Mechanical Properties Analysis of Flexible Memristors for Neuromorphic Computing
Corresponding Author: Jialin Meng
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 2
Abstract
The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications. Inspired by in-memory computing architecture of human brain, flexible memristors exhibit great application potential in emulating artificial synapses for high-efficiency and low power consumption neuromorphic computing. This paper provides comprehensive overview of flexible memristors from perspectives of development history, material system, device structure, mechanical deformation method, device performance analysis, stress simulation during deformation, and neuromorphic computing applications. The recent advances in flexible electronics are summarized, including single device, device array and integration. The challenges and future perspectives of flexible memristor for neuromorphic computing are discussed deeply, paving the way for constructing wearable smart electronics and applications in large-scale neuromorphic computing and high-order intelligent robotics.
Highlights:
1 This review systematically summarizes materials system, development history, device structure, stress simulation and applications of flexible memristors.
2 This review highlights the critical influence of mechanical properties on flexible memristors, with particular emphasis on deformation parameters and finite element simulation.
3 The applications of future memristors in neuromorphic computing are deeply discussed for next-generation wearable electronics
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Wang, M. Yang, Q. Tang, X. Zhao, Y. Tong et al., Flexible, conformal organic synaptic transistors on elastomer for biomedical applications. Adv. Funct. Mater. 29(19), 1901107 (2019). https://doi.org/10.1002/adfm.201901107
- Q.A. Vu, H. Kim, V.L. Nguyen, U.Y. Won, S. Adhikari et al., A high-on/off-ratio floating-gate memristor array on a flexible substrate via CVD-grown large-area 2D layer stacking. Adv. Mater. 29(44), 1703363 (2017). https://doi.org/10.1002/adma.201703363
- L. Dong, B. Xue, G. Wei, S. Yuan, M. Chen et al., Highly promising 2D/1D BP-C/CNT bionic opto-olfactory co-sensory artificial synapses for multisensory integration. Adv. Sci. 11(29), 2403665 (2024). https://doi.org/10.1002/advs.202403665
- J. Wang, Z. Lv, X. Xing, X. Li, Y. Wang et al., Optically modulated threshold switching in core–shell quantum dot based memristive device. Adv. Funct. Mater. 30(16), 1909114 (2020). https://doi.org/10.1002/adfm.201909114
- C. Lu, J. Meng, J. Song, T. Wang, H. Zhu et al., Self-rectifying all-optical modulated optoelectronic multistates memristor crossbar array for neuromorphic computing. Nano Lett. 24(5), 1667–1672 (2024). https://doi.org/10.1021/acs.nanolett.3c04358
- W. Tong, W. Wei, X. Zhang, S. Ding, Z. Lu et al., Highly stable HfO2 memristors through van der waals electrode lamination and delamination. Nano Lett. 23(21), 9928–9935 (2023). https://doi.org/10.1021/acs.nanolett.3c02888
- L. Yin, R. Cheng, Y. Wen, B. Zhai, J. Jiang et al., High-performance memristors based on ultrathin 2D copper chalcogenides. Adv. Mater. 34(9), 2108313 (2022). https://doi.org/10.1002/adma.202108313
- H. Oh, J.Y. Oh, C.W. Park, J.E. Pi, J.H. Yang et al., High density integration of stretchable inorganic thin film transistors with excellent performance and reliability. Nat. Commun. 13(1), 4963 (2022). https://doi.org/10.1038/s41467-022-32672-8
- N. Raeis-Hosseini, Y. Park, J.-S. Lee, Flexible artificial synaptic devices based on collagen from fish protein with spike-timing-dependent plasticity. Adv. Funct. Mater. 28(31), 1800553 (2018). https://doi.org/10.1002/adfm.201800553
- W. Zhang, M. Wu, Y. Zhang, H. Yan, Y. Lee et al., Paraffin-enabled superlattice customization for a photostimulated gradient-responsive artificial reflex arc. Adv. Mater. 36(21), 2313267 (2024). https://doi.org/10.1002/adma.202313267
- S.-C. Chen, Y.-T. Yang, Y.-C. Tseng, K.-D. Chiou, P.-W. Huang et al., HfO2 memristor-based flexible radio frequency switches. ACS Nano 19(1), 704–711 (2025). https://doi.org/10.1021/acsnano.4c11846
- J. Zhu, C. Liu, R. Gao, Y. Zhang, H. Zhang et al., Ultra-flexible high-linearity silicon nanomembrane synaptic transistor array. Adv. Mater. 37(7), 2413404 (2025). https://doi.org/10.1002/adma.202413404
- Q. Li, S. Wang, Z. Li, X. Hu, Y. Liu et al., High-performance ferroelectric field-effect transistors with ultra-thin indium tin oxide channels for flexible and transparent electronics. Nat. Commun. 15(1), 2686 (2024). https://doi.org/10.1038/s41467-024-46878-5
- Z. Peng, Z. Cheng, S. Ke, Y. Xiao, Z. Ye et al., Flexible memristor constructed by 2D cadmium phosphorus trichalcogenide for artificial synapse and logic operation. Adv. Funct. Mater. 33(9), 2211269 (2023). https://doi.org/10.1002/adfm.202211269
- Y. Wang, J. Su, G. Ouyang, S. Geng, M. Ren et al., Flexible Zn-TCPP nanosheet-based memristor for ultralow-power biomimetic sensing system and high-precision gesture recognition. Adv. Funct. Mater. 34(26), 2316397 (2024). https://doi.org/10.1002/adfm.202316397
- C.W. Lee, C. Yoo, S.S. Han, Y.J. Song, S.J. Kim et al., Centimeter-scale tellurium oxide films for artificial optoelectronic synapses with broadband responsiveness and mechanical flexibility. ACS Nano 18(28), 18635–18649 (2024). https://doi.org/10.1021/acsnano.4c04851
- H. Zhou, S. Li, K.-W. Ang, Y.-W. Zhang, Recent advances in in-memory computing: exploring memristor and memtransistor arrays with 2D materials. Nano-Micro Lett. 16(1), 121 (2024). https://doi.org/10.1007/s40820-024-01335-2
- D. Wang, S. Zhao, L. Li, L. Wang, S. Cui et al., All-flexible artificial reflex arc based on threshold-switching memristor. Adv. Funct. Mater. 32(21), 2200241 (2022). https://doi.org/10.1002/adfm.202200241
- L. Liang, K. Li, C. Xiao, S. Fan, J. Liu et al., Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device. J. Am. Chem. Soc. 137(8), 3102–3108 (2015). https://doi.org/10.1021/jacs.5b00021
- Y. Wang, M. Cao, J. Bian, Q. Li, J. Su, Flexible ZnO nanosheet-based artificial synapses prepared by low-temperature process for high recognition accuracy neuromorphic computing. Adv. Funct. Mater. 32(52), 2209907 (2022). https://doi.org/10.1002/adfm.202209907
- J. Chen, X. Liu, C. Liu, L. Tang, T. Bu et al., Reconfigurable Ag/HfO2/NiO/Pt memristors with stable synchronous synaptic and neuronal functions for renewable homogeneous neuromorphic computing system. Nano Lett. 24(17), 5371–5378 (2024). https://doi.org/10.1021/acs.nanolett.4c01319
- H. Kim, M. Kim, A. Lee, H.-L. Park, J. Jang et al., Organic memristor-based flexible neural networks with bio-realistic synaptic plasticity for complex combinatorial optimization. Adv. Sci. 10(19), 2300659 (2023). https://doi.org/10.1002/advs.202300659
- T.Y. Wang, Z.Y. He, H. Liu, L. Chen, H. Zhu et al., Flexible electronic synapses for face recognition application with multimodulated conductance states. ACS Appl. Mater. Interfaces 10(43), 37345–37352 (2018). https://doi.org/10.1021/acsami.8b16841
- J. Huang, S. Yang, X. Tang, L. Yang, W. Chen et al., Flexible, transparent, and wafer-scale artificial synapse array based on TiOx/Ti3C2Tx film for neuromorphic computing. Adv. Mater. 35(33), 2303737 (2023). https://doi.org/10.1002/adma.202303737
- R. Yuan, P.J. Tiw, L. Cai, Z. Yang, C. Liu et al., A neuromorphic physiological signal processing system based on VO2 memristor for next-generation human-machine interface. Nat. Commun. 14(1), 3695 (2023). https://doi.org/10.1038/s41467-023-39430-4
- T.-Y. Wang, J.-L. Meng, Q.-X. Li, L. Chen, H. Zhu et al., Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique. J. Mater. Sci. Technol. 60, 21–26 (2021). https://doi.org/10.1016/j.jmst.2020.04.059
- X. Zhang, Y. Zhuo, Q. Luo, Z. Wu, R. Midya et al., An artificial spiking afferent nerve based on Mott memristors for neurorobotics. Nat. Commun. 11(1), 51 (2020). https://doi.org/10.1038/s41467-019-13827-6
- Y. Liu, T. Wang, K. Xu, Z. Li, J. Yu et al., Low-power and high-speed HfLaO-based FE-TFTs for artificial synapse and reconfigurable logic applications. Mater. Horiz. 11(2), 490–498 (2024). https://doi.org/10.1039/D3MH01461D
- Z. Wu, P. Shi, R. Xing, T. Yu, L. Zhao et al., Flexible Mott synaptic transistor on polyimide substrate for physical neural networks. Adv. Electron. Mater. 8(9), 2200078 (2022). https://doi.org/10.1002/aelm.202200078
- S. Jang, S. Jang, E.-H. Lee, M. Kang, G. Wang et al., Ultrathin conformable organic artificial synapse for wearable intelligent device applications. ACS Appl. Mater. Interfaces 11(1), 1071–1080 (2019). https://doi.org/10.1021/acsami.8b12092
- P. Saha, S.E. Muhammed, S. Sathyanarayana, B.C. Das, Solution-processed robust multifunctional memristor of 2D layered material thin film. ACS Nano 18(1), 1137–1148 (2024). https://doi.org/10.1021/acsnano.3c10775
- J.-M. Yang, Y.-K. Jung, J.-H. Lee, Y.C. Kim, S.-Y. Kim et al., Asymmetric carrier transport in flexible interface-type memristor enables artificial synapses with sub-femtojoule energy consumption. Nanoscale Horiz. 6(12), 987–997 (2021). https://doi.org/10.1039/D1NH00452B
- Y. Sun, H. Wang, D. Xie, Recent advance in synaptic plasticity modulation techniques for neuromorphic applications. Nano-Micro Lett. 16(1), 211 (2024). https://doi.org/10.1007/s40820-024-01445-x
- B.C. Jang, Y. Nam, B.J. Koo, J. Choi, S.G. Im et al., Memristive logic-in-memory integrated circuits for energy-efficient flexible electronics. Adv. Funct. Mater. 28(2), 1704725 (2018). https://doi.org/10.1002/adfm.201704725
- Y.-Y. Zhao, W.-J. Sun, J. Wang, J.-H. He, H. Li et al., All-inorganic ionic polymer-based memristor for high-performance and flexible artificial synapse. Adv. Funct. Mater. 30(39), 2004245 (2020). https://doi.org/10.1002/adfm.202004245
- M. Wang, S. Cai, C. Pan, C. Wang, X. Lian et al., Robust memristors based on layered two-dimensional materials. Nat. Electron. 1(2), 130–136 (2018). https://doi.org/10.1038/s41928-018-0021-4
- Z. Li, Y. Chen, S. Liu, W. Li, L. Liu et al., Strain releasing of flexible 2D electronics through van der waals sliding contact. ACS Nano 16(8), 13152–13159 (2022). https://doi.org/10.1021/acsnano.2c06214
- A. Bala, A. Sen, J. Shim, S. Gandla, S. Kim, Back-end-of-line compatible large-area molybdenum disulfide grown on flexible substrate: enabling high-performance low-power memristor applications. ACS Nano 17(14), 13784–13791 (2023). https://doi.org/10.1021/acsnano.3c03407
