Additive Manufacturing for Nanogenerators: Fundamental Mechanisms, Recent Advancements, and Future Prospects
Corresponding Author: Gary Chi‑Pong Tsui
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 30
Abstract
Additive manufacturing (AM), with its high flexibility, cost-effectiveness, and customization, significantly accelerates the advancement of nanogenerators, contributing to sustainable energy solutions and the Internet of Things. In this review, an in-depth analysis of AM for piezoelectric and triboelectric nanogenerators is presented from the perspectives of fundamental mechanisms, recent advancements, and future prospects. It highlights AM-enabled advantages of versatility across materials, structural topology optimization, microstructure design, and integrated printing, which enhance critical performance indicators of nanogenerators, such as surface charge density and piezoelectric constant, thereby improving device performance compared to conventional fabrication. Common AM techniques for nanogenerators, including fused deposition modeling, direct ink writing, stereolithography, and digital light processing, are systematically examined in terms of their working principles, improved metrics (output voltage/current, power density), theoretical explanation, and application scopes. Hierarchical relationships connecting AM technologies with performance optimization and applications of nanogenerators are elucidated, providing a solid foundation for advancements in energy harvesting, self-powered sensors, wearable devices, and human–machine interaction. Furthermore, the challenges related to fabrication quality, cross-scale manufacturing, processing efficiency, and industrial deployment are critically discussed. Finally, the future prospects of AM for nanogenerators are explored, aiming to foster continuous progress and innovation in this field.
Highlights:
1 The advantages of additive manufacturing for nanogenerators are firstly examined from the perspective of underlying mechanisms coupled with theoretical explanations, providing critical insights into enhancing output performance and expanding applications.
2 Recent advancements in additive manufacturing for nanogenerators are systematically reviewed, emphasizing the characteristics of common technologies, their application scopes, and their impacts on nanogenerator performance metrics.
3 The current challenges and future prospects of additive manufacturing for nanogenerators are explored, aiming to promote continuous advancements in this field.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Shen, D.J. Jacob, R. Gautam, M. Omara, T.R. Scarpelli et al., National quantifications of methane emissions from fuel exploitation using high resolution inversions of satellite observations. Nat. Commun. 14(1), 4948 (2023). https://doi.org/10.1038/s41467-023-40671-6
- C. Le Quéré, G.P. Peters, P. Friedlingstein, R.M. Andrew, J.G. Canadell et al., Fossil CO2 emissions in the post-COVID-19 era. Nat. Clim. Chang. 11(3), 197–199 (2021). https://doi.org/10.1038/s41558-021-01001-0
- B. Birner, J. Severinghaus, B. Paplawsky, R.F. Keeling, Increasing atmospheric helium due to fossil fuel exploitation. Nat. Geosci. 15(5), 346–348 (2022). https://doi.org/10.1038/s41561-022-00932-3
- Y. Guan, J. Yan, Y. Shan, Y. Zhou, Y. Hang et al., Burden of the global energy price crisis on households. Nat. Energy 8(3), 304–316 (2023). https://doi.org/10.1038/s41560-023-01209-8
- Z.L. Wang, Entropy theory of distributed energy for internet of things. Nano Energy 58, 669–672 (2019). https://doi.org/10.1016/j.nanoen.2019.02.012
- A. Ahmed, I. Hassan, M.F. El-Kady, A. Radhi, C.K. Jeong et al., Integrated triboelectric nanogenerators in the era of the Internet of Things. Adv. Sci. 6(24), 1802230 (2019). https://doi.org/10.1002/advs.201802230
- X. Zhao, H. Askari, J. Chen, Nanogenerators for smart cities in the era of 5G and internet of things. Joule 5(6), 1391–1431 (2021). https://doi.org/10.1016/j.joule.2021.03.013
- B. Chen, Z.L. Wang, Toward a new era of sustainable energy: advanced triboelectric nanogenerator for harvesting high entropy energy. Small 18(43), 2107034 (2022). https://doi.org/10.1002/smll.202107034
- X. Cao, Y. Xiong, J. Sun, X. Xie, Q. Sun et al., Multidiscipline applications of triboelectric nanogenerators for the intelligent era of Internet of Things. Nano-Micro Lett. 15(1), 14 (2022). https://doi.org/10.1007/s40820-022-00981-8
- M. Al Mahadi Hasan, W. Zhu, C.R. Bowen, Z.L. Wang, Y. Yang, Triboelectric nanogenerators for wind energy harvesting. Nat. Rev. Electr. Eng. 1(7), 453–465 (2024). https://doi.org/10.1038/s44287-024-00061-6
- Z. Hua, D. Shuai, X. Chen, Y. Wu, Z.L. Wang, Advances in solid–solid contacting triboelectric nanogenerator for ocean energy harvesting. Mater. Today 65, 166–188 (2023). https://doi.org/10.1016/j.mattod.2023.02.030
- D. Yu, Z. Zheng, J. Liu, H. Xiao, G. Huangfu et al., Superflexible and lead-free piezoelectric nanogenerator as a highly sensitive self-powered sensor for human motion monitoring. Nano-Micro Lett. 13(1), 117 (2021). https://doi.org/10.1007/s40820-021-00649-9
- C. Zhang, Y. Hao, X. Lu, W. Su, H. Zhang et al., Advances in TENGs for marine energy harvesting and in situ electrochemistry. Nano-Micro Lett. 17(1), 124 (2025). https://doi.org/10.1007/s40820-024-01640-w
- H. Xiang, L. Peng, Q. Yang, Z.L. Wang, X. Cao, Triboelectric nanogenerator for high-entropy energy, self-powered sensors, and popular education. Sci. Adv. 10(48), eads2291 (2024). https://doi.org/10.1126/sciadv.ads2291
- J. Sun, H. Guo, J. Ribera, C. Wu, K. Tu et al., Sustainable and biodegradable wood sponge piezoelectric nanogenerator for sensing and energy harvesting applications. ACS Nano 14(11), 14665–14674 (2020). https://doi.org/10.1021/acsnano.0c05493
- Z.L. Wang, Triboelectric nanogenerator (TENG): sparking an energy and sensor revolution. Adv. Energy Mater. 10(17), 2000137 (2020). https://doi.org/10.1002/aenm.202000137
- T. Cheng, J. Shao, Z.L. Wang, Triboelectric nanogenerators. Nat. Rev. Meth. Primers 3, 39 (2023). https://doi.org/10.1038/s43586-023-00220-3
- X. Cao, Y. Xiong, J. Sun, X. Zhu, Q. Sun et al., Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and artificial intelligence. Adv. Funct. Mater. 31(33), 2102983 (2021). https://doi.org/10.1002/adfm.202102983
- P. Lu, X. Liao, X. Guo, C. Cai, Y. Liu et al., Gel-based triboelectric nanogenerators for flexible sensing: principles, properties, and applications. Nano-Micro Lett. 16(1), 206 (2024). https://doi.org/10.1007/s40820-024-01432-2
- C. Shan, K. Li, Y. Cheng, C. Hu, Harvesting environment mechanical energy by direct current triboelectric nanogenerators. Nano-Micro Lett. 15(1), 127 (2023). https://doi.org/10.1007/s40820-023-01115-4
- Y. Xue, T. Yang, Y. Zheng, K. Wang, E. Wang et al., Heterojunction engineering enhanced self-polarization of PVDF/CsPbBr 3/Ti3C2Tx composite fiber for ultra-high voltage piezoelectric nanogenerator. Adv. Sci. 10(18), 2300650 (2023). https://doi.org/10.1002/advs.202300650
- M. Li, J. Lu, P. Wan, M. Jiang, Y. Mo et al., An ultrasensitive perovskite single-model plasmonic strain sensor based on piezoelectric effect. Adv. Funct. Mater. 34(41), 2403840 (2024). https://doi.org/10.1002/adfm.202403840
- F. Li, T. Shen, C. Wang, Y. Zhang, J. Qi et al., Recent advances in strain-induced piezoelectric and piezoresistive effect-engineered 2D semiconductors for adaptive electronics and optoelectronics. Nano-Micro Lett. 12(1), 106 (2020). https://doi.org/10.1007/s40820-020-00439-9
- Z.L. Wang, A.C. Wang, On the origin of contact-electrification. Mater. Today 30, 34–51 (2019). https://doi.org/10.1016/j.mattod.2019.05.016
- J. Hu, M. Iwamoto, X. Chen, A review of contact electrification at diversified interfaces and related applications on triboelectric nanogenerator. Nano-Micro Lett. 16(1), 7 (2023). https://doi.org/10.1007/s40820-023-01238-8
- C.-R. Yang, C.-T. Ko, S.-F. Chang, M.-J. Huang, Study on fabric-based triboelectric nanogenerator using graphene oxide/porous PDMS as a compound friction layer. Nano Energy 92, 106791 (2022). https://doi.org/10.1016/j.nanoen.2021.106791
- T. Bhatta, S. Sharma, K. Shrestha, Y. Shin, S. Seonu et al., Siloxene/PVDF composite nanofibrous membrane for high-performance triboelectric nanogenerator and self-powered static and dynamic pressure sensing applications. Adv. Funct. Mater. 32(25), 2202145 (2022). https://doi.org/10.1002/adfm.202202145
- W. Qiao, L. Zhou, Z. Zhao, P. Yang, D. Liu et al., MXene lubricated tribovoltaic nanogenerator with high current output and long lifetime. Nano-Micro Lett. 15(1), 218 (2023). https://doi.org/10.1007/s40820-023-01198-z
- G.M. Rani, C.-M. Wu, K.G. Motora, R. Umapathi, C.R.M. Jose, Acoustic-electric conversion and triboelectric properties of nature-driven CF-CNT based triboelectric nanogenerator for mechanical and sound energy harvesting. Nano Energy 108, 108211 (2023). https://doi.org/10.1016/j.nanoen.2023.108211
- Q. Sun, F. Liang, G. Ren, L. Zhang, S. He et al., Density-of-states matching-induced ultrahigh current density and high-humidity resistance in a simply structured triboelectric nanogenerator. Adv. Mater. 35(14), 2210915 (2023). https://doi.org/10.1002/adma.202210915
- B. Xie, Y. Guo, Y. Chen, H. Zhang, J. Xiao et al., Advances in graphene-based electrode for triboelectric nanogenerator. Nano-Micro Lett. 17(1), 17 (2024). https://doi.org/10.1007/s40820-024-01530-1
- H. Xiang, Y. Zeng, X. Huang, N. Wang, X. Cao et al., From triboelectric nanogenerator to multifunctional triboelectric sensors: a chemical perspective toward the interface optimization and device integration. Small 18(43), e2107222 (2022). https://doi.org/10.1002/smll.202107222
- Z.L. Wang, G. Zhu, Y. Yang, S. Wang, C. Pan, Progress in nanogenerators for portable electronics. Mater. Today 15(12), 532–543 (2012). https://doi.org/10.1016/S1369-7021(13)70011-7
- C. Chen, X. Wang, Y. Wang, D. Yang, F. Yao et al., Additive manufacturing of piezoelectric materials. Adv. Funct. Mater. 30(52), 2005141 (2020). https://doi.org/10.1002/adfm.202005141
- B. Chen, W. Tang, Z.L. Wang, Advanced 3D printing-based triboelectric nanogenerator for mechanical energy harvesting and self-powered sensing. Mater. Today 50, 224–238 (2021). https://doi.org/10.1016/j.mattod.2021.05.017
- C. Sun, Y. Wang, M.D. McMurtrey, N.D. Jerred, F. Liou et al., Additive manufacturing for energy: a review. Appl. Energy 282, 116041 (2021). https://doi.org/10.1016/j.apenergy.2020.116041
- A.D. Kumar, N. Arunachalam, R. Jayaganthan, Electrical performance of a triboelectric nanogenerator developed using ionic liquid-processed polyvinylidene fluoride fabricated through an additive manufacturing technique. Nano Energy 129, 110055 (2024). https://doi.org/10.1016/j.nanoen.2024.110055
- Z. Huang, G. Shao, L. Li, Micro/nano functional devices fabricated by additive manufacturing. Prog. Mater. Sci. 131, 101020 (2023). https://doi.org/10.1016/j.pmatsci.2022.101020
- X. Yuan, Z. Mai, Z. Li, Z. Yu, P. Ci et al., A 3D-printing approach toward flexible piezoelectronics with function diversity. Mater. Today 69, 160–192 (2023). https://doi.org/10.1016/j.mattod.2023.08.023
- X. Zhou, P.S. Lee, Three dimensional printed nanogenerators. EcoMat 3(3), e12098 (2021). https://doi.org/10.1002/eom2.12098
- G. Rasiya, A. Shukla, K. Saran, Additive manufacturing-a review. Mater. Today Proc. 47, 6896–6901 (2021). https://doi.org/10.1016/j.matpr.2021.05.181
- R.D. Crapnell, C. Kalinke, L.R.G. Silva, J.S. Stefano, R.J. Williams et al., Additive manufacturing electrochemistry: an overview of producing bespoke conductive additive manufacturing filaments. Mater. Today 71, 73–90 (2023). https://doi.org/10.1016/j.mattod.2023.11.002
- J.K. Watson, K.M.B. Taminger, A decision-support model for selecting additive manufacturing versus subtractive manufacturing based on energy consumption. J. Clean. Prod. 176, 1316–1322 (2018). https://doi.org/10.1016/j.jclepro.2015.12.009
- K.S. Prakash, T. Nancharaih, V.V.S. Rao, Additive manufacturing techniques in manufacturing-an overview. Mater. Today Proc. 5(2), 3873–3882 (2018). https://doi.org/10.1016/j.matpr.2017.11.642
- V.T. Le, H. Paris, G. Mandil, Process planning for combined additive and subtractive manufacturing technologies in a remanufacturing context. J. Manuf. Syst. 44, 243–254 (2017). https://doi.org/10.1016/j.jmsy.2017.06.003
- L. Siva Rama Krishna, P.J. Srikanth, Evaluation of environmental impact of additive and subtractive manufacturing processes for sustainable manufacturing. Mater. Today Proc. 45, 3054–3060 (2021). https://doi.org/10.1016/j.matpr.2020.12.060
- S. Hu, J. Han, Z. Shi, K. Chen, N. Xu et al., Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator. Nano-Micro Lett. 14(1), 115 (2022). https://doi.org/10.1007/s40820-022-00858-w
- H. Hegab, N. Khanna, N. Monib, A. Salem, Design for sustainable additive manufacturing: a review. Sustain. Mater. Technol. 35, e00576 (2023). https://doi.org/10.1016/j.susmat.2023.e00576
- M.A.S.R. Saadi, A. Maguire, N.T. Pottackal, M.S.H. Thakur, M.M. Ikram et al., Direct ink writing: a 3D printing technology for diverse materials. Adv. Mater. 34(28), 2108855 (2022). https://doi.org/10.1002/adma.202108855
- S. Park, W. Shou, L. Makatura, W. Matusik, K. Fu, 3D printing of polymer composites: materials, processes, and applications. Matter 5(1), 43–76 (2022). https://doi.org/10.1016/j.matt.2021.10.018
- I. Kim, S. Kim, A. Andreu, J.-H. Kim, Y.-J. Yoon, Influence of dispersant concentration toward enhancing printing precision and surface quality of vat photopolymerization 3D printed ceramics. Addit. Manuf. 52, 102659 (2022). https://doi.org/10.1016/j.addma.2022.102659
