Emerging Role of 2D Materials in Photovoltaics: Efficiency Enhancement and Future Perspectives
Corresponding Author: Zhiming Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 32
Abstract
The growing global energy demand and worsening climate change highlight the urgent need for clean, efficient and sustainable energy solutions. Among emerging technologies, atomically thin two-dimensional (2D) materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties, high surface area and efficient charge transport capabilities. This review explores recent progress in photovoltaics incorporating 2D materials, focusing on their application as hole and electron transport layers to optimize bandgap alignment, enhance carrier mobility and improve chemical stability. A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials, with a particular focus on strategies to enhance crystallization, passivate defects and improve overall cell efficiency. Additionally, the application of 2D materials in organic solar cells is examined, particularly for reducing recombination losses and enhancing charge extraction through work function modification. Their impact on dye-sensitized solar cells, including catalytic activity and counter electrode performance, is also explored. Finally, the review outlines key challenges, material limitations and performance metrics, offering insight into the future development of next-generation photovoltaic devices encouraged by 2D materials.
Highlights:
1 A novel strategy employs 2D materials to construct cascaded band alignment, enabling efficient charge transport and reducing energy loss.
2 An innovative approach utilizes donor–acceptor blends; active layer morphology and interfacial engineering minimize charge recombination to enable high performance and long-term device stability.
3 This review uniquely consolidates the roles of 2D materials as electron transport layers and hole transport layers across three major classes of solar cells: perovskite, organic and dye-sensitized solar cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.D. Daudu, A. Adefemi, O.O. Adekoya, C.E. Okoli, O.B. Ayorinde et al., Lng and climate change: evaluating its carbon footprint in comparison to other fossil fuels. Eng. Sci. Technol. J. 5(2), 412–426 (2024). https://doi.org/10.51594/estj.v5i2.803
- R. Murphy, What is undermining climate change mitigation? How fossil-fuelled practices challenge low-carbon transitions. Energy Res. Soc. Sci. 108, 103390 (2024). https://doi.org/10.1016/j.erss.2023.103390
- E.A. Etukudoh, A. Fabuyide, K.I. Ibekwe, S. Sonko, V.I. Ilojianya, Electrical engineering in renewable energy systems: a review of design and integration challenges. Eng. Sci. Technol. J. 5(1), 231–244 (2024). https://doi.org/10.51594/estj.v5i1.746
- Q. Hassan, S. Algburi, A.Z. Sameen, T.J. Al-Musawi, A.K. Al-Jiboory et al., A comprehensive review of international renewable energy growth. Energy Built Environ. (2024). https://doi.org/10.1016/j.enbenv.2023.12.002
- D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25(5), 676–677 (1954). https://doi.org/10.1063/1.1721711
- B.Y.H. Liu, R.C. Jordan, The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol. Energy 4(3), 1–19 (1960). https://doi.org/10.1016/0038-092X(60)90062-1
- W. Liu, Y. Liu, Z. Yang, C. Xu, X. Li et al., Flexible solar cells based on foldable silicon wafers with blunted edges. Nature 617(7962), 717–723 (2023). https://doi.org/10.1038/s41586-023-05921-z
- W. Chai, W. Zhu, H. Xi, D. Chen, H. Dong et al., Buried interface regulation with TbCl3 for highly-efficient all-inorganic perovskite/silicon tandem solar cells. Nano-Micro Lett. 17(1), 244 (2025). https://doi.org/10.1007/s40820-025-01763-8
- S. Yoo, B. Domercq, B. Kippelen, Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions. Appl. Phys. Lett. 85(22), 5427–5429 (2004). https://doi.org/10.1063/1.1829777
- J. Gong, J. Liang, K. Sumathy, Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renew. Sustain. Energy Rev. 16(8), 5848–5860 (2012). https://doi.org/10.1016/j.rser.2012.04.044
- N. Tétreault, M. Grätzel, Novel nanostructures for next generation dye-sensitized solar cells. Energy Environ. Sci. 5(9), 8506 (2012). https://doi.org/10.1039/c2ee03242b
- X. Li, S. Aftab, S. Hussain, F. Kabir, A.M.A. Henaish et al., Dimensional diversity (0D, 1D, 2D, and 3D) in perovskite solar cells: exploring the potential of mixed-dimensional integrations. J. Mater. Chem. A 12(8), 4421–4440 (2024). https://doi.org/10.1039/d3ta06953b
- G. Dastgeer, S. Nisar, M.W. Zulfiqar, J. Eom, M. Imran et al., A review on recent progress and challenges in high-efficiency perovskite solar cells. Nano Energy 132, 110401 (2024). https://doi.org/10.1016/j.nanoen.2024.110401
- J. Keller, K. Kiselman, O. Donzel-Gargand, N.M. Martin, M. Babucci et al., High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 23.6% efficiency. Nat. Energy 9(4), 467–478 (2024). https://doi.org/10.1038/s41560-024-01472-3
- M. Schmid, M. Ketharan, J. Lucaßen, I. Kardosh, Sequentially PVD-grown indium and gallium selenides under compositional and layer thickness variation: preparation, structural and optical characterization. Adv. Mater. Interfaces 11(15), 2301086 (2024). https://doi.org/10.1002/admi.202301086
- M. Hao, S. Ding, S. Gaznaghi, H. Cheng, L. Wang, Perovskite quantum dot solar cells: current status and future outlook. ACS Energy Lett. 9(1), 308–322 (2024). https://doi.org/10.1021/acsenergylett.3c01983
- Y. Wei, C. Ding, G. Shi, H. Bi, Y. Li et al., Stronger coupling of quantum dots in hole transport layer through intermediate ligand exchange to enhance the efficiency of PbS quantum dot solar cells. Small Meth. 8(12), 2400015 (2024). https://doi.org/10.1002/smtd.202400015
- H. Asghar, T. Riaz, H.A. Mannan, S.M. Khan, O.M. Butt, Rheology and modeling insights into dye-sensitized solar cells (DSSCs) material: Bridging the gap to solar energy advancements. Renew. Sustain. Energy Rev. 193, 114298 (2024). https://doi.org/10.1016/j.rser.2024.114298
- P.S. Saud, A. Bist, A.A. Kim, A. Yousef, A. Abutaleb et al., Dye-sensitized solar cells: Fundamentals, recent progress, and Optoelectrical properties improvement strategies. Opt. Mater. 150, 115242 (2024). https://doi.org/10.1016/j.optmat.2024.115242
- J. Yi, G. Zhang, H. Yu, H. Yan, Advantages, challenges and molecular design of different material types used in organic solar cells. Nat. Rev. Mater. 9(1), 46–62 (2024). https://doi.org/10.1038/s41578-023-00618-1
- H. Tang, Y. Bai, H. Zhao, X. Qin, Z. Hu et al., Interface engineering for highly efficient organic solar cells. Adv. Mater. 36(16), 2212236 (2024). https://doi.org/10.1002/adma.202212236
- G. Dastgeer, S. Nisar, A. Rasheed, K. Akbar, V.D. Chavan et al., Atomically engineered, high-speed non-volatile flash memory device exhibiting multibit data storage operations. Nano Energy 119, 109106 (2024). https://doi.org/10.1016/j.nanoen.2023.109106
- G. Dastgeer, S. Nisar, Z.M. Shahzad, A. Rasheed, D.-K. Kim et al., Low-power negative-differential-resistance device for sensing the selective protein via supporter molecule engineering. Adv. Sci. 10(1), 2204779 (2023). https://doi.org/10.1002/advs.202204779
- S. Nisar, B. Basha, G. Dastgeer, Z.M. Shahzad, H. Kim et al., A novel biosensing approach: improving SnS2 FET sensitivity with a tailored supporter molecule and custom substrate. Adv. Sci. 10(33), 2303654 (2023). https://doi.org/10.1002/advs.202303654
- A.G. Ricciardulli, P.W.M. Blom, Solution-processable 2D materials applied in light-emitting diodes and solar cells. Adv. Mater. Technol. 5(8), 1900972 (2020). https://doi.org/10.1002/admt.201900972
- F. Wang, S. Bai, W. Tress, A. Hagfeldt, F. Gao, Defects engineering for high-performance perovskite solar cells. NPJ Flex. Electron. 2, 22 (2018). https://doi.org/10.1038/s41528-018-0035-z
- Z. Ni, L. Zhao, Z. Shi, A. Singh, J. Wiktor et al., Identification and suppression of point defects in bromide perovskite single crystals enabling gamma-ray spectroscopy. Adv. Mater. 36(35), 2406193 (2024). https://doi.org/10.1002/adma.202406193
- X. Liao, M. Liu, H. Pei, P. Zhu, X. Xia et al., Regulating crystallinity mismatch between donor and acceptor to improve exciton/charge transport in efficient organic solar cells. Angew. Chem. Int. Ed. 63(11), e202318595 (2024). https://doi.org/10.1002/anie.202318595
- Z. Wang, Y. Guo, X. Liu, W. Shu, G. Han et al., The role of interfacial donor-acceptor percolation in efficient and stable all-polymer solar cells. Nat. Commun. 15(1), 1212 (2024). https://doi.org/10.1038/s41467-024-45455-0
- M. Shoaib, S. Siddique, R. Nazar, A. Ishaq, A. Abrar et al., Novel 2D heterostructure composites of V2C MXene/TiO2 and graphene/TiO2 for platinum replacement in dye-sensitized solar cells. Diam. Relat. Mater. 148, 111498 (2024). https://doi.org/10.1016/j.diamond.2024.111498
- M.A. Abbood, E.A.M. Saleh, A. Kumar, P. Rodrigues, S. Askar et al., Enhancing dye-sensitized solar cell performance by employing an innovative WSe2: Zn counter electrode for improved electrocatalytic activity. Mater. Sci. Semicond. Process. 171, 108015 (2024). https://doi.org/10.1016/j.mssp.2023.108015
- H. Zai, P. Yang, J. Su, R. Yin, R. Fan et al., Wafer-scale monolayer MoS2 film integration for stable, efficient perovskite solar cells. Science 387(6730), 186–192 (2025). https://doi.org/10.1126/science.ado2351
- Z. Qin, Y. Chen, X. Wang, X. Liu, Y. Miao et al., Incorporation of two-dimensional WSe2 into MAPbI3 perovskite for efficient and stable photovoltaics. J. Phys. Chem. Lett. 12(29), 6883–6888 (2021). https://doi.org/10.1021/acs.jpclett.1c02012
- E. Aydin, J.K. El-Demellawi, E. Yarali, F. Aljamaan, S. Sansoni et al., Scaled deposition of Ti3C2Tx MXene on complex surfaces: application assessment as rear electrodes for silicon heterojunction solar cells. ACS Nano 16(2), 2419–2428 (2022). https://doi.org/10.1021/acsnano.1c08871
- S. Lin, S. Liu, Z. Yang, Y. Li, T.W. Ng et al., Solution-processable ultrathin black phosphorus as an effective electron transport layer in organic photovoltaics. Adv. Funct. Mater. 26(6), 864–871 (2016). https://doi.org/10.1002/adfm.201503273
- G. Yue, J.-Y. Lin, S.-Y. Tai, Y. Xiao, J. Wu, A catalytic composite film of MoS2/graphene flake as a counter electrode for Pt-free dye-sensitized solar cells. Electrochim. Acta 85, 162–168 (2012). https://doi.org/10.1016/j.electacta.2012.08.040
- Y. Li, B. Huang, X. Zhang, J. Ding, Y. Zhang et al., Lifetime over 10000 hours for organic solar cells with Ir/IrO(x) electron-transporting layer. Nat. Commun. 14(1), 1241 (2023). https://doi.org/10.1038/s41467-023-36937-8
- https://www.Nrel.Gov/pv/cell-efficiency
- S. Yu, X. Wu, Y. Wang, X. Guo, L. Tong, 2D materials for optical modulation: challenges and opportunities. Adv. Mater. 29(14), 1606128 (2017). https://doi.org/10.1002/adma.201606128
- G. Dastgeer, Z.M. Shahzad, H. Chae, Y.H. Kim, B.M. Ko et al., Bipolar junction transistor exhibiting excellent output characteristics with a prompt response against the selective protein. Adv. Funct. Mater. 32(38), 2204781 (2022). https://doi.org/10.1002/adfm.202204781
- L. Duan, D. Walter, N. Chang, J. Bullock, D. Kang et al., Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 8(4), 261–281 (2023). https://doi.org/10.1038/s41578-022-00521-1
- Q. Wang, Y. Qin, M. Li, L. Ye, Y. Geng, Molecular engineering and morphology control of polythiophene: nonfullerene acceptor blends for high-performance solar cells. Adv. Energy Mater. 10(45), 2002572 (2020). https://doi.org/10.1002/aenm.202002572
- S. Mahalingam, A. Manap, A. Omar, F.W. Low, N.F. Afandi et al., Functionalized graphene quantum dots for dye-sensitized solar cell: Key challenges, recent developments and future prospects. Renew. Sustain. Energy Rev. 144, 110999 (2021). https://doi.org/10.1016/j.rser.2021.110999
- H. Sung, N. Ahn, M.S. Jang, J.-K. Lee, H. Yoon et al., Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 6(3), 1501873 (2016). https://doi.org/10.1002/aenm.201501873
- X. Zhao, L. Tao, H. Li, W. Huang, P. Sun et al., Efficient planar perovskite solar cells with improved fill factor via interface engineering with graphene. Nano Lett. 18(4), 2442–2449 (2018). https://doi.org/10.1021/acs.nanolett.8b00025
- H. Park, S. Chang, X. Zhou, J. Kong, T. Palacios et al., Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Lett. 14(9), 5148–5154 (2014). https://doi.org/10.1021/nl501981f
- C. Cavallo, F. Di Pascasio, A. Latini, M. Bonomo, D. Dini, Nanostructured semiconductor materials for dye-sensitized solar cells. J. Nanomater. 2017, 5323164 (2017). https://doi.org/10.1155/2017/5323164
- Y. Areerob, W.-C. Oh, C. Hamontree, T. Nachaithong, S. Nijpanich et al., A novel of WS2–MoCuO3 supported with graphene quantum dot as counter electrode for dye-sensitized solar cells application. Sci. Rep. 13, 7762 (2023). https://doi.org/10.1038/s41598-023-34637-3
- S. Pescetelli, A. Agresti, G. Viskadouros, S. Razza, K. Rogdakis et al., Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm. Nat. Energy 7(7), 597–607 (2022). https://doi.org/10.1038/s41560-022-01035-4
- C. Zhang, C. Gong, Y. Nie, K.-A. Min, C. Liang et al., Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in Van der Waals heterostructures. 2D Mater. 4(1), 015026 (2017). https://doi.org/10.1088/2053-1583/4/1/015026
- https://sdgs.Un.Org/goals
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- A. Castellanos-Gomez, Why all the fuss about 2D semiconductors? Nat. Photonics 10(4), 202–204 (2016). https://doi.org/10.1038/nphoton.2016.53
- M. Alzaid, Recent progress in the role of two-dimensional materials as an efficient charge transport layer in perovskite solar cells. Int. J. Energy Res. 45(9), 12598–12613 (2021). https://doi.org/10.1002/er.6672
- G. Schusteritsch, M. Uhrin, C.J. Pickard, Single-layered Hittorf’s phosphorus: a wide-bandgap high mobility 2D material. Nano Lett. 16(5), 2975–2980 (2016). https://doi.org/10.1021/acs.nanolett.5b05068
- X. Zhao, S. Liu, H. Zhang, S.-Y. Chang, W. Huang et al., 20% efficient perovskite solar cells with 2D electron transporting layer. Adv. Funct. Mater. 29(4), 1805168 (2019). https://doi.org/10.1002/adfm.201805168
- W. Yang, B. Ding, Z. Lin, J. Sun, Y. Meng et al., Visualizing interfacial energy offset and defects in efficient 2D/3D heterojunction perovskite solar cells and modules. Adv. Mater. 35(35), 2302071 (2023). https://doi.org/10.1002/adma.202302071
- T. Arfin, S. Athar, Graphene for advanced organic photovoltaics, in Nanomaterials: Biomedical, Environmental, and Engineering Applications, 93–103 (2018). https://doi.org/10.1002/9781119370383.ch3
- N.N. Rosli, M.A. Ibrahim, N. Ahmad Ludin, M.A. Mat Teridi, K. Sopian, A review of graphene based transparent conducting films for use in solar photovoltaic applications. Renew. Sustain. Energy Rev. 99, 83–99 (2019). https://doi.org/10.1016/j.rser.2018.09.011
- Z. Jiang, Y. Zhang, H.L. Stormer, P. Kim, Quantum hall states near the charge-neutral Dirac point in graphene. Phys. Rev. Lett. 99(10), 106802 (2007). https://doi.org/10.1103/physrevlett.99.106802
- A.V. Kolobov, J. Tominaga, Two-Dimensional Transition-Metal Dichalcogenides (Springer, Berlin, 2016). https://doi.org/10.1007/978-3-319-31450-1
- D. Voiry, A. Mohite, M. Chhowalla, Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44(9), 2702–2712 (2015). https://doi.org/10.1039/c5cs00151j
- S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
- W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20(3), 116–130 (2017). https://doi.org/10.1016/j.mattod.2016.10.002
- G. Wang, C. Robert, A. Suslu, B. Chen, S. Yang et al., Spin-orbit engineering in transition metal dichalcogenide alloy monolayers. Nat. Commun. 6, 10110 (2015). https://doi.org/10.1038/ncomms10110
- K. Zollner, P.E.F. Junior, J. Fabian, Strain-tunable orbital, spin-orbit, and optical properties of monolayer transition-metal dichalcogenides. Phys. Rev. B 100(19), 195126 (2019). https://doi.org/10.1103/physrevb.100.195126
- Y. Ye, J. Xiao, H. Wang, Z. Ye, H. Zhu et al., Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat. Nanotechnol. 11(7), 598–602 (2016). https://doi.org/10.1038/nnano.2016.49
- S. Zhao, X. Li, B. Dong, H. Wang, H. Wang et al., Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: status and challenges. Rep. Prog. Phys. 84(2), 026401 (2021). https://doi.org/10.1088/1361-6633/abdb98
- Y. Tatsumi, K. Ghalamkari, R. Saito, Laser energy dependence of valley polarization in transition-metal dichalcogenides. Phys. Rev. B 94(23), 235408 (2016). https://doi.org/10.1103/physrevb.94.235408
- G. Long, D. Maryenko, J. Shen, S. Xu, J. Hou et al., Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett. 16(12), 7768–7773 (2016). https://doi.org/10.1021/acs.nanolett.6b03951
- X. Liu, C.R. Ryder, S.A. Wells, M.C. Hersam, Resolving the in-plane anisotropic properties of black phosphorus. Small Meth. 1(6), 1700143 (2017). https://doi.org/10.1002/smtd.201700143
- Z. Luo, J. Maassen, Y. Deng, Y. Du, R.P. Garrelts et al., Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015). https://doi.org/10.1038/ncomms9572
- S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee et al., Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun. 6, 8573 (2015). https://doi.org/10.1038/ncomms9573
- J. Guan, D. Liu, Z. Zhu, D. Tománek, Two-dimensional phosphorus carbide: competition between sp2 and sp3 bonding. Nano Lett. 16(5), 3247–3252 (2016). https://doi.org/10.1021/acs.nanolett.6b00767
- W. Xu, Y.-P. Shao, J.-L. Wang, J.-D. Zheng, W.-Y. Tong et al., Origin of metallic ferroelectricity in group-V monolayer black phosphorus. Phys. Rev. B 109(3), 035421 (2024). https://doi.org/10.1103/physrevb.109.035421
- L. Vaquero-Garzon, R. Frisenda, A. Castellanos-Gomez, Anisotropic buckling of few-layer black phosphorus. Nanoscale 11(25), 12080–12086 (2019). https://doi.org/10.1039/c9nr03009c
- R. Gusmão, Z. Sofer, M. Pumera, Black phosphorus rediscovered: from bulk material to monolayers. Angew. Chem. Int. Ed. 56(28), 8052–8072 (2017). https://doi.org/10.1002/anie.201610512
- Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan et al., Black arsenic: a layered semiconductor with extreme in-plane anisotropy. Adv. Mater. 30(30), e1800754 (2018). https://doi.org/10.1002/adma.201800754
- D. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014). https://doi.org/10.1038/ncomms6678
- N.R. Pradhan, D. Rhodes, S. Memaran, J.M. Poumirol, D. Smirnov et al., Hall and field-effect mobilities in few layered p-WSe₂ field-effect transistors. Sci. Rep. 5, 8979 (2015). https://doi.org/10.1038/srep08979
- M. Tosun, S. Chuang, H. Fang, A.B. Sachid, M. Hettick et al., High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano 8(5), 4948–4953 (2014). https://doi.org/10.1021/nn5009929
- C.G. Hawkins, L. Whittaker-Brooks, Controlling sulfur vacancies in TiS2–x cathode insertion hosts via the conversion of TiS3 nanobelts for energy-storage applications. ACS Appl. Nano Mater. 1(2), 851–859 (2018). https://doi.org/10.1021/acsanm.7b00266
- C. Wan, X. Gu, F. Dang, T. Itoh, Y. Wang et al., Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14(6), 622–627 (2015). https://doi.org/10.1038/nmat4251
- Y. Huang, E. Sutter, J.T. Sadowski, M. Cotlet, O.L.A. Monti et al., Tin disulfide: an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics. ACS Nano 8(10), 10743–10755 (2014). https://doi.org/10.1021/nn504481r
- J. Yu, C.-Y. Xu, Y. Li, F. Zhou, X.-S. Chen et al., Ternary SnS2-xSex alloys nanosheets and nanosheet assemblies with tunable chemical compositions and band gaps for photodetector applications. Sci. Rep. 5, 17109 (2015). https://doi.org/10.1038/srep17109
- H. Peelaers, C.G. Van de Walle, Effects of strain on band structure and effective masses in MoS2. Phys. Rev. B 86(24), 241401 (2012). https://doi.org/10.1103/physrevb.86.241401
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849
- C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
- X. Zhang, X. Zhao, D. Wu, Y. Jing, Z. Zhou, High and anisotropic carrier mobility in experimentally possible Ti2CO2 (MXene) monolayers and nanoribbons. Nanoscale 7(38), 16020–16025 (2015). https://doi.org/10.1039/C5NR04717J
- X. Liu, J. Hu, C. Yue, N. Della Fera, Y. Ling et al., High performance field-effect transistor based on multilayer tungsten disulfide. ACS Nano 8(10), 10396–10402 (2014). https://doi.org/10.1021/nn505253p
- Z. Guo, J. Zhou, L. Zhu, Z. Sun, MXene: a promising photocatalyst for water splitting. J. Mater. Chem. A 4(29), 11446–11452 (2016). https://doi.org/10.1039/c6ta04414j
- C. Grazianetti, E. Cinquanta, A. Molle, Two-dimensional silicon: the advent of silicene. 2D Mater. 3(1), 012001 (2016). https://doi.org/10.1088/2053-1583/3/1/012001
- F. Bechstedt, P. Gori, O. Pulci, Beyond graphene: clean, hydrogenated and halogenated silicene, germanene, stanene, and plumbene. Prog. Surf. Sci. 96(3), 100615 (2021). https://doi.org/10.1016/j.progsurf.2021.100615
- S. Chowdhury, A. Bandyopadhyay, N. Dhar, D. Jana, Optical and magnetic properties of free-standing silicene, germanene and T-graphene system. Phys. Sci. Rev. 2(5), 20165102 (2017). https://doi.org/10.1515/psr-2016-5102
- F.-F. Zhu, W.-J. Chen, Y. Xu, C.-L. Gao, D.-D. Guan et al., Epitaxial growth of two-dimensional stanene. Nat. Mater. 14(10), 1020–1025 (2015). https://doi.org/10.1038/nmat4384
- M.E. Dávila, L. Xian, S. Cahangirov, A. Rubio, G. Le Lay, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16(9), 095002 (2014). https://doi.org/10.1088/1367-2630/16/9/095002
- L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli et al., Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10(3), 227–231 (2015). https://doi.org/10.1038/nnano.2014.325
- T. Low, A.S. Rodin, A. Carvalho, Y. Jiang, H. Wang et al., Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 90(7), 075434 (2014). https://doi.org/10.1103/physrevb.90.075434
- A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499(7459), 419–425 (2013). https://doi.org/10.1038/nature12385
- P.K. Kanti, D.K. Jayan, J. Swapnalin, P. Banerjee, P. Paramasivam et al., A critical review on MXene as promising photovoltaic materials. Sol. Energy Mater. Sol. Cells 277, 113147 (2024). https://doi.org/10.1016/j.solmat.2024.113147
- C. Ma, M.-G. Ma, C. Si, X.-X. Ji, P. Wan, Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 31(22), 2009524 (2021). https://doi.org/10.1002/adfm.202009524
- M.A. Saeed, A. Shahzad, K. Rasool, F. Mateen, J.-M. Oh et al., 2D MXene: a potential candidate for photovoltaic cells? a critical review. Adv. Sci. 9(10), e2104743 (2022). https://doi.org/10.1002/advs.202104743
- S. Palei, G. Murali, C.-H. Kim, I. In, S.-Y. Lee et al., A review on interface engineering of MXenes for perovskite solar cells. Nano-Micro Lett. 15(1), 123 (2023). https://doi.org/10.1007/s40820-023-01083-9
- S. Qamar, K. Fatima, N. Ullah, Z. Akhter, A. Waseem et al., