Thermally Drawn Flexible Fiber Sensors: Principles, Materials, Structures, and Applications
Corresponding Author: Ting Zhang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 4
Abstract
Flexible fiber sensors, with their excellent wearability and biocompatibility, are essential components of flexible electronics. However, traditional methods face challenges in fabricating low-cost, large-scale fiber sensors. In recent years, the thermal drawing process has rapidly advanced, offering a novel approach to flexible fiber sensors. Through the preform-to-fiber manufacturing technique, a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time. Examples include temperature, acoustic, mechanical, chemical, biological, optoelectronic, and multifunctional sensors, which operate on diverse sensing principles such as resistance, capacitance, piezoelectricity, triboelectricity, photoelectricity, and thermoelectricity. This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors. Finally, the future developments of thermally drawn fiber sensors are discussed.
Highlights:
1 The review briefly introduces the principle, material selection criteria, and development of the thermal drawing process.
2 Based on different stimuli, the review comprehensively summarizes the latest progress in thermally drawn temperature, acoustic, mechanical, chemical, biological, optoelectronic, and multifunctional sensors.
3 The review discusses the future development trends of thermally drawn fiber sensors in terms of material, structure, fabrication, function, and stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Yin, Y. Li, Z. Tian, Q. Li, C. Jiang et al., Ultra-high sensitivity anisotropic piezoelectric sensors for structural health monitoring and robotic perception. Nano-Micro Lett. 17(1), 42 (2024). https://doi.org/10.1007/s40820-024-01539-6
- S. Yu, T.H. Park, W. Jiang, S.W. Lee, E.H. Kim et al., Soft human–machine interface sensing displays: materials and devices. Adv. Mater. 35(43), e2204964 (2023). https://doi.org/10.1002/adma.202204964
- Y. Shen, X. Han, P. Zhang, X. Chen, X. Yang et al., Review on fiber-based thermoelectrics: materials, devices, and textiles. Adv. Fiber Mater. 5(4), 1105–1140 (2023). https://doi.org/10.1007/s42765-023-00267-7
- F. Liu, A. Christou, A.S. Dahiya, R. Dahiya, From printed devices to vertically stacked, 3D flexible hybrid systems. Adv. Mater. 37(10), 2411151 (2025). https://doi.org/10.1002/adma.202411151
- D. Wang, G. Ma, X. Zhang, K. Zheng, J. Zhang et al., Flexible pressure sensor composed of multi-layer textile materials for human-machine interaction applications. ACS Sens. 10(1), 350–359 (2025). https://doi.org/10.1021/acssensors.4c02583
- Y. Cao, P. Li, Y. Zhu, Z. Wang, N. Tang et al., Artificial intelligence-enabled novel atrial fibrillation diagnosis system using 3D pulse perception flexible pressure sensor array. ACS Sens. 10(1), 272–282 (2025). https://doi.org/10.1021/acssensors.4c02395
- X. Sun, J. Sun, T. Li, S. Zheng, C. Wang et al., Flexible tactile electronic skin sensor with 3D force detection based on porous CNTs/PDMS nanocomposites. Nano-Micro Lett. 11(1), 57 (2019). https://doi.org/10.1007/s40820-019-0288-7
- Y. Chen, Y. Zhou, Z. Hu, W. Lu, Z. Li et al., Gelatin-based metamaterial hydrogel films with high conformality for ultra-soft tissue monitoring. Nano-Micro Lett. 16(1), 34 (2023). https://doi.org/10.1007/s40820-023-01225-z
- Z. Xu, C. Zhang, F. Wang, J. Yu, G. Yang et al., Smart textiles for personalized sports and healthcare. Nano-Micro Lett. 17(1), 232 (2025). https://doi.org/10.1007/s40820-025-01749-6
- Y. Peng, J. Dong, J. Long, Y. Zhang, X. Tang et al., Thermally conductive and UV-EMI shielding electronic textiles for unrestricted and multifaceted health monitoring. Nano-Micro Lett. 16(1), 199 (2024). https://doi.org/10.1007/s40820-024-01429-x
- M. Du, S. Lv, J. Qiu, T. Guo, S. Zhou, Multimaterial fibers for multifunctional sensing applications. Laser Photonics Rev. 18(10), 2301125 (2024). https://doi.org/10.1002/lpor.202301125
- J.-H. Lee, K. Cho, J.-K. Kim, Age of flexible electronics: emerging trends in soft multifunctional sensors. Adv. Mater. 36(16), e2310505 (2024). https://doi.org/10.1002/adma.202310505
- Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14(1), 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
- P. Das, P.K. Marvi, S. Ganguly, X.S. Tang, B. Wang et al., MXene-based elastomer mimetic stretchable sensors: design, properties, and applications. Nano-Micro Lett. 16(1), 135 (2024). https://doi.org/10.1007/s40820-024-01349-w
- J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010). https://doi.org/10.1126/science.1182383
- J. Kim, M. Lee, H.J. Shim, R. Ghaffari, H.R. Cho et al., Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014). https://doi.org/10.1038/ncomms6747
- P.-G. Su, C.-S. Wang, Novel flexible resistive-type humidity sensor. Sens. Actuat. B Chem. 123(2), 1071–1076 (2007). https://doi.org/10.1016/j.snb.2006.11.015
- M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014). https://doi.org/10.1021/nn501204t
- W. Yan, G. Noel, G. Loke, E. Meiklejohn, T. Khudiyev et al., Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 603(7902), 616–623 (2022). https://doi.org/10.1038/s41586-022-04476-9
- B. Liang, Z. Zhang, W. Chen, D. Lu, L. Yang et al., Direct patterning of carbon nanotube via stamp contact printing process for stretchable and sensitive sensing devices. Nano-Micro Lett. 11(1), 92 (2019). https://doi.org/10.1007/s40820-019-0323-8
- R. Wu, S. Seo, L. Ma, J. Bae, T. Kim, Full-fiber auxetic-interlaced yarn sensor for sign-language translation glove assisted by artificial neural network. Nano-Micro Lett. 14(1), 139 (2022). https://doi.org/10.1007/s40820-022-00887-5
- T. Tat, G. Chen, X. Zhao, Y. Zhou, J. Xu et al., Smart textiles for healthcare and sustainability. ACS Nano 16(9), 13301–13313 (2022). https://doi.org/10.1021/acsnano.2c06287
- X. Zhang, J. Chen, Z. Zheng, S. Tang, B. Cheng et al., Flexible temperature sensor with high reproducibility and wireless closed-loop system for decoupled multimodal health monitoring and personalized thermoregulation. Adv. Mater. 36(45), 2407859 (2024). https://doi.org/10.1002/adma.202407859
- P. Chen, H. Wu, Y. Zhao, L. Zhong, Y. Zhang et al., Quantitative assessment of fungal biomarkers in clinical samples via an interface-modulated optical fiber biosensor. Adv. Mater. 36(21), 2312985 (2024). https://doi.org/10.1002/adma.202312985
- C. Dang, Z. Wang, T. Hughes-Riley, T. Dias, S. Qian et al., Fibres-threads of intelligence-enable a new generation of wearable systems. Chem. Soc. Rev. 53(17), 8790–8846 (2024). https://doi.org/10.1039/d4cs00286e
- H. Lu, M. Jian, X. Liang, Y. Wang, J. Niu et al., Strong silkworm silk fibers through CNT-feeding and forced reeling. Adv. Mater. 36(49), e2408385 (2024). https://doi.org/10.1002/adma.202408385
- Y. Lu, H. Zhang, Y. Zhao, H. Liu, Z. Nie et al., Robust fiber-shaped flexible temperature sensors for safety monitoring with ultrahigh sensitivity. Adv. Mater. 36(18), 2310613 (2024). https://doi.org/10.1002/adma.202310613
- M. Bayindir, F. Sorin, A.F. Abouraddy, J. Viens, S.D. Hart et al., Metal–insulator–semiconductor optoelectronic fibres. Nature 431(7010), 826–829 (2004). https://doi.org/10.1038/nature02937
- X. Cao, C. Ye, L. Cao, Y. Shan, J. Ren et al., Biomimetic spun silk ionotronic fibers for intelligent discrimination of motions and tactile stimuli. Adv. Mater. 35(36), 2300447 (2023). https://doi.org/10.1002/adma.202300447
- Q. Jiang, Y. Wan, Y. Qin, X. Qu, M. Zhou et al., Durable and wearable self-powered temperature sensor based on self-healing thermoelectric fiber by coaxial wet spinning strategy for fire safety of firefighting clothing. Adv. Fiber Mater. 6(5), 1387–1401 (2024). https://doi.org/10.1007/s42765-024-00416-6
- H. Tan, L. Sun, H. Huang, L. Zhang, R.E. Neisiany et al., Continuous melt spinning of adaptable covalently cross-linked self-healing ionogel fibers for multi-functional ionotronics. Adv. Mater. 36(13), 2310020 (2024). https://doi.org/10.1002/adma.202310020
- T. Sun, Y. Liang, N. Ning, H. Wu, M. Tian, Strain-insensitive stretchable conductive fiber based on helical core with double-network hydrogel. Adv. Fiber Mater. 7(3), 882–893 (2025). https://doi.org/10.1007/s42765-025-00530-z
- X. Wang, X. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano-Micro Lett. 13(1), 64 (2021). https://doi.org/10.1007/s40820-021-00592-9
- D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13(1), 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
- B. Yang, F.-Z. Xuan, H. Lei, Z. Wang, Y. Xiang et al., Simultaneously enhancing the IFSS and monitoring the interfacial stress state of GF/epoxy composites via building in the MWCNT interface sensor. Compos. Part A Appl. Sci. Manuf. 112, 161–167 (2018). https://doi.org/10.1016/j.compositesa.2018.06.006
- K. Wang, X. Sun, S. Cheng, Y. Cheng, K. Huang et al., Multispecies-coadsorption-induced rapid preparation of graphene glass fiber fabric and applications in flexible pressure sensor. Nat. Commun. 15(1), 5040 (2024). https://doi.org/10.1038/s41467-024-48958-y
- Z. Ma, Y. Wu, S. Lu, J. Li, J. Liu et al., Magnetically assisted 3D printing of ultra-antiwear flexible sensor. Adv. Funct. Mater. 34(42), 2406108 (2024). https://doi.org/10.1002/adfm.202406108
- Y. Wang, Y. Zhou, L. Qi, Y. Zhang, Soft optical fibers for biomedical and wearable technologies: current trends and future prospects. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202507712
