Quantum-Size FeS2 with Delocalized Electronic Regions Enable High-Performance Sodium-Ion Batteries Across Wide Temperatures
Corresponding Author: Yanwei Sui
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 15
Abstract
Wide-temperature applications of sodium-ion batteries (SIBs) are severely limited by the sluggish ion insertion/diffusion kinetics of conversion-type anodes. Quantum-sized transition metal dichalcogenides possess unique advantages of charge delocalization and enrich uncoordinated electrons and short-range transfer kinetics, which are crucial to achieve rapid low-temperature charge transfer and high-temperature interface stability. Herein, a quantum-scale FeS2 loaded on three-dimensional Ti3C2 MXene skeletons (FeS2 QD/MXene) fabricated as SIBs anode, demonstrating impressive performance under wide-temperature conditions (− 35 to 65 °C). The theoretical calculations combined with experimental characterization interprets that the unsaturated coordination edges of FeS2 QD can induce delocalized electronic regions, which reduces electrostatic potential and significantly facilitates efficient Na+ diffusion across a broad temperature range. Moreover, the Ti3C2 skeleton reinforces structural integrity via Fe–O–Ti bonding, while enabling excellent dispersion of FeS2 QD. As expected, FeS2 QD/MXene anode harvests capacities of 255.2 and 424.9 mAh g−1 at 0.1 A g−1 under − 35 and 65 °C, and the energy density of FeS2 QD/MXene//NVP full cell can reach to 162.4 Wh kg−1 at − 35 °C, highlighting its practical potential for wide-temperatures conditions. This work extends the uncoordinated regions induced by quantum-size effects for exceptional Na+ ion storage and diffusion performance at wide-temperatures environment.
Highlights:
1 Quantum-scaled FeS2 induces delocalized electronic regions, effectively reducing electrostatic potential barriers and accelerating Na+ diffusion kinetics.
2 The free charge accumulation regions were formed by edge mismatched atoms, activating numerous electrochemically sites to enable high-capacity Na+ storage and ultrafast-ion transport across wide temperature range (−35 to 65 °C).
3 The FeS2 QD/MXene anode delivers superior wide-temperature capacity of 255.2 mAh g−1 (−35 °C) and 424.9 mAh g−1 (65 °C) at 0.1 A g−1. The FeS2 QD/MXene//NVP cell achieves a record energy density of 162.4 Wh kg⁻1 at − 35 °C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Hu, X. Li, Q. Liang, L. Xu, C. Ding et al., Optimization strategies of Na3V2(PO4)3 cathode materials for sodium-ion batteries. Nano-Micro Lett. 17(1), 33 (2024). https://doi.org/10.1007/s40820-024-01526-x
- Z. Nan, W. Wei, Z. Lin, R. Yuan, M. Zhang et al., Electromagnetic functions modulation of recycled by-products by heterodimensional structure. Nano-Micro Lett 17(1), 137 (2025). https://doi.org/10.1007/s40820-025-01659-7
- Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu et al., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3(4), 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1
- M. Jiang, P. Wang, Q. Chen, Y. Zhang, Q. Wu et al., Enabling the Nb/Ti co-doping strategy for improving structure stability and rate capability of Ni-rich cathode. Chin. Chem. Lett. 36(6), 110040 (2025). https://doi.org/10.1016/j.cclet.2024.110040
- Z. Li, Y.-X. Yao, S. Sun, C.-B. Jin, N. Yao et al., 40 years of low-temperature electrolytes for rechargeable lithium batteries. Angew. Chem. Int. Ed. 62(37), e202303888 (2023). https://doi.org/10.1002/anie.202303888
- Y. Li, R. Zhang, J. Qian, Y. Gong, H. Li et al., Construct NiSe/NiO heterostructures on NiSe anode to induce fast kinetics for sodium-ion batteries. Energy Mater. Adv. 4, 0044 (2023). https://doi.org/10.34133/energymatadv.0044
- A. Nagmani, S. Kumar, Puravankara, Optimizing ultramicroporous hard carbon spheres in carbonate ester-based electrolytes for enhanced sodium storage in half-/full-cell sodium-ion batteries. Battery Energy 1(3), 20220007 (2022). https://doi.org/10.1002/bte2.20220007
- Q. Wang, C. Guo, Y. Zhu, J. He, H. Wang, Reduced graphene oxide-wrapped FeS2 composite as anode for high-performance sodium-ion batteries. Nano-Micro Lett. 10(2), 30 (2018). https://doi.org/10.1007/s40820-017-0183-z