- S.R. Dabbagh, M.R. Sarabi, M.T. Birtek, S. Seyfi, M. Sitti et al., 3D-printed microrobots from design to translation. Nat. Commun. 13, 5875 (2022). https://doi.org/10.1038/s41467-022-33409-3
- M. Srivastava, S. Rathee, V. Patel, A. Kumar, P.G. Koppad, A review of various materials for additive manufacturing: recent trends and processing issues. J. Mater. Res. Technol. 21, 2612–2641 (2022). https://doi.org/10.1016/j.jmrt.2022.10.015
- K. Hu, P. Zhao, J. Li, Z. Lu, High-resolution multiceramic additive manufacturing based on digital light processing. Addit. Manuf. 54, 102732 (2022). https://doi.org/10.1016/j.addma.2022.102732
- S. Chen, T. Huang, H. Zuo, S. Qian, Y. Guo et al., A single integrated 3d-printing process customizes elastic and sustainable triboelectric nanogenerators for wearable electronics. Adv. Funct. Mater. 28(46), 1805108 (2018). https://doi.org/10.1002/adfm.201805108
- M. Cheng, A. Ramasubramanian, M.G. Rasul, Y. Jiang, Y. Yuan et al., Direct ink writing of polymer composite electrolytes with enhanced thermal conductivities. Adv. Funct. Mater. 31(4), 2006683 (2021). https://doi.org/10.1002/adfm.202006683
- V.I. dos Santos, J. Chevalier, M.C. Fredel, B. Henriques, L. Gremillard, Ceramics and ceramic composites for biomedical engineering applications via direct ink writing: overall scenario, advances in the improvement of mechanical and biological properties and innovations. Mater. Sci. Eng. R. Rep. 161, 100841 (2024). https://doi.org/10.1016/j.mser.2024.100841
- T. Ma, Y. Zhang, K. Ruan, H. Guo, M. He et al., Advances in 3D printing for polymer composites: a review. InfoMat 6(6), e12568 (2024). https://doi.org/10.1002/inf2.12568
- Z. Huang, G. Shao, D. Zhou, X. Deng, J. Qiao et al., 3D printing of high-precision and ferromagnetic functional devices. Int. J. Extrem. Manuf. 5(3), 035501 (2023). https://doi.org/10.1088/2631-7990/acccbb
- C. Cao, X. Xia, X. Shen, X. Wang, Z. Yang et al., Ultra-high precision nano additive manufacturing of metal oxide semiconductors via multi-photon lithography. Nat. Commun. 15(1), 9216 (2024). https://doi.org/10.1038/s41467-024-52929-8
- M. Yuan, A. Ma, H. Zhang, T. Fan, F. Ke et al., One-step fabrication of high β-phase BaTiO3/IL/PVDF triboelectric nanogenerator via FDM printing. J. Manuf. Process. 136, 316–323 (2025). https://doi.org/10.1016/j.jmapro.2025.01.052
- Y. Han, L. Song, H. Du, G. Wang, T. Zhang et al., Enhancing structural response via macro-micro hierarchy for piezoelectric nanogenerator and self-powered wearable controller. Chem. Eng. J. 481, 148729 (2024). https://doi.org/10.1016/j.cej.2024.148729
- H. Li, S. Wang, X. Dong, X. Ding, Y. Sun et al., Recent advances on ink-based printing techniques for triboelectric nanogenerators: printable inks, printing technologies and applications. Nano Energy 101, 107585 (2022). https://doi.org/10.1016/j.nanoen.2022.107585
- Z. Wang, C. Luan, Y. Zhu, G. Liao, J. Liu et al., Integrated and shape-adaptable multifunctional flexible triboelectric nanogenerators using coaxial direct ink writing 3D printing. Nano Energy 90, 106534 (2021). https://doi.org/10.1016/j.nanoen.2021.106534
- C. He, W. Zhu, G.Q. Gu, T. Jiang, L. Xu et al., Integrative square-grid triboelectric nanogenerator as a vibrational energy harvester and impulsive force sensor. Nano Res. 11(2), 1157–1164 (2018). https://doi.org/10.1007/s12274-017-1824-8
- J. Zhang, S. Ye, H. Liu, X. Chen, X. Chen et al., 3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors. Nano Energy 77, 105300 (2020). https://doi.org/10.1016/j.nanoen.2020.105300
- X. Zhou, K. Parida, J. Chen, J. Xiong, Z. Zhou et al., 3D printed auxetic structure-assisted piezoelectric energy harvesting and sensing. Adv. Energy Mater. 13(34), 2301159 (2023). https://doi.org/10.1002/aenm.202301159
- R. Yang, Z. Guo, Z. Yu, F. Du, V.G.N. Thyagaraja, L. Lin, D.R. Yu, P. Xu, J.N. Armstrong, S. Lin, C. Zhou, J. Liu, 3D-printed conducting polymer hydrogel-based DC generator for self-powered electromechanical sensing. Nano Energy 117, 108857 (2023). https://doi.org/10.1016/j.nanoen.2023.108857
- H. Park, G.S. Gbadam, S. Niu, H. Ryu, J.-H. Lee, Manufacturing strategies for highly sensitive and self-powered piezoelectric and triboelectric tactile sensors. Int. J. Extreme Manuf. 7(1), 012006 (2025). https://doi.org/10.1088/2631-7990/ad88be
- M. Wajahat, A.Z. Kouzani, S.Y. Khoo, M.A. Parvez Mahmud, Development of triboelectric nanogenerators using novel 3D printed polymer materials. Adv. Eng. Mater. 26(3), 2301897 (2024). https://doi.org/10.1002/adem.202301897
- Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
- Z.L. Wang, From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 84(9), 096502 (2021). https://doi.org/10.1088/1361-6633/ac0a50
- J. Luo, Z.L. Wang, Recent progress of triboelectric nanogenerators: from fundamental theory to practical applications. EcoMat 2(4), e12059 (2020). https://doi.org/10.1002/eom2.12059
- Z.L. Wang, On the first principle theory of nanogenerators from Maxwell’s Eqs. Nano Energy 68, 104272 (2020). https://doi.org/10.1016/j.nanoen.2019.104272
- C. Chen, S. Zhao, C. Pan, Y. Zi, F. Wang et al., A method for quantitatively separating the piezoelectric component from the as-received “Piezoelectric” signal. Nat. Commun. 13, 1391 (2022). https://doi.org/10.1038/s41467-022-29087-w
- Q. Xu, J. Wen, Y. Qin, Development and outlook of high output piezoelectric nanogenerators. Nano Energy 86, 106080 (2021). https://doi.org/10.1016/j.nanoen.2021.106080
- L. Wang, R.-W. Li, A more biofriendly piezoelectric material. Science 383(6690), 1416 (2024). https://doi.org/10.1126/science.ado5706
- L. Zhou, L. Zhu, T. Yang, X. Hou, Z. Du et al., Ultra-stable and durable piezoelectric nanogenerator with all-weather service capability based on N doped 4H-SiC nanohole arrays. Nano-Micro Lett. 14(1), 30 (2021). https://doi.org/10.1007/s40820-021-00779-0
- F.R. Fan, W. Tang, Z.L. Wang, Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28(22), 4283–4305 (2016). https://doi.org/10.1002/adma.201504299
- L. Gu, J. Liu, N. Cui, Q. Xu, T. Du et al., Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode. Nat. Commun. 11(1), 1030 (2020). https://doi.org/10.1038/s41467-020-14846-4
- H. Chen, L. Zhou, Z. Fang, S. Wang, T. Yang et al., Piezoelectric nanogenerator based on in situ growth all-inorganic CsPbBr 3 perovskite nanocrystals in PVDF fibers with long-term stability. Adv. Funct. Mater. 31(19), 2011073 (2021). https://doi.org/10.1002/adfm.202011073
- X. Huang, Q. Qin, X. Wang, H. Xiang, J. Zheng et al., Piezoelectric nanogenerator for highly sensitive and synchronous multi-stimuli sensing. ACS Nano 15(12), 19783–19792 (2021). https://doi.org/10.1021/acsnano.1c07236
- X. Meng, C. Cai, B. Luo, T. Liu, Y. Shao et al., Rational design of cellulosic triboelectric materials for self-powered wearable electronics. Nano-Micro Lett. 15(1), 124 (2023). https://doi.org/10.1007/s40820-023-01094-6
- H. Zou, T.D. Nguyen, G. Pace, Materials and figures of merit for nanogenerators. MRS Bull. 50(3), 295–304 (2025). https://doi.org/10.1557/s43577-025-00872-4
- C. Cao, Z. Li, F. Shen, Q. Zhang, Y. Gong et al., Progress in techniques for improving the output performance of triboelectric nanogenerators. Energy Environ. Sci. 17(3), 885–924 (2024). https://doi.org/10.1039/D3EE03520D
- J.C. Sobarzo, F. Pertl, D.M. Balazs, T. Costanzo, M. Sauer et al., Spontaneous ordering of identical materials into a triboelectric series. Nature 638(8051), 664–669 (2025). https://doi.org/10.1038/s41586-024-08530-6
- C. Xu, Y. Zi, A.C. Wang, H. Zou, Y. Dai et al., On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 30(15), 1706790 (2018). https://doi.org/10.1002/adma.201706790
- L. Jiang, X. Liu, J. Lv, G. Li, P. Yang et al., Fluid-based triboelectric nanogenerators: unveiling the prolific landscape of renewable energy harvesting and beyond. Energy Environ. Sci. 17(11), 3700–3738 (2024). https://doi.org/10.1039/D4EE00482E
- Y. Yu, H. Li, X. Zhang, Q. Gao, B. Yang et al., Substantially boosting performance of triboelectric nanogenerators via a triboelectrification enhancement effect. Joule 8(6), 1855–1868 (2024). https://doi.org/10.1016/j.joule.2024.04.013
- X. Chen, X. Li, J. Shao, N. An, H. Tian et al., Nanogenerators: high-performance piezoelectric nanogenerators with imprinted P(VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small 13(23), 201770126 (2017). https://doi.org/10.1002/smll.201770126
- D. Liu, Y. Gao, L. Zhou, J. Wang, Z.L. Wang, Recent advances in high-performance triboelectric nanogenerators. Nano Res. 16(9), 11698–11717 (2023). https://doi.org/10.1007/s12274-023-5660-8
- K. Xi, J. Guo, M. Zheng, M. Zhu, Y. Hou, Defect engineering with rational dopants modulation for high-temperature energy harvesting in lead-free piezoceramics. Nano-Micro Lett. 17(1), 55 (2024). https://doi.org/10.1007/s40820-024-01556-5
- B. Chai, K. Shi, H. Zou, P. Jiang, Z. Wu et al., Conductive interlayer modulated ferroelectric nanocomposites for high performance triboelectric nanogenerator. Nano Energy 91, 106668 (2022). https://doi.org/10.1016/j.nanoen.2021.106668
- H. Wu, J. Li, L. Liu, Z. Guan, S. Zhou et al., A fast electron-injection strategy for enhancing triboelectric surface charge density of polymers. Nano Energy 122, 109351 (2024). https://doi.org/10.1016/j.nanoen.2024.109351
- C. Jin, N. Hao, Z. Xu, I. Trase, Y. Nie et al., Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF films. Sens. Actuators A Phys. 305, 111912 (2020). https://doi.org/10.1016/j.sna.2020.111912
- X. Che, Y. Fan, Y. Su, Y. Gong, Q. Guo et al., Performance improvement and application of degradable poly-L-lactide and yttrium-doped zinc oxide hybrid films for energy harvesting. ACS Appl. Mater. Interfaces 16(26), 33517–33526 (2024). https://doi.org/10.1021/acsami.4c05807
- X. Tang, H. Jiang, Z. Lin, X. Wang, W. Wang et al., Wafer-scale vertical 1D GaN nanorods/2D MoS2/PEDOT: PSS for piezophototronic effect-enhanced self-powered flexible photodetectors. Nano-Micro Lett. 17(1), 56 (2024). https://doi.org/10.1007/s40820-024-01553-8
- J.W. Lee, H.J. Cho, J. Chun, K.N. Kim, S. Kim et al., Robust nanogenerators based on graft copolymers via control of dielectrics for remarkable output power enhancement. Sci. Adv. 3(5), e1602902 (2017). https://doi.org/10.1126/sciadv.1602902
- H. Zou, Y. Zhang, L. Guo, P. Wang, X. He et al., Quantifying the triboelectric series. Nat. Commun. 10, 1427 (2019). https://doi.org/10.1038/s41467-019-09461-x
- Y. Yu, H. Li, D. Zhao, Q. Gao, X. Li et al., Material’s selection rules for high performance triboelectric nanogenerators. Mater. Today 64, 61–71 (2023). https://doi.org/10.1016/j.mattod.2023.03.008
- H. Wu, J. Li, R. Du, L. Liu, W. Ou-Yang, Study of electrode design and inclination angle for superior droplet-driven TENG performance. Nano Lett. 24(49), 15676–15682 (2024). https://doi.org/10.1021/acs.nanolett.4c04283
- S. Zhou, X. Tao, Z. Liu, H. Wu, Z. Guan et al., Regulation of dihedral angle on molecular engineering for enhancing triboelectric performance. Adv. Funct. Mater. 34(40), 2405443 (2024). https://doi.org/10.1002/adfm.202405443
- L. Liu, J. Li, W. Ou-Yang, Z. Guan, X. Hu et al., Ferromagnetic-assisted Maxwell’s displacement current based on iron/polymer composite for improving the triboelectric nanogenerator output. Nano Energy 96, 107139 (2022). https://doi.org/10.1016/j.nanoen.2022.107139
- L. Liu, J. Li, Z. Tian, H. Wu, S. Zhou et al., Suppressing charge recombination by synergistic effect of ferromagnetic dual-tribolayer for high output triboelectric nanogenerator. Nano Today 57, 102319 (2024). https://doi.org/10.1016/j.nantod.2024.102319
- X. Guan, B. Xu, J. Gong, Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy 70, 104516 (2020). https://doi.org/10.1016/j.nanoen.2020.104516
- S. Shen, J. Yi, Z. Sun, Z. Guo, T. He et al., Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 14(1), 225 (2022). https://doi.org/10.1007/s40820-022-00965-8
- D. Tan, Q. Zeng, X. Wang, S. Yuan, Y. Luo et al., Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Lett. 14(1), 124 (2022). https://doi.org/10.1007/s40820-022-00866-w
- H. Zhou, X. Wei, B. Wang, E. Zhang, Z. Wu et al., A multi-layer stacked triboelectric nanogenerator based on a rotation-to-translation mechanism for fluid energy harvesting and environmental protection. Adv. Funct. Mater. 33(7), 2210920 (2023). https://doi.org/10.1002/adfm.202210920
- Y.-J. Park, Y.G. Ro, Y.-E. Shin, C. Park, S. Na et al., Multi-layered triboelectric nanogenerators with controllable multiple spikes for low-power artificial synaptic devices. Adv. Sci. 10(36), 2304598 (2023). https://doi.org/10.1002/advs.202304598
- Y. Zhang, L. Zhou, X. Gao, C. Liu, H. Chen et al., Performance-enhanced flexible piezoelectric nanogenerator via layer-by-layer assembly for self-powered vagal neuromodulation. Nano Energy 89, 106319 (2021). https://doi.org/10.1016/j.nanoen.2021.106319
- Z. Zhou, X. Du, J. Luo, L. Yao, Z. Zhang et al., Coupling of interface effects and porous microstructures in translucent piezoelectric composites for enhanced energy harvesting and sensing. Nano Energy 84, 105895 (2021). https://doi.org/10.1016/j.nanoen.2021.105895
- J. Xia, H. Lu, G. Chen, D. Lin, W. Yang et al., High performance piezoelectric nanogenerator by fiber microstructure engineering toward self-powered wireless sensing system. Nano Energy 128, 109901 (2024). https://doi.org/10.1016/j.nanoen.2024.109901
- Y. Zou, J. Xu, K. Chen, J. Chen, Advances in nanostructures for high-performance triboelectric nanogenerators. Adv. Mater. Technol. 6(3), 2000916 (2021). https://doi.org/10.1002/admt.202000916
- H. Lei, H. Ji, X. Liu, B. Lu, L. Xie et al., Self-assembled porous-reinforcement microstructure-based flexible triboelectric patch for remote healthcare. Nano-Micro Lett 15(1), 109 (2023). https://doi.org/10.1007/s40820-023-01081-x