- Y. Shen, Z. Wang, Z. Wang, J. Wang, X. Yang et al., Thermally drawn multifunctional fibers: toward the next generation of information technology. InfoMat 4(7), e12318 (2022). https://doi.org/10.1002/inf2.12318
- L. van der Elst, C. Faccini de Lima, M. Gokce Kurtoglu, V.N. Koraganji, M. Zheng et al., 3D printing in fiber-device technology. Adv. Fiber Mater. 3(2), 59–75 (2021). https://doi.org/10.1007/s42765-020-00056-6
- Z. Wang, T. Wu, Z. Wang, T. Zhang, M. Chen et al., Designer patterned functional fibers via direct imprinting in thermal drawing. Nat. Commun. 11(1), 3842 (2020). https://doi.org/10.1038/s41467-020-17674-8
- T. Nguyen-Dang, A.C. de Luca, W. Yan, Y. Qu, A.G. Page et al., Controlled sub-micrometer hierarchical textures engineered in polymeric fibers and microchannels via thermal drawing. Adv. Funct. Mater. 27(10), 1605935 (2017). https://doi.org/10.1002/adfm.201605935
- M. Rein, V.D. Favrod, C. Hou, T. Khudiyev, A. Stolyarov et al., Diode fibres for fabric-based optical communications. Nature 560(7717), 214–218 (2018). https://doi.org/10.1038/s41586-018-0390-x
- Z. Wang, L. Wei, Thermally drawn semiconductor fibers: fabrication strategies and applications. Acc. Mater. Res. 5(11), 1366–1376 (2024). https://doi.org/10.1021/accountsmr.4c00132
- X. Chen, Y. Meng, S. Laperrousaz, H. Banerjee, J. Song et al., Thermally drawn multi-material fibers: from fundamental research to industrial applications. Natl. Sci. Rev. 11(10), nwae290 (2024). https://doi.org/10.1093/nsr/nwae290
- S. Qian, X. Wang, W. Yan, Piezoelectric fibers for flexible and wearable electronics. Front. Optoelectron. 16(1), 3 (2023). https://doi.org/10.1007/s12200-023-00058-3
- S. Qian, M. Liu, Y. Dou, Y. Fink, W. Yan, A “Moore’s law” for fibers enables intelligent fabrics. Natl. Sci. Rev. 10(1), nwac202 (2022). https://doi.org/10.1093/nsr/nwac202
- T. Zhang, Z. Wang, B. Srinivasan, Z. Wang, J. Zhang et al., Ultraflexible glassy semiconductor fibers for thermal sensing and positioning. ACS Appl. Mater. Interfaces 11(2), 2441–2447 (2019). https://doi.org/10.1021/acsami.8b20307
- L. Yu, S. Parker, H. Xuan, Y. Zhang, S. Jiang et al., Flexible multi-material fibers for distributed pressure and temperature sensing. Adv. Funct. Mater. 30(9), 1908915 (2020). https://doi.org/10.1002/adfm.201908915
- A. Gumennik, A.M. Stolyarov, B.R. Schell, C. Hou, G. Lestoquoy et al., All-in-fiber chemical sensing. Adv. Mater. 24(45), 6005–6009 (2012). https://doi.org/10.1002/adma.201203053
- W. Yan, I. Richard, G. Kurtuldu, N.D. James, G. Schiavone et al., Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat. Nanotechnol. 15(10), 875–882 (2020). https://doi.org/10.1038/s41565-020-0747-9
- C. Dong, A.G. Page, W. Yan, T. Nguyen-Dang, F. Sorin, Microstructured multimaterial fibers for microfluidic sensing. Adv. Mater. Technol. 4(10), 1900417 (2019). https://doi.org/10.1002/admt.201900417
- M.M. Tousi, Y. Zhang, S. Wan, L. Yu, C. Hou et al., Scalable fabrication of highly flexible porous polymer-based capacitive humidity sensor using convergence fiber drawing. Polymers 11(12), 1985 (2019). https://doi.org/10.3390/polym11121985
- S.D. Hart, G.R. Maskaly, B. Temelkuran, P.H. Prideaux, J.D. Joannopoulos et al., External reflection from omnidirectional dielectric mirror fibers. Science 296(5567), 510–513 (2002). https://doi.org/10.1126/science.1070050
- B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, Y. Fink, Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420(6916), 650–653 (2002). https://doi.org/10.1038/nature01275
- W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo et al., Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv. Mater. 31(1), 1802348 (2019). https://doi.org/10.1002/adma.201802348
- A. Gierej, A. Filipkowski, D. Pysz, R. Buczyński, M. Vagenende et al., On the characterization of novel step-index biocompatible and biodegradable poly(D, L-lactic acid) based optical fiber. J. Light. Technol. 38(7), 1905–1914 (2020). https://doi.org/10.1109/JLT.2019.2959945
- T. Iwama, Y. Guo, S. Handa, K.Y. Inoue, T. Yoshinobu et al., Thermally-drawn multi-electrode fibers for bipolar electrochemistry and magnified electrochemical imaging. Adv. Mater. Technol. 7(5), 2101066 (2022). https://doi.org/10.1002/admt.202101066
- C. Strutynski, R.A. Meza, L. Teulé-Gay, G. El-Dib, A. Poulon-Quintin et al., Stack-and-draw applied to the engineering of multi-material fibers with non-cylindrical profiles. Adv. Funct. Mater. 31(22), 2011063 (2021). https://doi.org/10.1002/adfm.202011063
- J.J. Kaufman, G. Tao, S. Shabahang, D.S. Deng, Y. Fink et al., Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires. Nano Lett. 11(11), 4768–4773 (2011). https://doi.org/10.1021/nl202583g
- S. Gorgutsa, J.F. Gu, M. Skorobogatiy, A woven 2D touchpad sensor and a 1D slide sensor using soft capacitor fibers. Smart Mater. Struct. 21(1), 015010 (2012). https://doi.org/10.1088/0964-1726/21/1/015010
- M. Ghebrebrhan, G.Z.J. Loke, Y. Fink, Fabrication and measurement of 3D printed retroreflective fibers. Opt. Mater. Express 9(8), 3432 (2019). https://doi.org/10.1364/ome.9.003432
- S. Shabahang, F.A. Tan, J.D. Perlstein, G. Tao, O. Alvarez et al., Robust multimaterial chalcogenide fibers produced by a hybrid fiber-fabrication process. Opt. Mater. Express 7(7), 2336 (2017). https://doi.org/10.1364/ome.7.002336
- A. Gierej, M. Vagenende, A. Filipkowski, B. Siwicki, R. Buczynski et al., Poly(D, L-lactic acid) (PDLLA) biodegradable and biocompatible polymer optical fiber. J. Light. Technol. 37(9), 1916–1923 (2019). https://doi.org/10.1109/JLT.2019.2895220
- M. Chen, Z. Wang, K. Li, X. Wang, L. Wei, Elastic and stretchable functional fibers: a review of materials, fabrication methods, and applications. Adv. Fiber Mater. 3(1), 1–13 (2021). https://doi.org/10.1007/s42765-020-00057-5
- G. Loke, W. Yan, T. Khudiyev, G. Noel, Y. Fink, Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv. Mater. 32(1), e1904911 (2020). https://doi.org/10.1002/adma.201904911
- J. Zhang, Z. Wang, Z. Wang, L. Wei, Advanced multi-material optoelectronic fibers: a review. J. Light. Technol. 39(12), 3836–3845 (2021). https://doi.org/10.1109/JLT.2020.3036739
- S. Bastida, J.I. Eguiazábal, J. Nazábal, The Vicat softening temperature as a method to assess the phase behaviour of amorphous polymer blends. Polym. Test. 12(3), 233–242 (1993). https://doi.org/10.1016/0142-9418(93)90005-A
- G. Tao, A.M. Stolyarov, A.F. Abouraddy, Multimaterial fibers. Int. J. Appl. Glass Sci. 3(4), 349–368 (2012). https://doi.org/10.1111/ijag.12007
- D.S. Deng, N.D. Orf, A.F. Abouraddy, A.M. Stolyarov, J.D. Joannopoulos et al., In-fiber semiconductor filament arrays. Nano Lett. 8(12), 4265–4269 (2008). https://doi.org/10.1021/nl801979w
- A. Canales, X. Jia, U.P. Froriep, R.A. Koppes, C.M. Tringides et al., Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33(3), 277–284 (2015). https://doi.org/10.1038/nbt.3093
- Y. Qu, T. Nguyen-Dang, A.G. Page, W. Yan, T. Das Gupta et al., Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv. Mater. 30(27), 1707251 (2018). https://doi.org/10.1002/adma.201707251
- A. Leber, S. Laperrousaz, Y. Qu, C. Dong, I. Richard et al., Thermally drawn elastomer nanocomposites for soft mechanical sensors. Adv. Sci. 10(13), e2207573 (2023). https://doi.org/10.1002/advs.202207573
- J.J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D.S. Deng et al., Structured spheres generated by an in-fibre fluid instability. Nature 487(7408), 463–467 (2012). https://doi.org/10.1038/nature11215
- M. Rein, E. Levy, A. Gumennik, A.F. Abouraddy, J. Joannopoulos et al., Self-assembled fibre optoelectronics with discrete translational symmetry. Nat. Commun. 7, 12807 (2016). https://doi.org/10.1038/ncomms12807
- A. Sahasrabudhe, L.E. Rupprecht, S. Orguc, T. Khudiyev, T. Tanaka et al., Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits. Nat. Biotechnol. 42(6), 892–904 (2024). https://doi.org/10.1038/s41587-023-01833-5
- G. Loke, T. Khudiyev, B. Wang, S. Fu, S. Payra et al., Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 12(1), 3317 (2021). https://doi.org/10.1038/s41467-021-23628-5
- W.M. Ryu, Y. Lee, Y. Son, G. Park, S. Park, Thermally drawn multi-material fibers based on polymer nanocomposite for continuous temperature sensing. Adv. Fiber Mater. 5(5), 1712–1724 (2023). https://doi.org/10.1007/s42765-023-00306-3
- Y. Zhang, Y. He, L. Niu, X. Xing, Y. Jiang et al., Enhanced sensing performance of superelastic thermally drawn liquid metal fibers through helical architecture while eliminating directional signal errors. J. Mater. Sci. Technol. 195, 136–145 (2024). https://doi.org/10.1016/j.jmst.2024.02.028
- A. Leber, A.G. Page, D. Yan, Y. Qu, S. Shadman et al., Compressible and electrically conducting fibers for large-area sensing of pressures. Adv. Funct. Mater. 30(1), 1904274 (2020). https://doi.org/10.1002/adfm.201904274
- X. Lu, H. Qu, M. Skorobogatiy, Piezoelectric micro- and nanostructured fibers fabricated from thermoplastic nanocomposites using a fiber drawing technique: comparative study and potential applications. ACS Nano 11(2), 2103–2114 (2017). https://doi.org/10.1021/acsnano.6b08290
- M. Qi, Y. Liu, Z. Wang, S. Yuan, K. Li et al., Self-healable multifunctional fibers via thermal drawing. Adv. Sci. 11(24), e2400785 (2024). https://doi.org/10.1002/advs.202400785
- I. Richard, B. Schyrr, S. Aiassa, S. Carrara, F. Sorin, All-in-fiber electrochemical sensing. ACS Appl. Mater. Interfaces 13(36), 43356–43363 (2021). https://doi.org/10.1021/acsami.1c11593