- Y. Gong, Y. Li, Y. Li, M. Liu, X. Feng et al., Unraveling the intrinsic origin of the superior sodium-ion storage performance of metal selenides anode in ether-based electrolytes. Nano Lett. 24(27), 8427–8435 (2024). https://doi.org/10.1021/acs.nanolett.4c02145
- Y.-F. Zhu, Y. Xiao, W.-B. Hua, S. Indris, S.-X. Dou et al., Manipulating layered P2@P3 integrated spinel structure evolution for high-performance sodium-ion batteries. Angew. Chem. Int. Ed. 59(24), 9299–9304 (2020). https://doi.org/10.1002/anie.201915650
- Z. Ali, T. Zhang, M. Asif, L. Zhao, Y. Yu et al., Transition metal chalcogenide anodes for sodium storage. Mater. Today 35, 131–167 (2020). https://doi.org/10.1016/j.mattod.2019.11.008
- Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin et al., Rechargeable batteries for grid scale energy storage. Chem. Rev. 122(22), 16610–16751 (2022). https://doi.org/10.1021/acs.chemrev.2c00289
- B. Sun, Q. Lu, K. Chen, W. Zheng, Z. Liao et al., Redox-active metaphosphate-like terminals enable high-capacity MXene anodes for ultrafast Na-ion storage. Adv. Mater. 34(15), 2108682 (2022). https://doi.org/10.1002/adma.202108682
- Y. Fang, X. Lv, Z. Lv, Y. Wang, G. Zheng et al., Electron-extraction engineering induced 1T’’-1T’ phase transition of Re0.75V0.25Se2 for ultrafast sodium ion storage. Adv. Sci. 9(36), 2205680 (2022). https://doi.org/10.1002/advs.202205680
- J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy (2021). https://doi.org/10.1038/s41560-10.1038/s41021-00783-z(2021).10.1038/s41560-021-00783-z
- M. Wang, H. Xu, Z. Yang, H. Yang, A. Peng et al., SnS nanosheets confined growth by S and N codoped graphene with enhanced pseudocapacitance for sodium-ion capacitors. ACS Appl. Mater. Interfaces 11(44), 41363–41373 (2019). https://doi.org/10.1021/acsami.9b14098
- T. Li, D. Zhao, B. Du, Q. Yin, Y. Li et al., Defect-induced electron rich nanodomains in CoSe0.5S1.5/GA realize fast ion migration kinetics as sodium-ion capacitor anode. J. Energy Chem. 87, 583–593 (2023). https://doi.org/10.1016/j.jechem.2023.10.011
- P. Wang, D. Zhao, X. Hui, Z. Qian, P. Zhang et al., Bifunctional catalytic activity guided by rich crystal defects in Ti3C2 MXene quantum dot clusters for Li–O2 batteries. Adv. Energy Mater. 11(32), 2003069 (2021). https://doi.org/10.1002/aenm.202003069
- H. Zhu, W. Zan, W. Chen, W. Jiang, X. Ding et al., Defect-rich molybdenum sulfide quantum dots for amplified photoluminescence and photonics-driven reactive oxygen species generation. Adv. Mater. 34(31), 2200004 (2022). https://doi.org/10.1002/adma.202200004
- Z. Lv, B. Peng, X. Lv, Y. Gao, K. Hu et al., Intercalative motifs-induced space confinement and bonding covalency enhancement enable ultrafast and large sodium storage. Adv. Funct. Mater. 33(16), 2214370 (2023). https://doi.org/10.1002/adfm.202214370
- J. Bai, J.H. Jia, Y. Wang, C.C. Yang, Q. Jiang, Ideal bi-based hybrid anode material for ultrafast charging of sodium-ion batteries at extremely low temperatures. Nano-Micro Lett. 17(1), 60 (2024). https://doi.org/10.1007/s40820-024-01560-9
- X. Sun, L. Wang, C. Li, D. Wang, I. Sikandar et al., Dandelion-Like Bi2S3/rGO hierarchical microspheres as high-performance anodes for potassium-ion and half/full sodium-ion batteries. Nano Res. 14(12), 4696–4703 (2021). https://doi.org/10.1007/s12274-021-3407-y
- X. Xu, D. Feng, L. You, Y. Xie, F. Wu et al., Carbon-encrusted SnS2Decorated on MXene nanosheets for advanced Li-ion battery anodes. Energy Mater. Adv. 5, 0146 (2024). https://doi.org/10.34133/energymatadv.0146
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Two-dimensional materials: 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 982–982 (2014). https://doi.org/10.1002/adma.201470041
- J. Orangi, M. Beidaghi, A review of the effects of electrode fabrication and assembly processes on the structure and electrochemical performance of 2D MXenes. Adv. Funct. Mater. 30(47), 2005305 (2020). https://doi.org/10.1002/adfm.202005305
- J. Zhang, Y. Yan, X. Wang, Y. Cui, Z. Zhang et al., Bridging multiscale interfaces for developing ionically conductive high-voltage iron sulfate-containing sodium-based battery positive electrodes. Nat. Commun. 14(1), 3701 (2023). https://doi.org/10.1038/s41467-023-39384-7