- G.J. Dunderdale, S.J. Davidson, A.J. Ryan, O.O. Mykhaylyk, Flow-induced crystallisation of polymers from aqueous solution. Nat. Commun. 11(1), 3372 (2020). https://doi.org/10.1038/s41467-020-17167-8
- L. Wang, P. Zhang, Z. Gao, D. Wen, Artificial tactile sensing neuron with tactile sensing ability based on a chitosan memristor. Adv. Sci. 11(19), 2308610 (2024). https://doi.org/10.1002/advs.202308610
- C. Wang, Y. Bian, K. Liu, M. Qin, F. Zhang et al., Strain-insensitive viscoelastic perovskite film for intrinsically stretchable neuromorphic vision-adaptive transistors. Nat. Commun. 15(1), 3123 (2024). https://doi.org/10.1038/s41467-024-47532-w
- W. Fan, R. Lei, H. Dou, Z. Wu, L. Lu et al., Sweat permeable and ultrahigh strength 3D PVDF piezoelectric nanoyarn fabric strain sensor. Nat. Commun. 15(1), 3509 (2024). https://doi.org/10.1038/s41467-024-47810-7
- C. Choi, M.K. Choi, S. Liu, M.S. Kim, O.K. Park et al., Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8(1), 1664 (2017). https://doi.org/10.1038/s41467-017-01824-6
- B.H. Mun, B.K. You, S.R. Yang, H.G. Yoo, J.M. Kim et al., Flexible one diode-one phase change memory array enabled by block copolymer self-assembly. ACS Nano 9(4), 4120–4128 (2015). https://doi.org/10.1021/acsnano.5b00230
- S.J. Kim, I.H. Im, J.H. Baek, S.H. Park, J.Y. Kim et al., Reliable and robust two-dimensional perovskite memristors for flexible-resistive random-access memory array. ACS Nano 18(41), 28131–28141 (2024). https://doi.org/10.1021/acsnano.4c07673
- W. Liu, Z. Du, Z. Duan, L. Li, G. Shen, Neuroprosthetic contact lens enabled sensorimotor system for point-of-care monitoring and feedback of intraocular pressure. Nat. Commun. 15(1), 5635 (2024). https://doi.org/10.1038/s41467-024-49907-5
- Z. Cao, Y. Liu, B. Sun, G. Zhou, K. Gao et al., A high-stability pressure-sensitive implantable memristor for pulmonary hypertension monitoring. Adv. Mater. 37(3), 2411659 (2025). https://doi.org/10.1002/adma.202411659
- T. Wang, J. Meng, X. Zhou, Y. Liu, Z. He et al., Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nat. Commun. 13(1), 7432 (2022). https://doi.org/10.1038/s41467-022-35160-1
- Y. Park, M.-J. Park, J.-S. Lee, Reduced graphene oxide-based artificial synapse yarns for wearable textile device applications. Adv. Funct. Mater. 28(42), 1804123 (2018). https://doi.org/10.1002/adfm.201804123
- C. Shi, J. Lan, J. Wang, S. Zhang, Y. Lin et al., Flexible and insoluble artificial synapses based on chemical cross-linked wool keratin. Adv. Funct. Mater. 30(45), 2002882 (2020). https://doi.org/10.1002/adfm.202002882
- G. Zhou, Z. Ren, L. Wang, B. Sun, S. Duan et al., Artificial and wearable albumen protein memristor arrays with integrated memory logic gate functionality. Mater. Horiz. 6(9), 1877–1882 (2019). https://doi.org/10.1039/C9MH00468H
- Y. Xu, H. Wang, D. Ye, R. Yang, Y. Huang et al., Electrohydrodynamically printed flexible organic memristor for leaky integrate and fire neuron. IEEE Electron Device Lett. 43(1), 116–119 (2022). https://doi.org/10.1109/LED.2021.3129202
- P. Xie, Y. Xu, J. Wang, D. Li, Y. Zhang et al., Birdlike broadband neuromorphic visual sensor arrays for fusion imaging. Nat. Commun. 15(1), 8298 (2024). https://doi.org/10.1038/s41467-024-52563-4
- J.H. Nam, S. Oh, H.Y. Jang, O. Kwon, H. Park et al., Low power MoS2/Nb2O5 memtransistor device with highly reliable heterosynaptic plasticity. Adv. Funct. Mater. 31(40), 2104174 (2021). https://doi.org/10.1002/adfm.202104174
- S.S. Teja Nibhanupudi, A. Roy, D. Veksler, M. Coupin, K.C. Matthews et al., Ultra-fast switching memristors based on two-dimensional materials. Nat. Commun. 15(1), 2334 (2024). https://doi.org/10.1038/s41467-024-46372-y
- B.P. Yalagala, P. Sahatiya, C.S.R. Kolli, S. Khandelwal, V. Mattela et al., V2O5 nanosheets for flexible memristors and broadband photodetectors. ACS Appl. Nano Mater. 2(2), 937–947 (2019). https://doi.org/10.1021/acsanm.8b02233
- C. Choi, J. Leem, M. Kim, A. Taqieddin, C. Cho et al., Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11(1), 5934 (2020). https://doi.org/10.1038/s41467-020-19806-6
- V.-Q. Le, T.-H. Do, J.R.D. Retamal, P.-W. Shao, Y.-H. Lai et al., Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor. Nano Energy 56, 322–329 (2019). https://doi.org/10.1016/j.nanoen.2018.10.042
- Y. Zhang, L. Chu, W. Li, A fully-integrated memristor chip for edge learning. Nano-Micro Lett. 16(1), 166 (2024). https://doi.org/10.1007/s40820-024-01368-7
- A. Tyagi, S. Kvatinsky, Assessing the performance of stateful logic in 1-selector-1-RRAM crossbar arrays. In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS). May 19–22, 2024, Singapore, Singapore. IEEE, (2024), pp. 1–5. https://doi.org/10.1109/ISCAS58744.2024.10558539
- Y. Wang, Y. Cen, X. Fong, Design framework for Ising machines with bistable latch-based spins and all-to-all resistive coupling. In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS). May 19–22, 2024, Singapore, Singapore. IEEE, (2024), pp. 1–5. https://doi.org/10.1109/ISCAS58744.2024.10558300
- E. George, S. Pallathuvalappil, A. James, Smart clothing using antenna and memristive ANN. In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS). May 19–22, 2024, Singapore, Singapore. IEEE, (2024), pp. 1–5. https://doi.org/10.1109/ISCAS58744.2024.10558107
- S. Tushar, H. Das, G.S. Rose, HfO2-based synaptic spiking neural network evaluation to optimize design and testing cost. In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS). May 19–22, 2024, Singapore, Singapore. IEEE, (2024), pp. 1–5. https://doi.org/10.1109/ISCAS58744.2024.10558518
- L. Camuñas-Mesa, T. Serrano-Gotarredona, B. Linares-Barranco, Mismatch calibration strategy for query-driven AER read-out in a memristor-CMOS neuromorphic chip. In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS). May 19–22, 2024, Singapore, Singapore. IEEE, (2024), pp. 1–5. https://doi.org/10.1109/ISCAS58744.2024.10558239
- F. Liu, X. Zhao, Z. Chen, C. Bengel, N. Du et al., Realization of reading-based ternary %C5%81ukasiewicz logic using memristive devices. In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS). May 19–22, 2024, Singapore, Singapore. IEEE, (2024), pp. 1–5. https://doi.org/10.1109/ISCAS58744.2024.10558534
- A. Chavan, P. Sinha, S. Raj, In-memory machine learning using adaptive multivariate decision trees and memristors. In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS). May 19–22, 2024, Singapore, Singapore. IEEE, (2024), pp. 1–5. https://doi.org/10.1109/ISCAS58744.2024.10557852
- M.Y. Song, K.L. Chen, K.M. Chen, K.T. Chang, I.J. Wang et al., High RA dual-MTJ SOT-MRAM devices for high speed (10ns) compute-in-memory applications. In: 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023, San Francisco, CA, USA. IEEE, (2023), 1–4. https://doi.org/10.1109/IEDM45741.2023.10413832
- W. Sun, Y. Li, W. Zhang, X. Zheng, D. Dong et al., High area efficiency (6 TOPS/mm2) multimodal neuromorphic computing system implemented by 3D multifunctional RRAM array. In: 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023, San Francisco, CA, USA. IEEE, (2023), pp. 1–4. https://doi.org/10.1109/IEDM45741.2023.10413870
- X. Zheng, L. Wu, Y. Liu, Q. Wu, Y. Xie et al., Point-of-care testing (POCT) system based on self-recovery memoristor chip with low energy consuption(1.547 TOPS/W) and high recognition (1142 fram/s). In: 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023, San Francisco, CA, USA. IEEE, (2023), pp. 1–4. https://doi.org/10.1109/IEDM45741.2023.10413719
- S. Thijssen, M.R. Haq Rashed, S. Kumar Jha, R. Ewetz, UpTime: towards flow-based in-memory computing with high fault-tolerance. In: 2023 60th ACM/IEEE Design Automation Conference (DAC). July 9–13, 2023, San Francisco, CA, USA. IEEE, (2023), pp. 1–6. https://doi.org/10.1109/DAC56929.2023.10247692
- R. Mao, X. Sheng, C. Graves, C. Xu, C. Li, ReRAM-based graph attention network with node-centric edge searching and hamming similarity. In: 2023 60th ACM/IEEE Design Automation Conference (DAC). July 9–13, 2023, San Francisco, CA, USA. IEEE, (2023), pp. 1–6. https://doi.org/10.1109/DAC56929.2023.10247735
- P. Zhou, X. Lin, Y. Gao, X. Lin, T. Zeng et al., Engineering titanium dioxide/titanocene-polysulfide interface for flexible, optical-modulated, and thermal-tolerant multilevel memristor. Nano Lett. 25(7), 2741–2748 (2025). https://doi.org/10.1021/acs.nanolett.4c05786
- T.-Y. Wang, J.-L. Meng, Z.-Y. He, L. Chen, H. Zhu et al., Ultralow power wearable heterosynapse with photoelectric synergistic modulation. Adv. Sci. 7(8), 1903480 (2020). https://doi.org/10.1002/advs.201903480
- S. Huang, C. Zhao, W. Pan, Y. Cui, H. Wu, Direct writing of half-meter long CNT based fiber for flexible electronics. Nano Lett. 15(3), 1609–1614 (2015). https://doi.org/10.1021/nl504150a
- L. Hu, Q. Zhao, S. Huang, J. Zheng, X. Guan et al., Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun. 12(1), 466 (2021). https://doi.org/10.1038/s41467-020-20749-1
- H.-X. Li, Q.-X. Li, F.-Z. Li, J.-P. Liu, G.-D. Gong et al., Ni single-atoms based memristors with ultrafast speed and ultralong data retention. Adv. Mater. 36(6), 2308153 (2024). https://doi.org/10.1002/adma.202308153
- X. Li, B. Qin, Y. Wang, Y. Xi, Z. Huang et al., Sliding ferroelectric memories and synapses based on rhombohedral-stacked bilayer MoS2. Nat. Commun. 15(1), 10921 (2024). https://doi.org/10.1038/s41467-024-55333-4
- Y. Wang, D. Liu, Y. Zhang, L. Fan, Q. Ren et al., Stretchable temperature-responsive multimodal neuromorphic electronic skin with spontaneous synaptic plasticity recovery. ACS Nano 16(5), 8283–8293 (2022). https://doi.org/10.1021/acsnano.2c02089
- T.Y. Wang, J.L. Meng, M.Y. Rao, Z.Y. He, L. Chen et al., Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett. 20(6), 4111–4120 (2020). https://doi.org/10.1021/acs.nanolett.9b05271
- Z. Li, Z. Li, W. Tang, J. Yao, Z. Dou et al., Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system. Nat. Commun. 15(1), 7275 (2024). https://doi.org/10.1038/s41467-024-51609-x
- K. Yang, Y. Wang, P.J. Tiw, C. Wang, X. Zou et al., High-order sensory processing nanocircuit based on coupled VO2 oscillators. Nat. Commun. 15(1), 1693 (2024). https://doi.org/10.1038/s41467-024-45992-8
- X. Hu, J. Meng, Q. Li, T. Wang, H. Zhu et al., Flexible organic optoelectronic devices for neuromorphic computing. IEEE Electron Device Lett. 44(7), 1100–1103 (2023). https://doi.org/10.1109/LED.2023.3274825