- W. Jeon, J.M. Lee, Y. Kim, Y. Lee, J. Won et al., Structurally aligned multifunctional neural probe (SAMP) using forest-drawn CNT sheet onto thermally drawn polymer fiber for long-term in vivo operation. Adv. Mater. 36(27), 2313625 (2024). https://doi.org/10.1002/adma.202313625
- Y. Guo, S. Jiang, B.J.B. Grena, I.F. Kimbrough, E.G. Thompson et al., Polymer composite with carbon nanofibers aligned during thermal drawing as a microelectrode for chronic neural interfaces. ACS Nano 11(7), 6574–6585 (2017). https://doi.org/10.1021/acsnano.6b07550
- M. Kanik, M. Marcali, M. Yunusa, C. Elbuken, M. Bayindir, Continuous triboelectric power harvesting and biochemical sensing inside poly(vinylidene fluoride) hollow fibers using microfluidic droplet generation. Adv. Mater. Technol. 1(9), 1600190 (2016). https://doi.org/10.1002/admt.201600190
- Z. Wang, Z. Wang, D. Li, C. Yang, Q. Zhang et al., High-quality semiconductor fibres via mechanical design. Nature 626(7997), 72–78 (2024). https://doi.org/10.1038/s41586-023-06946-0
- J.H. Oh, S.Y. Hong, H. Park, S.W. Jin, Y.R. Jeong et al., Fabrication of high-sensitivity skin-attachable temperature sensors with bioinspired microstructured adhesive. ACS Appl. Mater. Interfaces 10(8), 7263–7270 (2018). https://doi.org/10.1021/acsami.7b17727
- F. Jiao, F. Cao, Y. Gao, F. Shuang, D. Dong, A biosensor based on a thermal camera using infrared radiance as the signal probe. Talanta 246, 123453 (2022). https://doi.org/10.1016/j.talanta.2022.123453
- W. Yan, C. Dong, Y. Xiang, S. Jiang, A. Leber et al., Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater. Today 35, 168–194 (2020). https://doi.org/10.1016/j.mattod.2019.11.006
- B. Dong, Q. Shi, Y. Yang, F. Wen, Z. Zhang et al., Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy 79, 105414 (2021). https://doi.org/10.1016/j.nanoen.2020.105414
- Y. Zhou, C. Yu, X. Zhang, Y. Zheng, B. Wang et al., Ultrasensitive ionic conductors with tunable resistance switching temperature enabled by phase transformation of polymer cocrystals. Adv. Mater. 36(15), 2309568 (2024). https://doi.org/10.1002/adma.202309568
- M. Bayindir, A.F. Abouraddy, J. Arnold, J.D. Joannopoulos, Y. Fink, Thermal-sensing fiber devices by multimaterial codrawing. Adv. Mater. 18(7), 845–849 (2006). https://doi.org/10.1002/adma.200502106
- T.Q. Trung, N.T. Tien, D. Kim, J.H. Jung, O.J. Yoon et al., High thermal responsiveness of a reduced graphene oxide field-effect transistor. Adv. Mater. 24(38), 5254–5260 (2012). https://doi.org/10.1002/adma.201201724
- T.Q. Trung, S. Ramasundaram, S.W. Hong, N.-E. Lee, Flexible and transparent nanocomposite of reduced graphene oxide and P(VDF-TrFE) copolymer for high thermal responsivity in a field-effect transistor. Adv. Funct. Mater. 24(22), 3438–3445 (2014). https://doi.org/10.1002/adfm.201304224
- L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895), 1457–1461 (2008). https://doi.org/10.1126/science.1158899
- M. Hamid Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M. Haji Hassan et al., A review on thermoelectric renewable energy: principle parameters that affect their performance. Renew. Sustain. Energy Rev. 30, 337–355 (2014). https://doi.org/10.1016/j.rser.2013.10.027
- K. Meng, X. Xiao, W. Wei, G. Chen, A. Nashalian et al., Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34(21), 2109357 (2022). https://doi.org/10.1002/adma.202109357
- M. Kang, J. Kim, B. Jang, Y. Chae, J.-H. Kim et al., Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano 11(8), 7950–7957 (2017). https://doi.org/10.1021/acsnano.7b02474
- C. Wang, L. Dong, D. Peng, C. Pan, Tactile sensors for advanced intelligent systems. Adv. Intell. Syst. 1(8), 1900090 (2019). https://doi.org/10.1002/aisy.201900090
- T.-W. Pan, C.-W. Hsue, J.-F. Huang, Time-domain reflectometry using arbitrary incident waveforms. IEEE Trans. Microw. Theory Tech. 50(11), 2558–2563 (2002). https://doi.org/10.1109/TMTT.2002.804644
- E. Song, Y.-J. Shin, P.E. Stone, J. Wang, T.-S. Choe et al., Detection and location of multiple wiring faults via time–frequency-domain reflectometry. IEEE Trans. Electromagn. Compat. 51(1), 131–138 (2009). https://doi.org/10.1109/TEMC.2008.2007964
- B. King, N. Bruce, M. Wagih, Large-area conductor-loaded PDMS flexible composites for wireless and chipless electromagnetic multiplexed temperature sensors. Adv. Sci. 12(17), 2412066 (2025). https://doi.org/10.1002/advs.202412066
- J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo et al., Curved array photoacoustic tomographic system for small animal imaging. J. Biomed. Opt. 13(2), 024007 (2008). https://doi.org/10.1117/1.2907157
- Q. Xu, L. Zhang, W. Liang, Acoustic detection technology for gas pipeline leakage. Process. Saf. Environ. Prot. 91(4), 253–261 (2013). https://doi.org/10.1016/j.psep.2012.05.012
- G.T. Clement, J. White, K. Hynynen, Investigation of a large-area phased array for focused ultrasound surgery through the skull. Phys. Med. Biol. 45(4), 1071–1083 (2000). https://doi.org/10.1088/0031-9155/45/4/319
- E. Song, Z. Xie, W. Bai, H. Luan, B. Ji et al., Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue. Nat. Biomed. Eng. 5(7), 759–771 (2021). https://doi.org/10.1038/s41551-021-00723-y
- S. Wang, T. Zhang, K. Li, S. Ma, M. Chen et al., Flexible piezoelectric fibers for acoustic sensing and positioning. Adv. Electron. Mater. 3(3), 1600449 (2017). https://doi.org/10.1002/aelm.201600449
- Y. Wu, Y. Ma, H. Zheng, S. Ramakrishna, Piezoelectric materials for flexible and wearable electronics: a review. Mater. Des. 211, 110164 (2021). https://doi.org/10.1016/j.matdes.2021.110164
- J.-H. Lee, H.-J. Yoon, T.Y. Kim, M.K. Gupta, J.H. Lee et al., Micropatterned P(VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors. Adv. Funct. Mater. 25(21), 3203–3209 (2015). https://doi.org/10.1002/adfm.201500856
- G. Tian, W. Deng, Y. Gao, D. Xiong, C. Yan et al., Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 59, 574–581 (2019). https://doi.org/10.1016/j.nanoen.2019.03.013
- D. Yu, Z. Zheng, J. Liu, H. Xiao, G. Huangfu et al., Superflexible and lead-free piezoelectric nanogenerator as a highly sensitive self-powered sensor for human motion monitoring. Nano-Micro Lett. 13(1), 117 (2021). https://doi.org/10.1007/s40820-021-00649-9
- S. Egusa, Z. Wang, N. Chocat, Z.M. Ruff, A.M. Stolyarov et al., Multimaterial piezoelectric fibres. Nat. Mater. 9(8), 643–648 (2010). https://doi.org/10.1038/nmat2792
- N. Chocat, G. Lestoquoy, Z. Wang, D.M. Rodgers, J.D. Joannopoulos et al., Piezoelectric fibers for conformal acoustics. Adv. Mater. 24(39), 5327–5332 (2012). https://doi.org/10.1002/adma.201201355
- Z. Liu, S. Zhang, Z. Wu, X.-E. Wang, K. Zou et al., Visual-audio thermoelectric detectors for images and sound recognition. Adv. Funct. Mater. 34(46), 2406110 (2024). https://doi.org/10.1002/adfm.202406110
- T. Nguyen-Dang, A.G. Page, Y. Qu, M. Volpi, W. Yan et al., Multi-material micro-electromechanical fibers with bendable functional domains. J. Phys. D-Appl. Phys. 50(14), 144001 (2017). https://doi.org/10.1088/1361-6463/aa5bf7
- F. Sorin, Y. Qu, T. Nguyen Dang, W. Yan, A.G. Page et al., Super-elastic multi-material optical fibers for healthcare applications. Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XIX. February 2–7, 2019. San Francisco, USA. SPIE, (2019). pp. 22. https://doi.org/10.1117/12.2510697
- A. Leber, C. Dong, R. Chandran, T. Das Gupta, N. Bartolomei et al., Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat. Electron. 3(6), 316–326 (2020). https://doi.org/10.1038/s41928-020-0415-y
- Y. Zhang, X. Li, J. Kim, Y. Tong, E.G. Thompson et al., Thermally drawn stretchable electrical and optical fiber sensors for multimodal extreme deformation sensing. Adv. Opt. Mater. 9(6), 2001815 (2021). https://doi.org/10.1002/adom.202001815
- R. Qin, J. Nong, K. Wang, Y. Liu, S. Zhou et al., Recent advances in flexible pressure sensors based on MXene materials. Adv. Mater. 36(24), 2312761 (2024). https://doi.org/10.1002/adma.202312761
- K. Xia, Y. Tian, J. Fu, Z. Zhu, J. Lu et al., Transparent and stretchable high-output triboelectric nanogenerator for high-efficiency self-charging energy storage systems. Nano Energy 87, 106210 (2021). https://doi.org/10.1016/j.nanoen.2021.106210
- F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- S. Niu, Z.L. Wang, Theoretical systems of triboelectric nanogenerators. Nano Energy 14, 161–192 (2015). https://doi.org/10.1016/j.nanoen.2014.11.034
- H.L. Wang, Z.H. Guo, X. Pu, Z.L. Wang, Ultralight iontronic triboelectric mechanoreceptor with high specific outputs for epidermal electronics. Nano-Micro Lett. 14(1), 86 (2022). https://doi.org/10.1007/s40820-022-00834-4
- H. Zou, Y. Zhang, L. Guo, P. Wang, X. He et al., Quantifying the triboelectric series. Nat. Commun. 10, 1427 (2019). https://doi.org/10.1038/s41467-019-09461-x
- L. Xie, X. Chen, Z. Wen, Y. Yang, J. Shi et al., Spiral steel wire based fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano-Micro Lett. 11(1), 39 (2019). https://doi.org/10.1007/s40820-019-0271-3
- C. Dong, A. Leber, T. Das Gupta, R. Chandran, M. Volpi et al., High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat. Commun. 11(1), 3537 (2020). https://doi.org/10.1038/s41467-020-17345-8
- S.-Y. Cho, Y. Lee, H.-J. Koh, H. Jung, J.-S. Kim et al., Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene. Adv. Mater. 28(32), 7020–7028 (2016). https://doi.org/10.1002/adma.201601167
- P.C. Wanniarachchi, K.G. Upul Kumarasinghe, C. Jayathilake, Recent advancements in chemosensors for the detection of food spoilage. Food Chem. 436, 137733 (2024). https://doi.org/10.1016/j.foodchem.2023.137733