- Y. Liu, M. Qiu, X. Hu, J. Yuan, W. Liao et al., Anion defects engineering of ternary Nb-based chalcogenide anodes toward high-performance sodium-based dual-ion batteries. Nano-Micro Lett. 15(1), 104 (2023). https://doi.org/10.1007/s40820-023-01070-0
- L. Zhang, W. Zhao, S. Yuan, Y. Yang, P. Ge et al., Tailoring MSx quantum dots (M = co, Ni, Cu, Zn) for advanced energy storage materials with strong interfacial engineering. Small 18(10), 2106593 (2022). https://doi.org/10.1002/smll.202106593
- Y. Deng, T. Shang, Z. Wu, Y. Tao, C. Luo et al., Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31(43), 1902432 (2019). https://doi.org/10.1002/adma.201902432
- G. Zhou, M.-C. Li, C. Liu, C. Liu, Z. Li et al., 3D printed nitrogen-doped thick carbon architectures for supercapacitor: ink rheology and electrochemical performance. Adv. Sci. 10(10), 2206320 (2023). https://doi.org/10.1002/advs.202206320
- Y. Wang, Y. Zhang, J. Shi, A. Pan, F. Jiang et al., S-doped porous carbon confined SnS nanospheres with enhanced electrochemical performance for sodium-ion batteries. J. Mater. Chem. A 6(37), 18286–18292 (2018). https://doi.org/10.1039/C8TA06106H
- Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang et al., Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 8(4), 1309–1316 (2015). https://doi.org/10.1039/c4ee03759f
- D. Zhao, P. Wang, H. Di, P. Zhang, X. Hui et al., Single semi-metallic selenium atoms on Ti3C2 MXene nanosheets as excellent cathode for lithium–oxygen batteries. Adv. Funct. Mater. 31(29), 2010544 (2021). https://doi.org/10.1002/adfm.202010544
- S. Li, H. Zhu, Y. Liu, Z. Han, L. Peng et al., Codoped porous carbon nanofibres as a potassium metal host for nonaqueous K-ion batteries. Nat. Commun. 13(1), 4911 (2022). https://doi.org/10.1038/s41467-022-32660-y
- C. Ma, X. Wang, J. Lan, J. Zhang, K. Song et al., Dynamic multistage coupling of FeS2/S enables ultrahigh reversible Na–S batteries. Adv. Funct. Mater. 33(5), 2211821 (2023). https://doi.org/10.1002/adfm.202211821
- K. Shevchuk, A. Sarycheva, C.E. Shuck, Y. Gogotsi, Raman spectroscopy characterization of 2D carbide and carbonitride MXenes. Chem. Mater. 35(19), 8239–8247 (2023). https://doi.org/10.1021/acs.chemmater.3c01742
- A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32(8), 3480–3488 (2020). https://doi.org/10.1021/acs.chemmater.0c00359
- H. Wang, X. Song, M. Lv, S. Jin, J. Xu et al., Interfacial covalent bonding endowing Ti3 C2-Sb2 S3 composites high sodium storage performance. Small 18(3), e2104293 (2022). https://doi.org/10.1002/smll.202104293
- J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.-Q. Zhao et al., Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 26(18), 3118–3127 (2016). https://doi.org/10.1002/adfm.201505328
- C. Yue, X. Zhang, J. Yin, H. Zhou, K. Liu et al., Highly efficient FeS2@FeOOH core-shell water oxidation electrocatalyst formed by surface reconstruction of FeS2 microspheres supported on Ni foam. Appl. Catal. B Environ. 339, 123171 (2023). https://doi.org/10.1016/j.apcatb.2023.123171
- A.K. Haridas, J. Heo, X. Li, H.-J. Ahn, X. Zhao et al., A flexible and free-standing FeS/sulfurized polyacrylonitrile hybrid anode material for high-rate sodium-ion storage. Chem. Eng. J. 385, 123453 (2020). https://doi.org/10.1016/j.cej.2019.123453
- D. Zhao, Z. Chen, W. Yang, S. Liu, X. Zhang et al., MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 141(9), 4086–4093 (2019). https://doi.org/10.1021/jacs.8b13579
- Y. Zhao, X. Jia, G. Chen, L. Shang, G.I.N. Waterhouse et al., Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: an active water oxidation electrocatalyst. J. Am. Chem. Soc. 138(20), 6517–6524 (2016). https://doi.org/10.1021/jacs.6b01606
- J. Duan, S. Chen, C.A. Ortíz-Ledón, M. Jaroniec, S.-Z. Qiao, Phosphorus vacancies that boost electrocatalytic hydrogen evolution by two orders of magnitude. Angew. Chem. Int. Ed. 59(21), 8181–8186 (2020). https://doi.org/10.1002/anie.201914967
- J. Wang, Y. Liu, G. Yang, Y. Jiao, Y. Dong et al., MXene-Assisted NiFe sulfides for high-performance anion exchange membrane seawater electrolysis. Nat. Commun. 16(1), 1319 (2025). https://doi.org/10.1038/s41467-025-56639-7