- V.-L. Trinh, C.-K. Chung, A facile method and novel mechanism using microneedle-structured PDMS for triboelectric generator applications. Small 13(29), 1700373 (2017). https://doi.org/10.1002/smll.201700373
- Y.-H. Zhang, Y. Shao, C. Luo, H.-Z. Ma, H. Yu et al., Preparation of a high-performance chitosan-based triboelectric nanogenerator by regulating the surface microstructure and dielectric constant. J. Mater. Chem. C 11(1), 260–268 (2023). https://doi.org/10.1039/D2TC04262B
- J.V. Vidal, V. Slabov, A.L. Kholkin, M.P.S. dos Santos, Hybrid triboelectric-electromagnetic nanogenerators for mechanical energy harvesting: a review. Nano-Micro Lett. 13(1), 199 (2021). https://doi.org/10.1007/s40820-021-00713-4
- S. Panda, S. Hajra, Y. Oh, W. Oh, J. Lee et al., Hybrid nanogenerators for ocean energy harvesting: mechanisms, designs, and applications. Small 19(25), 2300847 (2023). https://doi.org/10.1002/smll.202300847
- L. Liu, J. Li, Z. Guan, L. Zhao, Z. Tian et al., Ultra-high output hybrid nanogenerator for self-powered smart mariculture monitoring and warning system. Chem. Eng. J. 472, 145039 (2023). https://doi.org/10.1016/j.cej.2023.145039
- C. Zhang, W. Yuan, B. Zhang, O. Yang, Y. Liu et al., High space efficiency hybrid nanogenerators for effective water wave energy harvesting. Adv. Funct. Mater. 32(18), 2111775 (2022). https://doi.org/10.1002/adfm.202111775
- G. Khandelwal, N.P. Maria Joseph Raj, S.-J. Kim, Materials beyond conventional triboelectric series for fabrication and applications of triboelectric nanogenerators. Adv. Energy Mater. 11(33), 2101170 (2021). https://doi.org/10.1002/aenm.202101170
- M. Sahu, S. Hajra, H.-G. Kim, H.-G. Rubahn, Y. Kumar Mishra et al., Additive manufacturing-based recycling of laboratory waste into energy harvesting device for self-powered applications. Nano Energy 88, 106255 (2021). https://doi.org/10.1016/j.nanoen.2021.106255
- H. Pei, J. Jing, Y. Chen, J. Guo, N. Chen, 3D printing of PVDF-based piezoelectric nanogenerator from programmable metamaterial design: promising strategy for flexible electronic skin. Nano Energy 109, 108303 (2023). https://doi.org/10.1016/j.nanoen.2023.108303
- B. Mondal, D. Mandal, Geometry-modulated all organic 3D printed smart PLA fibers for flextension amplified giant mechanical energy harvesting and machine learning assisted pressure mapping. Chem. Eng. J. 496, 154281 (2024). https://doi.org/10.1016/j.cej.2024.154281
- F. Chen, Z. An, Y. Chen, Y. Li, X. Liu et al., Multi-material 3D printing of piezoelectric and triboelectric integrated nanogenerators with voxel structure. Chem. Eng. J. 471, 144770 (2023). https://doi.org/10.1016/j.cej.2023.144770
- J. Shi, K. Ju, H. Chen, V. Orsat, A.P. Sasmito et al., Ultrahigh piezoelectricity in truss-based ferroelectric ceramics metamaterials. Adv. Funct. Mater. 35(12), 2417618 (2025). https://doi.org/10.1002/adfm.202417618
- L. Wang, Y. Ma, K. Wang, Y. Ma, K. Wang et al., Fabrication of a pressure sensor using 3D printed light-cured piezoelectric composites. Sens. Actuat. A Phys. 362, 114586 (2023). https://doi.org/10.1016/j.sna.2023.114586
- H. Pei, Y. Xie, Y. Xiong, Q. Lv, Y. Chen, A novel polarization-free 3D printing strategy for fabrication of poly (vinylidene fluoride) based nanocomposite piezoelectric energy harvester. Compos. Part B Eng. 225, 109312 (2021). https://doi.org/10.1016/j.compositesb.2021.109312
- Z. Wang, J. Cheng, R. Hu, X. Yuan, Z. Yu et al., An approach combining additive manufacturing and dielectrophoresis for 3D-structured flexible lead-free piezoelectric composites for electromechanical energy conversion. J. Mater. Chem. A 9(47), 26767–26776 (2021). https://doi.org/10.1039/D1TA07475J
- D. Li, P. Chen, H. Du, Z. Li, M. Li et al., 3D-printed shape memory and piezoelectric bifunctional thermoplastic polyurethane/polyvinylidene fluoride porous composite scaffold for bone regeneration. ACS Biomater. Sci. Eng. 10(11), 7100–7110 (2024). https://doi.org/10.1021/acsbiomaterials.4c01221
- X. Chen, Q. Wang, S. Ma, J. Cui, C. Chen et al., 3D printing of microstructured polyacrylamide/sodium alginate/lithium chloride composite hydrogels for nanofriction generator and e-skin. Int. J. Biol. Macromol. 306(Pt 1), 141472 (2025). https://doi.org/10.1016/j.ijbiomac.2025.141472
- Y. Tong, Z. Feng, J. Kim, J.L. Robertson, X. Jia et al., 3D printed stretchable triboelectric nanogenerator fibers and devices. Nano Energy 75, 104973 (2020). https://doi.org/10.1016/j.nanoen.2020.104973
- H.-J. Yoon, D.-H. Kim, W. Seung, U. Khan, T.Y. Kim et al., 3D-printed biomimetic-villus structure with maximized surface area for triboelectric nanogenerator and dust filter. Nano Energy 63, 103857 (2019). https://doi.org/10.1016/j.nanoen.2019.103857
- K. Chen, L. Zhang, X. Kuang, V. Li, M. Lei et al., Dynamic photomask-assisted direct ink writing multimaterial for multilevel triboelectric nanogenerator. Adv. Funct. Mater. 29(33), 1903568 (2019). https://doi.org/10.1002/adfm.201903568
- B. Chen, W. Tang, T. Jiang, L. Zhu, X. Chen et al., Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy 45, 380–389 (2018). https://doi.org/10.1016/j.nanoen.2017.12.049
- Q. Yi, X. Pei, P. Das, H. Qin, S.W. Lee et al., A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy 101, 107511 (2022). https://doi.org/10.1016/j.nanoen.2022.107511
- B. Luo, S. Wang, X. Song, S. Chen, Q. Qi et al., An encapsulation-free and hierarchical porous triboelectric scaffold with dynamic hydrophilicity for efficient cartilage regeneration. Adv. Mater. 36(27), 2401009 (2024). https://doi.org/10.1002/adma.202401009
- N. Cai, P. Sun, S. Jiang, Rapid prototyping and customizable multifunctional structures: 3D-printing technology promotes the rapid development of TENGs. J. Mater. Chem. A 9(30), 16255–16280 (2021). https://doi.org/10.1039/D1TA04092H
- Z. Tian, J. Li, L. Liu, H. Wu, M. Xie et al., Flexible self-powered keypad with low crosstalk for neuropsychological assessment and intelligent systems. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202505900
- A. Babu, I. Aazem, R. Walden, S. Bairagi, D.M. Mulvihill et al., Electrospun nanofiber based TENGs for wearable electronics and self-powered sensing. Chem. Eng. J. 452, 139060 (2023). https://doi.org/10.1016/j.cej.2022.139060
- Y. Liu, J. Mo, Q. Fu, Y. Lu, N. Zhang et al., Enhancement of triboelectric charge density by chemical functionalization. Adv. Funct. Mater. 30(50), 2004714 (2020). https://doi.org/10.1002/adfm.202004714
- D. Ji, Y. Lin, X. Guo, B. Ramasubramanian, R. Wang et al., Electrospinning of nanofibres. Nat. Rev. Meth. Primers 4, 1 (2024). https://doi.org/10.1038/s43586-023-00278-z
- H. Wu, X. Liu, W. Li, S. Kang, B. Zhu et al., Surface manipulated triboelectric polymer films via direct fluorination towards high performance TENG. Nano Energy 123, 109441 (2024). https://doi.org/10.1016/j.nanoen.2024.109441
- R. Tao, J. Shi, F. Granier, M. Moeini, A. Akbarzadeh et al., Multi-material fused filament fabrication of flexible 3D piezoelectric nanocomposite lattices for pressure sensing and energy harvesting applications. Appl. Mater. Today 29, 101596 (2022). https://doi.org/10.1016/j.apmt.2022.101596
- X. Liu, J. Liu, L. He, Y. Shang, C. Zhang, 3D printed piezoelectric-regulable cells with customized electromechanical response distribution for intelligent sensing. Adv. Funct. Mater. 32(26), 2201274 (2022). https://doi.org/10.1002/adfm.202201274
- N. Divakaran, J.P. Das, P.V. Ajay Kumar, S. Mohanty, A. Ramadoss et al., Comprehensive review on various additive manufacturing techniques and its implementation in electronic devices. J. Manuf. Syst. 62, 477–502 (2022). https://doi.org/10.1016/j.jmsy.2022.01.002
- S. Propst, J. Mueller, Time code for multifunctional 3D printhead controls. Nat. Commun. 16(1), 1035 (2025). https://doi.org/10.1038/s41467-025-56140-1
- S. Zhang, X. Zhou, Z. Nie, C. Su, Q. Lu et al., Smart lanceolate surface with fast fog-digesting performance for triboelectric energy harvesting. ACS Nano 18(32), 21316–21325 (2024). https://doi.org/10.1021/acsnano.4c05403
- G. Khandelwal, R. Dahiya, Self-powered active sensing based on triboelectric generators. Adv. Mater. 34(33), 2200724 (2022). https://doi.org/10.1002/adma.202200724
- L. Wang, H. Tang, Z. Zhang, Y. Pan, D. Luo et al., Smart nodding duck: a hybrid Halbach electromagnetic piezoelectric self-powered sensor for smart fisheries. Chem. Eng. J. 493, 152694 (2024). https://doi.org/10.1016/j.cej.2024.152694
- S. Wu, F. Zabihi, R.Y. Yeap, M.R.Y. Darestani, A. Bahi et al., Cesium lead halide perovskite decorated polyvinylidene fluoride nanofibers for wearable piezoelectric nanogenerator yarns. ACS Nano 17(2), 1022–1035 (2023). https://doi.org/10.1021/acsnano.2c07320
- Y. Ding, H. Guo, M. Ouyang, G. Meng, F. Chen et al., Humidity-resistant wearable triboelectric nanogenerator utilizing a bound-water-rich zwitterionic hydrogel with microphase-separated domains. Adv. Funct. Mater. 35(19), 2421164 (2025). https://doi.org/10.1002/adfm.202421164
- J. Yi, K. Dong, S. Shen, Y. Jiang, X. Peng et al., Fully fabric-based triboelectric nanogenerators as self-powered human-machine interactive keyboards. Nano-Micro Lett. 13(1), 103 (2021). https://doi.org/10.1007/s40820-021-00621-7
- H.-S. Wu, S.-M. Wei, S.-W. Chen, H.-C. Pan, W.-P. Pan et al., Metal-free perovskite piezoelectric nanogenerators for human–machine interfaces and self-powered electrical stimulation applications. Adv. Sci. 9(18), 2105974 (2022). https://doi.org/10.1002/advs.202105974
- P. Awasthi, S.S. Banerjee, Fused deposition modeling of thermoplastic elastomeric materials: challenges and opportunities. Addit. Manuf. 46, 102177 (2021). https://doi.org/10.1016/j.addma.2021.102177
- P.K. Penumakala, J. Santo, A. Thomas, A critical review on the fused deposition modeling of thermoplastic polymer composites. Compos. Part B Eng. 201, 108336 (2020). https://doi.org/10.1016/j.compositesb.2020.108336
- S. Ding, H. Zhai, X. Tao, P. Yang, Z. Liu et al., A triboelectric-electromagnetic hybrid nanogenerator with magnetic coupling assisted waterproof encapsulation for long-lasting energy harvesting. Small 20(42), 2403879 (2024). https://doi.org/10.1002/smll.202403879
- M.-L. Seol, J.-W. Han, D.-I. Moon, K.J. Yoon, C.S. Hwang et al., All-printed triboelectric nanogenerator. Nano Energy 44, 82–88 (2018). https://doi.org/10.1016/j.nanoen.2017.11.067
- S. Xian, Y. Xu, Y. Li, Z. Wu, X. Xie et al., Flexible triboelectric sensor based on catalyst-diffusion self-encapsulated conductive liquid-metal-silicone ink for somatosensory soft robotic system. Adv. Funct. Mater. 35(2), 2412293 (2025). https://doi.org/10.1002/adfm.202412293
- Y. Wang, H. Du, H. Yang, Z. Xi, C. Zhao et al., A rolling-mode triboelectric nanogenerator with multi-tunnel grating electrodes and opposite-charge-enhancement for wave energy harvesting. Nat. Commun. 15(1), 6834 (2024). https://doi.org/10.1038/s41467-024-51245-5
- S. He, Z. Yu, H. Zhou, Z. Huang, Y. Zhang et al., Polymer tubes as carrier boats of thermosetting and powder materials based on 3D printing for triboelectric nanogenerator with microstructure. Nano Energy 52, 134–141 (2018). https://doi.org/10.1016/j.nanoen.2018.07.044
- G. Yang, H. Wu, Y. Li, D. Wang, Y. Song et al., Direct ink writing of fluoropolymer/CNT-based superhydrophobic and corrosion-resistant electrodes for droplet energy harvesters and self-powered electronic skins. Nano Energy 86, 106095 (2021). https://doi.org/10.1016/j.nanoen.2021.106095
- R. Zheng, Y. Chen, H. Chi, H. Qiu, H. Xue et al., 3D printing of a polydimethylsiloxane/polytetrafluoroethylene composite elastomer and its application in a triboelectric nanogenerator. ACS Appl. Mater. Interfaces 12(51), 57441–57449 (2020). https://doi.org/10.1021/acsami.0c18201
- L. Liu, P. Huang, S. Xu, X. Chen, K. Fu et al., Self-polarized cellulose nanofiber-reinforced PVDF-based piezoelectric composites via direct-ink-writing 3D printing for pressure sensing and energy harvesting. Sens. Actuat. A Phys. 381, 116084 (2025). https://doi.org/10.1016/j.sna.2024.116084
- X. Zhou, K. Parida, O. Halevi, Y. Liu, J. Xiong et al., All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure. Nano Energy 72, 104676 (2020). https://doi.org/10.1016/j.nanoen.2020.104676
- S. Zhang, Z. Xia, Z. Liu, Q. Wang, Y. Yue et al., Magnetic/conductive/elastic multi-material 3D-printed self-powered sensing gloves for underwater/smoke environmental human-computer interaction. Chem. Eng. J. 463, 142388 (2023). https://doi.org/10.1016/j.cej.2023.142388
- H. Li, X. Fang, R. Li, B. Liu, H. Tang et al., All-printed soft triboelectric nanogenerator for energy harvesting and tactile sensing. Nano Energy 78, 105288 (2020). https://doi.org/10.1016/j.nanoen.2020.105288
- Q. Ge, Z. Li, Z. Wang, K. Kowsari, W. Zhang et al., Projection micro stereolithography based 3D printing and its applications. Int. J. Extrem. Manuf. 2(2), 022004 (2020). https://doi.org/10.1088/2631-7990/ab8d9a
- Y.T. Kim, A. Ahmadianyazdi, A. Folch, A ‘print–pause–print’ protocol for 3D printing microfluidics using multimaterial stereolithography. Nat. Protoc. 18(4), 1243–1259 (2023). https://doi.org/10.1038/s41596-022-00792-6
- S. Zakeri, M. Vippola, E. Levänen, A comprehensive review of the photopolymerization of ceramic resins used in stereolithography. Addit. Manuf. 35, 101177 (2020). https://doi.org/10.1016/j.addma.2020.101177
- Y. Li, Z. Teng, Effect of printing orientation on mechanical properties of SLA 3D-printed photopolymer. Fatigue Fract. Eng. Mater. Struct. 47(5), 1531–1545 (2024). https://doi.org/10.1111/ffe.14265
- S. Liu, W. Wang, W. Xu, L. Liu, W. Zhang et al., Continuous three-dimensional printing of architected piezoelectric sensors in minutes. Research 2022, 9790307 (2022). https://doi.org/10.34133/2022/9790307