- C. López, Materials aspects of photonic crystals. Adv. Mater. 15(20), 1679–1704 (2003). https://doi.org/10.1002/adma.200300386
- A.M. Stolyarov, A. Gumennik, W. McDaniel, O. Shapira, B. Schell et al., Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers. Opt. Express 20(11), 12407–12415 (2012). https://doi.org/10.1364/OE.20.012407
- X. An, Y. Liu, Y. Sun, X. Zhang, Y. Liu et al., Portable multifunctional sensing platform for ratiometric H2O2 detection and photodynamic anti-bacteria using an AIE-featured electrospinning film. Chem. Eng. J. 487, 150675 (2024). https://doi.org/10.1016/j.cej.2024.150675
- Y. Guo, C.F. Werner, S. Handa, M. Wang, T. Ohshiro et al., Miniature multiplexed label-free pH probe in vivo. Biosens. Bioelectron. 174, 112870 (2021). https://doi.org/10.1016/j.bios.2020.112870
- R. Nishimoto, Y. Sato, J. Wu, T. Saizaki, M. Kubo et al., Thermally drawn CNT-based hybrid nanocomposite fiber for electrochemical sensing. Biosensors 12(8), 559 (2022). https://doi.org/10.3390/bios12080559
- F. Niu, F. Zhou, Z. Wang, L. Wei, J. Hu et al., Synthesizing metal oxide semiconductors on doped Si/SiO2 flexible fiber substrates for wearable gas sensing. Research 6, 0100 (2023). https://doi.org/10.34133/research.0100
- M. Cianchetti, C. Laschi, A. Menciassi, P. Dario, Biomedical applications of soft robotics. Nat. Rev. Mater. 3(6), 143–153 (2018). https://doi.org/10.1038/s41578-018-0022-y
- G. Tian, W. Deng, T. Yang, J. Zhang, T. Xu et al., Hierarchical piezoelectric composites for noninvasive continuous cardiovascular monitoring. Adv. Mater. 36(26), e2313612 (2024). https://doi.org/10.1002/adma.202313612
- S. Park, G. Loke, Y. Fink, P. Anikeeva, Flexible fiber-based optoelectronics for neural interfaces. Chem. Soc. Rev. 48(6), 1826–1852 (2019). https://doi.org/10.1039/c8cs00710a
- J. Kim, X. Jia, Flexible multimaterial fibers in modern biomedical applications. Natl. Sci. Rev. 11(10), nwae333 (2024). https://doi.org/10.1093/nsr/nwae333
- C. Sung, W. Jeon, K.S. Nam, Y. Kim, H. Butt et al., Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices. J. Mater. Chem. B 8(31), 6624–6666 (2020). https://doi.org/10.1039/D0TB00872A
- Y. LeChasseur, S. Dufour, G. Lavertu, C. Bories, M. Deschênes et al., A microprobe for parallel optical and electrical recordings from single neurons in vivo. Nat. Methods 8(4), 319–325 (2011). https://doi.org/10.1038/nmeth.1572
- J.P. Seymour, N.B. Langhals, D.J. Anderson, D.R. Kipke, Novel multi-sided, microelectrode arrays for implantable neural applications. Biomed. Microdevices 13(3), 441–451 (2011). https://doi.org/10.1007/s10544-011-9512-z
- T. Saxena, L. Karumbaiah, E.A. Gaupp, R. Patkar, K. Patil et al., The impact of chronic blood–brain barrier breach on intracortical electrode function. Biomaterials 34(20), 4703–4713 (2013). https://doi.org/10.1016/j.biomaterials.2013.03.007
- C. Dong, Y. Zheng, K. Long-Iyer, E.C. Wright, Y. Li et al., Fluorescence imaging of neural activity, neurochemical dynamics, and drug-specific receptor conformation with genetically encoded sensors. Annu. Rev. Neurosci. 45, 273–294 (2022). https://doi.org/10.1146/annurev-neuro-110520-031137
- V. Emiliani, E. Entcheva, R. Hedrich, P. Hegemann, K.R. Konrad et al., Optogenetics for light control of biological systems. Nat. Rev. Methods Primers 2, 55 (2022). https://doi.org/10.1038/s43586-022-00136-4
- J.P. Seymour, D.R. Kipke, Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 28(25), 3594–3607 (2007). https://doi.org/10.1016/j.biomaterials.2007.03.024
- S. Park, Y. Guo, X. Jia, H.K. Choe, B. Grena et al., One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 20(4), 612–619 (2017). https://doi.org/10.1038/nn.4510
- C. Lu, S. Park, T.J. Richner, A. Derry, I. Brown et al., Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Sci. Adv. 3(3), e1600955 (2017). https://doi.org/10.1126/sciadv.1600955
- S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991). https://doi.org/10.1038/354056a0
- Y. Jang, S.M. Kim, G.M. Spinks, S.J. Kim, Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv. Mater. 32(5), 1902670 (2020). https://doi.org/10.1002/adma.201902670
- J. Wang, R.P. Deo, P. Poulin, M. Mangey, Carbon nanotube fiber microelectrodes. J. Am. Chem. Soc. 125(48), 14706–14707 (2003). https://doi.org/10.1021/ja037737j
- A. Balena, M. Bianco, M.S. Andriani, C. Montinaro, B. Spagnolo et al., Fabrication of nonplanar tapered fibers to integrate optical and electrical signals for neural interfaces in vivo. Nat. Protoc. (2025). https://doi.org/10.1038/s41596-024-01105-9
- M. Du, L. Huang, J. Zheng, Y. Xi, Y. Dai et al., Flexible fiber probe for efficient neural stimulation and detection. Adv. Sci. 7(15), 2001410 (2020). https://doi.org/10.1002/advs.202001410
- M.-J. Antonini, A. Sahasrabudhe, A. Tabet, M. Schwalm, D. Rosenfeld et al., Customizing MRI-compatible multifunctional neural interfaces through fiber drawing. Adv. Funct. Mater. 31(43), 2104857 (2021). https://doi.org/10.1002/adfm.202104857
- M.E.E. Alahi, M.I. Rizu, F.W. Tina, Z. Huang, A. Nag et al., Recent advancements in graphene-based implantable electrodes for neural recording/stimulation. Sensors 23(24), 9911 (2023). https://doi.org/10.3390/s23249911
- J. Kim, Y. Zhao, S. Yang, Z. Feng, A. Wang et al., Laser machined fiber-based microprobe: application in microscale electroporation. Adv. Fiber Mater. 4(4), 859–872 (2022). https://doi.org/10.1007/s42765-022-00148-5
- F. Sun, H. Jiang, H. Wang, Y. Zhong, Y. Xu et al., Soft fiber electronics based on semiconducting polymer. Chem. Rev. 123(8), 4693–4763 (2023). https://doi.org/10.1021/acs.chemrev.2c00720
- H. Peng, H. Li, G. Tao, L. Xia, W. Xu et al., Smart textile optoelectronics for human-interfaced logic systems. Adv. Funct. Mater. 34(2), 2308136 (2024). https://doi.org/10.1002/adfm.202308136
- W. Yan, Y. Qu, T. Das Gupta, A. Darga, D.T. Nguyên et al., Semiconducting nanowire-based optoelectronic fibers. Adv. Mater. 29(27), 1700681 (2017). https://doi.org/10.1002/adma.201700681
- G. Loke, R. Yuan, M. Rein, T. Khudiyev, Y. Jain et al., Structured multimaterial filaments for 3D printing of optoelectronics. Nat. Commun. 10, 4010 (2019). https://doi.org/10.1038/s41467-019-11986-0
- L. Su, Q. Xiong, Y. Zhu, Y. Zi, A liquid–solid contact electrification based all-optical liquid flow sensor for microfluidic analysis in biomedical applications. Adv. Funct. Mater. 32(45), 2207096 (2022). https://doi.org/10.1002/adfm.202207096
- X. Cao, Q. Li, S. Li, X. Xu, L. Wang et al., Low-cost photoelectric flow rate sensors based on a flexible planar curved beam structure for clinical treatments. Adv. Healthc. Mater. 13(19), 2304573 (2024). https://doi.org/10.1002/adhm.202304573
- H. Wang, S. Li, Y. Wang, H. Wang, X. Shen et al., Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv. Mater. 32(11), 1908214 (2020). https://doi.org/10.1002/adma.201908214
- M. Li, G. Qin, C. Jia, D. Zhang, Z. Li et al., Fabrication and characterization of high-sensitivity, wide-range, and flexible MEMS thermal flow velocity sensors. Microsyst. Nanoeng. 10, 102 (2024). https://doi.org/10.1038/s41378-024-00740-2
- J. Alvarado, J. Mireles, G. Soriano, Development and characterization of a capacitance-based microscale flowmeter. Flow Meas. Instrum. 20(2), 81–84 (2009). https://doi.org/10.1016/j.flowmeasinst.2008.12.004
- S. He, Z. Yang, J. Wang, X. Wang, J. Zhang et al., High-accuracy liquid flow monitoring via triboelectric nanogenerator combined with bionic design and common-mode interference suppression. Adv. Funct. Mater. 35(8), 2415534 (2025). https://doi.org/10.1002/adfm.202415534
- B. Chen, C. Kwok, T.N. Nguyen, Z. Wang, Integrated fiber flow sensors for microfluidic interconnects. Adv. Mater. Technol. 3(11), 1800175 (2018). https://doi.org/10.1002/admt.201800175
- L. Pan, Y. Xie, H. Yang, M. Li, X. Bao et al., Flexible magnetic sensors. Sensors 23(8), 4083 (2023). https://doi.org/10.3390/s23084083
- G.S. Cañón Bermúdez, D. Makarov, Magnetosensitive E-skins for interactive devices. Adv. Funct. Mater. 31(39), 2007788 (2021). https://doi.org/10.1002/adfm.202007788
- J.R. Maze, P.L. Stanwix, J.S. Hodges, S. Hong, J.M. Taylor et al., Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455(7213), 644–647 (2008). https://doi.org/10.1038/nature07279
- S. Maayani, C. Foy, D. Englund, Y. Fink, Distributed quantum fiber magnetometry. Laser Photonics Rev. 13(7), 1900075 (2019). https://doi.org/10.1002/lpor.201900075
- Q. Zhang, Z. Ren, P. Jia, J. Shi, J. Yin et al., An ultra-miniaturized fiber humidity sensor based on near-parallel ion pathways induced efficient water−electricity conversion. Adv. Mater. 37(3), 2411558 (2025). https://doi.org/10.1002/adma.202411558
- Y. Zu, Z. Duan, Z. Yuan, Y. Jiang, H. Tai, Electrospun nanofiber-based humidity sensors: materials, devices, and emerging applications. J. Mater. Chem. A 12(40), 27157–27179 (2024). https://doi.org/10.1039/d4ta05042h
- A. Liang, X. Chen, A non-contact porous composite fiber paper-based humidity sensor for wearable breathing and skin humidity monitoring. J. Mater. Chem. A 12(42), 29081–29091 (2024). https://doi.org/10.1039/D4TA05393A
- L.Y. Li, Y.F. Dong, W.F. Jiang, H.F. Ji, X.J. Li, High-performance capacitive humidity sensor based on silicon nanoporous pillar array. Thin Solid Films 517(2), 948–951 (2008). https://doi.org/10.1016/j.tsf.2008.07.016
- W.-D. Li, K. Ke, J. Jia, J.-H. Pu, X. Zhao et al., Recent advances in multiresponsive flexible sensors towards E-skin: a delicate design for versatile sensing. Small 18(7), 2103734 (2022). https://doi.org/10.1002/smll.202103734
- S. Zhang, X. Yin, P. Yan, Y. Liu, X. Qi et al., Aid of smart nursing to pressure injury prevention and rehabilitation of textile cushions. Adv. Fiber Mater. 6(3), 841–851 (2024). https://doi.org/10.1007/s42765-024-00390-z
- J. Zhao, Z. Wei, Z. Li, J. Yu, J. Tang et al., Skin-inspired high-performance active-matrix circuitry for multimodal user-interaction. Adv. Funct. Mater. 31(38), 2105480 (2021). https://doi.org/10.1002/adfm.202105480
- I. You, D.G. Mackanic, N. Matsuhisa, J. Kang, J. Kwon et al., Artificial multimodal receptors based on ion relaxation dynamics. Science 370(6519), 961–965 (2020). https://doi.org/10.1126/science.aba5132
- M. Chen, Z. Wang, Q. Zhang, Z. Wang, W. Liu et al., Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing. Nat. Commun. 12(1), 1416 (2021). https://doi.org/10.1038/s41467-021-21729-9
- N. Gupta, H. Cheung, S. Payra, G. Loke, J. Li et al., A single-fibre computer enables textile networks and distributed inference. Nature 639(8053), 79–86 (2025). https://doi.org/10.1038/s41586-024-08568-6
References
H. Yin, Y. Li, Z. Tian, Q. Li, C. Jiang et al., Ultra-high sensitivity anisotropic piezoelectric sensors for structural health monitoring and robotic perception. Nano-Micro Lett. 17(1), 42 (2024). https://doi.org/10.1007/s40820-024-01539-6
S. Yu, T.H. Park, W. Jiang, S.W. Lee, E.H. Kim et al., Soft human–machine interface sensing displays: materials and devices. Adv. Mater. 35(43), e2204964 (2023). https://doi.org/10.1002/adma.202204964
Y. Shen, X. Han, P. Zhang, X. Chen, X. Yang et al., Review on fiber-based thermoelectrics: materials, devices, and textiles. Adv. Fiber Mater. 5(4), 1105–1140 (2023). https://doi.org/10.1007/s42765-023-00267-7
F. Liu, A. Christou, A.S. Dahiya, R. Dahiya, From printed devices to vertically stacked, 3D flexible hybrid systems. Adv. Mater. 37(10), 2411151 (2025). https://doi.org/10.1002/adma.202411151
D. Wang, G. Ma, X. Zhang, K. Zheng, J. Zhang et al., Flexible pressure sensor composed of multi-layer textile materials for human-machine interaction applications. ACS Sens. 10(1), 350–359 (2025). https://doi.org/10.1021/acssensors.4c02583
Y. Cao, P. Li, Y. Zhu, Z. Wang, N. Tang et al., Artificial intelligence-enabled novel atrial fibrillation diagnosis system using 3D pulse perception flexible pressure sensor array. ACS Sens. 10(1), 272–282 (2025). https://doi.org/10.1021/acssensors.4c02395
X. Sun, J. Sun, T. Li, S. Zheng, C. Wang et al., Flexible tactile electronic skin sensor with 3D force detection based on porous CNTs/PDMS nanocomposites. Nano-Micro Lett. 11(1), 57 (2019). https://doi.org/10.1007/s40820-019-0288-7
Y. Chen, Y. Zhou, Z. Hu, W. Lu, Z. Li et al., Gelatin-based metamaterial hydrogel films with high conformality for ultra-soft tissue monitoring. Nano-Micro Lett. 16(1), 34 (2023). https://doi.org/10.1007/s40820-023-01225-z
Z. Xu, C. Zhang, F. Wang, J. Yu, G. Yang et al., Smart textiles for personalized sports and healthcare. Nano-Micro Lett. 17(1), 232 (2025). https://doi.org/10.1007/s40820-025-01749-6
Y. Peng, J. Dong, J. Long, Y. Zhang, X. Tang et al., Thermally conductive and UV-EMI shielding electronic textiles for unrestricted and multifaceted health monitoring. Nano-Micro Lett. 16(1), 199 (2024). https://doi.org/10.1007/s40820-024-01429-x
M. Du, S. Lv, J. Qiu, T. Guo, S. Zhou, Multimaterial fibers for multifunctional sensing applications. Laser Photonics Rev. 18(10), 2301125 (2024). https://doi.org/10.1002/lpor.202301125
J.-H. Lee, K. Cho, J.-K. Kim, Age of flexible electronics: emerging trends in soft multifunctional sensors. Adv. Mater. 36(16), e2310505 (2024). https://doi.org/10.1002/adma.202310505
Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14(1), 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
P. Das, P.K. Marvi, S. Ganguly, X.S. Tang, B. Wang et al., MXene-based elastomer mimetic stretchable sensors: design, properties, and applications. Nano-Micro Lett. 16(1), 135 (2024). https://doi.org/10.1007/s40820-024-01349-w
J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010). https://doi.org/10.1126/science.1182383
J. Kim, M. Lee, H.J. Shim, R. Ghaffari, H.R. Cho et al., Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014). https://doi.org/10.1038/ncomms6747
P.-G. Su, C.-S. Wang, Novel flexible resistive-type humidity sensor. Sens. Actuat. B Chem. 123(2), 1071–1076 (2007). https://doi.org/10.1016/j.snb.2006.11.015
M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014). https://doi.org/10.1021/nn501204t
W. Yan, G. Noel, G. Loke, E. Meiklejohn, T. Khudiyev et al., Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 603(7902), 616–623 (2022). https://doi.org/10.1038/s41586-022-04476-9
B. Liang, Z. Zhang, W. Chen, D. Lu, L. Yang et al., Direct patterning of carbon nanotube via stamp contact printing process for stretchable and sensitive sensing devices. Nano-Micro Lett. 11(1), 92 (2019). https://doi.org/10.1007/s40820-019-0323-8
R. Wu, S. Seo, L. Ma, J. Bae, T. Kim, Full-fiber auxetic-interlaced yarn sensor for sign-language translation glove assisted by artificial neural network. Nano-Micro Lett. 14(1), 139 (2022). https://doi.org/10.1007/s40820-022-00887-5
T. Tat, G. Chen, X. Zhao, Y. Zhou, J. Xu et al., Smart textiles for healthcare and sustainability. ACS Nano 16(9), 13301–13313 (2022). https://doi.org/10.1021/acsnano.2c06287
X. Zhang, J. Chen, Z. Zheng, S. Tang, B. Cheng et al., Flexible temperature sensor with high reproducibility and wireless closed-loop system for decoupled multimodal health monitoring and personalized thermoregulation. Adv. Mater. 36(45), 2407859 (2024). https://doi.org/10.1002/adma.202407859
P. Chen, H. Wu, Y. Zhao, L. Zhong, Y. Zhang et al., Quantitative assessment of fungal biomarkers in clinical samples via an interface-modulated optical fiber biosensor. Adv. Mater. 36(21), 2312985 (2024). https://doi.org/10.1002/adma.202312985
C. Dang, Z. Wang, T. Hughes-Riley, T. Dias, S. Qian et al., Fibres-threads of intelligence-enable a new generation of wearable systems. Chem. Soc. Rev. 53(17), 8790–8846 (2024). https://doi.org/10.1039/d4cs00286e
H. Lu, M. Jian, X. Liang, Y. Wang, J. Niu et al., Strong silkworm silk fibers through CNT-feeding and forced reeling. Adv. Mater. 36(49), e2408385 (2024). https://doi.org/10.1002/adma.202408385
Y. Lu, H. Zhang, Y. Zhao, H. Liu, Z. Nie et al., Robust fiber-shaped flexible temperature sensors for safety monitoring with ultrahigh sensitivity. Adv. Mater. 36(18), 2310613 (2024). https://doi.org/10.1002/adma.202310613
M. Bayindir, F. Sorin, A.F. Abouraddy, J. Viens, S.D. Hart et al., Metal–insulator–semiconductor optoelectronic fibres. Nature 431(7010), 826–829 (2004). https://doi.org/10.1038/nature02937
X. Cao, C. Ye, L. Cao, Y. Shan, J. Ren et al., Biomimetic spun silk ionotronic fibers for intelligent discrimination of motions and tactile stimuli. Adv. Mater. 35(36), 2300447 (2023). https://doi.org/10.1002/adma.202300447
Q. Jiang, Y. Wan, Y. Qin, X. Qu, M. Zhou et al., Durable and wearable self-powered temperature sensor based on self-healing thermoelectric fiber by coaxial wet spinning strategy for fire safety of firefighting clothing. Adv. Fiber Mater. 6(5), 1387–1401 (2024). https://doi.org/10.1007/s42765-024-00416-6
H. Tan, L. Sun, H. Huang, L. Zhang, R.E. Neisiany et al., Continuous melt spinning of adaptable covalently cross-linked self-healing ionogel fibers for multi-functional ionotronics. Adv. Mater. 36(13), 2310020 (2024). https://doi.org/10.1002/adma.202310020
T. Sun, Y. Liang, N. Ning, H. Wu, M. Tian, Strain-insensitive stretchable conductive fiber based on helical core with double-network hydrogel. Adv. Fiber Mater. 7(3), 882–893 (2025). https://doi.org/10.1007/s42765-025-00530-z
X. Wang, X. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano-Micro Lett. 13(1), 64 (2021). https://doi.org/10.1007/s40820-021-00592-9
D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13(1), 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
B. Yang, F.-Z. Xuan, H. Lei, Z. Wang, Y. Xiang et al., Simultaneously enhancing the IFSS and monitoring the interfacial stress state of GF/epoxy composites via building in the MWCNT interface sensor. Compos. Part A Appl. Sci. Manuf. 112, 161–167 (2018). https://doi.org/10.1016/j.compositesa.2018.06.006
K. Wang, X. Sun, S. Cheng, Y. Cheng, K. Huang et al., Multispecies-coadsorption-induced rapid preparation of graphene glass fiber fabric and applications in flexible pressure sensor. Nat. Commun. 15(1), 5040 (2024). https://doi.org/10.1038/s41467-024-48958-y
Z. Ma, Y. Wu, S. Lu, J. Li, J. Liu et al., Magnetically assisted 3D printing of ultra-antiwear flexible sensor. Adv. Funct. Mater. 34(42), 2406108 (2024). https://doi.org/10.1002/adfm.202406108
Y. Wang, Y. Zhou, L. Qi, Y. Zhang, Soft optical fibers for biomedical and wearable technologies: current trends and future prospects. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202507712
Y. Shen, Z. Wang, Z. Wang, J. Wang, X. Yang et al., Thermally drawn multifunctional fibers: toward the next generation of information technology. InfoMat 4(7), e12318 (2022). https://doi.org/10.1002/inf2.12318
L. van der Elst, C. Faccini de Lima, M. Gokce Kurtoglu, V.N. Koraganji, M. Zheng et al., 3D printing in fiber-device technology. Adv. Fiber Mater. 3(2), 59–75 (2021). https://doi.org/10.1007/s42765-020-00056-6
Z. Wang, T. Wu, Z. Wang, T. Zhang, M. Chen et al., Designer patterned functional fibers via direct imprinting in thermal drawing. Nat. Commun. 11(1), 3842 (2020). https://doi.org/10.1038/s41467-020-17674-8