- Q. Chen, M. Lin, Z. Wang, X. Zhao, Y. Cai et al., Low power parylene-based memristors with a graphene barrier layer for flexible electronics applications. Adv. Electron. Mater. 5(9), 1800852 (2019). https://doi.org/10.1002/aelm.201800852
- L. Sun, Y. Zhang, G. Han, G. Hwang, J. Jiang et al., Self-selective van der Waals heterostructures for large scale memory array. Nat. Commun. 10(1), 3161 (2019). https://doi.org/10.1038/s41467-019-11187-9
- J. Tang, Q. Wang, J. Tian, X. Li, N. Li et al., Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 14(1), 3633 (2023). https://doi.org/10.1038/s41467-023-39390-9
- A. Krishnaprasad, D. Dev, S.S. Han, Y. Shen, H.S. Chung et al., MoS2 synapses with ultra-low variability and their implementation in Boolean logic. ACS Nano 16(2), 2866–2876 (2022). https://doi.org/10.1021/acsnano.1c09904
- B. Tang, H. Veluri, Y. Li, Z.G. Yu, M. Waqar et al., Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun. 13(1), 3037 (2022). https://doi.org/10.1038/s41467-022-30519-w
- Y. Wang, Y. Gong, L. Yang, Z. Xiong, Z. Lv et al., MXene-ZnO memristor for multimodal in-sensor computing. Adv. Funct. Mater. 31(21), 2100144 (2021). https://doi.org/10.1002/adfm.202100144
- T.L. Phan, S. Seo, Y. Cho, Q. An Vu, Y.H. Lee et al., CNT-molecule-CNT (1D-0D-1D) van der Waals integration ferroelectric memory with 1-nm2 junction area. Nat. Commun. 13, 4556 (2022). https://doi.org/10.1038/s41467-022-32173-8
- M.-C. Yen, C.-J. Lee, K.-H. Liu, Y. Peng, J. Leng et al., All-inorganic perovskite quantum dot light-emitting memories. Nat. Commun. 12(1), 4460 (2021). https://doi.org/10.1038/s41467-021-24762-w
- Z.-P. Wang, Y. Wang, J. Yu, J.-Q. Yang, Y. Zhou et al., Type-I core-shell ZnSe/ZnS quantum dot-based resistive switching for implementing algorithm. Nano Lett. 20(7), 5562–5569 (2020). https://doi.org/10.1021/acs.nanolett.0c02227
- J.-L. Meng, T.-Y. Wang, Z.-Y. He, L. Chen, H. Zhu et al., Flexible boron nitride-based memristor for in situ digital and analogue neuromorphic computing applications. Mater. Horiz. 8(2), 538–546 (2021). https://doi.org/10.1039/D0MH01730B
- A.S. Sokolov, M. Ali, R. Riaz, Y. Abbas, M.J. Ko et al., Silver-adapted diffusive memristor based on organic nitrogen-doped graphene oxide quantum dots (N-GOQDs) for artificial biosynapse applications. Adv. Funct. Mater. 29(18), 1807504 (2019). https://doi.org/10.1002/adfm.201807504
- L. Yin, R. Cheng, Z. Wang, F. Wang, M.G. Sendeku et al., Two-dimensional unipolar memristors with logic and memory functions. Nano Lett. 20(6), 4144–4152 (2020). https://doi.org/10.1021/acs.nanolett.0c00002
- Z. Cao, Y. Xie, J.-L. Lin, S. Zhong, C. Yan et al., Flexible crossbar molecular devices with patterned EGaIn top electrodes for integrated all-molecule-circuit implementation. Adv. Mater. 36(45), 2406456 (2024). https://doi.org/10.1002/adma.202406456
- A.H. Jaafar, L. Meng, T. Zhang, D. Guo, D. Newbrook et al., Flexible memristor devices using hybrid polymer/electrodeposited GeSbTe nanoscale thin films. ACS Appl. Nano Mater. 5(12), 17711–17720 (2022). https://doi.org/10.1021/acsanm.2c03639
- Y. Li, J. Wang, Q. Yang, G. Shen, Flexible artificial optoelectronic synapse based on lead-free metal halide nanocrystals for neuromorphic computing and color recognition. Adv. Sci. 9(22), 2202123 (2022). https://doi.org/10.1002/advs.202202123
- Y. Liu, X. Zhou, H. Yan, X. Shi, K. Chen et al., Highly reliable textile-type memristor by designing aligned nanochannels. Adv. Mater. 35(32), 2301321 (2023). https://doi.org/10.1002/adma.202301321
- X. Liu, S. Dai, W. Zhao, J. Zhang, Z. Guo et al., All-photolithography fabrication of ion-gated flexible organic transistor array for multimode neuromorphic computing. Adv. Mater. 36(21), 2312473 (2024). https://doi.org/10.1002/adma.202312473
- L. Liu, B. Geng, W. Ji, L. Wu, S. Lei et al., A highly crystalline single layer 2D polymer for low variability and excellent scalability molecular memristors. Adv. Mater. 35(6), 2208377 (2023). https://doi.org/10.1002/adma.202208377
- J.-L. Meng, T.-Y. Wang, L. Chen, Q.-Q. Sun, H. Zhu et al., Energy-efficient flexible photoelectric device with 2D/0D hybrid structure for bio-inspired artificial heterosynapse application. Nano Energy 83, 105815 (2021). https://doi.org/10.1016/j.nanoen.2021.105815
- J.C. Li, Z.C. Liu, Y.H. Xia, X. Liu, H.X. Yang et al., Room-temperature-integrated flexible diffusive oxide memristors for artificial nociceptive systems. Adv. Funct. Mater. 35(10), 2416635 (2025). https://doi.org/10.1002/adfm.202416635
- T.-Y. Wang, J.-L. Meng, Z.-Y. He, L. Chen, H. Zhu et al., Room-temperature developed flexible biomemristor with ultralow switching voltage for array learning. Nanoscale 12(16), 9116–9123 (2020). https://doi.org/10.1039/D0NR00919A
- J. Liu, J. Gong, H. Wei, Y. Li, H. Wu et al., A bioinspired flexible neuromuscular system based thermal-annealing-free perovskite with passivation. Nat. Commun. 13(1), 7427 (2022). https://doi.org/10.1038/s41467-022-35092-w
- Z. Li, S. Tang, T. Wang, Y. Liu, J. Meng et al., Effect of lanthanum-aluminum co-doping on structure of hafnium oxide ferroelectric crystals. Adv. Sci. 12(4), 2410765 (2025). https://doi.org/10.1002/advs.202410765
- X. Zhang, C. Wu, Y. Lv, Y. Zhang, W. Liu, High-performance flexible polymer memristor based on stable filamentary switching. Nano Lett. 22(17), 7246–7253 (2022). https://doi.org/10.1021/acs.nanolett.2c02765
- T.-K. Su, W.-K. Cheng, C.-Y. Chen, W.-C. Wang, Y.-T. Chuang et al., Room-temperature fabricated multilevel nonvolatile lead-free cesium halide memristors for reconfigurable in-memory computing. ACS Nano 16(8), 12979–12990 (2022). https://doi.org/10.1021/acsnano.2c05436
- J. Feng, Y. Fan, Y. Wang, Q. Song, Y. Liu et al., Stable halide perovskite memristor utilizing innovative silver/bismuth electrode as an alternative to gold. Adv. Funct. Mater. 2420547 (2025). https://doi.org/10.1002/adfm.202420547
- U. Jung, M. Kim, J. Jang, J.-H. Bae, I.M. Kang et al., Formation of cluster-structured metallic filaments in organic memristors for wearable neuromorphic systems with bio-mimetic synaptic weight distributions. Adv. Sci. 11(9), 2307494 (2024). https://doi.org/10.1002/advs.202307494
- J. Meng, Z. Li, Y. Fang, Q. Li, Z. He et al., Li-ion doped artificial synaptic memristor for highly linear neuromorphic computing. IEEE Electron Device Lett. 43(12), 2069–2072 (2022). https://doi.org/10.1109/LED.2022.3211520
- J. Meng, J. Song, Y. Fang, T. Wang, H. Zhu et al., Ionic diffusive nanomemristors with dendritic competition and cooperation functions for ultralow voltage neuromorphic computing. ACS Nano 18(12), 9150–9159 (2024). https://doi.org/10.1021/acsnano.4c00424
- T.-Y. Wang, J.-L. Meng, Q.-X. Li, Z.-Y. He, H. Zhu et al., Reconfigurable optoelectronic memristor for in-sensor computing applications. Nano Energy 89, 106291 (2021). https://doi.org/10.1016/j.nanoen.2021.106291
- J. Meng, T. Wang, H. Zhu, L. Ji, W. Bao et al., Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett. 22(1), 81–89 (2022). https://doi.org/10.1021/acs.nanolett.1c03240
- D. Hasina, M. Saini, M. Kumar, A. Mandal, N. Basu et al., Site-specific emulation of neuronal synaptic behavior in Au nanop-decorated self-organized TiOx surface. Small 20(7), 2305605 (2024). https://doi.org/10.1002/smll.202305605
- F. Aguirre, A. Sebastian, M. Le Gallo, W. Song, T. Wang et al., Hardware implementation of memristor-based artificial neural networks. Nat. Commun. 15(1), 1974 (2024). https://doi.org/10.1038/s41467-024-45670-9
- T. Wang, Z. Cui, Y. Liu, D. Lu, M. Wang et al., Mechanically durable memristor arrays based on a discrete structure design. Adv. Mater. 34(4), 2106212 (2022). https://doi.org/10.1002/adma.202106212
- J.-H. Cho, S.Y. Chun, G.H. Kim, P. Sriboriboon, S. Han et al., Flexible synaptic memristors with controlled rigidity in zirconium-oxo clusters for high-precision neuromorphic computing. Adv. Sci. 12(11), 2412289 (2025). https://doi.org/10.1002/advs.202412289
- K.A. Nirmal, T.D. Dongale, A.C. Khot, C. Yao, N. Kim et al., Ultra-transparent and multifunctional IZVO mesh electrodes for next-generation flexible optoelectronics. Nano-Micro Lett. 17(1), 12 (2024). https://doi.org/10.1007/s40820-024-01525-y
- D. Kumar, H. Li, D.D. Kumbhar, M.K. Rajbhar, U.K. Das et al., Highly efficient back-end-of-line compatible flexible Si-based optical memristive crossbar array for edge neuromorphic physiological signal processing and bionic machine vision. Nano Micro Lett. 16(1), 238 (2024). https://doi.org/10.1007/s40820-024-01456-8
- F. Hui, M. Lanza, Scanning probe microscopy for advanced nanoelectronics. Nat. Electron. 2(6), 221–229 (2019). https://doi.org/10.1038/s41928-019-0264-8
- Y. Yuan, M. Lanza, The effect of relative humidity in conductive atomic force microscopy. Adv. Mater. 36(51), 2470411 (2024). https://doi.org/10.1002/adma.202470411
- Y. Ji, D.F. Zeigler, D.S. Lee, H. Choi, A.K. Jen et al., Flexible and twistable non-volatile memory cell array with all-organic one diode-one resistor architecture. Nat. Commun. 4, 2707 (2013). https://doi.org/10.1038/ncomms3707
- G. Wang, A.O. Raji, J.-H. Lee, J.M. Tour, Conducting-interlayer SiOx memory devices on rigid and flexible substrates. ACS Nano 8(2), 1410–1418 (2014). https://doi.org/10.1021/nn4052327
- C. Gu, J.-S. Lee, Flexible hybrid organic-inorganic perovskite memory. ACS Nano 10(5), 5413–5418 (2016). https://doi.org/10.1021/acsnano.6b01643
- J. Liu, C. Jiang, Q. Yu, Y. Ni, C. Yu et al., Multidimensional free shape-morphing flexible neuromorphic devices with regulation at arbitrary points. Nat. Commun. 16(1), 756 (2025). https://doi.org/10.1038/s41467-024-55670-4
- A.A. Bessonov, M.N. Kirikova, D.I. Petukhov, M. Allen, T. Ryhänen et al., Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14(2), 199–204 (2015). https://doi.org/10.1038/nmat4135
- Y. Park, J.-S. Lee, Artificial synapses with short- and long-term memory for spiking neural networks based on renewable materials. ACS Nano 11(9), 8962–8969 (2017). https://doi.org/10.1021/acsnano.7b03347
- R.A. John, J. Ko, M.R. Kulkarni, N. Tiwari, N.A. Chien et al., Flexible ionic-electronic hybrid oxide synaptic TFTs with programmable dynamic plasticity for brain-inspired neuromorphic computing. Small 13(32), 1701193 (2017). https://doi.org/10.1002/smll.201701193
- B.C. Jang, S. Kim, S.Y. Yang, J. Park, J.H. Cha et al., Polymer analog memristive synapse with atomic-scale conductive filament for flexible neuromorphic computing system. Nano Lett. 19(2), 839–849 (2019). https://doi.org/10.1021/acs.nanolett.8b04023