- X. Tian, S. Zhao, Y. Gao, H. Li, W. Cao et al., 3D printing-directed synergistic design of high-performance zinc-ion hybrid capacitors and nanogenerators for all-In-one self-powered energy wristband. Adv. Funct. Mater. 33(45), 2300381 (2023). https://doi.org/10.1002/adfm.202300381
- C. Dong, A. Leber, D. Yan, H. Banerjee, S. Laperrousaz et al., 3D stretchable and self-encapsulated multimaterial triboelectric fibers. Sci. Adv. 8(45), eabo0869 (2022). https://doi.org/10.1126/sciadv.abo0869
- Z. Liu, Y. Hu, X. Qu, Y. Liu, S. Cheng et al., A self-powered intracardiac pacemaker in swine model. Nat. Commun. 15(1), 507 (2024). https://doi.org/10.1038/s41467-023-44510-6
- Z. Zhou, Z. Xu, L.N.Y. Cao, H. Sheng, C. Li et al., Triboelectricity based self-powered digital displacement sensor for aircraft flight actuation. Adv. Funct. Mater. 34(8), 2311839 (2024). https://doi.org/10.1002/adfm.202311839
- Y. Li, Q. Mao, J. Yin, Y. Wang, J. Fu et al., Theoretical prediction and experimental validation of the digital light processing (DLP) working curve for photocurable materials. Addit. Manuf. 37, 101716 (2021). https://doi.org/10.1016/j.addma.2020.101716
- M. Wang, W. Li, J. Hao, A. Gonzales 3rd., Z. Zhao et al., Molecularly cleavable bioinks facilitate high-performance digital light processing-based bioprinting of functional volumetric soft tissues. Nat. Commun. 13(1), 3317 (2022). https://doi.org/10.1038/s41467-022-31002-2
- M. Caprioli, I. Roppolo, A. Chiappone, L. Larush, C.F. Pirri et al., 3D-printed self-healing hydrogels via digital light processing. Nat. Commun. 12(1), 2462 (2021). https://doi.org/10.1038/s41467-021-22802-z
- A. Chiappone, I. Roppolo, E. Scavino, G. Mogli, C.F. Pirri et al., Three-dimensional printing of triboelectric nanogenerators by digital light processing technique for mechanical energy harvesting. ACS Appl. Mater. Interfaces 15(46), 53974–53983 (2023). https://doi.org/10.1021/acsami.3c13323
- H. Yin, Y. Li, Z. Tian, Q. Li, C. Jiang et al., Ultra-high sensitivity anisotropic piezoelectric sensors for structural health monitoring and robotic perception. Nano-Micro Lett. 17(1), 42 (2024). https://doi.org/10.1007/s40820-024-01539-6
- H. Cui, R. Hensleigh, D. Yao, D. Maurya, P. Kumar et al., Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nat. Mater. 18(3), 234–241 (2019). https://doi.org/10.1038/s41563-018-0268-1
- L. Liu, J. Li, Z. Tian, X. Hu, H. Wu et al., Self-powered porous polymer sensors with high sensitivity for machine learning-assisted motion and rehabilitation monitoring. Nano Energy 128, 109817 (2024). https://doi.org/10.1016/j.nanoen.2024.109817
- Y. Jeong, L. Won, L. Pyo, B. Min, Remarkable output power enhancement of sliding-mode triboelectric nanogenerator through direct metal-to-metal contact with the ground. Nano Energy 57, 293–299 (2019). https://doi.org/10.1016/j.nanoen.2018.12.034
- S. Lee, J.-W. Park, Fingerprint-inspired triboelectric nanogenerator with a geometrically asymmetric electrode design for a self-powered dynamic pressure sensor. Nano Energy 101, 107546 (2022). https://doi.org/10.1016/j.nanoen.2022.107546
- Q. Mu, L. Wang, C.K. Dunn, X. Kuang, F. Duan et al., Digital light processing 3D printing of conductive complex structures. Addit. Manuf. 18, 74–83 (2017). https://doi.org/10.1016/j.addma.2017.08.011
- C.-L. Liu, Q. Du, C. Zhang, J.-M. Wu, G. Zhang et al., Fabrication and properties of BaTiO3 ceramics via digital light processing for piezoelectric energy harvesters. Addit. Manuf. 56, 102940 (2022). https://doi.org/10.1016/j.addma.2022.102940
- H. Li, R. Li, X. Fang, H. Jiang, X. Ding et al., 3D printed flexible triboelectric nanogenerator with viscoelastic inks for mechanical energy harvesting. Nano Energy 58, 447–454 (2019). https://doi.org/10.1016/j.nanoen.2019.01.066
- H. Qiao, Y. Zhang, Z. Huang, Y. Wang, D. Li et al., 3D printing individualized triboelectric nanogenerator with macro-pattern. Nano Energy 50, 126–132 (2018). https://doi.org/10.1016/j.nanoen.2018.04.071
- P. Geng, J. Zhao, W. Wu, W. Ye, Y. Wang et al., Effects of extrusion speed and printing speed on the 3D printing stability of extruded PEEK filament. J. Manuf. Process. 37, 266–273 (2019). https://doi.org/10.1016/j.jmapro.2018.11.023
- Z. Liu, S. Li, J. Zhu, L. Mi, G. Zheng, Fabrication of β-phase-enriched PVDF sheets for self-powered piezoelectric sensing. ACS Appl. Mater. Interfaces 14(9), 11854–11863 (2022). https://doi.org/10.1021/acsami.2c01611
- A.A. Ansari, M. Kamil, Effect of print speed and extrusion temperature on properties of 3D printed PLA using fused deposition modeling process. Mater. Today Proc. 45, 5462–5468 (2021). https://doi.org/10.1016/j.matpr.2021.02.137
- G. Percoco, L. Arleo, G. Stano, F. Bottiglione, Analytical model to predict the extrusion force as a function of the layer height, in extrusion based 3D printing. Addit. Manuf. 38, 101791 (2021). https://doi.org/10.1016/j.addma.2020.101791
- T. Jiang, B. Guo, Y. Yu, S. Gao, B. Yan et al., Effect of model exposure time on the performance of photocured digital light processing 3D printing. J. Mater. Eng. Perform. (2025). https://doi.org/10.1007/s11665-025-11030-x
- M. Shen, W. Zhao, B. Xing, Y. Sing, S. Gao et al., Effects of exposure time and printing angle on the curing characteristics and flexural strength of ceramic samples fabricated via digital light processing. Ceram. Int. 46(15), 24379–24384 (2020). https://doi.org/10.1016/j.ceramint.2020.06.220
- R.Y. Tay, Y. Song, D.R. Yao, W. Gao, Direct-ink-writing 3D-printed bioelectronics. Mater. Today 71, 135–151 (2023). https://doi.org/10.1016/j.mattod.2023.09.006
- M.S. Khan, S.B. Mishra, Minimizing surface roughness of ABS-FDM build parts: an experimental approach. Mater. Today Proc. 26, 1557–1566 (2020). https://doi.org/10.1016/j.matpr.2020.02.320
- A. Selvam, S. Mayilswamy, R. Whenish, K. Naresh, V. Shanmugam et al., Multi-objective optimization and prediction of surface roughness and printing time in FFF printed ABS polymer. Sci. Rep. 12(1), 16887 (2022). https://doi.org/10.1038/s41598-022-20782-8
- D. Pramanik, A. Mandal, A.S. Kuar, An experimental investigation on improvement of surface roughness of ABS on fused deposition modelling process. Mater. Today Proc. 26, 860–863 (2020). https://doi.org/10.1016/j.matpr.2020.01.054
- J. Khodaii, A. Rahimi, Improving the surface roughness in stereolithography by controlling surface angle, hatch spaces, and postcuring time. Eng. Rep. 2(6), e12193 (2020). https://doi.org/10.1002/eng2.12193
- C. Li, S. Zhang, J. Jiang, S. Wang, S. He et al., Laser-induced adhesives with excellent adhesion enhancement and reduction capabilities for transfer printing of microchips. Sci. Adv. 10(49), eads9226 (2024). https://doi.org/10.1126/sciadv.ads9226
- F. Chen, M. Gai, N. Sun, Z. Xu, L. Liu et al., Laser-driven hierarchical “gas-needles” for programmable and high-precision proximity transfer printing of microchips. Sci. Adv. 9(43), eadk0244 (2023). https://doi.org/10.1126/sciadv.adk0244
- A.P. Dhand, M.D. Davidson, H.M. Zlotnick, T.J. Kolibaba, J.P. Killgore et al., Additive manufacturing of highly entangled polymer networks. Science 385(6708), 566–572 (2024). https://doi.org/10.1126/science.adn6925
- C.-F. He, T.-H. Qiao, G.-H. Wang, Y. Sun, Y. He, High-resolution projection-based 3D bioprinting. Nat. Rev. Bioeng. 3(2), 143–158 (2025). https://doi.org/10.1038/s44222-024-00218-w
- X. Feng, L. Wang, Z. Xue, C. Xie, J. Han et al., Melt electrowriting enabled 3D liquid crystal elastomer structures for cross-scale actuators and temperature field sensors. Sci. Adv. 10(10), eadk3854 (2024). https://doi.org/10.1126/sciadv.adk3854
- M.P. de Beer, H.L. van der Laan, M.A. Cole, R.J. Whelan, M.A. Burns et al., Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning. Sci. Adv. 5(1), eaau8723 (2019). https://doi.org/10.1126/sciadv.aau8723
- Y. Ra, M. Song, D. Lee, S. Jang, Y.-S. Kim et al., Recent progress in triboelectric platforms: engineering materials to industrial applications from the perspective of manufacturing. Int. J. Extrem. Manuf. 7(3), 032007 (2025). https://doi.org/10.1088/2631-7990/adac18
- D. Choi, Y. Lee, Z.-H. Lin, S. Cho, M. Kim et al., Recent advances in triboelectric nanogenerators: from technological progress to commercial applications. ACS Nano 17(12), 11087–11219 (2023). https://doi.org/10.1021/acsnano.2c12458
- N.C. Brown, D.C. Ames, J. Mueller, Multimaterial extrusion 3D printing printheads. Nat. Rev. Mater. (2025). https://doi.org/10.1038/s41578-025-00809-y
- P. Chesser, B. Post, A. Roschli, C. Carnal, R. Lind et al., Extrusion control for high quality printing on big area additive manufacturing (BAAM) systems. Addit. Manuf. 28, 445–455 (2019). https://doi.org/10.1016/j.addma.2019.05.020
- J.R. Raney, B.G. Compton, J. Mueller, T.J. Ober, K. Shea et al., Rotational 3d printing of damage-tolerant composites with programmable mechanics. Proc. Natl. Acad. Sci. U. S. A. 115(6), 1198–1203 (2018). https://doi.org/10.1073/pnas.1715157115
- J.K. Wilt, N.S. Hmeidat, J.W. Bohling, B.G. Compton, High through-thickness thermal conductivity of 3D-printed composites via rotational direct ink writing. Addit. Manuf. Lett. 7, 100167 (2023). https://doi.org/10.1016/j.addlet.2023.100167
- C. Zhou, Y. Yang, J. Wang, Q. Wu, Z. Gu et al., Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nat. Commun. 12, 5072 (2021). https://doi.org/10.1038/s41467-021-25386-w
- Y. Kim, H. Yuk, R. Zhao, S.A. Chester, X. Zhao, Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558(7709), 274–279 (2018). https://doi.org/10.1038/s41586-018-0185-0
- M.A. Skylar-Scott, J. Mueller, C.W. Visser, J.A. Lewis, Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 575(7782), 330–335 (2019). https://doi.org/10.1038/s41586-019-1736-8
- J. Mueller, J.R. Raney, K. Shea, J.A. Lewis, Architected lattices with high stiffness and toughness via multicore–shell 3D printing. Adv. Mater. 30(12), 1705001 (2018). https://doi.org/10.1002/adma.201705001
- J. Han, D. Xin, J. Pang, L. Zhao, D. Sun et al., Laser-assisted manufacturing for sensors. Int. J. Extrem. Manuf. 7(4), 042008 (2025). https://doi.org/10.1088/2631-7990/adbb35
- A. Camposeo, L. Persano, M. Farsari, D. Pisignano, Additive manufacturing: applications and directions in photonics and optoelectronics. Adv. Opt. Mater. 7(1), 1800419 (2019). https://doi.org/10.1002/adom.201800419
- B.C. Stump, B.T. Gibson, J.T. Reynolds, C.C. Wade, M.C. Borish et al., Load balancing for multi-beam additive manufacturing systems. Addit. Manuf. 74, 103708 (2023). https://doi.org/10.1016/j.addma.2023.103708
- J.T. Toombs, M. Luitz, C.C. Cook, S. Jenne, C.C. Li et al., Volumetric additive manufacturing of silica glass with microscale computed axial lithography. Science 376(6590), 308–312 (2022). https://doi.org/10.1126/science.abm6459
- Y. Shan, Y. Shui, J. Hua, H. Mao, Additive manufacturing of non-planar layers using isothermal surface slicing. J. Manuf. Process. 86, 326–335 (2023). https://doi.org/10.1016/j.jmapro.2022.12.054
- J. Huang, H.O.T. Ware, R. Hai, G. Shao, C. Sun, Conformal geometry and multimaterial additive manufacturing through freeform transformation of building layers. Adv. Mater. 33(11), 2005672 (2021). https://doi.org/10.1002/adma.202005672
- D. Zhao, W. Guo, Mixed-layer adaptive slicing for robotic additive manufacturing (AM) based on decomposing and regrouping. J. Intell. Manuf. 31(4), 985–1002 (2020). https://doi.org/10.1007/s10845-019-01490-z
- T. Liu, P. Tao, X. Wang, H. Wang, M. He et al., Ultrahigh-printing-speed photoresists for additive manufacturing. Nat. Nanotechnol. 19(1), 51–57 (2024). https://doi.org/10.1038/s41565-023-01517-w
- I. Pchelintsev, R. Karamov, A. Tikhonov, O. Dubinin, I. Shishkovsky et al., Fabrication of hierarchical lattice structures from zirconia stabilized ceramics by micro-SLA 3D printing approach. Ceram. Int. 49(18), 29409–29416 (2023). https://doi.org/10.1016/j.ceramint.2023.05.264
- A.K. Nguyen, R.J. Narayan, Two-photon polymerization for biological applications. Mater. Today 20(6), 314–322 (2017). https://doi.org/10.1016/j.mattod.2017.06.004
- A. Ghaznavi, J. Xu, C.U. Lee, S.A. Hara, 3D-printed hollow microneedles array with luer lock connection for facile and painless intradermal injection: a proof of concept. Adv. Mater. Technol. 9(18), 2400286 (2024). https://doi.org/10.1002/admt.202400286
- H. Yu, H. Guo, J. Wang, T. Zhao, W. Zou et al., Skin-inspired capacitive flexible tactile sensor with an asymmetric structure for detecting directional shear forces. Adv. Sci. 11(6), 2305883 (2024). https://doi.org/10.1002/advs.202305883
- L. Yue, X. Sun, L. Yu, M. Li, S.M. Montgomery et al., Cold-programmed shape-morphing structures based on grayscale digital light processing 4D printing. Nat. Commun. 14(1), 5519 (2023). https://doi.org/10.1038/s41467-023-41170-4
- R. Sinha, M. Cámara-Torres, P. Scopece, E. Verga Falzacappa, A. Patelli et al., A hybrid additive manufacturing platform to create bulk and surface composition gradients on scaffolds for tissue regeneration. Nat. Commun. 12(1), 500 (2021). https://doi.org/10.1038/s41467-020-20865-y
- X. Peng, X. Kuang, D.J. Roach, Y. Wang, C.M. Hamel et al., Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices. Addit. Manuf. 40, 101911 (2021). https://doi.org/10.1016/j.addma.2021.101911
- M. Huang, M. Zhu, X. Feng, Z. Zhang, T. Tang et al., Intelligent cubic-designed piezoelectric node (iCUPE) with simultaneous sensing and energy harvesting ability toward self-sustained artificial intelligence of things (AIoT). ACS Nano 17(7), 6435–6451 (2023). https://doi.org/10.1021/acsnano.2c11366