T. Nguyen-Dang, A.C. de Luca, W. Yan, Y. Qu, A.G. Page et al., Controlled sub-micrometer hierarchical textures engineered in polymeric fibers and microchannels via thermal drawing. Adv. Funct. Mater. 27(10), 1605935 (2017). https://doi.org/10.1002/adfm.201605935
M. Rein, V.D. Favrod, C. Hou, T. Khudiyev, A. Stolyarov et al., Diode fibres for fabric-based optical communications. Nature 560(7717), 214–218 (2018). https://doi.org/10.1038/s41586-018-0390-x
Z. Wang, L. Wei, Thermally drawn semiconductor fibers: fabrication strategies and applications. Acc. Mater. Res. 5(11), 1366–1376 (2024). https://doi.org/10.1021/accountsmr.4c00132
X. Chen, Y. Meng, S. Laperrousaz, H. Banerjee, J. Song et al., Thermally drawn multi-material fibers: from fundamental research to industrial applications. Natl. Sci. Rev. 11(10), nwae290 (2024). https://doi.org/10.1093/nsr/nwae290
S. Qian, X. Wang, W. Yan, Piezoelectric fibers for flexible and wearable electronics. Front. Optoelectron. 16(1), 3 (2023). https://doi.org/10.1007/s12200-023-00058-3
S. Qian, M. Liu, Y. Dou, Y. Fink, W. Yan, A “Moore’s law” for fibers enables intelligent fabrics. Natl. Sci. Rev. 10(1), nwac202 (2022). https://doi.org/10.1093/nsr/nwac202
T. Zhang, Z. Wang, B. Srinivasan, Z. Wang, J. Zhang et al., Ultraflexible glassy semiconductor fibers for thermal sensing and positioning. ACS Appl. Mater. Interfaces 11(2), 2441–2447 (2019). https://doi.org/10.1021/acsami.8b20307
L. Yu, S. Parker, H. Xuan, Y. Zhang, S. Jiang et al., Flexible multi-material fibers for distributed pressure and temperature sensing. Adv. Funct. Mater. 30(9), 1908915 (2020). https://doi.org/10.1002/adfm.201908915
A. Gumennik, A.M. Stolyarov, B.R. Schell, C. Hou, G. Lestoquoy et al., All-in-fiber chemical sensing. Adv. Mater. 24(45), 6005–6009 (2012). https://doi.org/10.1002/adma.201203053
W. Yan, I. Richard, G. Kurtuldu, N.D. James, G. Schiavone et al., Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat. Nanotechnol. 15(10), 875–882 (2020). https://doi.org/10.1038/s41565-020-0747-9
C. Dong, A.G. Page, W. Yan, T. Nguyen-Dang, F. Sorin, Microstructured multimaterial fibers for microfluidic sensing. Adv. Mater. Technol. 4(10), 1900417 (2019). https://doi.org/10.1002/admt.201900417
M.M. Tousi, Y. Zhang, S. Wan, L. Yu, C. Hou et al., Scalable fabrication of highly flexible porous polymer-based capacitive humidity sensor using convergence fiber drawing. Polymers 11(12), 1985 (2019). https://doi.org/10.3390/polym11121985
S.D. Hart, G.R. Maskaly, B. Temelkuran, P.H. Prideaux, J.D. Joannopoulos et al., External reflection from omnidirectional dielectric mirror fibers. Science 296(5567), 510–513 (2002). https://doi.org/10.1126/science.1070050
B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, Y. Fink, Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420(6916), 650–653 (2002). https://doi.org/10.1038/nature01275
W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo et al., Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv. Mater. 31(1), 1802348 (2019). https://doi.org/10.1002/adma.201802348
A. Gierej, A. Filipkowski, D. Pysz, R. Buczyński, M. Vagenende et al., On the characterization of novel step-index biocompatible and biodegradable poly(D, L-lactic acid) based optical fiber. J. Light. Technol. 38(7), 1905–1914 (2020). https://doi.org/10.1109/JLT.2019.2959945
T. Iwama, Y. Guo, S. Handa, K.Y. Inoue, T. Yoshinobu et al., Thermally-drawn multi-electrode fibers for bipolar electrochemistry and magnified electrochemical imaging. Adv. Mater. Technol. 7(5), 2101066 (2022). https://doi.org/10.1002/admt.202101066
C. Strutynski, R.A. Meza, L. Teulé-Gay, G. El-Dib, A. Poulon-Quintin et al., Stack-and-draw applied to the engineering of multi-material fibers with non-cylindrical profiles. Adv. Funct. Mater. 31(22), 2011063 (2021). https://doi.org/10.1002/adfm.202011063
J.J. Kaufman, G. Tao, S. Shabahang, D.S. Deng, Y. Fink et al., Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires. Nano Lett. 11(11), 4768–4773 (2011). https://doi.org/10.1021/nl202583g
S. Gorgutsa, J.F. Gu, M. Skorobogatiy, A woven 2D touchpad sensor and a 1D slide sensor using soft capacitor fibers. Smart Mater. Struct. 21(1), 015010 (2012). https://doi.org/10.1088/0964-1726/21/1/015010
M. Ghebrebrhan, G.Z.J. Loke, Y. Fink, Fabrication and measurement of 3D printed retroreflective fibers. Opt. Mater. Express 9(8), 3432 (2019). https://doi.org/10.1364/ome.9.003432
S. Shabahang, F.A. Tan, J.D. Perlstein, G. Tao, O. Alvarez et al., Robust multimaterial chalcogenide fibers produced by a hybrid fiber-fabrication process. Opt. Mater. Express 7(7), 2336 (2017). https://doi.org/10.1364/ome.7.002336
A. Gierej, M. Vagenende, A. Filipkowski, B. Siwicki, R. Buczynski et al., Poly(D, L-lactic acid) (PDLLA) biodegradable and biocompatible polymer optical fiber. J. Light. Technol. 37(9), 1916–1923 (2019). https://doi.org/10.1109/JLT.2019.2895220
M. Chen, Z. Wang, K. Li, X. Wang, L. Wei, Elastic and stretchable functional fibers: a review of materials, fabrication methods, and applications. Adv. Fiber Mater. 3(1), 1–13 (2021). https://doi.org/10.1007/s42765-020-00057-5
G. Loke, W. Yan, T. Khudiyev, G. Noel, Y. Fink, Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv. Mater. 32(1), e1904911 (2020). https://doi.org/10.1002/adma.201904911
J. Zhang, Z. Wang, Z. Wang, L. Wei, Advanced multi-material optoelectronic fibers: a review. J. Light. Technol. 39(12), 3836–3845 (2021). https://doi.org/10.1109/JLT.2020.3036739
S. Bastida, J.I. Eguiazábal, J. Nazábal, The Vicat softening temperature as a method to assess the phase behaviour of amorphous polymer blends. Polym. Test. 12(3), 233–242 (1993). https://doi.org/10.1016/0142-9418(93)90005-A
G. Tao, A.M. Stolyarov, A.F. Abouraddy, Multimaterial fibers. Int. J. Appl. Glass Sci. 3(4), 349–368 (2012). https://doi.org/10.1111/ijag.12007
D.S. Deng, N.D. Orf, A.F. Abouraddy, A.M. Stolyarov, J.D. Joannopoulos et al., In-fiber semiconductor filament arrays. Nano Lett. 8(12), 4265–4269 (2008). https://doi.org/10.1021/nl801979w
A. Canales, X. Jia, U.P. Froriep, R.A. Koppes, C.M. Tringides et al., Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33(3), 277–284 (2015). https://doi.org/10.1038/nbt.3093
Y. Qu, T. Nguyen-Dang, A.G. Page, W. Yan, T. Das Gupta et al., Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv. Mater. 30(27), 1707251 (2018). https://doi.org/10.1002/adma.201707251
A. Leber, S. Laperrousaz, Y. Qu, C. Dong, I. Richard et al., Thermally drawn elastomer nanocomposites for soft mechanical sensors. Adv. Sci. 10(13), e2207573 (2023). https://doi.org/10.1002/advs.202207573
J.J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D.S. Deng et al., Structured spheres generated by an in-fibre fluid instability. Nature 487(7408), 463–467 (2012). https://doi.org/10.1038/nature11215
M. Rein, E. Levy, A. Gumennik, A.F. Abouraddy, J. Joannopoulos et al., Self-assembled fibre optoelectronics with discrete translational symmetry. Nat. Commun. 7, 12807 (2016). https://doi.org/10.1038/ncomms12807
A. Sahasrabudhe, L.E. Rupprecht, S. Orguc, T. Khudiyev, T. Tanaka et al., Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits. Nat. Biotechnol. 42(6), 892–904 (2024). https://doi.org/10.1038/s41587-023-01833-5
G. Loke, T. Khudiyev, B. Wang, S. Fu, S. Payra et al., Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 12(1), 3317 (2021). https://doi.org/10.1038/s41467-021-23628-5
W.M. Ryu, Y. Lee, Y. Son, G. Park, S. Park, Thermally drawn multi-material fibers based on polymer nanocomposite for continuous temperature sensing. Adv. Fiber Mater. 5(5), 1712–1724 (2023). https://doi.org/10.1007/s42765-023-00306-3
Y. Zhang, Y. He, L. Niu, X. Xing, Y. Jiang et al., Enhanced sensing performance of superelastic thermally drawn liquid metal fibers through helical architecture while eliminating directional signal errors. J. Mater. Sci. Technol. 195, 136–145 (2024). https://doi.org/10.1016/j.jmst.2024.02.028
A. Leber, A.G. Page, D. Yan, Y. Qu, S. Shadman et al., Compressible and electrically conducting fibers for large-area sensing of pressures. Adv. Funct. Mater. 30(1), 1904274 (2020). https://doi.org/10.1002/adfm.201904274
X. Lu, H. Qu, M. Skorobogatiy, Piezoelectric micro- and nanostructured fibers fabricated from thermoplastic nanocomposites using a fiber drawing technique: comparative study and potential applications. ACS Nano 11(2), 2103–2114 (2017). https://doi.org/10.1021/acsnano.6b08290
M. Qi, Y. Liu, Z. Wang, S. Yuan, K. Li et al., Self-healable multifunctional fibers via thermal drawing. Adv. Sci. 11(24), e2400785 (2024). https://doi.org/10.1002/advs.202400785
I. Richard, B. Schyrr, S. Aiassa, S. Carrara, F. Sorin, All-in-fiber electrochemical sensing. ACS Appl. Mater. Interfaces 13(36), 43356–43363 (2021). https://doi.org/10.1021/acsami.1c11593
W. Jeon, J.M. Lee, Y. Kim, Y. Lee, J. Won et al., Structurally aligned multifunctional neural probe (SAMP) using forest-drawn CNT sheet onto thermally drawn polymer fiber for long-term in vivo operation. Adv. Mater. 36(27), 2313625 (2024). https://doi.org/10.1002/adma.202313625
Y. Guo, S. Jiang, B.J.B. Grena, I.F. Kimbrough, E.G. Thompson et al., Polymer composite with carbon nanofibers aligned during thermal drawing as a microelectrode for chronic neural interfaces. ACS Nano 11(7), 6574–6585 (2017). https://doi.org/10.1021/acsnano.6b07550
M. Kanik, M. Marcali, M. Yunusa, C. Elbuken, M. Bayindir, Continuous triboelectric power harvesting and biochemical sensing inside poly(vinylidene fluoride) hollow fibers using microfluidic droplet generation. Adv. Mater. Technol. 1(9), 1600190 (2016). https://doi.org/10.1002/admt.201600190
Z. Wang, Z. Wang, D. Li, C. Yang, Q. Zhang et al., High-quality semiconductor fibres via mechanical design. Nature 626(7997), 72–78 (2024). https://doi.org/10.1038/s41586-023-06946-0
J.H. Oh, S.Y. Hong, H. Park, S.W. Jin, Y.R. Jeong et al., Fabrication of high-sensitivity skin-attachable temperature sensors with bioinspired microstructured adhesive. ACS Appl. Mater. Interfaces 10(8), 7263–7270 (2018). https://doi.org/10.1021/acsami.7b17727
F. Jiao, F. Cao, Y. Gao, F. Shuang, D. Dong, A biosensor based on a thermal camera using infrared radiance as the signal probe. Talanta 246, 123453 (2022). https://doi.org/10.1016/j.talanta.2022.123453
W. Yan, C. Dong, Y. Xiang, S. Jiang, A. Leber et al., Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater. Today 35, 168–194 (2020). https://doi.org/10.1016/j.mattod.2019.11.006
B. Dong, Q. Shi, Y. Yang, F. Wen, Z. Zhang et al., Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy 79, 105414 (2021). https://doi.org/10.1016/j.nanoen.2020.105414
Y. Zhou, C. Yu, X. Zhang, Y. Zheng, B. Wang et al., Ultrasensitive ionic conductors with tunable resistance switching temperature enabled by phase transformation of polymer cocrystals. Adv. Mater. 36(15), 2309568 (2024). https://doi.org/10.1002/adma.202309568
M. Bayindir, A.F. Abouraddy, J. Arnold, J.D. Joannopoulos, Y. Fink, Thermal-sensing fiber devices by multimaterial codrawing. Adv. Mater. 18(7), 845–849 (2006). https://doi.org/10.1002/adma.200502106
T.Q. Trung, N.T. Tien, D. Kim, J.H. Jung, O.J. Yoon et al., High thermal responsiveness of a reduced graphene oxide field-effect transistor. Adv. Mater. 24(38), 5254–5260 (2012). https://doi.org/10.1002/adma.201201724
T.Q. Trung, S. Ramasundaram, S.W. Hong, N.-E. Lee, Flexible and transparent nanocomposite of reduced graphene oxide and P(VDF-TrFE) copolymer for high thermal responsivity in a field-effect transistor. Adv. Funct. Mater. 24(22), 3438–3445 (2014). https://doi.org/10.1002/adfm.201304224
L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895), 1457–1461 (2008). https://doi.org/10.1126/science.1158899
M. Hamid Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M. Haji Hassan et al., A review on thermoelectric renewable energy: principle parameters that affect their performance. Renew. Sustain. Energy Rev. 30, 337–355 (2014). https://doi.org/10.1016/j.rser.2013.10.027
K. Meng, X. Xiao, W. Wei, G. Chen, A. Nashalian et al., Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34(21), 2109357 (2022). https://doi.org/10.1002/adma.202109357
M. Kang, J. Kim, B. Jang, Y. Chae, J.-H. Kim et al., Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano 11(8), 7950–7957 (2017). https://doi.org/10.1021/acsnano.7b02474
C. Wang, L. Dong, D. Peng, C. Pan, Tactile sensors for advanced intelligent systems. Adv. Intell. Syst. 1(8), 1900090 (2019). https://doi.org/10.1002/aisy.201900090
T.-W. Pan, C.-W. Hsue, J.-F. Huang, Time-domain reflectometry using arbitrary incident waveforms. IEEE Trans. Microw. Theory Tech. 50(11), 2558–2563 (2002). https://doi.org/10.1109/TMTT.2002.804644
E. Song, Y.-J. Shin, P.E. Stone, J. Wang, T.-S. Choe et al., Detection and location of multiple wiring faults via time–frequency-domain reflectometry. IEEE Trans. Electromagn. Compat. 51(1), 131–138 (2009). https://doi.org/10.1109/TEMC.2008.2007964
B. King, N. Bruce, M. Wagih, Large-area conductor-loaded PDMS flexible composites for wireless and chipless electromagnetic multiplexed temperature sensors. Adv. Sci. 12(17), 2412066 (2025). https://doi.org/10.1002/advs.202412066
J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo et al., Curved array photoacoustic tomographic system for small animal imaging. J. Biomed. Opt. 13(2), 024007 (2008). https://doi.org/10.1117/1.2907157
Q. Xu, L. Zhang, W. Liang, Acoustic detection technology for gas pipeline leakage. Process. Saf. Environ. Prot. 91(4), 253–261 (2013). https://doi.org/10.1016/j.psep.2012.05.012
G.T. Clement, J. White, K. Hynynen, Investigation of a large-area phased array for focused ultrasound surgery through the skull. Phys. Med. Biol. 45(4), 1071–1083 (2000). https://doi.org/10.1088/0031-9155/45/4/319
E. Song, Z. Xie, W. Bai, H. Luan, B. Ji et al., Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue. Nat. Biomed. Eng. 5(7), 759–771 (2021). https://doi.org/10.1038/s41551-021-00723-y
S. Wang, T. Zhang, K. Li, S. Ma, M. Chen et al., Flexible piezoelectric fibers for acoustic sensing and positioning. Adv. Electron. Mater. 3(3), 1600449 (2017). https://doi.org/10.1002/aelm.201600449
Y. Wu, Y. Ma, H. Zheng, S. Ramakrishna, Piezoelectric materials for flexible and wearable electronics: a review. Mater. Des. 211, 110164 (2021). https://doi.org/10.1016/j.matdes.2021.110164
J.-H. Lee, H.-J. Yoon, T.Y. Kim, M.K. Gupta, J.H. Lee et al., Micropatterned P(VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors. Adv. Funct. Mater. 25(21), 3203–3209 (2015). https://doi.org/10.1002/adfm.201500856
G. Tian, W. Deng, Y. Gao, D. Xiong, C. Yan et al., Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 59, 574–581 (2019). https://doi.org/10.1016/j.nanoen.2019.03.013
D. Yu, Z. Zheng, J. Liu, H. Xiao, G. Huangfu et al., Superflexible and lead-free piezoelectric nanogenerator as a highly sensitive self-powered sensor for human motion monitoring. Nano-Micro Lett. 13(1), 117 (2021). https://doi.org/10.1007/s40820-021-00649-9
S. Egusa, Z. Wang, N. Chocat, Z.M. Ruff, A.M. Stolyarov et al., Multimaterial piezoelectric fibres. Nat. Mater. 9(8), 643–648 (2010). https://doi.org/10.1038/nmat2792
N. Chocat, G. Lestoquoy, Z. Wang, D.M. Rodgers, J.D. Joannopoulos et al., Piezoelectric fibers for conformal acoustics. Adv. Mater. 24(39), 5327–5332 (2012). https://doi.org/10.1002/adma.201201355
Z. Liu, S. Zhang, Z. Wu, X.-E. Wang, K. Zou et al., Visual-audio thermoelectric detectors for images and sound recognition. Adv. Funct. Mater. 34(46), 2406110 (2024). https://doi.org/10.1002/adfm.202406110
T. Nguyen-Dang, A.G. Page, Y. Qu, M. Volpi, W. Yan et al., Multi-material micro-electromechanical fibers with bendable functional domains. J. Phys. D-Appl. Phys. 50(14), 144001 (2017). https://doi.org/10.1088/1361-6463/aa5bf7
F. Sorin, Y. Qu, T. Nguyen Dang, W. Yan, A.G. Page et al., Super-elastic multi-material optical fibers for healthcare applications. Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XIX. February 2–7, 2019. San Francisco, USA. SPIE, (2019). pp. 22. https://doi.org/10.1117/12.2510697
A. Leber, C. Dong, R. Chandran, T. Das Gupta, N. Bartolomei et al., Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat. Electron. 3(6), 316–326 (2020). https://doi.org/10.1038/s41928-020-0415-y
Y. Zhang, X. Li, J. Kim, Y. Tong, E.G. Thompson et al., Thermally drawn stretchable electrical and optical fiber sensors for multimodal extreme deformation sensing. Adv. Opt. Mater. 9(6), 2001815 (2021). https://doi.org/10.1002/adom.202001815
R. Qin, J. Nong, K. Wang, Y. Liu, S. Zhou et al., Recent advances in flexible pressure sensors based on MXene materials. Adv. Mater. 36(24), 2312761 (2024). https://doi.org/10.1002/adma.202312761
K. Xia, Y. Tian, J. Fu, Z. Zhu, J. Lu et al., Transparent and stretchable high-output triboelectric nanogenerator for high-efficiency self-charging energy storage systems. Nano Energy 87, 106210 (2021). https://doi.org/10.1016/j.nanoen.2021.106210
F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
S. Niu, Z.L. Wang, Theoretical systems of triboelectric nanogenerators. Nano Energy 14, 161–192 (2015). https://doi.org/10.1016/j.nanoen.2014.11.034
H.L. Wang, Z.H. Guo, X. Pu, Z.L. Wang, Ultralight iontronic triboelectric mechanoreceptor with high specific outputs for epidermal electronics. Nano-Micro Lett. 14(1), 86 (2022). https://doi.org/10.1007/s40820-022-00834-4
H. Zou, Y. Zhang, L. Guo, P. Wang, X. He et al., Quantifying the triboelectric series. Nat. Commun. 10, 1427 (2019). https://doi.org/10.1038/s41467-019-09461-x
L. Xie, X. Chen, Z. Wen, Y. Yang, J. Shi et al., Spiral steel wire based fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano-Micro Lett. 11(1), 39 (2019). https://doi.org/10.1007/s40820-019-0271-3
C. Dong, A. Leber, T. Das Gupta, R. Chandran, M. Volpi et al., High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat. Commun. 11(1), 3537 (2020). https://doi.org/10.1038/s41467-020-17345-8
S.-Y. Cho, Y. Lee, H.-J. Koh, H. Jung, J.-S. Kim et al., Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene. Adv. Mater. 28(32), 7020–7028 (2016). https://doi.org/10.1002/adma.201601167
P.C. Wanniarachchi, K.G. Upul Kumarasinghe, C. Jayathilake, Recent advancements in chemosensors for the detection of food spoilage. Food Chem. 436, 137733 (2024). https://doi.org/10.1016/j.foodchem.2023.137733
C. López, Materials aspects of photonic crystals. Adv. Mater. 15(20), 1679–1704 (2003). https://doi.org/10.1002/adma.200300386
A.M. Stolyarov, A. Gumennik, W. McDaniel, O. Shapira, B. Schell et al., Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers. Opt. Express 20(11), 12407–12415 (2012). https://doi.org/10.1364/OE.20.012407
X. An, Y. Liu, Y. Sun, X. Zhang, Y. Liu et al., Portable multifunctional sensing platform for ratiometric H2O2 detection and photodynamic anti-bacteria using an AIE-featured electrospinning film. Chem. Eng. J. 487, 150675 (2024). https://doi.org/10.1016/j.cej.2024.150675
Y. Guo, C.F. Werner, S. Handa, M. Wang, T. Ohshiro et al., Miniature multiplexed label-free pH probe in vivo. Biosens. Bioelectron. 174, 112870 (2021). https://doi.org/10.1016/j.bios.2020.112870
R. Nishimoto, Y. Sato, J. Wu, T. Saizaki, M. Kubo et al., Thermally drawn CNT-based hybrid nanocomposite fiber for electrochemical sensing. Biosensors 12(8), 559 (2022). https://doi.org/10.3390/bios12080559
F. Niu, F. Zhou, Z. Wang, L. Wei, J. Hu et al., Synthesizing metal oxide semiconductors on doped Si/SiO2 flexible fiber substrates for wearable gas sensing. Research 6, 0100 (2023). https://doi.org/10.34133/research.0100
M. Cianchetti, C. Laschi, A. Menciassi, P. Dario, Biomedical applications of soft robotics. Nat. Rev. Mater. 3(6), 143–153 (2018). https://doi.org/10.1038/s41578-018-0022-y
G. Tian, W. Deng, T. Yang, J. Zhang, T. Xu et al., Hierarchical piezoelectric composites for noninvasive continuous cardiovascular monitoring. Adv. Mater. 36(26), e2313612 (2024). https://doi.org/10.1002/adma.202313612
S. Park, G. Loke, Y. Fink, P. Anikeeva, Flexible fiber-based optoelectronics for neural interfaces. Chem. Soc. Rev. 48(6), 1826–1852 (2019). https://doi.org/10.1039/c8cs00710a
J. Kim, X. Jia, Flexible multimaterial fibers in modern biomedical applications. Natl. Sci. Rev. 11(10), nwae333 (2024). https://doi.org/10.1093/nsr/nwae333
C. Sung, W. Jeon, K.S. Nam, Y. Kim, H. Butt et al., Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices. J. Mater. Chem. B 8(31), 6624–6666 (2020). https://doi.org/10.1039/D0TB00872A
Y. LeChasseur, S. Dufour, G. Lavertu, C. Bories, M. Deschênes et al., A microprobe for parallel optical and electrical recordings from single neurons in vivo. Nat. Methods 8(4), 319–325 (2011). https://doi.org/10.1038/nmeth.1572
J.P. Seymour, N.B. Langhals, D.J. Anderson, D.R. Kipke, Novel multi-sided, microelectrode arrays for implantable neural applications. Biomed. Microdevices 13(3), 441–451 (2011). https://doi.org/10.1007/s10544-011-9512-z
T. Saxena, L. Karumbaiah, E.A. Gaupp, R. Patkar, K. Patil et al., The impact of chronic blood–brain barrier breach on intracortical electrode function. Biomaterials 34(20), 4703–4713 (2013). https://doi.org/10.1016/j.biomaterials.2013.03.007
C. Dong, Y. Zheng, K. Long-Iyer, E.C. Wright, Y. Li et al., Fluorescence imaging of neural activity, neurochemical dynamics, and drug-specific receptor conformation with genetically encoded sensors. Annu. Rev. Neurosci. 45, 273–294 (2022). https://doi.org/10.1146/annurev-neuro-110520-031137
V. Emiliani, E. Entcheva, R. Hedrich, P. Hegemann, K.R. Konrad et al., Optogenetics for light control of biological systems. Nat. Rev. Methods Primers 2, 55 (2022). https://doi.org/10.1038/s43586-022-00136-4
J.P. Seymour, D.R. Kipke, Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 28(25), 3594–3607 (2007). https://doi.org/10.1016/j.biomaterials.2007.03.024
S. Park, Y. Guo, X. Jia, H.K. Choe, B. Grena et al., One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 20(4), 612–619 (2017). https://doi.org/10.1038/nn.4510
C. Lu, S. Park, T.J. Richner, A. Derry, I. Brown et al., Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Sci. Adv. 3(3), e1600955 (2017). https://doi.org/10.1126/sciadv.1600955
S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991). https://doi.org/10.1038/354056a0
Y. Jang, S.M. Kim, G.M. Spinks, S.J. Kim, Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv. Mater. 32(5), 1902670 (2020). https://doi.org/10.1002/adma.201902670
J. Wang, R.P. Deo, P. Poulin, M. Mangey, Carbon nanotube fiber microelectrodes. J. Am. Chem. Soc. 125(48), 14706–14707 (2003). https://doi.org/10.1021/ja037737j
A. Balena, M. Bianco, M.S. Andriani, C. Montinaro, B. Spagnolo et al., Fabrication of nonplanar tapered fibers to integrate optical and electrical signals for neural interfaces in vivo. Nat. Protoc. (2025). https://doi.org/10.1038/s41596-024-01105-9
M. Du, L. Huang, J. Zheng, Y. Xi, Y. Dai et al., Flexible fiber probe for efficient neural stimulation and detection. Adv. Sci. 7(15), 2001410 (2020). https://doi.org/10.1002/advs.202001410
M.-J. Antonini, A. Sahasrabudhe, A. Tabet, M. Schwalm, D. Rosenfeld et al., Customizing MRI-compatible multifunctional neural interfaces through fiber drawing. Adv. Funct. Mater. 31(43), 2104857 (2021). https://doi.org/10.1002/adfm.202104857
M.E.E. Alahi, M.I. Rizu, F.W. Tina, Z. Huang, A. Nag et al., Recent advancements in graphene-based implantable electrodes for neural recording/stimulation. Sensors 23(24), 9911 (2023). https://doi.org/10.3390/s23249911
J. Kim, Y. Zhao, S. Yang, Z. Feng, A. Wang et al., Laser machined fiber-based microprobe: application in microscale electroporation. Adv. Fiber Mater. 4(4), 859–872 (2022). https://doi.org/10.1007/s42765-022-00148-5
F. Sun, H. Jiang, H. Wang, Y. Zhong, Y. Xu et al., Soft fiber electronics based on semiconducting polymer. Chem. Rev. 123(8), 4693–4763 (2023). https://doi.org/10.1021/acs.chemrev.2c00720
H. Peng, H. Li, G. Tao, L. Xia, W. Xu et al., Smart textile optoelectronics for human-interfaced logic systems. Adv. Funct. Mater. 34(2), 2308136 (2024). https://doi.org/10.1002/adfm.202308136
W. Yan, Y. Qu, T. Das Gupta, A. Darga, D.T. Nguyên et al., Semiconducting nanowire-based optoelectronic fibers. Adv. Mater. 29(27), 1700681 (2017). https://doi.org/10.1002/adma.201700681
G. Loke, R. Yuan, M. Rein, T. Khudiyev, Y. Jain et al., Structured multimaterial filaments for 3D printing of optoelectronics. Nat. Commun. 10, 4010 (2019). https://doi.org/10.1038/s41467-019-11986-0
L. Su, Q. Xiong, Y. Zhu, Y. Zi, A liquid–solid contact electrification based all-optical liquid flow sensor for microfluidic analysis in biomedical applications. Adv. Funct. Mater. 32(45), 2207096 (2022). https://doi.org/10.1002/adfm.202207096
X. Cao, Q. Li, S. Li, X. Xu, L. Wang et al., Low-cost photoelectric flow rate sensors based on a flexible planar curved beam structure for clinical treatments. Adv. Healthc. Mater. 13(19), 2304573 (2024). https://doi.org/10.1002/adhm.202304573
H. Wang, S. Li, Y. Wang, H. Wang, X. Shen et al., Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv. Mater. 32(11), 1908214 (2020). https://doi.org/10.1002/adma.201908214
M. Li, G. Qin, C. Jia, D. Zhang, Z. Li et al., Fabrication and characterization of high-sensitivity, wide-range, and flexible MEMS thermal flow velocity sensors. Microsyst. Nanoeng. 10, 102 (2024). https://doi.org/10.1038/s41378-024-00740-2
J. Alvarado, J. Mireles, G. Soriano, Development and characterization of a capacitance-based microscale flowmeter. Flow Meas. Instrum. 20(2), 81–84 (2009). https://doi.org/10.1016/j.flowmeasinst.2008.12.004
S. He, Z. Yang, J. Wang, X. Wang, J. Zhang et al., High-accuracy liquid flow monitoring via triboelectric nanogenerator combined with bionic design and common-mode interference suppression. Adv. Funct. Mater. 35(8), 2415534 (2025). https://doi.org/10.1002/adfm.202415534
B. Chen, C. Kwok, T.N. Nguyen, Z. Wang, Integrated fiber flow sensors for microfluidic interconnects. Adv. Mater. Technol. 3(11), 1800175 (2018). https://doi.org/10.1002/admt.201800175
L. Pan, Y. Xie, H. Yang, M. Li, X. Bao et al., Flexible magnetic sensors. Sensors 23(8), 4083 (2023). https://doi.org/10.3390/s23084083
G.S. Cañón Bermúdez, D. Makarov, Magnetosensitive E-skins for interactive devices. Adv. Funct. Mater. 31(39), 2007788 (2021). https://doi.org/10.1002/adfm.202007788
J.R. Maze, P.L. Stanwix, J.S. Hodges, S. Hong, J.M. Taylor et al., Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455(7213), 644–647 (2008). https://doi.org/10.1038/nature07279
S. Maayani, C. Foy, D. Englund, Y. Fink, Distributed quantum fiber magnetometry. Laser Photonics Rev. 13(7), 1900075 (2019). https://doi.org/10.1002/lpor.201900075
Q. Zhang, Z. Ren, P. Jia, J. Shi, J. Yin et al., An ultra-miniaturized fiber humidity sensor based on near-parallel ion pathways induced efficient water−electricity conversion. Adv. Mater. 37(3), 2411558 (2025). https://doi.org/10.1002/adma.202411558
Y. Zu, Z. Duan, Z. Yuan, Y. Jiang, H. Tai, Electrospun nanofiber-based humidity sensors: materials, devices, and emerging applications. J. Mater. Chem. A 12(40), 27157–27179 (2024). https://doi.org/10.1039/d4ta05042h
A. Liang, X. Chen, A non-contact porous composite fiber paper-based humidity sensor for wearable breathing and skin humidity monitoring. J. Mater. Chem. A 12(42), 29081–29091 (2024). https://doi.org/10.1039/D4TA05393A
L.Y. Li, Y.F. Dong, W.F. Jiang, H.F. Ji, X.J. Li, High-performance capacitive humidity sensor based on silicon nanoporous pillar array. Thin Solid Films 517(2), 948–951 (2008). https://doi.org/10.1016/j.tsf.2008.07.016
W.-D. Li, K. Ke, J. Jia, J.-H. Pu, X. Zhao et al., Recent advances in multiresponsive flexible sensors towards E-skin: a delicate design for versatile sensing. Small 18(7), 2103734 (2022). https://doi.org/10.1002/smll.202103734
S. Zhang, X. Yin, P. Yan, Y. Liu, X. Qi et al., Aid of smart nursing to pressure injury prevention and rehabilitation of textile cushions. Adv. Fiber Mater. 6(3), 841–851 (2024). https://doi.org/10.1007/s42765-024-00390-z
J. Zhao, Z. Wei, Z. Li, J. Yu, J. Tang et al., Skin-inspired high-performance active-matrix circuitry for multimodal user-interaction. Adv. Funct. Mater. 31(38), 2105480 (2021). https://doi.org/10.1002/adfm.202105480
I. You, D.G. Mackanic, N. Matsuhisa, J. Kang, J. Kwon et al., Artificial multimodal receptors based on ion relaxation dynamics. Science 370(6519), 961–965 (2020). https://doi.org/10.1126/science.aba5132
M. Chen, Z. Wang, Q. Zhang, Z. Wang, W. Liu et al., Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing. Nat. Commun. 12(1), 1416 (2021). https://doi.org/10.1038/s41467-021-21729-9
N. Gupta, H. Cheung, S. Payra, G. Loke, J. Li et al., A single-fibre computer enables textile networks and distributed inference. Nature 639(8053), 79–86 (2025). https://doi.org/10.1038/s41586-024-08568-6