fe(SO4)2 cathodes for long-cycle-life Na-ion batteries. Energy Storage Mater. 74, 103882 (2025). https://doi.org/10.1016/j.ensm.2024.103882
A. Zeng, Y. He, M. Qin, C. Hu, F. Huang et al., Robust interface for O3-type layered cathode towards stable ether-based sodium-ion full batteries. Energy Storage Mater. 74, 103894 (2025). https://doi.org/10.1016/j.ensm.2024.103894
P. Dai, J. Huang, X. Cao, J. Zhao, L. Xue et al., Central metal coordination environment optimization enhances Na diffusion and structural stability in Prussian blue analogues. Energy Storage Mater. 74, 103890 (2025). https://doi.org/10.1016/j.ensm.2024.103890
B. Xiao, G. Wu, T. Wang, Z. Wei, Z. Xie et al., Enhanced Li-ion diffusion and cycling stability of Ni-free high-entropy spinel oxide anodes with high-concentration oxygen vacancies. ACS Appl. Mater. Interfaces 15(2), 2792–2803 (2023). https://doi.org/10.1021/acsami.2c12374
G. Liang, Z. Wu, C. Didier, W. Zhang, J. Cuan et al., A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping. Angew. Chem. Int. Ed. 59(26), 10594–10602 (2020). https://doi.org/10.1002/anie.202001454
Q. Wang, C. Zhao, Z. Yao, J. Wang, F. Wu et al., Entropy-driven liquid electrolytes for lithium batteries. Adv. Mater. 35(17), 2210677 (2023). https://doi.org/10.1002/adma.202210677
S. Li, J. Lin, M. Schaller, S. Indris, X. Zhang et al., High-entropy lithium argyrodite solid electrolytes enabling stable all-solid-state batteries. Angew. Chem. Int. Ed. 62(50), e202314155 (2023). https://doi.org/10.1002/anie.202314155
G. Sun, H. Lin, S. Yao, Z. Wei, N. Chen et al., High-entropy solid-state Na-ion conductor for stable sodium-metal batteries. Chem. Eur. J. 29(28), e202300413 (2023). https://doi.org/10.1002/chem.202300413
H. Jia, Y. Li, U. Ali, B. Liu, Z. Jin et al., High-entropy doping strategy towards reinforced Mn-O bond for durable aqueous zinc ion batteries. Nano Energy 122, 109348 (2024). https://doi.org/10.1016/j.nanoen.2024.109348
B. Hu, G. Lau, K.X. Lee, S. Belko, P. Singh et al., Ethanol-fueled metal supported solid oxide fuel cells with a high entropy alloy internal reforming catalyst. J. Power. Sources 582, 233544 (2023). https://doi.org/10.1016/j.jpowsour.2023.233544
Z. Jin, J. Lyu, Y.-L. Zhao, H. Li, X. Lin et al., Rugged high-entropy alloy nanowires with in situ formed surface spinel oxide as highly stable electrocatalyst in Zn–air batteries. ACS Mater. Lett. 2(12), 1698–1706 (2020). https://doi.org/10.1021/acsmaterialslett.0c00434
J. Feng, Y. Liu, D. Fang, J. Li, Reusing the steel slag to design a gradient-doped high-entropy oxide for high-performance sodium ion batteries. Nano Energy 118, 109030 (2023). https://doi.org/10.1016/j.nanoen.2023.109030
Y. Ding, Z.P. Cano, A. Yu, J. Lu, Z. Chen, Automotive Li-ion batteries: Current status and future perspectives. Electrochem. Energy Rev. 2(1), 1–28 (2019). https://doi.org/10.1007/s41918-018-0022-z
L. Zhao, B. Ding, X.-Y. Qin, Z. Wang, W. Lv et al., Revisiting the roles of natural graphite in ongoing lithium-ion batteries. Adv. Mater. 34(18), e2106704 (2022). https://doi.org/10.1002/adma.202106704