- Y. Xiong, Y. Tang, Q. Zhou, Y. Ma, D.W. Rosen, Intelligent additive manufacturing and design: state of the art and future perspectives. Addit. Manuf. 59, 103139 (2022). https://doi.org/10.1016/j.addma.2022.103139
- Z. Jin, Z. Zhang, K. Demir, G.X. Gu, Machine learning for advanced additive manufacturing. Matter 3(5), 1541–1556 (2020). https://doi.org/10.1016/j.matt.2020.08.023
- M. Shirmohammadi, S.J. Goushchi, P.M. Keshtiban, Optimization of 3D printing process parameters to minimize surface roughness with hybrid artificial neural network model and p swarm algorithm. Prog. Addit. Manuf. 6(2), 199–215 (2021). https://doi.org/10.1007/s40964-021-00166-6
- W.L. Ng, G.L. Goh, G.D. Goh, J.S.J. Ten, W.Y. Yeong, Progress and opportunities for machine learning in materials and processes of additive manufacturing. Adv. Mater. 36(34), 2310006 (2024). https://doi.org/10.1002/adma.202310006
- H. Wang, Z. Zhao, L. Zhang, Z. Su, C. Chen et al., High-performance low-temperature self-healing bio-based polyurethane triboelectric nanogenerator for wireless intelligent target systems. Nano Energy 133, 110438 (2025). https://doi.org/10.1016/j.nanoen.2024.110438
- S. Liu, F. Manshaii, J. Chen, X. Wang, S. Wang et al., Unleashing the potential of electroactive hybrid biomaterials and self-powered systems for bone therapeutics. Nano-Micro Lett 17(1), 44 (2024). https://doi.org/10.1007/s40820-024-01536-9
- H.L. Wang, Z.H. Guo, X. Pu, Z.L. Wang, Ultralight iontronic triboelectric mechanoreceptor with high specific outputs for epidermal electronics. Nano-Micro Lett. 14(1), 86 (2022). https://doi.org/10.1007/s40820-022-00834-4
References
L. Shen, D.J. Jacob, R. Gautam, M. Omara, T.R. Scarpelli et al., National quantifications of methane emissions from fuel exploitation using high resolution inversions of satellite observations. Nat. Commun. 14(1), 4948 (2023). https://doi.org/10.1038/s41467-023-40671-6
C. Le Quéré, G.P. Peters, P. Friedlingstein, R.M. Andrew, J.G. Canadell et al., Fossil CO2 emissions in the post-COVID-19 era. Nat. Clim. Chang. 11(3), 197–199 (2021). https://doi.org/10.1038/s41558-021-01001-0
B. Birner, J. Severinghaus, B. Paplawsky, R.F. Keeling, Increasing atmospheric helium due to fossil fuel exploitation. Nat. Geosci. 15(5), 346–348 (2022). https://doi.org/10.1038/s41561-022-00932-3
Y. Guan, J. Yan, Y. Shan, Y. Zhou, Y. Hang et al., Burden of the global energy price crisis on households. Nat. Energy 8(3), 304–316 (2023). https://doi.org/10.1038/s41560-023-01209-8
Z.L. Wang, Entropy theory of distributed energy for internet of things. Nano Energy 58, 669–672 (2019). https://doi.org/10.1016/j.nanoen.2019.02.012
A. Ahmed, I. Hassan, M.F. El-Kady, A. Radhi, C.K. Jeong et al., Integrated triboelectric nanogenerators in the era of the Internet of Things. Adv. Sci. 6(24), 1802230 (2019). https://doi.org/10.1002/advs.201802230
X. Zhao, H. Askari, J. Chen, Nanogenerators for smart cities in the era of 5G and internet of things. Joule 5(6), 1391–1431 (2021). https://doi.org/10.1016/j.joule.2021.03.013
B. Chen, Z.L. Wang, Toward a new era of sustainable energy: advanced triboelectric nanogenerator for harvesting high entropy energy. Small 18(43), 2107034 (2022). https://doi.org/10.1002/smll.202107034
X. Cao, Y. Xiong, J. Sun, X. Xie, Q. Sun et al., Multidiscipline applications of triboelectric nanogenerators for the intelligent era of Internet of Things. Nano-Micro Lett. 15(1), 14 (2022). https://doi.org/10.1007/s40820-022-00981-8
M. Al Mahadi Hasan, W. Zhu, C.R. Bowen, Z.L. Wang, Y. Yang, Triboelectric nanogenerators for wind energy harvesting. Nat. Rev. Electr. Eng. 1(7), 453–465 (2024). https://doi.org/10.1038/s44287-024-00061-6
Z. Hua, D. Shuai, X. Chen, Y. Wu, Z.L. Wang, Advances in solid–solid contacting triboelectric nanogenerator for ocean energy harvesting. Mater. Today 65, 166–188 (2023). https://doi.org/10.1016/j.mattod.2023.02.030
D. Yu, Z. Zheng, J. Liu, H. Xiao, G. Huangfu et al., Superflexible and lead-free piezoelectric nanogenerator as a highly sensitive self-powered sensor for human motion monitoring. Nano-Micro Lett. 13(1), 117 (2021). https://doi.org/10.1007/s40820-021-00649-9
C. Zhang, Y. Hao, X. Lu, W. Su, H. Zhang et al., Advances in TENGs for marine energy harvesting and in situ electrochemistry. Nano-Micro Lett. 17(1), 124 (2025). https://doi.org/10.1007/s40820-024-01640-w
H. Xiang, L. Peng, Q. Yang, Z.L. Wang, X. Cao, Triboelectric nanogenerator for high-entropy energy, self-powered sensors, and popular education. Sci. Adv. 10(48), eads2291 (2024). https://doi.org/10.1126/sciadv.ads2291
J. Sun, H. Guo, J. Ribera, C. Wu, K. Tu et al., Sustainable and biodegradable wood sponge piezoelectric nanogenerator for sensing and energy harvesting applications. ACS Nano 14(11), 14665–14674 (2020). https://doi.org/10.1021/acsnano.0c05493
Z.L. Wang, Triboelectric nanogenerator (TENG): sparking an energy and sensor revolution. Adv. Energy Mater. 10(17), 2000137 (2020). https://doi.org/10.1002/aenm.202000137
T. Cheng, J. Shao, Z.L. Wang, Triboelectric nanogenerators. Nat. Rev. Meth. Primers 3, 39 (2023). https://doi.org/10.1038/s43586-023-00220-3
X. Cao, Y. Xiong, J. Sun, X. Zhu, Q. Sun et al., Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and artificial intelligence. Adv. Funct. Mater. 31(33), 2102983 (2021). https://doi.org/10.1002/adfm.202102983
P. Lu, X. Liao, X. Guo, C. Cai, Y. Liu et al., Gel-based triboelectric nanogenerators for flexible sensing: principles, properties, and applications. Nano-Micro Lett. 16(1), 206 (2024). https://doi.org/10.1007/s40820-024-01432-2
C. Shan, K. Li, Y. Cheng, C. Hu, Harvesting environment mechanical energy by direct current triboelectric nanogenerators. Nano-Micro Lett. 15(1), 127 (2023). https://doi.org/10.1007/s40820-023-01115-4
Y. Xue, T. Yang, Y. Zheng, K. Wang, E. Wang et al., Heterojunction engineering enhanced self-polarization of PVDF/CsPbBr 3/Ti3C2Tx composite fiber for ultra-high voltage piezoelectric nanogenerator. Adv. Sci. 10(18), 2300650 (2023). https://doi.org/10.1002/advs.202300650
M. Li, J. Lu, P. Wan, M. Jiang, Y. Mo et al., An ultrasensitive perovskite single-model plasmonic strain sensor based on piezoelectric effect. Adv. Funct. Mater. 34(41), 2403840 (2024). https://doi.org/10.1002/adfm.202403840
F. Li, T. Shen, C. Wang, Y. Zhang, J. Qi et al., Recent advances in strain-induced piezoelectric and piezoresistive effect-engineered 2D semiconductors for adaptive electronics and optoelectronics. Nano-Micro Lett. 12(1), 106 (2020). https://doi.org/10.1007/s40820-020-00439-9
Z.L. Wang, A.C. Wang, On the origin of contact-electrification. Mater. Today 30, 34–51 (2019). https://doi.org/10.1016/j.mattod.2019.05.016
J. Hu, M. Iwamoto, X. Chen, A review of contact electrification at diversified interfaces and related applications on triboelectric nanogenerator. Nano-Micro Lett. 16(1), 7 (2023). https://doi.org/10.1007/s40820-023-01238-8
C.-R. Yang, C.-T. Ko, S.-F. Chang, M.-J. Huang, Study on fabric-based triboelectric nanogenerator using graphene oxide/porous PDMS as a compound friction layer. Nano Energy 92, 106791 (2022). https://doi.org/10.1016/j.nanoen.2021.106791
T. Bhatta, S. Sharma, K. Shrestha, Y. Shin, S. Seonu et al., Siloxene/PVDF composite nanofibrous membrane for high-performance triboelectric nanogenerator and self-powered static and dynamic pressure sensing applications. Adv. Funct. Mater. 32(25), 2202145 (2022). https://doi.org/10.1002/adfm.202202145
W. Qiao, L. Zhou, Z. Zhao, P. Yang, D. Liu et al., MXene lubricated tribovoltaic nanogenerator with high current output and long lifetime. Nano-Micro Lett. 15(1), 218 (2023). https://doi.org/10.1007/s40820-023-01198-z
G.M. Rani, C.-M. Wu, K.G. Motora, R. Umapathi, C.R.M. Jose, Acoustic-electric conversion and triboelectric properties of nature-driven CF-CNT based triboelectric nanogenerator for mechanical and sound energy harvesting. Nano Energy 108, 108211 (2023). https://doi.org/10.1016/j.nanoen.2023.108211
Q. Sun, F. Liang, G. Ren, L. Zhang, S. He et al., Density-of-states matching-induced ultrahigh current density and high-humidity resistance in a simply structured triboelectric nanogenerator. Adv. Mater. 35(14), 2210915 (2023). https://doi.org/10.1002/adma.202210915
B. Xie, Y. Guo, Y. Chen, H. Zhang, J. Xiao et al., Advances in graphene-based electrode for triboelectric nanogenerator. Nano-Micro Lett. 17(1), 17 (2024). https://doi.org/10.1007/s40820-024-01530-1
H. Xiang, Y. Zeng, X. Huang, N. Wang, X. Cao et al., From triboelectric nanogenerator to multifunctional triboelectric sensors: a chemical perspective toward the interface optimization and device integration. Small 18(43), e2107222 (2022). https://doi.org/10.1002/smll.202107222
Z.L. Wang, G. Zhu, Y. Yang, S. Wang, C. Pan, Progress in nanogenerators for portable electronics. Mater. Today 15(12), 532–543 (2012). https://doi.org/10.1016/S1369-7021(13)70011-7
C. Chen, X. Wang, Y. Wang, D. Yang, F. Yao et al., Additive manufacturing of piezoelectric materials. Adv. Funct. Mater. 30(52), 2005141 (2020). https://doi.org/10.1002/adfm.202005141
B. Chen, W. Tang, Z.L. Wang, Advanced 3D printing-based triboelectric nanogenerator for mechanical energy harvesting and self-powered sensing. Mater. Today 50, 224–238 (2021). https://doi.org/10.1016/j.mattod.2021.05.017
C. Sun, Y. Wang, M.D. McMurtrey, N.D. Jerred, F. Liou et al., Additive manufacturing for energy: a review. Appl. Energy 282, 116041 (2021). https://doi.org/10.1016/j.apenergy.2020.116041
A.D. Kumar, N. Arunachalam, R. Jayaganthan, Electrical performance of a triboelectric nanogenerator developed using ionic liquid-processed polyvinylidene fluoride fabricated through an additive manufacturing technique. Nano Energy 129, 110055 (2024). https://doi.org/10.1016/j.nanoen.2024.110055
Z. Huang, G. Shao, L. Li, Micro/nano functional devices fabricated by additive manufacturing. Prog. Mater. Sci. 131, 101020 (2023). https://doi.org/10.1016/j.pmatsci.2022.101020
X. Yuan, Z. Mai, Z. Li, Z. Yu, P. Ci et al., A 3D-printing approach toward flexible piezoelectronics with function diversity. Mater. Today 69, 160–192 (2023). https://doi.org/10.1016/j.mattod.2023.08.023
X. Zhou, P.S. Lee, Three dimensional printed nanogenerators. EcoMat 3(3), e12098 (2021). https://doi.org/10.1002/eom2.12098
G. Rasiya, A. Shukla, K. Saran, Additive manufacturing-a review. Mater. Today Proc. 47, 6896–6901 (2021). https://doi.org/10.1016/j.matpr.2021.05.181
R.D. Crapnell, C. Kalinke, L.R.G. Silva, J.S. Stefano, R.J. Williams et al., Additive manufacturing electrochemistry: an overview of producing bespoke conductive additive manufacturing filaments. Mater. Today 71, 73–90 (2023). https://doi.org/10.1016/j.mattod.2023.11.002
J.K. Watson, K.M.B. Taminger, A decision-support model for selecting additive manufacturing versus subtractive manufacturing based on energy consumption. J. Clean. Prod. 176, 1316–1322 (2018). https://doi.org/10.1016/j.jclepro.2015.12.009
K.S. Prakash, T. Nancharaih, V.V.S. Rao, Additive manufacturing techniques in manufacturing-an overview. Mater. Today Proc. 5(2), 3873–3882 (2018). https://doi.org/10.1016/j.matpr.2017.11.642
V.T. Le, H. Paris, G. Mandil, Process planning for combined additive and subtractive manufacturing technologies in a remanufacturing context. J. Manuf. Syst. 44, 243–254 (2017). https://doi.org/10.1016/j.jmsy.2017.06.003
L. Siva Rama Krishna, P.J. Srikanth, Evaluation of environmental impact of additive and subtractive manufacturing processes for sustainable manufacturing. Mater. Today Proc. 45, 3054–3060 (2021). https://doi.org/10.1016/j.matpr.2020.12.060
S. Hu, J. Han, Z. Shi, K. Chen, N. Xu et al., Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator. Nano-Micro Lett. 14(1), 115 (2022). https://doi.org/10.1007/s40820-022-00858-w
H. Hegab, N. Khanna, N. Monib, A. Salem, Design for sustainable additive manufacturing: a review. Sustain. Mater. Technol. 35, e00576 (2023). https://doi.org/10.1016/j.susmat.2023.e00576
M.A.S.R. Saadi, A. Maguire, N.T. Pottackal, M.S.H. Thakur, M.M. Ikram et al., Direct ink writing: a 3D printing technology for diverse materials. Adv. Mater. 34(28), 2108855 (2022). https://doi.org/10.1002/adma.202108855
S. Park, W. Shou, L. Makatura, W. Matusik, K. Fu, 3D printing of polymer composites: materials, processes, and applications. Matter 5(1), 43–76 (2022). https://doi.org/10.1016/j.matt.2021.10.018
I. Kim, S. Kim, A. Andreu, J.-H. Kim, Y.-J. Yoon, Influence of dispersant concentration toward enhancing printing precision and surface quality of vat photopolymerization 3D printed ceramics. Addit. Manuf. 52, 102659 (2022). https://doi.org/10.1016/j.addma.2022.102659
S.R. Dabbagh, M.R. Sarabi, M.T. Birtek, S. Seyfi, M. Sitti et al., 3D-printed microrobots from design to translation. Nat. Commun. 13, 5875 (2022). https://doi.org/10.1038/s41467-022-33409-3
M. Srivastava, S. Rathee, V. Patel, A. Kumar, P.G. Koppad, A review of various materials for additive manufacturing: recent trends and processing issues. J. Mater. Res. Technol. 21, 2612–2641 (2022). https://doi.org/10.1016/j.jmrt.2022.10.015
K. Hu, P. Zhao, J. Li, Z. Lu, High-resolution multiceramic additive manufacturing based on digital light processing. Addit. Manuf. 54, 102732 (2022). https://doi.org/10.1016/j.addma.2022.102732
S. Chen, T. Huang, H. Zuo, S. Qian, Y. Guo et al., A single integrated 3d-printing process customizes elastic and sustainable triboelectric nanogenerators for wearable electronics. Adv. Funct. Mater. 28(46), 1805108 (2018). https://doi.org/10.1002/adfm.201805108
M. Cheng, A. Ramasubramanian, M.G. Rasul, Y. Jiang, Y. Yuan et al., Direct ink writing of polymer composite electrolytes with enhanced thermal conductivities. Adv. Funct. Mater. 31(4), 2006683 (2021). https://doi.org/10.1002/adfm.202006683