- F. Fungura, W.R. Lindemann, J. Shinar, R. Shinar, Carbon dangling bonds in photodegraded polymer: fullerene solar cells. Adv. Energy Mater. 7(6), 1601420 (2017). https://doi.org/10.1002/aenm.201601420
- Y. He, L. Ding, X. Wu, Q. Li, Z. Li et al., Hydrogen release mechanisms of MgH2 over NiN4-embedded graphene nanosheet: First-principles calculations. Int. J. Hydrog. Energy 47(93), 39549–39562 (2022). https://doi.org/10.1016/j.ijhydene.2022.09.102
- D. Chen, R. Lu, R. Yu, Y. Dai, H. Zhao et al., Work-function-induced interfacial built-in electric fields in Os-OsSe2 heterostructures for active acidic and alkaline hydrogen evolution. Angew. Chem. Int. Ed. 61(36), e202208642 (2022). https://doi.org/10.1002/anie.202208642
- P. Kuang, Z. Ni, B. Zhu, Y. Lin, J. Yu, Modulating the d-band center enables ultrafine Pt3Fe alloy nanops for pH-universal hydrogen evolution reaction. Adv. Mater. 35(41), 2303030 (2023). https://doi.org/10.1002/adma.202303030
- H. Wu, J. Hao, Y. Jiang, Y. Jiao, J. Liu et al., Alkaline-based aqueous sodium-ion batteries for large-scale energy storage. Nat. Commun. 15(1), 575 (2024). https://doi.org/10.1038/s41467-024-44855-6
- Y. Fu, J. Sun, Y. Zhang, W. Qu, W. Wang et al., Revealing Na+-coordination induced failure mechanism of metal sulfide anode for sodium ion batteries. Angew. Chem. Int. Ed. 63(27), e202403463 (2024). https://doi.org/10.1002/anie.202403463
- Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15(5), 1711–1759 (2022). https://doi.org/10.1039/d1ee03292e
- W. Zhao, S. Yuan, L. Zhang, F. Jiang, Y. Yang et al., Engineering metal-sulfides with cations-tunable metal-oxides electrocatalysts with promoted catalytic conversion for robust ions-storage capability. Energy Storage Mater. 45, 1183–1200 (2022). https://doi.org/10.1016/j.ensm.2021.11.019
- S. Zhao, G. Li, Z. Li, K. Zhang, X. Chen et al., Fast charging sodium-ion full cell operated from −50 ℃ to 90 ℃. Adv. Funct. Mater. 35(1), 2411007 (2025). https://doi.org/10.1002/adfm.202411007
- S. Qiao, Q. Zhou, M. Ma, H.K. Liu, S.X. Dou et al., Advanced anode materials for rechargeable sodium-ion batteries. ACS Nano 17(12), 11220–11252 (2023). https://doi.org/10.1021/acsnano.3c02892
- Y. Li, Q. Zhou, S. Weng, F. Ding, X. Qi et al., Interfacial engineering to achieve an energy density of over 200 Wh kg−1 in sodium batteries. Nat. Energy 7(6), 511–519 (2022). https://doi.org/10.1038/s41560-022-01033-6
- H. Lu, S. Chu, J. Tian, Q. Wang, C. Sheng et al., Ultra-high-energy density in layered sodium-ion battery cathodes through balancing lattice-oxygen activity and reversibility. Adv. Funct. Mater. 34(2), 2305470 (2024). https://doi.org/10.1002/adfm.202305470
- X. Shen, Q. Zhou, M. Han, X. Qi, B. Li et al., Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries. Nat. Commun. 12(1), 2848 (2021). https://doi.org/10.1038/s41467-021-23132-w
- K. Zou, M. Jiang, T. Ning, L. Tan, J. Zheng et al., Thermodynamics-directed bulk/grain-boundary engineering for superior electrochemical durability of Ni-rich cathode. J. Energy Chem. 97, 321–331 (2024). https://doi.org/10.1016/j.jechem.2024.05.053
- P. Simon, Y. Gogotsi, B. Dunn, Materials science. Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
- K. Zheng, Y. Mu, M. Han, J. Liu, Z. Zou et al., Investigations of mechanisms leading to capacity differences in Li/Na/K-ion batteries with conversion-type transition-metal sulfides anodes. Adv. Sci. 11(48), 2410653 (2024). https://doi.org/10.1002/advs.202410653
- M. Han, J. Liu, C. Deng, J. Guo, Y. Mu et al., Yolk-shell structure and spin-polarized surface capacitance enable FeS stable and fast ion transport in sodium-ion batteries. Adv. Energy Mater. 14(22), 2400246 (2024). https://doi.org/10.1002/aenm.202400246
- M. Han, K. Zheng, J. Liu, Z. Zou, Y. Mu et al., Hollow microsphere structure and spin-polarized surface capacitance endow ultrafine Fe7S8 nanocrystals with excellent fast-charging capability in wide-temperature-range lithium-ion batteries. Adv. Energy Mater. 15(12), 2403851 (2025). https://doi.org/10.1002/aenm.202403851
- J. Zhu, S. Zhu, Z. Cui, Z. Li, S. Wu et al., Dual redox reaction sites for pseudocapacitance based on Ti and-P functional groups of Ti3C2PBrx MXene. Angew. Chem. Int. Ed. 63(27), e202403508 (2024). https://doi.org/10.1002/anie.202403508