M.R. Esmaeili, S. Noorsina, S.K. Sadrnezhaad, High-entropy spinel-structured (VCrNiCoMn)3O4 anode for Li-ion batteries. J. Energy Storage 105, 114796 (2025). https://doi.org/10.1016/j.est.2024.114796
F. Zhai, X. Zhu, W. Zhang, G. Cao, H. Zhang et al., Insight of the evolution of structure and energy storage mechanism of (FeCoNiCrMn)3O4 spinel high entropy oxide in life-cycle span as lithium-ion battery anode. J. Power. Sources 603, 234418 (2024). https://doi.org/10.1016/j.jpowsour.2024.234418
N. Qiu, H. Chen, Z. Yang, S. Sun, Y. Wang et al., A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. J. Alloys Compd. 777, 767–774 (2019). https://doi.org/10.1016/j.jallcom.2018.11.049
R. Ren, Y. Xiong, Z. Xu, J. Zhang, Y. Zhang et al., Fast synthesis of high-entropy oxides for lithium-ion storage. Chem. Eng. J. 479, 147896 (2024). https://doi.org/10.1016/j.cej.2023.147896
Y.-J. Liao, W.-W. Shen, C.-B. Chang, H.-Y. Tuan, High-entropy transition metal disulfide colloid clusters: Synergistic atomic scale interaction and interconnected network for ultra-stable potassium ion storage. Chem. Eng. J. 469, 143942 (2023). https://doi.org/10.1016/j.cej.2023.143942
N. Ci, Y. Hu, Q. Li, J. Cheng, H. Zhang et al., Cycling reconstructed hierarchical nanoporous high-entropy oxides with continuously increasing capacity for Li storage. Small Meth. 8(8), 2301322 (2024). https://doi.org/10.1002/smtd.202301322
C. Zhang, M. Su, Y. Luo, X. Zhang, S. Li et al., High entropy oxide duplex yolk–shell structure with isogenic amorphous/crystalline heterophase as a promising anode material for lithium-ion batteries. Small 21(3), 2407361 (2025). https://doi.org/10.1002/smll.202407361
J. Wang, Y. Wang, X. Lu, J. Qian, C. Yang et al., Ultra-sleek high entropy alloy tights: Realizing superior cyclability for anode-free battery. Adv. Mater. 36(11), 2308257 (2024). https://doi.org/10.1002/adma.202308257
S. Li, Z. Peng, X. Fu, Zn0.5Co0.5Mn0.5Fe0.5Al0.5Mg0.5O4 high-entropy oxide with high capacity and ultra-long life for Li-ion battery anodes. J. Adv. Ceram. 12(1), 59–71 (2023). https://doi.org/10.26599/jac.2023.9220666
Y. Li, Z. Chen, J. Liu, R. Liu, C. Zhang et al., Novel high entropy oxide as anode for high performance lithium-ion capacitors. Ceram. Int. 49(23), 38439–38447 (2023). https://doi.org/10.1016/j.ceramint.2023.09.173
K.-H. Tian, C.-Q. Duan, Q. Ma, X.-L. Li, Z.-Y. Wang et al., High-entropy chemistry stabilizing spinel oxide (CoNiZnXMnLi)3O4 (X = Fe, Cr) for high-performance anode of Li-ion batteries. Rare Met. 41(4), 1265–1275 (2022). https://doi.org/10.1007/s12598-021-01872-4
D. Shin, S. Chae, S. Park, B. Seo, W. Choi, Rational engineering of high-entropy oxides for Li-ion battery anodes with finely tuned combustion syntheses. NPG Asia Mater. 15, 54 (2023). https://doi.org/10.1038/s41427-023-00502-y
E. Lökçü, Ç. Toparli, M. Anik, Electrochemical performance of (MgCoNiZn)1-xLixO high-entropy oxides in lithium-ion batteries. ACS Appl. Mater. Interfaces 12(21), 23860–23866 (2020). https://doi.org/10.1021/acsami.0c03562
Y. Wei, X. Liu, R. Yao, J. Qian, Y. Yin et al., Embedding the high entropy alloy nanops into carbon matrix toward high performance Li-ion batteries. J. Alloys Compd. 938, 168610 (2023). https://doi.org/10.1016/j.jallcom.2022.168610
X.L. Wang, E.M. Kim, T.G. Senthamaraikannan, D.-H. Lim, S.M. Jeong, Porous hollow high entropy metal oxides (NiCoCuFeMg)3O4 nanofiber anode for high-performance lithium-ion batteries. Chem. Eng. J. 484, 149509 (2024). https://doi.org/10.1016/j.cej.2024.149509
J. Zhao, X. Yang, Y. Huang, F. Du, Y. Zeng, Entropy stabilization effect and oxygen vacancies enabling spinel oxide highly reversible lithium-ion storage. ACS Appl. Mater. Interfaces 13(49), 58674–58681 (2021). https://doi.org/10.1021/acsami.1c18362
J. Yang, X. Liang, H.-H. Ryu, C.S. Yoon, Y.-K. Sun, Ni-rich layered cathodes for lithium-ion batteries: From challenges to the future. Energy Storage Mater. 63, 102969 (2023). https://doi.org/10.1016/j.ensm.2023.102969
Q. Zheng, Z. Ren, Y. Zhang, T. Qin, J. Qi et al., Surface phase conversion in a high-entropy layered oxide cathode material. ACS Appl. Mater. Interfaces 15(3), 4643–4651 (2023). https://doi.org/10.1021/acsami.2c16194
R. Zhang, C. Wang, P. Zou, R. Lin, L. Ma et al., Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 610(7930), 67–73 (2022). https://doi.org/10.1038/s41586-022-05115-z
Q. Zheng, Z. Ren, Y. Zhang, X. Liu, J. Ma et al., Surface-stabilized high-entropy layered oxyfluoride cathode for lithium-ion batteries. J. Phys. Chem. Lett. 14(24), 5553–5559 (2023). https://doi.org/10.1021/acs.jpclett.3c00891
Y. Ma, Z. Zhou, T. Brezesinski, Y. Ma, Y. Wu, Stabilizing layered cathodes by high-entropy doping. Research 7, 0503 (2024). https://doi.org/10.34133/research.0503
K. Yuan, T. Tu, C. Shen, L. Zhou, J. Liu et al., Self-ball milling strategy to construct high-entropy oxide coated LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance. J. Adv. Ceram. 11(6), 882–892 (2022). https://doi.org/10.1007/s40145-022-0582-6
S. Zeng, Y. Zhu, J. Si, H. Liu, Y. Wang et al., High-entropy doping for high-voltage LiCoO2 with enhanced electrochemical performances. J. Power. Sources 626, 235726 (2025). https://doi.org/10.1016/j.jpowsour.2024.235726
Z. Song, T. Wang, H. Yang, W.H. Kan, Y. Chen et al., Promoting high-voltage stability through local lattice distortion of halide solid electrolytes. Nat. Commun. 15, 1481 (2024). https://doi.org/10.1038/s41467-024-45864-1
H. Yang, L. He, Q. Chen, J. Zhu, G. Jiang et al., Phase-selective defects engineering in dual-phase high entropy oxide for Li-ion storage. Chem. Eng. J. 488, 151113 (2024). https://doi.org/10.1016/j.cej.2024.151113
J. Kim, S. Yang, Y. Zhong, G. Tompsett, S. Jeong et al., High-entropy Li-rich layered oxide cathode for Li-ion batteries. J. Power. Sources 628, 235915 (2025). https://doi.org/10.1016/j.jpowsour.2024.235915
R. Deng, B. Ke, Y. Xie, S. Cheng, C. Zhang et al., All-solid-state thin-film lithiumss-sulfur batteries. Nano-Micro Lett. 15(1), 73 (2023). https://doi.org/10.1007/s40820-023-01064-y
S. Liao, Y. Xie, W. Zheng, Z. Huang, H. Zhang et al., Enhancing rate performance in lithium–sulfur batteries via synergistic bidirectional catalysis and improved conductivity. Chem. Eng. J. 506, 160022 (2025). https://doi.org/10.1016/j.cej.2025.160022
Z. Huang, L. Deng, W. Li, J. Zhang, S. Liao et al., Towards high performance inorganic all-solid-state lithium–sulfur batteries: Strategies for enhancing reaction kinetics and solid-solid contact. Sci. China Mater. 68(5), 1530–1541 (2025). https://doi.org/10.1007/s40843-024-3276-3
Y. Xie, W. Zheng, J. Ao, Y. Shao, X. Huang et al., Multifunctional Ni-doped CoSe2 nanops decorated bilayer carbon structures for polysulfide conversion and dendrite-free lithium toward high-performance Li-S full cell. Energy Storage Mater. 62, 102925 (2023). https://doi.org/10.1016/j.ensm.2023.102925
Y. Xie, J. Cao, X. Wang, W. Li, L. Deng et al., MOF-derived bifunctional Co0.85Se nanops embedded in N-doped carbon nanosheet arrays as efficient sulfur hosts for lithium–sulfur batteries. Nano Lett. 21(20), 8579–8586 (2021). https://doi.org/10.1021/acs.nanolett.1c02037
J. Cao, Y. Xie, Y. Yang, X. Wang, W. Li et al., Achieving uniform Li plating/stripping at ultrahigh currents and capacities by optimizing 3D nucleation sites and Li2Se-enriched SEI. Adv. Sci. 9(9), 2104689 (2022). https://doi.org/10.1002/advs.202104689
H. Fan, Y. Si, Y. Zhang, F. Zhu, X. Wang et al., Grapevine-like high entropy oxide composites boost high-performance lithium sulfur batteries as bifunctional interlayers. Green Energy Environ. 9(3), 565–572 (2024). https://doi.org/10.1016/j.gee.2022.11.001
Q. Liang, S. Wang, X. Lu, X. Jia, J. Yang et al., High-entropy MXene as bifunctional mediator toward advanced Li-S full batteries. ACS Nano 18(3), 2395–2408 (2024). https://doi.org/10.1021/acsnano.3c10731
Y. Ma, Y. Ren, D. Sun, B. Wang, H. Wu et al., High entropy alloy nanops dual-decorated with nitrogen-doped carbon and carbon nanotubes as promising electrocatalysts for lithium–sulfur batteries. J. Mater. Sci. Technol. 188, 98–104 (2024). https://doi.org/10.1016/j.jmst.2023.11.063
Z. Wang, L. Fang, X. Fu, S. Zhang, H. Kong et al., A Ni/Co-free high-entropy layered cathode with suppressed phase transition and near-zero strain for high-voltage sodium-ion batteries. Chem. Eng. J. 480, 148130 (2024). https://doi.org/10.1016/j.cej.2023.148130
K. Walczak, A. Plewa, C. Ghica, W. Zając, A. Trenczek-Zając et al., NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 high-entropy layered oxide–experimental and theoretical evidence of high electrochemical performance in sodium batteries. Energy Storage Mater. 47, 500–514 (2022). https://doi.org/10.1016/j.ensm.2022.02.038
Y.-H. Tseng, Y.-C. Lin, Y.-H. Wu, J.-M. Ting, S.-H. Chung, High-entropy oxide/phase-inverted carbon for enhanced lithium–sulfur batteries. J. Energy Storage 68, 107767 (2023). https://doi.org/10.1016/j.est.2023.107767
R. Colombo, N. Garino, D. Versaci, J. Amici, M.L. Para et al., Designing a double-coated cathode with high entropy oxides by microwave-assisted hydrothermal synthesis for highly stable Li-S batteries. J. Mater. Sci. 57(33), 15690–15704 (2022). https://doi.org/10.1007/s10853-022-07625-7
Z. Zhou, Z. Chen, H. Lv, Y. Zhao, H. Wei et al., High-entropy nanop constructed porous honeycomb as a 3D sulfur host for lithium polysulfide adsorption and catalytic conversion in Li–S batteries. J. Mater. Chem. A 11(11), 5883–5