V.I. dos Santos, J. Chevalier, M.C. Fredel, B. Henriques, L. Gremillard, Ceramics and ceramic composites for biomedical engineering applications via direct ink writing: overall scenario, advances in the improvement of mechanical and biological properties and innovations. Mater. Sci. Eng. R. Rep. 161, 100841 (2024). https://doi.org/10.1016/j.mser.2024.100841
T. Ma, Y. Zhang, K. Ruan, H. Guo, M. He et al., Advances in 3D printing for polymer composites: a review. InfoMat 6(6), e12568 (2024). https://doi.org/10.1002/inf2.12568
Z. Huang, G. Shao, D. Zhou, X. Deng, J. Qiao et al., 3D printing of high-precision and ferromagnetic functional devices. Int. J. Extrem. Manuf. 5(3), 035501 (2023). https://doi.org/10.1088/2631-7990/acccbb
C. Cao, X. Xia, X. Shen, X. Wang, Z. Yang et al., Ultra-high precision nano additive manufacturing of metal oxide semiconductors via multi-photon lithography. Nat. Commun. 15(1), 9216 (2024). https://doi.org/10.1038/s41467-024-52929-8
M. Yuan, A. Ma, H. Zhang, T. Fan, F. Ke et al., One-step fabrication of high β-phase BaTiO3/IL/PVDF triboelectric nanogenerator via FDM printing. J. Manuf. Process. 136, 316–323 (2025). https://doi.org/10.1016/j.jmapro.2025.01.052
Y. Han, L. Song, H. Du, G. Wang, T. Zhang et al., Enhancing structural response via macro-micro hierarchy for piezoelectric nanogenerator and self-powered wearable controller. Chem. Eng. J. 481, 148729 (2024). https://doi.org/10.1016/j.cej.2024.148729
H. Li, S. Wang, X. Dong, X. Ding, Y. Sun et al., Recent advances on ink-based printing techniques for triboelectric nanogenerators: printable inks, printing technologies and applications. Nano Energy 101, 107585 (2022). https://doi.org/10.1016/j.nanoen.2022.107585
Z. Wang, C. Luan, Y. Zhu, G. Liao, J. Liu et al., Integrated and shape-adaptable multifunctional flexible triboelectric nanogenerators using coaxial direct ink writing 3D printing. Nano Energy 90, 106534 (2021). https://doi.org/10.1016/j.nanoen.2021.106534
C. He, W. Zhu, G.Q. Gu, T. Jiang, L. Xu et al., Integrative square-grid triboelectric nanogenerator as a vibrational energy harvester and impulsive force sensor. Nano Res. 11(2), 1157–1164 (2018). https://doi.org/10.1007/s12274-017-1824-8
J. Zhang, S. Ye, H. Liu, X. Chen, X. Chen et al., 3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors. Nano Energy 77, 105300 (2020). https://doi.org/10.1016/j.nanoen.2020.105300
X. Zhou, K. Parida, J. Chen, J. Xiong, Z. Zhou et al., 3D printed auxetic structure-assisted piezoelectric energy harvesting and sensing. Adv. Energy Mater. 13(34), 2301159 (2023). https://doi.org/10.1002/aenm.202301159
R. Yang, Z. Guo, Z. Yu, F. Du, V.G.N. Thyagaraja, L. Lin, D.R. Yu, P. Xu, J.N. Armstrong, S. Lin, C. Zhou, J. Liu, 3D-printed conducting polymer hydrogel-based DC generator for self-powered electromechanical sensing. Nano Energy 117, 108857 (2023). https://doi.org/10.1016/j.nanoen.2023.108857
H. Park, G.S. Gbadam, S. Niu, H. Ryu, J.-H. Lee, Manufacturing strategies for highly sensitive and self-powered piezoelectric and triboelectric tactile sensors. Int. J. Extreme Manuf. 7(1), 012006 (2025). https://doi.org/10.1088/2631-7990/ad88be
M. Wajahat, A.Z. Kouzani, S.Y. Khoo, M.A. Parvez Mahmud, Development of triboelectric nanogenerators using novel 3D printed polymer materials. Adv. Eng. Mater. 26(3), 2301897 (2024). https://doi.org/10.1002/adem.202301897
Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
Z.L. Wang, From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 84(9), 096502 (2021). https://doi.org/10.1088/1361-6633/ac0a50
J. Luo, Z.L. Wang, Recent progress of triboelectric nanogenerators: from fundamental theory to practical applications. EcoMat 2(4), e12059 (2020). https://doi.org/10.1002/eom2.12059
Z.L. Wang, On the first principle theory of nanogenerators from Maxwell’s Eqs. Nano Energy 68, 104272 (2020). https://doi.org/10.1016/j.nanoen.2019.104272
C. Chen, S. Zhao, C. Pan, Y. Zi, F. Wang et al., A method for quantitatively separating the piezoelectric component from the as-received “Piezoelectric” signal. Nat. Commun. 13, 1391 (2022). https://doi.org/10.1038/s41467-022-29087-w
Q. Xu, J. Wen, Y. Qin, Development and outlook of high output piezoelectric nanogenerators. Nano Energy 86, 106080 (2021). https://doi.org/10.1016/j.nanoen.2021.106080
L. Wang, R.-W. Li, A more biofriendly piezoelectric material. Science 383(6690), 1416 (2024). https://doi.org/10.1126/science.ado5706
L. Zhou, L. Zhu, T. Yang, X. Hou, Z. Du et al., Ultra-stable and durable piezoelectric nanogenerator with all-weather service capability based on N doped 4H-SiC nanohole arrays. Nano-Micro Lett. 14(1), 30 (2021). https://doi.org/10.1007/s40820-021-00779-0
F.R. Fan, W. Tang, Z.L. Wang, Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28(22), 4283–4305 (2016). https://doi.org/10.1002/adma.201504299
L. Gu, J. Liu, N. Cui, Q. Xu, T. Du et al., Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode. Nat. Commun. 11(1), 1030 (2020). https://doi.org/10.1038/s41467-020-14846-4
H. Chen, L. Zhou, Z. Fang, S. Wang, T. Yang et al., Piezoelectric nanogenerator based on in situ growth all-inorganic CsPbBr 3 perovskite nanocrystals in PVDF fibers with long-term stability. Adv. Funct. Mater. 31(19), 2011073 (2021). https://doi.org/10.1002/adfm.202011073
X. Huang, Q. Qin, X. Wang, H. Xiang, J. Zheng et al., Piezoelectric nanogenerator for highly sensitive and synchronous multi-stimuli sensing. ACS Nano 15(12), 19783–19792 (2021). https://doi.org/10.1021/acsnano.1c07236
X. Meng, C. Cai, B. Luo, T. Liu, Y. Shao et al., Rational design of cellulosic triboelectric materials for self-powered wearable electronics. Nano-Micro Lett. 15(1), 124 (2023). https://doi.org/10.1007/s40820-023-01094-6
H. Zou, T.D. Nguyen, G. Pace, Materials and figures of merit for nanogenerators. MRS Bull. 50(3), 295–304 (2025). https://doi.org/10.1557/s43577-025-00872-4
C. Cao, Z. Li, F. Shen, Q. Zhang, Y. Gong et al., Progress in techniques for improving the output performance of triboelectric nanogenerators. Energy Environ. Sci. 17(3), 885–924 (2024). https://doi.org/10.1039/D3EE03520D
J.C. Sobarzo, F. Pertl, D.M. Balazs, T. Costanzo, M. Sauer et al., Spontaneous ordering of identical materials into a triboelectric series. Nature 638(8051), 664–669 (2025). https://doi.org/10.1038/s41586-024-08530-6
C. Xu, Y. Zi, A.C. Wang, H. Zou, Y. Dai et al., On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 30(15), 1706790 (2018). https://doi.org/10.1002/adma.201706790
L. Jiang, X. Liu, J. Lv, G. Li, P. Yang et al., Fluid-based triboelectric nanogenerators: unveiling the prolific landscape of renewable energy harvesting and beyond. Energy Environ. Sci. 17(11), 3700–3738 (2024). https://doi.org/10.1039/D4EE00482E
Y. Yu, H. Li, X. Zhang, Q. Gao, B. Yang et al., Substantially boosting performance of triboelectric nanogenerators via a triboelectrification enhancement effect. Joule 8(6), 1855–1868 (2024). https://doi.org/10.1016/j.joule.2024.04.013
X. Chen, X. Li, J. Shao, N. An, H. Tian et al., Nanogenerators: high-performance piezoelectric nanogenerators with imprinted P(VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small 13(23), 201770126 (2017). https://doi.org/10.1002/smll.201770126
D. Liu, Y. Gao, L. Zhou, J. Wang, Z.L. Wang, Recent advances in high-performance triboelectric nanogenerators. Nano Res. 16(9), 11698–11717 (2023). https://doi.org/10.1007/s12274-023-5660-8
K. Xi, J. Guo, M. Zheng, M. Zhu, Y. Hou, Defect engineering with rational dopants modulation for high-temperature energy harvesting in lead-free piezoceramics. Nano-Micro Lett. 17(1), 55 (2024). https://doi.org/10.1007/s40820-024-01556-5
B. Chai, K. Shi, H. Zou, P. Jiang, Z. Wu et al., Conductive interlayer modulated ferroelectric nanocomposites for high performance triboelectric nanogenerator. Nano Energy 91, 106668 (2022). https://doi.org/10.1016/j.nanoen.2021.106668
H. Wu, J. Li, L. Liu, Z. Guan, S. Zhou et al., A fast electron-injection strategy for enhancing triboelectric surface charge density of polymers. Nano Energy 122, 109351 (2024). https://doi.org/10.1016/j.nanoen.2024.109351
C. Jin, N. Hao, Z. Xu, I. Trase, Y. Nie et al., Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF films. Sens. Actuators A Phys. 305, 111912 (2020). https://doi.org/10.1016/j.sna.2020.111912
X. Che, Y. Fan, Y. Su, Y. Gong, Q. Guo et al., Performance improvement and application of degradable poly-L-lactide and yttrium-doped zinc oxide hybrid films for energy harvesting. ACS Appl. Mater. Interfaces 16(26), 33517–33526 (2024). https://doi.org/10.1021/acsami.4c05807
X. Tang, H. Jiang, Z. Lin, X. Wang, W. Wang et al., Wafer-scale vertical 1D GaN nanorods/2D MoS2/PEDOT: PSS for piezophototronic effect-enhanced self-powered flexible photodetectors. Nano-Micro Lett. 17(1), 56 (2024). https://doi.org/10.1007/s40820-024-01553-8
J.W. Lee, H.J. Cho, J. Chun, K.N. Kim, S. Kim et al., Robust nanogenerators based on graft copolymers via control of dielectrics for remarkable output power enhancement. Sci. Adv. 3(5), e1602902 (2017). https://doi.org/10.1126/sciadv.1602902
H. Zou, Y. Zhang, L. Guo, P. Wang, X. He et al., Quantifying the triboelectric series. Nat. Commun. 10, 1427 (2019). https://doi.org/10.1038/s41467-019-09461-x
Y. Yu, H. Li, D. Zhao, Q. Gao, X. Li et al., Material’s selection rules for high performance triboelectric nanogenerators. Mater. Today 64, 61–71 (2023). https://doi.org/10.1016/j.mattod.2023.03.008
H. Wu, J. Li, R. Du, L. Liu, W. Ou-Yang, Study of electrode design and inclination angle for superior droplet-driven TENG performance. Nano Lett. 24(49), 15676–15682 (2024). https://doi.org/10.1021/acs.nanolett.4c04283
S. Zhou, X. Tao, Z. Liu, H. Wu, Z. Guan et al., Regulation of dihedral angle on molecular engineering for enhancing triboelectric performance. Adv. Funct. Mater. 34(40), 2405443 (2024). https://doi.org/10.1002/adfm.202405443
L. Liu, J. Li, W. Ou-Yang, Z. Guan, X. Hu et al., Ferromagnetic-assisted Maxwell’s displacement current based on iron/polymer composite for improving the triboelectric nanogenerator output. Nano Energy 96, 107139 (2022). https://doi.org/10.1016/j.nanoen.2022.107139
L. Liu, J. Li, Z. Tian, H. Wu, S. Zhou et al., Suppressing charge recombination by synergistic effect of ferromagnetic dual-tribolayer for high output triboelectric nanogenerator. Nano Today 57, 102319 (2024). https://doi.org/10.1016/j.nantod.2024.102319
X. Guan, B. Xu, J. Gong, Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy 70, 104516 (2020). https://doi.org/10.1016/j.nanoen.2020.104516
S. Shen, J. Yi, Z. Sun, Z. Guo, T. He et al., Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 14(1), 225 (2022). https://doi.org/10.1007/s40820-022-00965-8
D. Tan, Q. Zeng, X. Wang, S. Yuan, Y. Luo et al., Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Lett. 14(1), 124 (2022). https://doi.org/10.1007/s40820-022-00866-w
H. Zhou, X. Wei, B. Wang, E. Zhang, Z. Wu et al., A multi-layer stacked triboelectric nanogenerator based on a rotation-to-translation mechanism for fluid energy harvesting and environmental protection. Adv. Funct. Mater. 33(7), 2210920 (2023). https://doi.org/10.1002/adfm.202210920
Y.-J. Park, Y.G. Ro, Y.-E. Shin, C. Park, S. Na et al., Multi-layered triboelectric nanogenerators with controllable multiple spikes for low-power artificial synaptic devices. Adv. Sci. 10(36), 2304598 (2023). https://doi.org/10.1002/advs.202304598
Y. Zhang, L. Zhou, X. Gao, C. Liu, H. Chen et al., Performance-enhanced flexible piezoelectric nanogenerator via layer-by-layer assembly for self-powered vagal neuromodulation. Nano Energy 89, 106319 (2021). https://doi.org/10.1016/j.nanoen.2021.106319
Z. Zhou, X. Du, J. Luo, L. Yao, Z. Zhang et al., Coupling of interface effects and porous microstructures in translucent piezoelectric composites for enhanced energy harvesting and sensing. Nano Energy 84, 105895 (2021). https://doi.org/10.1016/j.nanoen.2021.105895
J. Xia, H. Lu, G. Chen, D. Lin, W. Yang et al., High performance piezoelectric nanogenerator by fiber microstructure engineering toward self-powered wireless sensing system. Nano Energy 128, 109901 (2024). https://doi.org/10.1016/j.nanoen.2024.109901
Y. Zou, J. Xu, K. Chen, J. Chen, Advances in nanostructures for high-performance triboelectric nanogenerators. Adv. Mater. Technol. 6(3), 2000916 (2021). https://doi.org/10.1002/admt.202000916
H. Lei, H. Ji, X. Liu, B. Lu, L. Xie et al., Self-assembled porous-reinforcement microstructure-based flexible triboelectric patch for remote healthcare. Nano-Micro Lett 15(1), 109 (2023). https://doi.org/10.1007/s40820-023-01081-x
V.-L. Trinh, C.-K. Chung, A facile method and novel mechanism using microneedle-structured PDMS for triboelectric generator applications. Small 13(29), 1700373 (2017). https://doi.org/10.1002/smll.201700373
Y.-H. Zhang, Y. Shao, C. Luo, H.-Z. Ma, H. Yu et al., Preparation of a high-performance chitosan-based triboelectric nanogenerator by regulating the surface microstructure and dielectric constant. J. Mater. Chem. C 11(1), 260–268 (2023). https://doi.org/10.1039/D2TC04262B
J.V. Vidal, V. Slabov, A.L. Kholkin, M.P.S. dos Santos, Hybrid triboelectric-electromagnetic nanogenerators for mechanical energy harvesting: a review. Nano-Micro Lett. 13(1), 199 (2021). https://doi.org/10.1007/s40820-021-00713-4
S. Panda, S. Hajra, Y. Oh, W. Oh, J. Lee et al., Hybrid nanogenerators for ocean energy harvesting: mechanisms, designs, and applications. Small 19(25), 2300847 (2023). https://doi.org/10.1002/smll.202300847
L. Liu, J. Li, Z. Guan, L. Zhao, Z. Tian et al., Ultra-high output hybrid nanogenerator for self-powered smart mariculture monitoring and warning system. Chem. Eng. J. 472, 145039 (2023). https://doi.org/10.1016/j.cej.2023.145039