- X. Wang, S. Yang, Z. Qin, B. Hu, L. Bu et al., Enhanced multiwavelength response of flexible synaptic transistors for human sunburned skin simulation and neuromorphic computation. Adv. Mater. 35(40), 2303699 (2023). https://doi.org/10.1002/adma.202303699
- B. Wang, H. Luo, X. Wang, E. Wang, Y. Sun et al., Bifunctional NbS2-based asymmetric heterostructure for lateral and vertical electronic devices. ACS Nano 14(1), 175–184 (2020). https://doi.org/10.1021/acsnano.9b06627
- H. Wan, Y. Cao, L.-W. Lo, J. Zhao, N. Sepúlveda et al., Flexible carbon nanotube synaptic transistor for neurological electronic skin applications. ACS Nano 14(8), 10402–10412 (2020). https://doi.org/10.1021/acsnano.0c04259
- J. Zhou, W. Li, Y. Chen, Y.-H. Lin, M. Yi et al., A monochloro copper phthalocyanine memristor with high-temperature resilience for electronic synapse applications. Adv. Mater. 33(5), 2006201 (2021). https://doi.org/10.1002/adma.202006201
- T.-Y. Wang, J.-L. Meng, L. Chen, H. Zhu, Q.-Q. Sun et al., Flexible 3D memristor array for binary storage and multi-states neuromorphic computing applications. InfoMat 3(2), 212–221 (2021). https://doi.org/10.1002/inf2.12158
- S.-H. Lee, H.-L. Park, M.-H. Kim, S. Kang, S.-D. Lee, Interfacial triggering of conductive filament growth in organic flexible memristor for high reliability and uniformity. ACS Appl. Mater. Interfaces 11(33), 30108–30115 (2019). https://doi.org/10.1021/acsami.9b10491
- J. Liu, F. Yang, L. Cao, B. Li, K. Yuan et al., A robust nonvolatile resistive memory device based on a freestanding ultrathin 2D imine polymer film. Adv. Mater. 31(28), 1902264 (2019). https://doi.org/10.1002/adma.201902264
- T.-Y. Wang, J.-L. Meng, Z.-Y. He, L. Chen, H. Zhu et al., Fully transparent, flexible and waterproof synapses with pattern recognition in organic environments. Nanoscale Horiz. 4(6), 1293–1301 (2019). https://doi.org/10.1039/C9NH00341J
- M.-H. Kim, H.-L. Park, M.-H. Kim, J. Jang, J.-H. Bae et al., Fluoropolymer-based organic memristor with multifunctionality for flexible neural network system. NPJ Flex. Electron. 5, 34 (2021). https://doi.org/10.1038/s41528-021-00132-w
- W.-H. Qian, X.-F. Cheng, J. Zhou, J.-H. He, H. Li et al., Lead-free perovskite MASnBr 3-based memristor for quaternary information storage. InfoMat 2(4), 743–751 (2020). https://doi.org/10.1002/inf2.12066
- Y.-X. Hou, Y. Li, Z.-C. Zhang, J.-Q. Li, D.-H. Qi et al., Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano 15(1), 1497–1508 (2021). https://doi.org/10.1021/acsnano.0c08921
- R.A. John, Y. Demirağ, Y. Shynkarenko, Y. Berezovska, N. Ohannessian et al., Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 13(1), 2074 (2022). https://doi.org/10.1038/s41467-022-29727-1
- D. Kumar, H. Li, U.K. Das, A.M. Syed, N. El-Atab, Flexible solution-processable black-phosphorus-based optoelectronic memristive synapses for neuromorphic computing and artificial visual perception applications. Adv. Mater. 35(28), 2300446 (2023). https://doi.org/10.1002/adma.202300446
- D.J. Lee, Y. Lee, C.-W. Hong, S. Lee, Liquid-to-solid exfoliated Ag/2D-SnO/Au flexible memristor with electric field direction-dependent asymmetric hysteresis characteristics. J. Mater. Res. Technol. 15, 3538–3546 (2021). https://doi.org/10.1016/j.jmrt.2021.09.147
- H.-L. Park, M.-H. Kim, M.-H. Kim, S.-H. Lee, Reliable organic memristors for neuromorphic computing by predefining a localized ion-migration path in crosslinkable polymer. Nanoscale 12(44), 22502–22510 (2020). https://doi.org/10.1039/D0NR06964G
- J.H. Baek, K.J. Kwak, S.J. Kim, J. Kim, J.Y. Kim et al., Two-terminal lithium-mediated artificial synapses with enhanced weight modulation for feasible hardware neural networks. Nano Micro Lett. 15(1), 69 (2023). https://doi.org/10.1007/s40820-023-01035-3
- P. Gu, L. Lu, X. Yang, Z. Hu, X. Zhang et al., Highly stretchable semiconducting aerogel films for high-performance flexible electronics. Adv. Funct. Mater. 34(33), 2400589 (2024). https://doi.org/10.1002/adfm.202400589
- J. Ge, S. Zhang, Z. Liu, Z. Xie, S. Pan, Flexible artificial nociceptor using a biopolymer-based forming-free memristor. Nanoscale 11(14), 6591–6601 (2019). https://doi.org/10.1039/C8NR08721K
- Y. Liu, L. Wu, Q. Liu, L. Liu, S. Ke et al., Topochemical synthesis of copper phosphide nanoribbons for flexible optoelectronic memristors. Adv. Funct. Mater. 32(14), 2110900 (2022). https://doi.org/10.1002/adfm.202110900
- Q. Li, T. Wang, Y. Fang, X. Hu, C. Tang et al., Ultralow power wearable organic ferroelectric device for optoelectronic neuromorphic computing. Nano Lett. 22(15), 6435–6443 (2022). https://doi.org/10.1021/acs.nanolett.2c01768
- J. Pan, H. Kan, Z. Liu, S. Gao, E. Wu et al., Flexible TiO2-WO3–x hybrid memristor with enhanced linearity and synaptic plasticity for precise weight tuning in neuromorphic computing. NPJ Flex. Electron. 8, 70 (2024). https://doi.org/10.1038/s41528-024-00356-6
- S. Rajasekaran, F.M. Simanjuntak, S. Chandrasekaran, D. Panda, A. Saleem et al., Flexible Ta2O5/WO3-Based memristor synapse for wearable and neuromorphic applications. IEEE Electron Device Lett. 43(1), 9–12 (2022). https://doi.org/10.1109/LED.2021.3127489
- F. Molina-Lopez, T.Z. Gao, U. Kraft, C. Zhu, T. Öhlund et al., Inkjet-printed stretchable and low voltage synaptic transistor array. Nat. Commun. 10(1), 2676 (2019). https://doi.org/10.1038/s41467-019-10569-3
- C. Jin, Y. Zhu, X. Li, F. An, W. Han et al., Super-flexible freestanding BiMnO3 membranes with stable ferroelectricity and ferromagnetism. Adv. Sci. 8(24), 2102178 (2021). https://doi.org/10.1002/advs.202102178
- M. Yang, X. Zhao, Q. Tang, N. Cui, Z. Wang et al., Stretchable and conformable synapse memristors for wearable and implantable electronics. Nanoscale 10(38), 18135–18144 (2018). https://doi.org/10.1039/C8NR05336G
- Z. Zhou, H. Mao, X. Wang, T. Sun, Q. Chang et al., Transient and flexible polymer memristors utilizing full-solution processed polymer nanocomposites. Nanoscale 10(31), 14824–14829 (2018). https://doi.org/10.1039/C8NR04041A
- H. Sun, Z. Luo, L. Zhao, C. Liu, C. Ma et al., BiFeO3-based flexible ferroelectric memristors for neuromorphic pattern recognition. ACS Appl. Electron. Mater. 2(4), 1081–1089 (2020). https://doi.org/10.1021/acsaelm.0c00094
- Y. Zhu, J.-S. Liang, X. Shi, Z. Zhang, Full-inorganic flexible Ag2S memristor with interface resistance-switching for energy-efficient computing. ACS Appl. Mater. Interfaces 14(38), 43482–43489 (2022). https://doi.org/10.1021/acsami.2c11183
- D. Panda, Y.-F. Hui, T.-Y. Tseng, Harnessing a WOx-based flexible transparent memristor synapse with a hafnium oxide layer for neuromorphic computing. Nanoscale 16(34), 16148–16158 (2024). https://doi.org/10.1039/d4nr01155d
- K. Xu, T. Wang, Y. Liu, J. Yu, Z. Li et al., Improved ferroelectricity and tunneling electroresistance by inducing the ZrO2 intercalation layer in La: HfO2 thin films. ACS Appl. Electron. Mater. 6(2), 1055–1062 (2024). https://doi.org/10.1021/acsaelm.3c01496
- U.K. Das, N. Aslam, M.M. Hussain, N. El-Atab, Silicon-based charge trapping memory devices for next-generation flexible electronics application. IEEE J. Flex. Electron. 2(5), 408–413 (2023). https://doi.org/10.1109/JFLEX.2023.3329080
- Q. Xu, Y. Tao, Z. Wang, H. Zeng, J. Yang et al., Highly flexible, high-performance, and stretchable piezoelectric sensor based on a hierarchical droplet-shaped ceramics with enhanced damage tolerance. Adv. Mater. 36(18), 2311624 (2024). https://doi.org/10.1002/adma.202311624
- T. Sun, B. Feng, J. Huo, Y. Xiao, W. Wang et al., Artificial intelligence meets flexible sensors: emerging smart flexible sensing systems driven by machine learning and artificial synapses. Nano-Micro Lett. 16(1), 14 (2023). https://doi.org/10.1007/s40820-023-01235-x
- Z. Dong, X. Ji, C.S. Lai, D. Qi, Design and implementation of a flexible neuromorphic computing system for affective communication via memristive circuits. IEEE Commun. Mag. 61(1), 74–80 (2023). https://doi.org/10.1109/MCOM.001.2200272
- Z. Liu, J. Mei, J. Tang, M. Xu, B. Gao et al., A memristor-based adaptive neuromorphic decoder for brain–computer interfaces. Nat. Electron. 8(4), 362–372 (2025). https://doi.org/10.1038/s41928-025-01340-2
- T.F. Schranghamer, A. Oberoi, S. Das, Graphene memristive synapses for high precision neuromorphic computing. Nat. Commun. 11(1), 5474 (2020). https://doi.org/10.1038/s41467-020-19203-z
- S. Wang, S. Gao, C. Tang, E. Occhipinti, C. Li et al., Memristor-based adaptive neuromorphic perception in unstructured environments. Nat. Commun. 15(1), 4671 (2024). https://doi.org/10.1038/s41467-024-48908-8
- R. Mandal, A. Mandal, T. Som, Towards on-receptor computing: electronic nociceptor embedded neuromorphic functionalities at nanoscale. Appl. Mater. Today 37, 102103 (2024). https://doi.org/10.1016/j.apmt.2024.102103
- Y. Zhu, T. Nyberg, L. Nyholm, D. Primetzhofer, X. Shi et al., Wafer-scale Ag2S-based memristive crossbar arrays with ultra-low switching-energies reaching biological synapses. Nano Micro Lett. 17(1), 69 (2024). https://doi.org/10.1007/s40820-024-01559-2
- R. Cao, X. Zhang, S. Liu, J. Lu, Y. Wang et al., Compact artificial neuron based on anti-ferroelectric transistor. Nat. Commun. 13(1), 7018 (2022). https://doi.org/10.1038/s41467-022-34774-9
- Y. Yang, F. Zhu, X. Zhang, P. Chen, Y. Wang et al., Firing feature-driven neural circuits with scalable memristive neurons for robotic obstacle avoidance. Nat. Commun. 15(1), 4318 (2024). https://doi.org/10.1038/s41467-024-48399-7
- Z. Dong, X. Ji, G. Zhou, M. Gao, D. Qi, Multimodal neuromorphic sensory-processing system with memristor circuits for smart home applications. IEEE Trans. Ind. Appl. 59(1), 47–58 (2023). https://doi.org/10.1109/TIA.2022.3188749
- G. Zhou, J. Li, Q. Song, L. Wang, Z. Ren et al., Full hardware implementation of neuromorphic visual system based on multimodal optoelectronic resistive memory arrays for versatile image processing. Nat. Commun. 14(1), 8489 (2023). https://doi.org/10.1038/s41467-023-43944-2
- C. Yang, H. Wang, G. Zhou, H. Zhao, W. Hou et al., A multimodal perception-enabled flexible memristor with combined sensing-storage-memory functions for enhanced artificial injury recognition. Small 20(45), 2402588 (2024). https://doi.org/10.1002/smll.202402588
- C. Zhang, W.B. Ye, K. Zhou, H.-Y. Chen, J.-Q. Yang et al., Bioinspired artificial sensory nerve based on nafion memristor. Adv. Funct. Mater. 29(20), 1808783 (2019). https://doi.org/10.1002/adfm.201808783