- Q.-Q. Sun, T. Sun, J.-Y. Du, K. Li, H.-M. Xie et al., A sulfur heterocyclic quinone cathode towards high-rate and long-cycle aqueous Zn-organic batteries. Adv. Mater. 35(22), 2301088 (2023). https://doi.org/10.1002/adma.202301088
- X. Zhou, Y. Huang, B. Wen, Z. Yang, Z. Hao et al., Regulation of anion-Na+ coordination chemistry in electrolyte solvates for low-temperature sodium-ion batteries. Proc. Natl. Acad. Sci. U.S.A. 121(5), e2316914121 (2024). https://doi.org/10.1073/pnas.2316914121
- Z. Yu, Q. Liu, D. Wang, J. Shi, D. Zhai et al., Unraveling electrode surface chemistry in determining interphase stability and deposition homogeneity for anode-free potassium metal batteries. Angew. Chem. Int. Ed. 64(22), e202502091 (2025). https://doi.org/10.1002/anie.202502091
- M.K. Aslam, I.D. Seymour, N. Katyal, S. Li, T. Yang et al., Metal chalcogenide hollow polar bipyramid prisms as efficient sulfur hosts for Na-S batteries. Nat. Commun. 11(1), 5242 (2020). https://doi.org/10.1038/s41467-020-19078-0
- X. Rui, D. Ren, X. Liu, X. Wang, K. Wang et al., Distinct thermal runaway mechanisms of sulfide-based all-solid-state batteries. Energy Environ. Sci. 16(8), 3552–3563 (2023). https://doi.org/10.1039/d3ee00084b
References
J. Hu, X. Li, Q. Liang, L. Xu, C. Ding et al., Optimization strategies of Na3V2(PO4)3 cathode materials for sodium-ion batteries. Nano-Micro Lett. 17(1), 33 (2024). https://doi.org/10.1007/s40820-024-01526-x
Z. Nan, W. Wei, Z. Lin, R. Yuan, M. Zhang et al., Electromagnetic functions modulation of recycled by-products by heterodimensional structure. Nano-Micro Lett 17(1), 137 (2025). https://doi.org/10.1007/s40820-025-01659-7
Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu et al., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3(4), 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1
M. Jiang, P. Wang, Q. Chen, Y. Zhang, Q. Wu et al., Enabling the Nb/Ti co-doping strategy for improving structure stability and rate capability of Ni-rich cathode. Chin. Chem. Lett. 36(6), 110040 (2025). https://doi.org/10.1016/j.cclet.2024.110040
Z. Li, Y.-X. Yao, S. Sun, C.-B. Jin, N. Yao et al., 40 years of low-temperature electrolytes for rechargeable lithium batteries. Angew. Chem. Int. Ed. 62(37), e202303888 (2023). https://doi.org/10.1002/anie.202303888
Y. Li, R. Zhang, J. Qian, Y. Gong, H. Li et al., Construct NiSe/NiO heterostructures on NiSe anode to induce fast kinetics for sodium-ion batteries. Energy Mater. Adv. 4, 0044 (2023). https://doi.org/10.34133/energymatadv.0044
A. Nagmani, S. Kumar, Puravankara, Optimizing ultramicroporous hard carbon spheres in carbonate ester-based electrolytes for enhanced sodium storage in half-/full-cell sodium-ion batteries. Battery Energy 1(3), 20220007 (2022). https://doi.org/10.1002/bte2.20220007
Q. Wang, C. Guo, Y. Zhu, J. He, H. Wang, Reduced graphene oxide-wrapped FeS2 composite as anode for high-performance sodium-ion batteries. Nano-Micro Lett. 10(2), 30 (2018). https://doi.org/10.1007/s40820-017-0183-z
Y. Gong, Y. Li, Y. Li, M. Liu, X. Feng et al., Unraveling the intrinsic origin of the superior sodium-ion storage performance of metal selenides anode in ether-based electrolytes. Nano Lett. 24(27), 8427–8435 (2024). https://doi.org/10.1021/acs.nanolett.4c02145
Y.-F. Zhu, Y. Xiao, W.-B. Hua, S. Indris, S.-X. Dou et al., Manipulating layered P2@P3 integrated spinel structure evolution for high-performance sodium-ion batteries. Angew. Chem. Int. Ed. 59(24), 9299–9304 (2020). https://doi.org/10.1002/anie.201915650
Z. Ali, T. Zhang, M. Asif, L. Zhao, Y. Yu et al., Transition metal chalcogenide anodes for sodium storage. Mater. Today 35, 131–167 (2020). https://doi.org/10.1016/j.mattod.2019.11.008
Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin et al., Rechargeable batteries for grid scale energy storage. Chem. Rev. 122(22), 16610–16751 (2022). https://doi.org/10.1021/acs.chemrev.2c00289
B. Sun, Q. Lu, K. Chen, W. Zheng, Z. Liao et al., Redox-active metaphosphate-like terminals enable high-capacity MXene anodes for ultrafast Na-ion storage. Adv. Mater. 34(15), 2108682 (2022). https://doi.org/10.1002/adma.202108682
Y. Fang, X. Lv, Z. Lv, Y. Wang, G. Zheng et al., Electron-extraction engineering induced 1T’’-1T’ phase transition of Re0.75V0.25Se2 for ultrafast sodium ion storage. Adv. Sci. 9(36), 2205680 (2022). https://doi.org/10.1002/advs.202205680
J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy (2021). https://doi.org/10.1038/s41560-10.1038/s41021-00783-z(2021).10.1038/s41560-021-00783-z
M. Wang, H. Xu, Z. Yang, H. Yang, A. Peng et al., SnS nanosheets confined growth by S and N codoped graphene with enhanced pseudocapacitance for sodium-ion capacitors. ACS Appl. Mater. Interfaces 11(44), 41363–41373 (2019). https://doi.org/10.1021/acsami.9b14098
T. Li, D. Zhao, B. Du, Q. Yin, Y. Li et al., Defect-induced electron rich nanodomains in CoSe0.5S1.5/GA realize fast ion migration kinetics as sodium-ion capacitor anode. J. Energy Chem. 87, 583–593 (2023). https://doi.org/10.1016/j.jechem.2023.10.011
P. Wang, D. Zhao, X. Hui, Z. Qian, P. Zhang et al., Bifunctional catalytic activity guided by rich crystal defects in Ti3C2 MXene quantum dot clusters for Li–O2 batteries. Adv. Energy Mater. 11(32), 2003069 (2021). https://doi.org/10.1002/aenm.202003069
H. Zhu, W. Zan, W. Chen, W. Jiang, X. Ding et al., Defect-rich molybdenum sulfide quantum dots for amplified photoluminescence and photonics-driven reactive oxygen species generation. Adv. Mater. 34(31), 2200004 (2022). https://doi.org/10.1002/adma.202200004
Z. Lv, B. Peng, X. Lv, Y. Gao, K. Hu et al., Intercalative motifs-induced space confinement and bonding covalency enhancement enable ultrafast and large sodium storage. Adv. Funct. Mater. 33(16), 2214370 (2023). https://doi.org/10.1002/adfm.202214370
J. Bai, J.H. Jia, Y. Wang, C.C. Yang, Q. Jiang, Ideal bi-based hybrid anode material for ultrafast charging of sodium-ion batteries at extremely low temperatures. Nano-Micro Lett. 17(1), 60 (2024). https://doi.org/10.1007/s40820-024-01560-9
X. Sun, L. Wang, C. Li, D. Wang, I. Sikandar et al., Dandelion-Like Bi2S3/rGO hierarchical microspheres as high-performance anodes for potassium-ion and half/full sodium-ion batteries. Nano Res. 14(12), 4696–4703 (2021). https://doi.org/10.1007/s12274-021-3407-y
X. Xu, D. Feng, L. You, Y. Xie, F. Wu et al., Carbon-encrusted SnS2Decorated on MXene nanosheets for advanced Li-ion battery anodes. Energy Mater. Adv. 5, 0146 (2024). https://doi.org/10.34133/energymatadv.0146
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Two-dimensional materials: 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 982–982 (2014). https://doi.org/10.1002/adma.201470041
J. Orangi, M. Beidaghi, A review of the effects of electrode fabrication and assembly processes on the structure and electrochemical performance of 2D MXenes. Adv. Funct. Mater. 30(47), 2005305 (2020). https://doi.org/10.1002/adfm.202005305
J. Zhang, Y. Yan, X. Wang, Y. Cui, Z. Zhang et al., Bridging multiscale interfaces for developing ionically conductive high-voltage iron sulfate-containing sodium-based battery positive electrodes. Nat. Commun. 14(1), 3701 (2023). https://doi.org/10.1038/s41467-023-39384-7
Y. Liu, M. Qiu, X. Hu, J. Yuan, W. Liao et al., Anion defects engineering of ternary Nb-based chalcogenide anodes toward high-performance sodium-based dual-ion batteries. Nano-Micro Lett. 15(1), 104 (2023). https://doi.org/10.1007/s40820-023-01070-0
L. Zhang, W. Zhao, S. Yuan, Y. Yang, P. Ge et al., Tailoring MSx quantum dots (M = co, Ni, Cu, Zn) for advanced energy storage materials with strong interfacial engineering. Small 18(10), 2106593 (2022). https://doi.org/10.1002/smll.202106593
Y. Deng, T. Shang, Z. Wu, Y. Tao, C. Luo et al., Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31(43), 1902432 (2019). https://doi.org/10.1002/adma.201902432
G. Zhou, M.-C. Li, C. Liu, C. Liu, Z. Li et al., 3D printed nitrogen-doped thick carbon architectures for supercapacitor: ink rheology and electrochemical performance. Adv. Sci. 10(10), 2206320 (2023). https://doi.org/10.1002/advs.202206320
Y. Wang, Y. Zhang, J. Shi, A. Pan, F. Jiang et al., S-doped porous carbon confined SnS nanospheres with enhanced electrochemical performance for sodium-ion batteries. J. Mater. Chem. A 6(37), 18286–18292 (2018). https://doi.org/10.1039/C8TA06106H
Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang et al., Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 8(4), 1309–1316 (2015). https://doi.org/10.1039/c4ee03759f
D. Zhao, P. Wang, H. Di, P. Zhang, X. Hui et al., Single semi-metallic selenium atoms on Ti3C2 MXene nanosheets as excellent cathode for lithium–oxygen batteries. Adv. Funct. Mater. 31(29), 2010544 (2021). https://doi.org/10.1002/adfm.202010544
S. Li, H. Zhu, Y. Liu, Z. Han, L. Peng et al., Codoped porous carbon nanofibres as a potassium metal host for nonaqueous K-ion batteries. Nat. Commun. 13(1), 4911 (2022). https://doi.org/10.1038/s41467-022-32660-y
C. Ma, X. Wang, J. Lan, J. Zhang, K. Song et al., Dynamic multistage coupling of FeS2/S enables ultrahigh reversible Na–S batteries. Adv. Funct. Mater. 33(5), 2211821 (2023). https://doi.org/10.1002/adfm.202211821
K. Shevchuk, A. Sarycheva, C.E. Shuck, Y. Gogotsi, Raman spectroscopy characterization of 2D carbide and carbonitride MXenes. Chem. Mater. 35(19), 8239–8247 (2023). https://doi.org/10.1021/acs.chemmater.3c01742
A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32(8), 3480–3488 (2020). https://doi.org/10.1021/acs.chemmater.0c00359
H. Wang, X. Song, M. Lv, S. Jin, J. Xu et al., Interfacial covalent bonding endowing Ti3 C2-Sb2 S3 composites high sodium storage performance. Small 18(3), e2104293 (2022). https://doi.org/10.1002/smll.202104293
J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.-Q. Zhao et al., Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 26(18), 3118–3127 (2016). https://doi.org/10.1002/adfm.201505328
C. Yue, X. Zhang, J. Yin, H. Zhou, K. Liu et al., Highly efficient FeS2@FeOOH core-shell water oxidation electrocatalyst formed by surface reconstruction of FeS2 microspheres supported on Ni foam. Appl. Catal. B Environ. 339, 123171 (2023). https://doi.org/10.1016/j.apcatb.2023.123171
A.K. Haridas, J. Heo, X. Li, H.-J. Ahn, X. Zhao et al., A flexible and free-standing FeS/sulfurized polyacrylonitrile hybrid anode material for high-rate sodium-ion storage. Chem. Eng. J. 385, 123453 (2020). https://doi.org/10.1016/j.cej.2019.123453
D. Zhao, Z. Chen, W. Yang, S. Liu, X. Zhang et al., MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 141(9), 4086–4093 (2019). https://doi.org/10.1021/jacs.8b13579
Y. Zhao, X. Jia, G. Chen, L. Shang, G.I.N. Waterhouse et al., Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: an active water oxidation electrocatalyst. J. Am. Chem. Soc. 138(20), 6517–6524 (2016). https://doi.org/10.1021/jacs.6b01606
J. Duan, S. Chen, C.A. Ortíz-Ledón, M. Jaroniec, S.-Z. Qiao, Phosphorus vacancies that boost electrocatalytic hydrogen evolution by two orders of magnitude. Angew. Chem. Int. Ed. 59(21), 8181–8186 (2020). https://doi.org/10.1002/anie.201914967
J. Wang, Y. Liu, G. Yang, Y. Jiao, Y. Dong et al., MXene-Assisted NiFe sulfides for high-performance anion exchange membrane seawater electrolysis. Nat. Commun. 16(1), 1319 (2025). https://doi.org/10.1038/s41467-025-56639-7
F. Fungura, W.R. Lindemann, J. Shinar, R. Shinar, Carbon dangling bonds in photodegraded polymer: fullerene solar cells. Adv. Energy Mater. 7(6), 1601420 (2017). https://doi.org/10.1002/aenm.201601420
Y. He, L. Ding, X. Wu, Q. Li, Z. Li et al., Hydrogen release mechanisms of MgH2 over NiN4-embedded graphene nanosheet: First-principles calculations. Int. J. Hydrog. Energy 47(93), 39549–39562 (2022). https://doi.org/10.1016/j.ijhydene.2022.09.102
D. Chen, R. Lu, R. Yu, Y. Dai, H. Zhao et al., Work-function-induced interfacial built-in electric fields in Os-OsSe2 heterostructures for active acidic and alkaline hydrogen evolution. Angew. Chem. Int. Ed. 61(36), e202208642 (2022). https://doi.org/10.1002/anie.202208642
P. Kuang, Z. Ni, B. Zhu, Y. Lin, J. Yu, Modulating the d-band center enables ultrafine Pt3Fe alloy nanops for pH-universal hydrogen evolution reaction. Adv. Mater. 35(41), 2303030 (2023). https://doi.org/10.1002/adma.202303030
H. Wu, J. Hao, Y. Jiang, Y. Jiao, J. Liu et al., Alkaline-based aqueous sodium-ion batteries for large-scale energy storage. Nat. Commun. 15(1), 575 (2024). https://doi.org/10.1038/s41467-024-44855-6