C. Zhang, W. Yuan, B. Zhang, O. Yang, Y. Liu et al., High space efficiency hybrid nanogenerators for effective water wave energy harvesting. Adv. Funct. Mater. 32(18), 2111775 (2022). https://doi.org/10.1002/adfm.202111775
G. Khandelwal, N.P. Maria Joseph Raj, S.-J. Kim, Materials beyond conventional triboelectric series for fabrication and applications of triboelectric nanogenerators. Adv. Energy Mater. 11(33), 2101170 (2021). https://doi.org/10.1002/aenm.202101170
M. Sahu, S. Hajra, H.-G. Kim, H.-G. Rubahn, Y. Kumar Mishra et al., Additive manufacturing-based recycling of laboratory waste into energy harvesting device for self-powered applications. Nano Energy 88, 106255 (2021). https://doi.org/10.1016/j.nanoen.2021.106255
H. Pei, J. Jing, Y. Chen, J. Guo, N. Chen, 3D printing of PVDF-based piezoelectric nanogenerator from programmable metamaterial design: promising strategy for flexible electronic skin. Nano Energy 109, 108303 (2023). https://doi.org/10.1016/j.nanoen.2023.108303
B. Mondal, D. Mandal, Geometry-modulated all organic 3D printed smart PLA fibers for flextension amplified giant mechanical energy harvesting and machine learning assisted pressure mapping. Chem. Eng. J. 496, 154281 (2024). https://doi.org/10.1016/j.cej.2024.154281
F. Chen, Z. An, Y. Chen, Y. Li, X. Liu et al., Multi-material 3D printing of piezoelectric and triboelectric integrated nanogenerators with voxel structure. Chem. Eng. J. 471, 144770 (2023). https://doi.org/10.1016/j.cej.2023.144770
J. Shi, K. Ju, H. Chen, V. Orsat, A.P. Sasmito et al., Ultrahigh piezoelectricity in truss-based ferroelectric ceramics metamaterials. Adv. Funct. Mater. 35(12), 2417618 (2025). https://doi.org/10.1002/adfm.202417618
L. Wang, Y. Ma, K. Wang, Y. Ma, K. Wang et al., Fabrication of a pressure sensor using 3D printed light-cured piezoelectric composites. Sens. Actuat. A Phys. 362, 114586 (2023). https://doi.org/10.1016/j.sna.2023.114586
H. Pei, Y. Xie, Y. Xiong, Q. Lv, Y. Chen, A novel polarization-free 3D printing strategy for fabrication of poly (vinylidene fluoride) based nanocomposite piezoelectric energy harvester. Compos. Part B Eng. 225, 109312 (2021). https://doi.org/10.1016/j.compositesb.2021.109312
Z. Wang, J. Cheng, R. Hu, X. Yuan, Z. Yu et al., An approach combining additive manufacturing and dielectrophoresis for 3D-structured flexible lead-free piezoelectric composites for electromechanical energy conversion. J. Mater. Chem. A 9(47), 26767–26776 (2021). https://doi.org/10.1039/D1TA07475J
D. Li, P. Chen, H. Du, Z. Li, M. Li et al., 3D-printed shape memory and piezoelectric bifunctional thermoplastic polyurethane/polyvinylidene fluoride porous composite scaffold for bone regeneration. ACS Biomater. Sci. Eng. 10(11), 7100–7110 (2024). https://doi.org/10.1021/acsbiomaterials.4c01221
X. Chen, Q. Wang, S. Ma, J. Cui, C. Chen et al., 3D printing of microstructured polyacrylamide/sodium alginate/lithium chloride composite hydrogels for nanofriction generator and e-skin. Int. J. Biol. Macromol. 306(Pt 1), 141472 (2025). https://doi.org/10.1016/j.ijbiomac.2025.141472
Y. Tong, Z. Feng, J. Kim, J.L. Robertson, X. Jia et al., 3D printed stretchable triboelectric nanogenerator fibers and devices. Nano Energy 75, 104973 (2020). https://doi.org/10.1016/j.nanoen.2020.104973
H.-J. Yoon, D.-H. Kim, W. Seung, U. Khan, T.Y. Kim et al., 3D-printed biomimetic-villus structure with maximized surface area for triboelectric nanogenerator and dust filter. Nano Energy 63, 103857 (2019). https://doi.org/10.1016/j.nanoen.2019.103857
K. Chen, L. Zhang, X. Kuang, V. Li, M. Lei et al., Dynamic photomask-assisted direct ink writing multimaterial for multilevel triboelectric nanogenerator. Adv. Funct. Mater. 29(33), 1903568 (2019). https://doi.org/10.1002/adfm.201903568
B. Chen, W. Tang, T. Jiang, L. Zhu, X. Chen et al., Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy 45, 380–389 (2018). https://doi.org/10.1016/j.nanoen.2017.12.049
Q. Yi, X. Pei, P. Das, H. Qin, S.W. Lee et al., A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy 101, 107511 (2022). https://doi.org/10.1016/j.nanoen.2022.107511
B. Luo, S. Wang, X. Song, S. Chen, Q. Qi et al., An encapsulation-free and hierarchical porous triboelectric scaffold with dynamic hydrophilicity for efficient cartilage regeneration. Adv. Mater. 36(27), 2401009 (2024). https://doi.org/10.1002/adma.202401009
N. Cai, P. Sun, S. Jiang, Rapid prototyping and customizable multifunctional structures: 3D-printing technology promotes the rapid development of TENGs. J. Mater. Chem. A 9(30), 16255–16280 (2021). https://doi.org/10.1039/D1TA04092H
Z. Tian, J. Li, L. Liu, H. Wu, M. Xie et al., Flexible self-powered keypad with low crosstalk for neuropsychological assessment and intelligent systems. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202505900
A. Babu, I. Aazem, R. Walden, S. Bairagi, D.M. Mulvihill et al., Electrospun nanofiber based TENGs for wearable electronics and self-powered sensing. Chem. Eng. J. 452, 139060 (2023). https://doi.org/10.1016/j.cej.2022.139060
Y. Liu, J. Mo, Q. Fu, Y. Lu, N. Zhang et al., Enhancement of triboelectric charge density by chemical functionalization. Adv. Funct. Mater. 30(50), 2004714 (2020). https://doi.org/10.1002/adfm.202004714
D. Ji, Y. Lin, X. Guo, B. Ramasubramanian, R. Wang et al., Electrospinning of nanofibres. Nat. Rev. Meth. Primers 4, 1 (2024). https://doi.org/10.1038/s43586-023-00278-z
H. Wu, X. Liu, W. Li, S. Kang, B. Zhu et al., Surface manipulated triboelectric polymer films via direct fluorination towards high performance TENG. Nano Energy 123, 109441 (2024). https://doi.org/10.1016/j.nanoen.2024.109441
R. Tao, J. Shi, F. Granier, M. Moeini, A. Akbarzadeh et al., Multi-material fused filament fabrication of flexible 3D piezoelectric nanocomposite lattices for pressure sensing and energy harvesting applications. Appl. Mater. Today 29, 101596 (2022). https://doi.org/10.1016/j.apmt.2022.101596
X. Liu, J. Liu, L. He, Y. Shang, C. Zhang, 3D printed piezoelectric-regulable cells with customized electromechanical response distribution for intelligent sensing. Adv. Funct. Mater. 32(26), 2201274 (2022). https://doi.org/10.1002/adfm.202201274
N. Divakaran, J.P. Das, P.V. Ajay Kumar, S. Mohanty, A. Ramadoss et al., Comprehensive review on various additive manufacturing techniques and its implementation in electronic devices. J. Manuf. Syst. 62, 477–502 (2022). https://doi.org/10.1016/j.jmsy.2022.01.002
S. Propst, J. Mueller, Time code for multifunctional 3D printhead controls. Nat. Commun. 16(1), 1035 (2025). https://doi.org/10.1038/s41467-025-56140-1
S. Zhang, X. Zhou, Z. Nie, C. Su, Q. Lu et al., Smart lanceolate surface with fast fog-digesting performance for triboelectric energy harvesting. ACS Nano 18(32), 21316–21325 (2024). https://doi.org/10.1021/acsnano.4c05403
G. Khandelwal, R. Dahiya, Self-powered active sensing based on triboelectric generators. Adv. Mater. 34(33), 2200724 (2022). https://doi.org/10.1002/adma.202200724
L. Wang, H. Tang, Z. Zhang, Y. Pan, D. Luo et al., Smart nodding duck: a hybrid Halbach electromagnetic piezoelectric self-powered sensor for smart fisheries. Chem. Eng. J. 493, 152694 (2024). https://doi.org/10.1016/j.cej.2024.152694
S. Wu, F. Zabihi, R.Y. Yeap, M.R.Y. Darestani, A. Bahi et al., Cesium lead halide perovskite decorated polyvinylidene fluoride nanofibers for wearable piezoelectric nanogenerator yarns. ACS Nano 17(2), 1022–1035 (2023). https://doi.org/10.1021/acsnano.2c07320
Y. Ding, H. Guo, M. Ouyang, G. Meng, F. Chen et al., Humidity-resistant wearable triboelectric nanogenerator utilizing a bound-water-rich zwitterionic hydrogel with microphase-separated domains. Adv. Funct. Mater. 35(19), 2421164 (2025). https://doi.org/10.1002/adfm.202421164
J. Yi, K. Dong, S. Shen, Y. Jiang, X. Peng et al., Fully fabric-based triboelectric nanogenerators as self-powered human-machine interactive keyboards. Nano-Micro Lett. 13(1), 103 (2021). https://doi.org/10.1007/s40820-021-00621-7
H.-S. Wu, S.-M. Wei, S.-W. Chen, H.-C. Pan, W.-P. Pan et al., Metal-free perovskite piezoelectric nanogenerators for human–machine interfaces and self-powered electrical stimulation applications. Adv. Sci. 9(18), 2105974 (2022). https://doi.org/10.1002/advs.202105974
P. Awasthi, S.S. Banerjee, Fused deposition modeling of thermoplastic elastomeric materials: challenges and opportunities. Addit. Manuf. 46, 102177 (2021). https://doi.org/10.1016/j.addma.2021.102177
P.K. Penumakala, J. Santo, A. Thomas, A critical review on the fused deposition modeling of thermoplastic polymer composites. Compos. Part B Eng. 201, 108336 (2020). https://doi.org/10.1016/j.compositesb.2020.108336
S. Ding, H. Zhai, X. Tao, P. Yang, Z. Liu et al., A triboelectric-electromagnetic hybrid nanogenerator with magnetic coupling assisted waterproof encapsulation for long-lasting energy harvesting. Small 20(42), 2403879 (2024). https://doi.org/10.1002/smll.202403879
M.-L. Seol, J.-W. Han, D.-I. Moon, K.J. Yoon, C.S. Hwang et al., All-printed triboelectric nanogenerator. Nano Energy 44, 82–88 (2018). https://doi.org/10.1016/j.nanoen.2017.11.067
S. Xian, Y. Xu, Y. Li, Z. Wu, X. Xie et al., Flexible triboelectric sensor based on catalyst-diffusion self-encapsulated conductive liquid-metal-silicone ink for somatosensory soft robotic system. Adv. Funct. Mater. 35(2), 2412293 (2025). https://doi.org/10.1002/adfm.202412293
Y. Wang, H. Du, H. Yang, Z. Xi, C. Zhao et al., A rolling-mode triboelectric nanogenerator with multi-tunnel grating electrodes and opposite-charge-enhancement for wave energy harvesting. Nat. Commun. 15(1), 6834 (2024). https://doi.org/10.1038/s41467-024-51245-5
S. He, Z. Yu, H. Zhou, Z. Huang, Y. Zhang et al., Polymer tubes as carrier boats of thermosetting and powder materials based on 3D printing for triboelectric nanogenerator with microstructure. Nano Energy 52, 134–141 (2018). https://doi.org/10.1016/j.nanoen.2018.07.044
G. Yang, H. Wu, Y. Li, D. Wang, Y. Song et al., Direct ink writing of fluoropolymer/CNT-based superhydrophobic and corrosion-resistant electrodes for droplet energy harvesters and self-powered electronic skins. Nano Energy 86, 106095 (2021). https://doi.org/10.1016/j.nanoen.2021.106095
R. Zheng, Y. Chen, H. Chi, H. Qiu, H. Xue et al., 3D printing of a polydimethylsiloxane/polytetrafluoroethylene composite elastomer and its application in a triboelectric nanogenerator. ACS Appl. Mater. Interfaces 12(51), 57441–57449 (2020). https://doi.org/10.1021/acsami.0c18201
L. Liu, P. Huang, S. Xu, X. Chen, K. Fu et al., Self-polarized cellulose nanofiber-reinforced PVDF-based piezoelectric composites via direct-ink-writing 3D printing for pressure sensing and energy harvesting. Sens. Actuat. A Phys. 381, 116084 (2025). https://doi.org/10.1016/j.sna.2024.116084
X. Zhou, K. Parida, O. Halevi, Y. Liu, J. Xiong et al., All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure. Nano Energy 72, 104676 (2020). https://doi.org/10.1016/j.nanoen.2020.104676
S. Zhang, Z. Xia, Z. Liu, Q. Wang, Y. Yue et al., Magnetic/conductive/elastic multi-material 3D-printed self-powered sensing gloves for underwater/smoke environmental human-computer interaction. Chem. Eng. J. 463, 142388 (2023). https://doi.org/10.1016/j.cej.2023.142388
H. Li, X. Fang, R. Li, B. Liu, H. Tang et al., All-printed soft triboelectric nanogenerator for energy harvesting and tactile sensing. Nano Energy 78, 105288 (2020). https://doi.org/10.1016/j.nanoen.2020.105288
Q. Ge, Z. Li, Z. Wang, K. Kowsari, W. Zhang et al., Projection micro stereolithography based 3D printing and its applications. Int. J. Extrem. Manuf. 2(2), 022004 (2020). https://doi.org/10.1088/2631-7990/ab8d9a
Y.T. Kim, A. Ahmadianyazdi, A. Folch, A ‘print–pause–print’ protocol for 3D printing microfluidics using multimaterial stereolithography. Nat. Protoc. 18(4), 1243–1259 (2023). https://doi.org/10.1038/s41596-022-00792-6
S. Zakeri, M. Vippola, E. Levänen, A comprehensive review of the photopolymerization of ceramic resins used in stereolithography. Addit. Manuf. 35, 101177 (2020). https://doi.org/10.1016/j.addma.2020.101177
Y. Li, Z. Teng, Effect of printing orientation on mechanical properties of SLA 3D-printed photopolymer. Fatigue Fract. Eng. Mater. Struct. 47(5), 1531–1545 (2024). https://doi.org/10.1111/ffe.14265
S. Liu, W. Wang, W. Xu, L. Liu, W. Zhang et al., Continuous three-dimensional printing of architected piezoelectric sensors in minutes. Research 2022, 9790307 (2022). https://doi.org/10.34133/2022/9790307
X. Tian, S. Zhao, Y. Gao, H. Li, W. Cao et al., 3D printing-directed synergistic design of high-performance zinc-ion hybrid capacitors and nanogenerators for all-In-one self-powered energy wristband. Adv. Funct. Mater. 33(45), 2300381 (2023). https://doi.org/10.1002/adfm.202300381
C. Dong, A. Leber, D. Yan, H. Banerjee, S. Laperrousaz et al., 3D stretchable and self-encapsulated multimaterial triboelectric fibers. Sci. Adv. 8(45), eabo0869 (2022). https://doi.org/10.1126/sciadv.abo0869
Z. Liu, Y. Hu, X. Qu, Y. Liu, S. Cheng et al., A self-powered intracardiac pacemaker in swine model. Nat. Commun. 15(1), 507 (2024). https://doi.org/10.1038/s41467-023-44510-6
Z. Zhou, Z. Xu, L.N.Y. Cao, H. Sheng, C. Li et al., Triboelectricity based self-powered digital displacement sensor for aircraft flight actuation. Adv. Funct. Mater. 34(8), 2311839 (2024). https://doi.org/10.1002/adfm.202311839
Y. Li, Q. Mao, J. Yin, Y. Wang, J. Fu et al., Theoretical prediction and experimental validation of the digital light processing (DLP) working curve for photocurable materials. Addit. Manuf. 37, 101716 (2021). https://doi.org/10.1016/j.addma.2020.101716
M. Wang, W. Li, J. Hao, A. Gonzales 3rd., Z. Zhao et al., Molecularly cleavable bioinks facilitate high-performance digital light processing-based bioprinting of functional volumetric soft tissues. Nat. Commun. 13(1), 3317 (2022). https://doi.org/10.1038/s41467-022-31002-2