- F. Sun, Q. Lu, M. Hao, Y. Wu, Y. Li et al., An artificial neuromorphic somatosensory system with spatio-temporal tactile perception and feedback functions. NPJ Flex. Electron. 6, 72 (2022). https://doi.org/10.1038/s41528-022-00202-7
- S. Chen, Z. Lou, D. Chen, G. Shen, An artificial flexible visual memory system based on an UV-motivated memristor. Adv. Mater. 30(7), 1705400 (2018). https://doi.org/10.1002/adma.201705400
- H. Wang, B. Sun, S.S. Ge, J. Su, M.L. Jin, On non-von Neumann flexible neuromorphic vision sensors. NPJ Flex. Electron. 8, 28 (2024). https://doi.org/10.1038/s41528-024-00313-3
- Y. Cao, B. Xu, B. Li, H. Fu, Advanced design of soft robots with artificial intelligence. Nano-Micro Lett. 16(1), 214 (2024). https://doi.org/10.1007/s40820-024-01423-3
- S.W. Cho, C. Jo, Y.H. Kim, S.K. Park, Progress of materials and devices for neuromorphic vision sensors. Nano Micro Lett. 14(1), 203 (2022). https://doi.org/10.1007/s40820-022-00945-y
References
H. Wang, M. Yang, Q. Tang, X. Zhao, Y. Tong et al., Flexible, conformal organic synaptic transistors on elastomer for biomedical applications. Adv. Funct. Mater. 29(19), 1901107 (2019). https://doi.org/10.1002/adfm.201901107
Q.A. Vu, H. Kim, V.L. Nguyen, U.Y. Won, S. Adhikari et al., A high-on/off-ratio floating-gate memristor array on a flexible substrate via CVD-grown large-area 2D layer stacking. Adv. Mater. 29(44), 1703363 (2017). https://doi.org/10.1002/adma.201703363
L. Dong, B. Xue, G. Wei, S. Yuan, M. Chen et al., Highly promising 2D/1D BP-C/CNT bionic opto-olfactory co-sensory artificial synapses for multisensory integration. Adv. Sci. 11(29), 2403665 (2024). https://doi.org/10.1002/advs.202403665
J. Wang, Z. Lv, X. Xing, X. Li, Y. Wang et al., Optically modulated threshold switching in core–shell quantum dot based memristive device. Adv. Funct. Mater. 30(16), 1909114 (2020). https://doi.org/10.1002/adfm.201909114
C. Lu, J. Meng, J. Song, T. Wang, H. Zhu et al., Self-rectifying all-optical modulated optoelectronic multistates memristor crossbar array for neuromorphic computing. Nano Lett. 24(5), 1667–1672 (2024). https://doi.org/10.1021/acs.nanolett.3c04358
W. Tong, W. Wei, X. Zhang, S. Ding, Z. Lu et al., Highly stable HfO2 memristors through van der waals electrode lamination and delamination. Nano Lett. 23(21), 9928–9935 (2023). https://doi.org/10.1021/acs.nanolett.3c02888
L. Yin, R. Cheng, Y. Wen, B. Zhai, J. Jiang et al., High-performance memristors based on ultrathin 2D copper chalcogenides. Adv. Mater. 34(9), 2108313 (2022). https://doi.org/10.1002/adma.202108313
H. Oh, J.Y. Oh, C.W. Park, J.E. Pi, J.H. Yang et al., High density integration of stretchable inorganic thin film transistors with excellent performance and reliability. Nat. Commun. 13(1), 4963 (2022). https://doi.org/10.1038/s41467-022-32672-8
N. Raeis-Hosseini, Y. Park, J.-S. Lee, Flexible artificial synaptic devices based on collagen from fish protein with spike-timing-dependent plasticity. Adv. Funct. Mater. 28(31), 1800553 (2018). https://doi.org/10.1002/adfm.201800553
W. Zhang, M. Wu, Y. Zhang, H. Yan, Y. Lee et al., Paraffin-enabled superlattice customization for a photostimulated gradient-responsive artificial reflex arc. Adv. Mater. 36(21), 2313267 (2024). https://doi.org/10.1002/adma.202313267
S.-C. Chen, Y.-T. Yang, Y.-C. Tseng, K.-D. Chiou, P.-W. Huang et al., HfO2 memristor-based flexible radio frequency switches. ACS Nano 19(1), 704–711 (2025). https://doi.org/10.1021/acsnano.4c11846
J. Zhu, C. Liu, R. Gao, Y. Zhang, H. Zhang et al., Ultra-flexible high-linearity silicon nanomembrane synaptic transistor array. Adv. Mater. 37(7), 2413404 (2025). https://doi.org/10.1002/adma.202413404
Q. Li, S. Wang, Z. Li, X. Hu, Y. Liu et al., High-performance ferroelectric field-effect transistors with ultra-thin indium tin oxide channels for flexible and transparent electronics. Nat. Commun. 15(1), 2686 (2024). https://doi.org/10.1038/s41467-024-46878-5
Z. Peng, Z. Cheng, S. Ke, Y. Xiao, Z. Ye et al., Flexible memristor constructed by 2D cadmium phosphorus trichalcogenide for artificial synapse and logic operation. Adv. Funct. Mater. 33(9), 2211269 (2023). https://doi.org/10.1002/adfm.202211269
Y. Wang, J. Su, G. Ouyang, S. Geng, M. Ren et al., Flexible Zn-TCPP nanosheet-based memristor for ultralow-power biomimetic sensing system and high-precision gesture recognition. Adv. Funct. Mater. 34(26), 2316397 (2024). https://doi.org/10.1002/adfm.202316397
C.W. Lee, C. Yoo, S.S. Han, Y.J. Song, S.J. Kim et al., Centimeter-scale tellurium oxide films for artificial optoelectronic synapses with broadband responsiveness and mechanical flexibility. ACS Nano 18(28), 18635–18649 (2024). https://doi.org/10.1021/acsnano.4c04851
H. Zhou, S. Li, K.-W. Ang, Y.-W. Zhang, Recent advances in in-memory computing: exploring memristor and memtransistor arrays with 2D materials. Nano-Micro Lett. 16(1), 121 (2024). https://doi.org/10.1007/s40820-024-01335-2
D. Wang, S. Zhao, L. Li, L. Wang, S. Cui et al., All-flexible artificial reflex arc based on threshold-switching memristor. Adv. Funct. Mater. 32(21), 2200241 (2022). https://doi.org/10.1002/adfm.202200241
L. Liang, K. Li, C. Xiao, S. Fan, J. Liu et al., Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device. J. Am. Chem. Soc. 137(8), 3102–3108 (2015). https://doi.org/10.1021/jacs.5b00021
Y. Wang, M. Cao, J. Bian, Q. Li, J. Su, Flexible ZnO nanosheet-based artificial synapses prepared by low-temperature process for high recognition accuracy neuromorphic computing. Adv. Funct. Mater. 32(52), 2209907 (2022). https://doi.org/10.1002/adfm.202209907
J. Chen, X. Liu, C. Liu, L. Tang, T. Bu et al., Reconfigurable Ag/HfO2/NiO/Pt memristors with stable synchronous synaptic and neuronal functions for renewable homogeneous neuromorphic computing system. Nano Lett. 24(17), 5371–5378 (2024). https://doi.org/10.1021/acs.nanolett.4c01319
H. Kim, M. Kim, A. Lee, H.-L. Park, J. Jang et al., Organic memristor-based flexible neural networks with bio-realistic synaptic plasticity for complex combinatorial optimization. Adv. Sci. 10(19), 2300659 (2023). https://doi.org/10.1002/advs.202300659
T.Y. Wang, Z.Y. He, H. Liu, L. Chen, H. Zhu et al., Flexible electronic synapses for face recognition application with multimodulated conductance states. ACS Appl. Mater. Interfaces 10(43), 37345–37352 (2018). https://doi.org/10.1021/acsami.8b16841
J. Huang, S. Yang, X. Tang, L. Yang, W. Chen et al., Flexible, transparent, and wafer-scale artificial synapse array based on TiOx/Ti3C2Tx film for neuromorphic computing. Adv. Mater. 35(33), 2303737 (2023). https://doi.org/10.1002/adma.202303737
R. Yuan, P.J. Tiw, L. Cai, Z. Yang, C. Liu et al., A neuromorphic physiological signal processing system based on VO2 memristor for next-generation human-machine interface. Nat. Commun. 14(1), 3695 (2023). https://doi.org/10.1038/s41467-023-39430-4
T.-Y. Wang, J.-L. Meng, Q.-X. Li, L. Chen, H. Zhu et al., Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique. J. Mater. Sci. Technol. 60, 21–26 (2021). https://doi.org/10.1016/j.jmst.2020.04.059
X. Zhang, Y. Zhuo, Q. Luo, Z. Wu, R. Midya et al., An artificial spiking afferent nerve based on Mott memristors for neurorobotics. Nat. Commun. 11(1), 51 (2020). https://doi.org/10.1038/s41467-019-13827-6
Y. Liu, T. Wang, K. Xu, Z. Li, J. Yu et al., Low-power and high-speed HfLaO-based FE-TFTs for artificial synapse and reconfigurable logic applications. Mater. Horiz. 11(2), 490–498 (2024). https://doi.org/10.1039/D3MH01461D
Z. Wu, P. Shi, R. Xing, T. Yu, L. Zhao et al., Flexible Mott synaptic transistor on polyimide substrate for physical neural networks. Adv. Electron. Mater. 8(9), 2200078 (2022). https://doi.org/10.1002/aelm.202200078
S. Jang, S. Jang, E.-H. Lee, M. Kang, G. Wang et al., Ultrathin conformable organic artificial synapse for wearable intelligent device applications. ACS Appl. Mater. Interfaces 11(1), 1071–1080 (2019). https://doi.org/10.1021/acsami.8b12092
P. Saha, S.E. Muhammed, S. Sathyanarayana, B.C. Das, Solution-processed robust multifunctional memristor of 2D layered material thin film. ACS Nano 18(1), 1137–1148 (2024). https://doi.org/10.1021/acsnano.3c10775
J.-M. Yang, Y.-K. Jung, J.-H. Lee, Y.C. Kim, S.-Y. Kim et al., Asymmetric carrier transport in flexible interface-type memristor enables artificial synapses with sub-femtojoule energy consumption. Nanoscale Horiz. 6(12), 987–997 (2021). https://doi.org/10.1039/D1NH00452B
Y. Sun, H. Wang, D. Xie, Recent advance in synaptic plasticity modulation techniques for neuromorphic applications. Nano-Micro Lett. 16(1), 211 (2024). https://doi.org/10.1007/s40820-024-01445-x
B.C. Jang, Y. Nam, B.J. Koo, J. Choi, S.G. Im et al., Memristive logic-in-memory integrated circuits for energy-efficient flexible electronics. Adv. Funct. Mater. 28(2), 1704725 (2018). https://doi.org/10.1002/adfm.201704725
Y.-Y. Zhao, W.-J. Sun, J. Wang, J.-H. He, H. Li et al., All-inorganic ionic polymer-based memristor for high-performance and flexible artificial synapse. Adv. Funct. Mater. 30(39), 2004245 (2020). https://doi.org/10.1002/adfm.202004245
M. Wang, S. Cai, C. Pan, C. Wang, X. Lian et al., Robust memristors based on layered two-dimensional materials. Nat. Electron. 1(2), 130–136 (2018). https://doi.org/10.1038/s41928-018-0021-4
Z. Li, Y. Chen, S. Liu, W. Li, L. Liu et al., Strain releasing of flexible 2D electronics through van der waals sliding contact. ACS Nano 16(8), 13152–13159 (2022). https://doi.org/10.1021/acsnano.2c06214
A. Bala, A. Sen, J. Shim, S. Gandla, S. Kim, Back-end-of-line compatible large-area molybdenum disulfide grown on flexible substrate: enabling high-performance low-power memristor applications. ACS Nano 17(14), 13784–13791 (2023). https://doi.org/10.1021/acsnano.3c03407
G.J. Dunderdale, S.J. Davidson, A.J. Ryan, O.O. Mykhaylyk, Flow-induced crystallisation of polymers from aqueous solution. Nat. Commun. 11(1), 3372 (2020). https://doi.org/10.1038/s41467-020-17167-8
L. Wang, P. Zhang, Z. Gao, D. Wen, Artificial tactile sensing neuron with tactile sensing ability based on a chitosan memristor. Adv. Sci. 11(19), 2308610 (2024). https://doi.org/10.1002/advs.202308610
C. Wang, Y. Bian, K. Liu, M. Qin, F. Zhang et al., Strain-insensitive viscoelastic perovskite film for intrinsically stretchable neuromorphic vision-adaptive transistors. Nat. Commun. 15(1), 3123 (2024). https://doi.org/10.1038/s41467-024-47532-w
W. Fan, R. Lei, H. Dou, Z. Wu, L. Lu et al., Sweat permeable and ultrahigh strength 3D PVDF piezoelectric nanoyarn fabric strain sensor. Nat. Commun. 15(1), 3509 (2024). https://doi.org/10.1038/s41467-024-47810-7
C. Choi, M.K. Choi, S. Liu, M.S. Kim, O.K. Park et al., Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8(1), 1664 (2017). https://doi.org/10.1038/s41467-017-01824-6
B.H. Mun, B.K. You, S.R. Yang, H.G. Yoo, J.M. Kim et al., Flexible one diode-one phase change memory array enabled by block copolymer self-assembly. ACS Nano 9(4), 4120–4128 (2015). https://doi.org/10.1021/acsnano.5b00230
S.J. Kim, I.H. Im, J.H. Baek, S.H. Park, J.Y. Kim et al., Reliable and robust two-dimensional perovskite memristors for flexible-resistive random-access memory array. ACS Nano 18(41), 28131–28141 (2024). https://doi.org/10.1021/acsnano.4c07673
W. Liu, Z. Du, Z. Duan, L. Li, G. Shen, Neuroprosthetic contact lens enabled sensorimotor system for point-of-care monitoring and feedback of intraocular pressure. Nat. Commun. 15(1), 5635 (2024). https://doi.org/10.1038/s41467-024-49907-5
Z. Cao, Y. Liu, B. Sun, G. Zhou, K. Gao et al., A high-stability pressure-sensitive implantable memristor for pulmonary hypertension monitoring. Adv. Mater. 37(3), 2411659 (2025). https://doi.org/10.1002/adma.202411659
T. Wang, J. Meng, X. Zhou, Y. Liu, Z. He et al., Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nat. Commun. 13(1), 7432 (2022). https://doi.org/10.1038/s41467-022-35160-1
Y. Park, M.-J. Park, J.-S. Lee, Reduced graphene oxide-based artificial synapse yarns for wearable textile device applications. Adv. Funct. Mater. 28(42), 1804123 (2018). https://doi.org/10.1002/adfm.201804123
C. Shi, J. Lan, J. Wang, S. Zhang, Y. Lin et al., Flexible and insoluble artificial synapses based on chemical cross-linked wool keratin. Adv. Funct. Mater. 30(45), 2002882 (2020). https://doi.org/10.1002/adfm.202002882
G. Zhou, Z. Ren, L. Wang, B. Sun, S. Duan et al., Artificial and wearable albumen protein memristor arrays with integrated memory logic gate functionality. Mater. Horiz. 6(9), 1877–1882 (2019). https://doi.org/10.1039/C9MH00468H
Y. Xu, H. Wang, D. Ye, R. Yang, Y. Huang et al., Electrohydrodynamically printed flexible organic memristor for leaky integrate and fire neuron. IEEE Electron Device Lett. 43(1), 116–119 (2022). https://doi.org/10.1109/LED.2021.3129202
P. Xie, Y. Xu, J. Wang, D. Li, Y. Zhang et al., Birdlike broadband neuromorphic visual sensor arrays for fusion imaging. Nat. Commun. 15(1), 8298 (2024). https://doi.org/10.1038/s41467-024-52563-4
J.H. Nam, S. Oh, H.Y. Jang, O. Kwon, H. Park et al., Low power MoS2/Nb2O5 memtransistor device with highly reliable heterosynaptic plasticity. Adv. Funct. Mater. 31(40), 2104174 (2021). https://doi.org/10.1002/adfm.202104174
S.S. Teja Nibhanupudi, A. Roy, D. Veksler, M. Coupin, K.C. Matthews et al., Ultra-fast switching memristors based on two-dimensional materials. Nat. Commun. 15(1), 2334 (2024). https://doi.org/10.1038/s41467-024-46372-y
B.P. Yalagala, P. Sahatiya, C.S.R. Kolli, S. Khandelwal, V. Mattela et al., V2O5 nanosheets for flexible memristors and broadband photodetectors. ACS Appl. Nano Mater. 2(2), 937–947 (2019). https://doi.org/10.1021/acsanm.8b02233
C. Choi, J. Leem, M. Kim, A. Taqieddin, C. Cho et al., Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11(1), 5934 (2020). https://doi.org/10.1038/s41467-020-19806-6
V.-Q. Le, T.-H. Do, J.R.D. Retamal, P.-W. Shao, Y.-H. Lai et al., Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor. Nano Energy 56, 322–329 (2019). https://doi.org/10.1016/j.nanoen.2018.10.042
Y. Zhang, L. Chu, W. Li, A fully-integrated memristor chip for edge learning. Nano-Micro Lett. 16(1), 166 (2024). https://doi.org/10.1007/s40820-024-01368-7
A. Tyagi, S. Kvatinsky, Assessing the performance of stateful logic in 1-selector-1-RRAM crossbar arrays. In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS). May 19–22, 2024, Singapore, Singapore. IEEE, (2024), pp. 1–5. https://doi.org/10.1109/ISCAS58744.2024.10558539
Y. Wang, Y. Cen, X. Fong, Design framework for Ising machines with bistable latch-based spins and all-to-all resistive coupling. In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS). May 19–22, 2024, Singapore, Singapore. IEEE, (2024), pp. 1–5. https://doi.org/10.1109/ISCAS58744.2024.10558300
E. George, S. Pallathuvalappil, A. James, Smart clothing using antenna and memristive ANN. In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS). May 19–22, 2024, Singapore, Singapore. IEEE, (2024), pp. 1–5. https://doi.org/10.1109/ISCAS58744.2024.10558107
S. Tushar, H. Das, G.S. Rose, HfO2-based synaptic spiking neural network evaluation to optimize design and testing cost. In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS). May 19–22, 2024, Singapore, Singapore. IEEE, (2024), pp. 1–5. https://doi.org/10.1109/ISCAS58744.2024.10558518
L. Camuñas-Mesa, T. Serrano-Gotarredona, B. Linares-Barranco, Mismatch calibration strategy for query-driven AER read-out in a memristor-CMOS neuromorphic chip. In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS). May 19–22, 2024, Singapore, Singapore. IEEE, (2024), pp. 1–5. https://doi.org/10.1109/ISCAS58744.2024.10558239
F. Liu, X. Zhao, Z. Chen, C. Bengel, N. Du et al., Realization of reading-based ternary %C5%81ukasiewicz logic using memristive devices. In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS). May 19–22, 2024, Singapore, Singapore. IEEE, (2024), pp. 1–5. https://doi.org/10.1109/ISCAS58744.2024.10558534
A. Chavan, P. Sinha, S. Raj, In-memory machine learning using adaptive multivariate decision trees and memristors. In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS). May 19–22, 2024, Singapore, Singapore. IEEE, (2024), pp. 1–5. https://doi.org/10.1109/ISCAS58744.2024.10557852
M.Y. Song, K.L. Chen, K.M. Chen, K.T. Chang, I.J. Wang et al., High RA dual-MTJ SOT-MRAM devices for high speed (10ns) compute-in-memory applications. In: 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023, San Francisco, CA, USA. IEEE, (2023), 1–4. https://doi.org/10.1109/IEDM45741.2023.10413832
W. Sun, Y. Li, W. Zhang, X. Zheng, D. Dong et al., High area efficiency (6 TOPS/mm2) multimodal neuromorphic computing system implemented by 3D multifunctional RRAM array. In: 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023, San Francisco, CA, USA. IEEE, (2023), pp. 1–4. https://doi.org/10.1109/IEDM45741.2023.10413870
X. Zheng, L. Wu, Y. Liu, Q. Wu, Y. Xie et al., Point-of-care testing (POCT) system based on self-recovery memoristor chip with low energy consuption(1.547 TOPS/W) and high recognition (1142 fram/s). In: 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023, San Francisco, CA, USA. IEEE, (2023), pp. 1–4. https://doi.org/10.1109/IEDM45741.2023.10413719
S. Thijssen, M.R. Haq Rashed, S. Kumar Jha, R. Ewetz, UpTime: towards flow-based in-memory computing with high fault-tolerance. In: 2023 60th ACM/IEEE Design Automation Conference (DAC). July 9–13, 2023, San Francisco, CA, USA. IEEE, (2023), pp. 1–6. https://doi.org/10.1109/DAC56929.2023.10247692
R. Mao, X. Sheng, C. Graves, C. Xu, C. Li, ReRAM-based graph attention network with node-centric edge searching and hamming similarity. In: 2023 60th ACM/IEEE Design Automation Conference (DAC). July 9–13, 2023, San Francisco, CA, USA. IEEE, (2023), pp. 1–6. https://doi.org/10.1109/DAC56929.2023.10247735
P. Zhou, X. Lin, Y. Gao, X. Lin, T. Zeng et al., Engineering titanium dioxide/titanocene-polysulfide interface for flexible, optical-modulated, and thermal-tolerant multilevel memristor. Nano Lett. 25(7), 2741–2748 (2025). https://doi.org/10.1021/acs.nanolett.4c05786
T.-Y. Wang, J.-L. Meng, Z.-Y. He, L. Chen, H. Zhu et al., Ultralow power wearable heterosynapse with photoelectric synergistic modulation. Adv. Sci. 7(8), 1903480 (2020). https://doi.org/10.1002/advs.201903480
S. Huang, C. Zhao, W. Pan, Y. Cui, H. Wu, Direct writing of half-meter long CNT based fiber for flexible electronics. Nano Lett. 15(3), 1609–1614 (2015). https://doi.org/10.1021/nl504150a
L. Hu, Q. Zhao, S. Huang, J. Zheng, X. Guan et al., Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun. 12(1), 466 (2021). https://doi.org/10.1038/s41467-020-20749-1
H.-X. Li, Q.-X. Li, F.-Z. Li, J.-P. Liu, G.-D. Gong et al., Ni single-atoms based memristors with ultrafast speed and ultralong data retention. Adv. Mater. 36(6), 2308153 (2024). https://doi.org/10.1002/adma.202308153
X. Li, B. Qin, Y. Wang, Y. Xi, Z. Huang et al., Sliding ferroelectric memories and synapses based on rhombohedral-stacked bilayer MoS2. Nat. Commun. 15(1), 10921 (2024). https://doi.org/10.1038/s41467-024-55333-4
Y. Wang, D. Liu, Y. Zhang, L. Fan, Q. Ren et al., Stretchable temperature-responsive multimodal neuromorphic electronic skin with spontaneous synaptic plasticity recovery. ACS Nano 16(5), 8283–8293 (2022). https://doi.org/10.1021/acsnano.2c02089
T.Y. Wang, J.L. Meng, M.Y. Rao, Z.Y. He, L. Chen et al., Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett. 20(6), 4111–4120 (2020). https://doi.org/10.1021/acs.nanolett.9b05271
Z. Li, Z. Li, W. Tang, J. Yao, Z. Dou et al., Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system. Nat. Commun. 15(1), 7275 (2024). https://doi.org/10.1038/s41467-024-51609-x
K. Yang, Y. Wang, P.J. Tiw, C. Wang, X. Zou et al., High-order sensory processing nanocircuit based on coupled VO2 oscillators. Nat. Commun. 15(1), 1693 (2024). https://doi.org/10.1038/s41467-024-45992-8
X. Hu, J. Meng, Q. Li, T. Wang, H. Zhu et al., Flexible organic optoelectronic devices for neuromorphic computing. IEEE Electron Device Lett. 44(7), 1100–1103 (2023). https://doi.org/10.1109/LED.2023.3274825
Q. Chen, M. Lin, Z. Wang, X. Zhao, Y. Cai et al., Low power parylene-based memristors with a graphene barrier layer for flexible electronics applications. Adv. Electron. Mater. 5(9), 1800852 (2019). https://doi.org/10.1002/aelm.201800852
L. Sun, Y. Zhang, G. Han, G. Hwang, J. Jiang et al., Self-selective van der Waals heterostructures for large scale memory array. Nat. Commun. 10(1), 3161 (2019). https://doi.org/10.1038/s41467-019-11187-9
J. Tang, Q. Wang, J. Tian, X. Li, N. Li et al., Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 14(1), 3633 (2023). https://doi.org/10.1038/s41467-023-39390-9
A. Krishnaprasad, D. Dev, S.S. Han, Y. Shen, H.S. Chung et al., MoS2 synapses with ultra-low variability and their implementation in Boolean logic. ACS Nano 16(2), 2866–2876 (2022). https://doi.org/10.1021/acsnano.1c09904
B. Tang, H. Veluri, Y. Li, Z.G. Yu, M. Waqar et al., Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun. 13(1), 3037 (2022). https://doi.org/10.1038/s41467-022-30519-w
Y. Wang, Y. Gong, L. Yang, Z. Xiong, Z. Lv et al., MXene-ZnO memristor for multimodal in-sensor computing. Adv. Funct. Mater. 31(21), 2100144 (2021). https://doi.org/10.1002/adfm.202100144
T.L. Phan, S. Seo, Y. Cho, Q. An Vu, Y.H. Lee et al., CNT-molecule-CNT (1D-0D-1D) van der Waals integration ferroelectric memory with 1-nm2 junction area. Nat. Commun. 13, 4556 (2022). https://doi.org/10.1038/s41467-022-32173-8
M.-C. Yen, C.-J. Lee, K.-H. Liu, Y. Peng, J. Leng et al., All-inorganic perovskite quantum dot light-emitting memories. Nat. Commun. 12(1), 4460 (2021). https://doi.org/10.1038/s41467-021-24762-w
Z.-P. Wang, Y. Wang, J. Yu, J.-Q. Yang, Y. Zhou et al., Type-I core-shell ZnSe/ZnS quantum dot-based resistive switching for implementing algorithm. Nano Lett. 20(7), 5562–5569 (2020). https://doi.org/10.1021/acs.nanolett.0c02227
J.-L. Meng, T.-Y. Wang, Z.-Y. He, L. Chen, H. Zhu et al., Flexible boron nitride-based memristor for in situ digital and analogue neuromorphic computing applications. Mater. Horiz. 8(2), 538–546 (2021). https://doi.org/10.1039/D0MH01730B
A.S. Sokolov, M. Ali, R. Riaz, Y. Abbas, M.J. Ko et al., Silver-adapted diffusive memristor based on organic nitrogen-doped graphene oxide quantum dots (N-GOQDs) for artificial biosynapse applications. Adv. Funct. Mater. 29(18), 1807504 (2019). https://doi.org/10.1002/adfm.201807504
L. Yin, R. Cheng, Z. Wang, F. Wang, M.G. Sendeku et al., Two-dimensional unipolar memristors with logic and memory functions. Nano Lett. 20(6), 4144–4152 (2020). https://doi.org/10.1021/acs.nanolett.0c00002
Z. Cao, Y. Xie, J.-L. Lin, S. Zhong, C. Yan et al., Flexible crossbar molecular devices with patterned EGaIn top electrodes for integrated all-molecule-circuit implementation. Adv. Mater. 36(45), 2406456 (2024). https://doi.org/10.1002/adma.202406456
A.H. Jaafar, L. Meng, T. Zhang, D. Guo, D. Newbrook et al., Flexible memristor devices using hybrid polymer/electrodeposited GeSbTe nanoscale thin films. ACS Appl. Nano Mater. 5(12), 17711–17720 (2022). https://doi.org/10.1021/acsanm.2c03639
Y. Li, J. Wang, Q. Yang, G. Shen, Flexible artificial optoelectronic synapse based on lead-free metal halide nanocrystals for neuromorphic computing and color recognition. Adv. Sci. 9(22), 2202123 (2022). https://doi.org/10.1002/advs.202202123
Y. Liu, X. Zhou, H. Yan, X. Shi, K. Chen et al., Highly reliable textile-type memristor by designing aligned nanochannels. Adv. Mater. 35(32), 2301321 (2023). https://doi.org/10.1002/adma.202301321
X. Liu, S. Dai, W. Zhao, J. Zhang, Z. Guo et al., All-photolithography fabrication of ion-gated flexible organic transistor array for multimode neuromorphic computing. Adv. Mater. 36(21), 2312473 (2024). https://doi.org/10.1002/adma.202312473
L. Liu, B. Geng, W. Ji, L. Wu, S. Lei et al., A highly crystalline single layer 2D polymer for low variability and excellent scalability molecular memristors. Adv. Mater. 35(6), 2208377 (2023). https://doi.org/10.1002/adma.202208377
J.-L. Meng, T.-Y. Wang, L. Chen, Q.-Q. Sun, H. Zhu et al., Energy-efficient flexible photoelectric device with 2D/0D hybrid structure for bio-inspired artificial heterosynapse application. Nano Energy 83, 105815 (2021). https://doi.org/10.1016/j.nanoen.2021.105815
J.C. Li, Z.C. Liu, Y.H. Xia, X. Liu, H.X. Yang et al., Room-temperature-integrated flexible diffusive oxide memristors for artificial nociceptive systems. Adv. Funct. Mater. 35(10), 2416635 (2025). https://doi.org/10.1002/adfm.202416635
T.-Y. Wang, J.-L. Meng, Z.-Y. He, L. Chen, H. Zhu et al., Room-temperature developed flexible biomemristor with ultralow switching voltage for array learning. Nanoscale 12(16), 9116–9123 (2020). https://doi.org/10.1039/D0NR00919A
J. Liu, J. Gong, H. Wei, Y. Li, H. Wu et al., A bioinspired flexible neuromuscular system based thermal-annealing-free perovskite with passivation. Nat. Commun. 13(1), 7427 (2022). https://doi.org/10.1038/s41467-022-35092-w
Z. Li, S. Tang, T. Wang, Y. Liu, J. Meng et al., Effect of lanthanum-aluminum co-doping on structure of hafnium oxide ferroelectric crystals. Adv. Sci. 12(4), 2410765 (2025). https://doi.org/10.1002/advs.202410765
X. Zhang, C. Wu, Y. Lv, Y. Zhang, W. Liu, High-performance flexible polymer memristor based on stable filamentary switching. Nano Lett. 22(17), 7246–7253 (2022). https://doi.org/10.1021/acs.nanolett.2c02765
T.-K. Su, W.-K. Cheng, C.-Y. Chen, W.-C. Wang, Y.-T. Chuang et al., Room-temperature fabricated multilevel nonvolatile lead-free cesium halide memristors for reconfigurable in-memory computing. ACS Nano 16(8), 12979–12990 (2022). https://doi.org/10.1021/acsnano.2c05436
J. Feng, Y. Fan, Y. Wang, Q. Song, Y. Liu et al., Stable halide perovskite memristor utilizing innovative silver/bismuth electrode as an alternative to gold. Adv. Funct. Mater. 2420547 (2025). https://doi.org/10.1002/adfm.202420547
U. Jung, M. Kim, J. Jang, J.-H. Bae, I.M. Kang et al., Formation of cluster-structured metallic filaments in organic memristors for wearable neuromorphic systems with bio-mimetic synaptic weight distributions. Adv. Sci. 11(9), 2307494 (2024). https://doi.org/10.1002/advs.202307494
J. Meng, Z. Li, Y. Fang, Q. Li, Z. He et al., Li-ion doped artificial synaptic memristor for highly linear neuromorphic computing. IEEE Electron Device Lett. 43(12), 2069–2072 (2022). https://doi.org/10.1109/LED.2022.3211520
J. Meng, J. Song, Y. Fang, T. Wang, H. Zhu et al., Ionic diffusive nanomemristors with dendritic competition and cooperation functions for ultralow voltage neuromorphic computing. ACS Nano 18(12), 9150–9159 (2024). https://doi.org/10.1021/acsnano.4c00424
T.-Y. Wang, J.-L. Meng, Q.-X. Li, Z.-Y. He, H. Zhu et al., Reconfigurable optoelectronic memristor for in-sensor computing applications. Nano Energy 89, 106291 (2021). https://doi.org/10.1016/j.nanoen.2021.106291
J. Meng, T. Wang, H. Zhu, L. Ji, W. Bao et al., Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett. 22(1), 81–89 (2022). https://doi.org/10.1021/acs.nanolett.1c03240
D. Hasina, M. Saini, M. Kumar, A. Mandal, N. Basu et al., Site-specific emulation of neuronal synaptic behavior in Au nanop-decorated self-organized TiOx surface. Small 20(7), 2305605 (2024). https://doi.org/10.1002/smll.202305605
F. Aguirre, A. Sebastian, M. Le Gallo, W. Song, T. Wang et al., Hardware implementation of memristor-based artificial neural networks. Nat. Commun. 15(1), 1974 (2024). https://doi.org/10.1038/s41467-024-45670-9
T. Wang, Z. Cui, Y. Liu, D. Lu, M. Wang et al., Mechanically durable memristor arrays based on a discrete structure design. Adv. Mater. 34(4), 2106212 (2022). https://doi.org/10.1002/adma.202106212
J.-H. Cho, S.Y. Chun, G.H. Kim, P. Sriboriboon, S. Han et al., Flexible synaptic memristors with controlled rigidity in zirconium-oxo clusters for high-precision neuromorphic computing. Adv. Sci. 12(11), 2412289 (2025). https://doi.org/10.1002/advs.202412289
K.A. Nirmal, T.D. Dongale, A.C. Khot, C. Yao, N. Kim et al., Ultra-transparent and multifunctional IZVO mesh electrodes for next-generation flexible optoelectronics. Nano-Micro Lett. 17(1), 12 (2024). https://doi.org/10.1007/s40820-024-01525-y
D. Kumar, H. Li, D.D. Kumbhar, M.K. Rajbhar, U.K. Das et al., Highly efficient back-end-of-line compatible flexible Si-based optical memristive crossbar array for edge neuromorphic physiological signal processing and bionic machine vision. Nano Micro Lett. 16(1), 238 (2024). https://doi.org/10.1007/s40820-024-01456-8
F. Hui, M. Lanza, Scanning probe microscopy for advanced nanoelectronics. Nat. Electron. 2(6), 221–229 (2019). https://doi.org/10.1038/s41928-019-0264-8
Y. Yuan, M. Lanza, The effect of relative humidity in conductive atomic force microscopy. Adv. Mater. 36(51), 2470411 (2024). https://doi.org/10.1002/adma.202470411
Y. Ji, D.F. Zeigler, D.S. Lee, H. Choi, A.K. Jen et al., Flexible and twistable non-volatile memory cell array with all-organic one diode-one resistor architecture. Nat. Commun. 4, 2707 (2013). https://doi.org/10.1038/ncomms3707
G. Wang, A.O. Raji, J.-H. Lee, J.M. Tour, Conducting-interlayer SiOx memory devices on rigid and flexible substrates. ACS Nano 8(2), 1410–1418 (2014). https://doi.org/10.1021/nn4052327
C. Gu, J.-S. Lee, Flexible hybrid organic-inorganic perovskite memory. ACS Nano 10(5), 5413–5418 (2016). https://doi.org/10.1021/acsnano.6b01643
J. Liu, C. Jiang, Q. Yu, Y. Ni, C. Yu et al., Multidimensional free shape-morphing flexible neuromorphic devices with regulation at arbitrary points. Nat. Commun. 16(1), 756 (2025). https://doi.org/10.1038/s41467-024-55670-4
A.A. Bessonov, M.N. Kirikova, D.I. Petukhov, M. Allen, T. Ryhänen et al., Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14(2), 199–204 (2015). https://doi.org/10.1038/nmat4135
Y. Park, J.-S. Lee, Artificial synapses with short- and long-term memory for spiking neural networks based on renewable materials. ACS Nano 11(9), 8962–8969 (2017). https://doi.org/10.1021/acsnano.7b03347
R.A. John, J. Ko, M.R. Kulkarni, N. Tiwari, N.A. Chien et al., Flexible ionic-electronic hybrid oxide synaptic TFTs with programmable dynamic plasticity for brain-inspired neuromorphic computing. Small 13(32), 1701193 (2017). https://doi.org/10.1002/smll.201701193
B.C. Jang, S. Kim, S.Y. Yang, J. Park, J.H. Cha et al., Polymer analog memristive synapse with atomic-scale conductive filament for flexible neuromorphic computing system. Nano Lett. 19(2), 839–849 (2019). https://doi.org/10.1021/acs.nanolett.8b04023
X. Wang, S. Yang, Z. Qin, B. Hu, L. Bu et al., Enhanced multiwavelength response of flexible synaptic transistors for human sunburned skin simulation and neuromorphic computation. Adv. Mater. 35(40), 2303699 (2023). https://doi.org/10.1002/adma.202303699
B. Wang, H. Luo, X. Wang, E. Wang, Y. Sun et al., Bifunctional NbS2-based asymmetric heterostructure for lateral and vertical electronic devices. ACS Nano 14(1), 175–184 (2020). https://doi.org/10.1021/acsnano.9b06627
H. Wan, Y. Cao, L.-W. Lo, J. Zhao, N. Sepúlveda et al., Flexible carbon nanotube synaptic transistor for neurological electronic skin applications. ACS Nano 14(8), 10402–10412 (2020). https://doi.org/10.1021/acsnano.0c04259
J. Zhou, W. Li, Y. Chen, Y.-H. Lin, M. Yi et al., A monochloro copper phthalocyanine memristor with high-temperature resilience for electronic synapse applications. Adv. Mater. 33(5), 2006201 (2021). https://doi.org/10.1002/adma.202006201
T.-Y. Wang, J.-L. Meng, L. Chen, H. Zhu, Q.-Q. Sun et al., Flexible 3D memristor array for binary storage and multi-states neuromorphic computing applications. InfoMat 3(2), 212–221 (2021). https://doi.org/10.1002/inf2.12158
S.-H. Lee, H.-L. Park, M.-H. Kim, S. Kang, S.-D. Lee, Interfacial triggering of conductive filament growth in organic flexible memristor for high reliability and uniformity. ACS Appl. Mater. Interfaces 11(33), 30108–30115 (2019). https://doi.org/10.1021/acsami.9b10491
J. Liu, F. Yang, L. Cao, B. Li, K. Yuan et al., A robust nonvolatile resistive memory device based on a freestanding ultrathin 2D imine polymer film. Adv. Mater. 31(28), 1902264 (2019). https://doi.org/10.1002/adma.201902264
T.-Y. Wang, J.-L. Meng, Z.-Y. He, L. Chen, H. Zhu et al., Fully transparent, flexible and waterproof synapses with pattern recognition in organic environments. Nanoscale Horiz. 4(6), 1293–1301 (2019). https://doi.org/10.1039/C9NH00341J
M.-H. Kim, H.-L. Park, M.-H. Kim, J. Jang, J.-H. Bae et al., Fluoropolymer-based organic memristor with multifunctionality for flexible neural network system. NPJ Flex. Electron. 5, 34 (2021). https://doi.org/10.1038/s41528-021-00132-w
W.-H. Qian, X.-F. Cheng, J. Zhou, J.-H. He, H. Li et al., Lead-free perovskite MASnBr 3-based memristor for quaternary information storage. InfoMat 2(4), 743–751 (2020). https://doi.org/10.1002/inf2.12066
Y.-X. Hou, Y. Li, Z.-C. Zhang, J.-Q. Li, D.-H. Qi et al., Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano 15(1), 1497–1508 (2021). https://doi.org/10.1021/acsnano.0c08921
R.A. John, Y. Demirağ, Y. Shynkarenko, Y. Berezovska, N. Ohannessian et al., Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 13(1), 2074 (2022). https://doi.org/10.1038/s41467-022-29727-1
D. Kumar, H. Li, U.K. Das, A.M. Syed, N. El-Atab, Flexible solution-processable black-phosphorus-based optoelectronic memristive synapses for neuromorphic computing and artificial visual perception applications. Adv. Mater. 35(28), 2300446 (2023). https://doi.org/10.1002/adma.202300446
D.J. Lee, Y. Lee, C.-W. Hong, S. Lee, Liquid-to-solid exfoliated Ag/2D-SnO/Au flexible memristor with electric field direction-dependent asymmetric hysteresis characteristics. J. Mater. Res. Technol. 15, 3538–3546 (2021). https://doi.org/10.1016/j.jmrt.2021.09.147
H.-L. Park, M.-H. Kim, M.-H. Kim, S.-H. Lee, Reliable organic memristors for neuromorphic computing by predefining a localized ion-migration path in crosslinkable polymer. Nanoscale 12(44), 22502–22510 (2020). https://doi.org/10.1039/D0NR06964G
J.H. Baek, K.J. Kwak, S.J. Kim, J. Kim, J.Y. Kim et al., Two-terminal lithium-mediated artificial synapses with enhanced weight modulation for feasible hardware neural networks. Nano Micro Lett. 15(1), 69 (2023). https://doi.org/10.1007/s40820-023-01035-3
P. Gu, L. Lu, X. Yang, Z. Hu, X. Zhang et al., Highly stretchable semiconducting aerogel films for high-performance flexible electronics. Adv. Funct. Mater. 34(33), 2400589 (2024). https://doi.org/10.1002/adfm.202400589
J. Ge, S. Zhang, Z. Liu, Z. Xie, S. Pan, Flexible artificial nociceptor using a biopolymer-based forming-free memristor. Nanoscale 11(14), 6591–6601 (2019). https://doi.org/10.1039/C8NR08721K
Y. Liu, L. Wu, Q. Liu, L. Liu, S. Ke et al., Topochemical synthesis of copper phosphide nanoribbons for flexible optoelectronic memristors. Adv. Funct. Mater. 32(14), 2110900 (2022). https://doi.org/10.1002/adfm.202110900
Q. Li, T. Wang, Y. Fang, X. Hu, C. Tang et al., Ultralow power wearable organic ferroelectric device for optoelectronic neuromorphic computing. Nano Lett. 22(15), 6435–6443 (2022). https://doi.org/10.1021/acs.nanolett.2c01768
J. Pan, H. Kan, Z. Liu, S. Gao, E. Wu et al., Flexible TiO2-WO3–x hybrid memristor with enhanced linearity and synaptic plasticity for precise weight tuning in neuromorphic computing. NPJ Flex. Electron. 8, 70 (2024). https://doi.org/10.1038/s41528-024-00356-6
S. Rajasekaran, F.M. Simanjuntak, S. Chandrasekaran, D. Panda, A. Saleem et al., Flexible Ta2O5/WO3-Based memristor synapse for wearable and neuromorphic applications. IEEE Electron Device Lett. 43(1), 9–12 (2022). https://doi.org/10.1109/LED.2021.3127489
F. Molina-Lopez, T.Z. Gao, U. Kraft, C. Zhu, T. Öhlund et al., Inkjet-printed stretchable and low voltage synaptic transistor array. Nat. Commun. 10(1), 2676 (2019). https://doi.org/10.1038/s41467-019-10569-3
C. Jin, Y. Zhu, X. Li, F. An, W. Han et al., Super-flexible freestanding BiMnO3 membranes with stable ferroelectricity and ferromagnetism. Adv. Sci. 8(24), 2102178 (2021). https://doi.org/10.1002/advs.202102178
M. Yang, X. Zhao, Q. Tang, N. Cui, Z. Wang et al., Stretchable and conformable synapse memristors for wearable and implantable electronics. Nanoscale 10(38), 18135–18144 (2018). https://doi.org/10.1039/C8NR05336G
Z. Zhou, H. Mao, X. Wang, T. Sun, Q. Chang et al., Transient and flexible polymer memristors utilizing full-solution processed polymer nanocomposites. Nanoscale 10(31), 14824–14829 (2018). https://doi.org/10.1039/C8NR04041A
H. Sun, Z. Luo, L. Zhao, C. Liu, C. Ma et al., BiFeO3-based flexible ferroelectric memristors for neuromorphic pattern recognition. ACS Appl. Electron. Mater. 2(4), 1081–1089 (2020). https://doi.org/10.1021/acsaelm.0c00094
Y. Zhu, J.-S. Liang, X. Shi, Z. Zhang, Full-inorganic flexible Ag2S memristor with interface resistance-switching for energy-efficient computing. ACS Appl. Mater. Interfaces 14(38), 43482–43489 (2022). https://doi.org/10.1021/acsami.2c11183
D. Panda, Y.-F. Hui, T.-Y. Tseng, Harnessing a WOx-based flexible transparent memristor synapse with a hafnium oxide layer for neuromorphic computing. Nanoscale 16(34), 16148–16158 (2024). https://doi.org/10.1039/d4nr01155d
K. Xu, T. Wang, Y. Liu, J. Yu, Z. Li et al., Improved ferroelectricity and tunneling electroresistance by inducing the ZrO2 intercalation layer in La: HfO2 thin films. ACS Appl. Electron. Mater. 6(2), 1055–1062 (2024). https://doi.org/10.1021/acsaelm.3c01496
U.K. Das, N. Aslam, M.M. Hussain, N. El-Atab, Silicon-based charge trapping memory devices for next-generation flexible electronics application. IEEE J. Flex. Electron. 2(5), 408–413 (2023). https://doi.org/10.1109/JFLEX.2023.3329080
Q. Xu, Y. Tao, Z. Wang, H. Zeng, J. Yang et al., Highly flexible, high-performance, and stretchable piezoelectric sensor based on a hierarchical droplet-shaped ceramics with enhanced damage tolerance. Adv. Mater. 36(18), 2311624 (2024). https://doi.org/10.1002/adma.202311624
T. Sun, B. Feng, J. Huo, Y. Xiao, W. Wang et al., Artificial intelligence meets flexible sensors: emerging smart flexible sensing systems driven by machine learning and artificial synapses. Nano-Micro Lett. 16(1), 14 (2023). https://doi.org/10.1007/s40820-023-01235-x
Z. Dong, X. Ji, C.S. Lai, D. Qi, Design and implementation of a flexible neuromorphic computing system for affective communication via memristive circuits. IEEE Commun. Mag. 61(1), 74–80 (2023). https://doi.org/10.1109/MCOM.001.2200272
Z. Liu, J. Mei, J. Tang, M. Xu, B. Gao et al., A memristor-based adaptive neuromorphic decoder for brain–computer interfaces. Nat. Electron. 8(4), 362–372 (2025). https://doi.org/10.1038/s41928-025-01340-2
T.F. Schranghamer, A. Oberoi, S. Das, Graphene memristive synapses for high precision neuromorphic computing. Nat. Commun. 11(1), 5474 (2020). https://doi.org/10.1038/s41467-020-19203-z
S. Wang, S. Gao, C. Tang, E. Occhipinti, C. Li et al., Memristor-based adaptive neuromorphic perception in unstructured environments. Nat. Commun. 15(1), 4671 (2024). https://doi.org/10.1038/s41467-024-48908-8
R. Mandal, A. Mandal, T. Som, Towards on-receptor computing: electronic nociceptor embedded neuromorphic functionalities at nanoscale. Appl. Mater. Today 37, 102103 (2024). https://doi.org/10.1016/j.apmt.2024.102103
Y. Zhu, T. Nyberg, L. Nyholm, D. Primetzhofer, X. Shi et al., Wafer-scale Ag2S-based memristive crossbar arrays with ultra-low switching-energies reaching biological synapses. Nano Micro Lett. 17(1), 69 (2024). https://doi.org/10.1007/s40820-024-01559-2
R. Cao, X. Zhang, S. Liu, J. Lu, Y. Wang et al., Compact artificial neuron based on anti-ferroelectric transistor. Nat. Commun. 13(1), 7018 (2022). https://doi.org/10.1038/s41467-022-34774-9
Y. Yang, F. Zhu, X. Zhang, P. Chen, Y. Wang et al., Firing feature-driven neural circuits with scalable memristive neurons for robotic obstacle avoidance. Nat. Commun. 15(1), 4318 (2024). https://doi.org/10.1038/s41467-024-48399-7
Z. Dong, X. Ji, G. Zhou, M. Gao, D. Qi, Multimodal neuromorphic sensory-processing system with memristor circuits for smart home applications. IEEE Trans. Ind. Appl. 59(1), 47–58 (2023). https://doi.org/10.1109/TIA.2022.3188749
G. Zhou, J. Li, Q. Song, L. Wang, Z. Ren et al., Full hardware implementation of neuromorphic visual system based on multimodal optoelectronic resistive memory arrays for versatile image processing. Nat. Commun. 14(1), 8489 (2023). https://doi.org/10.1038/s41467-023-43944-2
C. Yang, H. Wang, G. Zhou, H. Zhao, W. Hou et al., A multimodal perception-enabled flexible memristor with combined sensing-storage-memory functions for enhanced artificial injury recognition. Small 20(45), 2402588 (2024). https://doi.org/10.1002/smll.202402588
C. Zhang, W.B. Ye, K. Zhou, H.-Y. Chen, J.-Q. Yang et al., Bioinspired artificial sensory nerve based on nafion memristor. Adv. Funct. Mater. 29(20), 1808783 (2019). https://doi.org/10.1002/adfm.201808783
F. Sun, Q. Lu, M. Hao, Y. Wu, Y. Li et al., An artificial neuromorphic somatosensory system with spatio-temporal tactile perception and feedback functions. NPJ Flex. Electron. 6, 72 (2022). https://doi.org/10.1038/s41528-022-00202-7
S. Chen, Z. Lou, D. Chen, G. Shen, An artificial flexible visual memory system based on an UV-motivated memristor. Adv. Mater. 30(7), 1705400 (2018). https://doi.org/10.1002/adma.201705400
H. Wang, B. Sun, S.S. Ge, J. Su, M.L. Jin, On non-von Neumann flexible neuromorphic vision sensors. NPJ Flex. Electron. 8, 28 (2024). https://doi.org/10.1038/s41528-024-00313-3
Y. Cao, B. Xu, B. Li, H. Fu, Advanced design of soft robots with artificial intelligence. Nano-Micro Lett. 16(1), 214 (2024). https://doi.org/10.1007/s40820-024-01423-3
S.W. Cho, C. Jo, Y.H. Kim, S.K. Park, Progress of materials and devices for neuromorphic vision sensors. Nano Micro Lett. 14(1), 203 (2022). https://doi.org/10.1007/s40820-022-00945-y