Y. Fu, J. Sun, Y. Zhang, W. Qu, W. Wang et al., Revealing Na+-coordination induced failure mechanism of metal sulfide anode for sodium ion batteries. Angew. Chem. Int. Ed. 63(27), e202403463 (2024). https://doi.org/10.1002/anie.202403463
Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15(5), 1711–1759 (2022). https://doi.org/10.1039/d1ee03292e
W. Zhao, S. Yuan, L. Zhang, F. Jiang, Y. Yang et al., Engineering metal-sulfides with cations-tunable metal-oxides electrocatalysts with promoted catalytic conversion for robust ions-storage capability. Energy Storage Mater. 45, 1183–1200 (2022). https://doi.org/10.1016/j.ensm.2021.11.019
S. Zhao, G. Li, Z. Li, K. Zhang, X. Chen et al., Fast charging sodium-ion full cell operated from −50 ℃ to 90 ℃. Adv. Funct. Mater. 35(1), 2411007 (2025). https://doi.org/10.1002/adfm.202411007
S. Qiao, Q. Zhou, M. Ma, H.K. Liu, S.X. Dou et al., Advanced anode materials for rechargeable sodium-ion batteries. ACS Nano 17(12), 11220–11252 (2023). https://doi.org/10.1021/acsnano.3c02892
Y. Li, Q. Zhou, S. Weng, F. Ding, X. Qi et al., Interfacial engineering to achieve an energy density of over 200 Wh kg−1 in sodium batteries. Nat. Energy 7(6), 511–519 (2022). https://doi.org/10.1038/s41560-022-01033-6
H. Lu, S. Chu, J. Tian, Q. Wang, C. Sheng et al., Ultra-high-energy density in layered sodium-ion battery cathodes through balancing lattice-oxygen activity and reversibility. Adv. Funct. Mater. 34(2), 2305470 (2024). https://doi.org/10.1002/adfm.202305470
X. Shen, Q. Zhou, M. Han, X. Qi, B. Li et al., Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries. Nat. Commun. 12(1), 2848 (2021). https://doi.org/10.1038/s41467-021-23132-w
K. Zou, M. Jiang, T. Ning, L. Tan, J. Zheng et al., Thermodynamics-directed bulk/grain-boundary engineering for superior electrochemical durability of Ni-rich cathode. J. Energy Chem. 97, 321–331 (2024). https://doi.org/10.1016/j.jechem.2024.05.053
P. Simon, Y. Gogotsi, B. Dunn, Materials science. Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
K. Zheng, Y. Mu, M. Han, J. Liu, Z. Zou et al., Investigations of mechanisms leading to capacity differences in Li/Na/K-ion batteries with conversion-type transition-metal sulfides anodes. Adv. Sci. 11(48), 2410653 (2024). https://doi.org/10.1002/advs.202410653
M. Han, J. Liu, C. Deng, J. Guo, Y. Mu et al., Yolk-shell structure and spin-polarized surface capacitance enable FeS stable and fast ion transport in sodium-ion batteries. Adv. Energy Mater. 14(22), 2400246 (2024). https://doi.org/10.1002/aenm.202400246
M. Han, K. Zheng, J. Liu, Z. Zou, Y. Mu et al., Hollow microsphere structure and spin-polarized surface capacitance endow ultrafine Fe7S8 nanocrystals with excellent fast-charging capability in wide-temperature-range lithium-ion batteries. Adv. Energy Mater. 15(12), 2403851 (2025). https://doi.org/10.1002/aenm.202403851
J. Zhu, S. Zhu, Z. Cui, Z. Li, S. Wu et al., Dual redox reaction sites for pseudocapacitance based on Ti and-P functional groups of Ti3C2PBrx MXene. Angew. Chem. Int. Ed. 63(27), e202403508 (2024). https://doi.org/10.1002/anie.202403508
Q.-Q. Sun, T. Sun, J.-Y. Du, K. Li, H.-M. Xie et al., A sulfur heterocyclic quinone cathode towards high-rate and long-cycle aqueous Zn-organic batteries. Adv. Mater. 35(22), 2301088 (2023). https://doi.org/10.1002/adma.202301088
X. Zhou, Y. Huang, B. Wen, Z. Yang, Z. Hao et al., Regulation of anion-Na+ coordination chemistry in electrolyte solvates for low-temperature sodium-ion batteries. Proc. Natl. Acad. Sci. U.S.A. 121(5), e2316914121 (2024). https://doi.org/10.1073/pnas.2316914121
Z. Yu, Q. Liu, D. Wang, J. Shi, D. Zhai et al., Unraveling electrode surface chemistry in determining interphase stability and deposition homogeneity for anode-free potassium metal batteries. Angew. Chem. Int. Ed. 64(22), e202502091 (2025). https://doi.org/10.1002/anie.202502091
M.K. Aslam, I.D. Seymour, N. Katyal, S. Li, T. Yang et al., Metal chalcogenide hollow polar bipyramid prisms as efficient sulfur hosts for Na-S batteries. Nat. Commun. 11(1), 5242 (2020). https://doi.org/10.1038/s41467-020-19078-0
X. Rui, D. Ren, X. Liu, X. Wang, K. Wang et al., Distinct thermal runaway mechanisms of sulfide-based all-solid-state batteries. Energy Environ. Sci. 16(8), 3552–3563 (2023). https://doi.org/10.1039/d3ee00084b