M. Caprioli, I. Roppolo, A. Chiappone, L. Larush, C.F. Pirri et al., 3D-printed self-healing hydrogels via digital light processing. Nat. Commun. 12(1), 2462 (2021). https://doi.org/10.1038/s41467-021-22802-z
A. Chiappone, I. Roppolo, E. Scavino, G. Mogli, C.F. Pirri et al., Three-dimensional printing of triboelectric nanogenerators by digital light processing technique for mechanical energy harvesting. ACS Appl. Mater. Interfaces 15(46), 53974–53983 (2023). https://doi.org/10.1021/acsami.3c13323
H. Yin, Y. Li, Z. Tian, Q. Li, C. Jiang et al., Ultra-high sensitivity anisotropic piezoelectric sensors for structural health monitoring and robotic perception. Nano-Micro Lett. 17(1), 42 (2024). https://doi.org/10.1007/s40820-024-01539-6
H. Cui, R. Hensleigh, D. Yao, D. Maurya, P. Kumar et al., Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nat. Mater. 18(3), 234–241 (2019). https://doi.org/10.1038/s41563-018-0268-1
L. Liu, J. Li, Z. Tian, X. Hu, H. Wu et al., Self-powered porous polymer sensors with high sensitivity for machine learning-assisted motion and rehabilitation monitoring. Nano Energy 128, 109817 (2024). https://doi.org/10.1016/j.nanoen.2024.109817
Y. Jeong, L. Won, L. Pyo, B. Min, Remarkable output power enhancement of sliding-mode triboelectric nanogenerator through direct metal-to-metal contact with the ground. Nano Energy 57, 293–299 (2019). https://doi.org/10.1016/j.nanoen.2018.12.034
S. Lee, J.-W. Park, Fingerprint-inspired triboelectric nanogenerator with a geometrically asymmetric electrode design for a self-powered dynamic pressure sensor. Nano Energy 101, 107546 (2022). https://doi.org/10.1016/j.nanoen.2022.107546
Q. Mu, L. Wang, C.K. Dunn, X. Kuang, F. Duan et al., Digital light processing 3D printing of conductive complex structures. Addit. Manuf. 18, 74–83 (2017). https://doi.org/10.1016/j.addma.2017.08.011
C.-L. Liu, Q. Du, C. Zhang, J.-M. Wu, G. Zhang et al., Fabrication and properties of BaTiO3 ceramics via digital light processing for piezoelectric energy harvesters. Addit. Manuf. 56, 102940 (2022). https://doi.org/10.1016/j.addma.2022.102940
H. Li, R. Li, X. Fang, H. Jiang, X. Ding et al., 3D printed flexible triboelectric nanogenerator with viscoelastic inks for mechanical energy harvesting. Nano Energy 58, 447–454 (2019). https://doi.org/10.1016/j.nanoen.2019.01.066
H. Qiao, Y. Zhang, Z. Huang, Y. Wang, D. Li et al., 3D printing individualized triboelectric nanogenerator with macro-pattern. Nano Energy 50, 126–132 (2018). https://doi.org/10.1016/j.nanoen.2018.04.071
P. Geng, J. Zhao, W. Wu, W. Ye, Y. Wang et al., Effects of extrusion speed and printing speed on the 3D printing stability of extruded PEEK filament. J. Manuf. Process. 37, 266–273 (2019). https://doi.org/10.1016/j.jmapro.2018.11.023
Z. Liu, S. Li, J. Zhu, L. Mi, G. Zheng, Fabrication of β-phase-enriched PVDF sheets for self-powered piezoelectric sensing. ACS Appl. Mater. Interfaces 14(9), 11854–11863 (2022). https://doi.org/10.1021/acsami.2c01611
A.A. Ansari, M. Kamil, Effect of print speed and extrusion temperature on properties of 3D printed PLA using fused deposition modeling process. Mater. Today Proc. 45, 5462–5468 (2021). https://doi.org/10.1016/j.matpr.2021.02.137
G. Percoco, L. Arleo, G. Stano, F. Bottiglione, Analytical model to predict the extrusion force as a function of the layer height, in extrusion based 3D printing. Addit. Manuf. 38, 101791 (2021). https://doi.org/10.1016/j.addma.2020.101791
T. Jiang, B. Guo, Y. Yu, S. Gao, B. Yan et al., Effect of model exposure time on the performance of photocured digital light processing 3D printing. J. Mater. Eng. Perform. (2025). https://doi.org/10.1007/s11665-025-11030-x
M. Shen, W. Zhao, B. Xing, Y. Sing, S. Gao et al., Effects of exposure time and printing angle on the curing characteristics and flexural strength of ceramic samples fabricated via digital light processing. Ceram. Int. 46(15), 24379–24384 (2020). https://doi.org/10.1016/j.ceramint.2020.06.220
R.Y. Tay, Y. Song, D.R. Yao, W. Gao, Direct-ink-writing 3D-printed bioelectronics. Mater. Today 71, 135–151 (2023). https://doi.org/10.1016/j.mattod.2023.09.006
M.S. Khan, S.B. Mishra, Minimizing surface roughness of ABS-FDM build parts: an experimental approach. Mater. Today Proc. 26, 1557–1566 (2020). https://doi.org/10.1016/j.matpr.2020.02.320
A. Selvam, S. Mayilswamy, R. Whenish, K. Naresh, V. Shanmugam et al., Multi-objective optimization and prediction of surface roughness and printing time in FFF printed ABS polymer. Sci. Rep. 12(1), 16887 (2022). https://doi.org/10.1038/s41598-022-20782-8
D. Pramanik, A. Mandal, A.S. Kuar, An experimental investigation on improvement of surface roughness of ABS on fused deposition modelling process. Mater. Today Proc. 26, 860–863 (2020). https://doi.org/10.1016/j.matpr.2020.01.054
J. Khodaii, A. Rahimi, Improving the surface roughness in stereolithography by controlling surface angle, hatch spaces, and postcuring time. Eng. Rep. 2(6), e12193 (2020). https://doi.org/10.1002/eng2.12193
C. Li, S. Zhang, J. Jiang, S. Wang, S. He et al., Laser-induced adhesives with excellent adhesion enhancement and reduction capabilities for transfer printing of microchips. Sci. Adv. 10(49), eads9226 (2024). https://doi.org/10.1126/sciadv.ads9226
F. Chen, M. Gai, N. Sun, Z. Xu, L. Liu et al., Laser-driven hierarchical “gas-needles” for programmable and high-precision proximity transfer printing of microchips. Sci. Adv. 9(43), eadk0244 (2023). https://doi.org/10.1126/sciadv.adk0244
A.P. Dhand, M.D. Davidson, H.M. Zlotnick, T.J. Kolibaba, J.P. Killgore et al., Additive manufacturing of highly entangled polymer networks. Science 385(6708), 566–572 (2024). https://doi.org/10.1126/science.adn6925
C.-F. He, T.-H. Qiao, G.-H. Wang, Y. Sun, Y. He, High-resolution projection-based 3D bioprinting. Nat. Rev. Bioeng. 3(2), 143–158 (2025). https://doi.org/10.1038/s44222-024-00218-w
X. Feng, L. Wang, Z. Xue, C. Xie, J. Han et al., Melt electrowriting enabled 3D liquid crystal elastomer structures for cross-scale actuators and temperature field sensors. Sci. Adv. 10(10), eadk3854 (2024). https://doi.org/10.1126/sciadv.adk3854
M.P. de Beer, H.L. van der Laan, M.A. Cole, R.J. Whelan, M.A. Burns et al., Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning. Sci. Adv. 5(1), eaau8723 (2019). https://doi.org/10.1126/sciadv.aau8723
Y. Ra, M. Song, D. Lee, S. Jang, Y.-S. Kim et al., Recent progress in triboelectric platforms: engineering materials to industrial applications from the perspective of manufacturing. Int. J. Extrem. Manuf. 7(3), 032007 (2025). https://doi.org/10.1088/2631-7990/adac18
D. Choi, Y. Lee, Z.-H. Lin, S. Cho, M. Kim et al., Recent advances in triboelectric nanogenerators: from technological progress to commercial applications. ACS Nano 17(12), 11087–11219 (2023). https://doi.org/10.1021/acsnano.2c12458
N.C. Brown, D.C. Ames, J. Mueller, Multimaterial extrusion 3D printing printheads. Nat. Rev. Mater. (2025). https://doi.org/10.1038/s41578-025-00809-y
P. Chesser, B. Post, A. Roschli, C. Carnal, R. Lind et al., Extrusion control for high quality printing on big area additive manufacturing (BAAM) systems. Addit. Manuf. 28, 445–455 (2019). https://doi.org/10.1016/j.addma.2019.05.020
J.R. Raney, B.G. Compton, J. Mueller, T.J. Ober, K. Shea et al., Rotational 3d printing of damage-tolerant composites with programmable mechanics. Proc. Natl. Acad. Sci. U. S. A. 115(6), 1198–1203 (2018). https://doi.org/10.1073/pnas.1715157115
J.K. Wilt, N.S. Hmeidat, J.W. Bohling, B.G. Compton, High through-thickness thermal conductivity of 3D-printed composites via rotational direct ink writing. Addit. Manuf. Lett. 7, 100167 (2023). https://doi.org/10.1016/j.addlet.2023.100167
C. Zhou, Y. Yang, J. Wang, Q. Wu, Z. Gu et al., Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nat. Commun. 12, 5072 (2021). https://doi.org/10.1038/s41467-021-25386-w
Y. Kim, H. Yuk, R. Zhao, S.A. Chester, X. Zhao, Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558(7709), 274–279 (2018). https://doi.org/10.1038/s41586-018-0185-0
M.A. Skylar-Scott, J. Mueller, C.W. Visser, J.A. Lewis, Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 575(7782), 330–335 (2019). https://doi.org/10.1038/s41586-019-1736-8
J. Mueller, J.R. Raney, K. Shea, J.A. Lewis, Architected lattices with high stiffness and toughness via multicore–shell 3D printing. Adv. Mater. 30(12), 1705001 (2018). https://doi.org/10.1002/adma.201705001
J. Han, D. Xin, J. Pang, L. Zhao, D. Sun et al., Laser-assisted manufacturing for sensors. Int. J. Extrem. Manuf. 7(4), 042008 (2025). https://doi.org/10.1088/2631-7990/adbb35
A. Camposeo, L. Persano, M. Farsari, D. Pisignano, Additive manufacturing: applications and directions in photonics and optoelectronics. Adv. Opt. Mater. 7(1), 1800419 (2019). https://doi.org/10.1002/adom.201800419
B.C. Stump, B.T. Gibson, J.T. Reynolds, C.C. Wade, M.C. Borish et al., Load balancing for multi-beam additive manufacturing systems. Addit. Manuf. 74, 103708 (2023). https://doi.org/10.1016/j.addma.2023.103708
J.T. Toombs, M. Luitz, C.C. Cook, S. Jenne, C.C. Li et al., Volumetric additive manufacturing of silica glass with microscale computed axial lithography. Science 376(6590), 308–312 (2022). https://doi.org/10.1126/science.abm6459
Y. Shan, Y. Shui, J. Hua, H. Mao, Additive manufacturing of non-planar layers using isothermal surface slicing. J. Manuf. Process. 86, 326–335 (2023). https://doi.org/10.1016/j.jmapro.2022.12.054
J. Huang, H.O.T. Ware, R. Hai, G. Shao, C. Sun, Conformal geometry and multimaterial additive manufacturing through freeform transformation of building layers. Adv. Mater. 33(11), 2005672 (2021). https://doi.org/10.1002/adma.202005672
D. Zhao, W. Guo, Mixed-layer adaptive slicing for robotic additive manufacturing (AM) based on decomposing and regrouping. J. Intell. Manuf. 31(4), 985–1002 (2020). https://doi.org/10.1007/s10845-019-01490-z
T. Liu, P. Tao, X. Wang, H. Wang, M. He et al., Ultrahigh-printing-speed photoresists for additive manufacturing. Nat. Nanotechnol. 19(1), 51–57 (2024). https://doi.org/10.1038/s41565-023-01517-w
I. Pchelintsev, R. Karamov, A. Tikhonov, O. Dubinin, I. Shishkovsky et al., Fabrication of hierarchical lattice structures from zirconia stabilized ceramics by micro-SLA 3D printing approach. Ceram. Int. 49(18), 29409–29416 (2023). https://doi.org/10.1016/j.ceramint.2023.05.264
A.K. Nguyen, R.J. Narayan, Two-photon polymerization for biological applications. Mater. Today 20(6), 314–322 (2017). https://doi.org/10.1016/j.mattod.2017.06.004
A. Ghaznavi, J. Xu, C.U. Lee, S.A. Hara, 3D-printed hollow microneedles array with luer lock connection for facile and painless intradermal injection: a proof of concept. Adv. Mater. Technol. 9(18), 2400286 (2024). https://doi.org/10.1002/admt.202400286
H. Yu, H. Guo, J. Wang, T. Zhao, W. Zou et al., Skin-inspired capacitive flexible tactile sensor with an asymmetric structure for detecting directional shear forces. Adv. Sci. 11(6), 2305883 (2024). https://doi.org/10.1002/advs.202305883
L. Yue, X. Sun, L. Yu, M. Li, S.M. Montgomery et al., Cold-programmed shape-morphing structures based on grayscale digital light processing 4D printing. Nat. Commun. 14(1), 5519 (2023). https://doi.org/10.1038/s41467-023-41170-4
R. Sinha, M. Cámara-Torres, P. Scopece, E. Verga Falzacappa, A. Patelli et al., A hybrid additive manufacturing platform to create bulk and surface composition gradients on scaffolds for tissue regeneration. Nat. Commun. 12(1), 500 (2021). https://doi.org/10.1038/s41467-020-20865-y
X. Peng, X. Kuang, D.J. Roach, Y. Wang, C.M. Hamel et al., Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices. Addit. Manuf. 40, 101911 (2021). https://doi.org/10.1016/j.addma.2021.101911
M. Huang, M. Zhu, X. Feng, Z. Zhang, T. Tang et al., Intelligent cubic-designed piezoelectric node (iCUPE) with simultaneous sensing and energy harvesting ability toward self-sustained artificial intelligence of things (AIoT). ACS Nano 17(7), 6435–6451 (2023). https://doi.org/10.1021/acsnano.2c11366
Y. Xiong, Y. Tang, Q. Zhou, Y. Ma, D.W. Rosen, Intelligent additive manufacturing and design: state of the art and future perspectives. Addit. Manuf. 59, 103139 (2022). https://doi.org/10.1016/j.addma.2022.103139
Z. Jin, Z. Zhang, K. Demir, G.X. Gu, Machine learning for advanced additive manufacturing. Matter 3(5), 1541–1556 (2020). https://doi.org/10.1016/j.matt.2020.08.023
M. Shirmohammadi, S.J. Goushchi, P.M. Keshtiban, Optimization of 3D printing process parameters to minimize surface roughness with hybrid artificial neural network model and p swarm algorithm. Prog. Addit. Manuf. 6(2), 199–215 (2021). https://doi.org/10.1007/s40964-021-00166-6
W.L. Ng, G.L. Goh, G.D. Goh, J.S.J. Ten, W.Y. Yeong, Progress and opportunities for machine learning in materials and processes of additive manufacturing. Adv. Mater. 36(34), 2310006 (2024). https://doi.org/10.1002/adma.202310006
H. Wang, Z. Zhao, L. Zhang, Z. Su, C. Chen et al., High-performance low-temperature self-healing bio-based polyurethane triboelectric nanogenerator for wireless intelligent target systems. Nano Energy 133, 110438 (2025). https://doi.org/10.1016/j.nanoen.2024.110438
S. Liu, F. Manshaii, J. Chen, X. Wang, S. Wang et al., Unleashing the potential of electroactive hybrid biomaterials and self-powered systems for bone therapeutics. Nano-Micro Lett 17(1), 44 (2024). https://doi.org/10.1007/s40820-024-01536-9
H.L. Wang, Z.H. Guo, X. Pu, Z.L. Wang, Ultralight iontronic triboelectric mechanoreceptor with high specific outputs for epidermal electronics. Nano-Micro Lett. 14(1), 86 (2022). https://doi.org/10.1007/s40820-022-00834-4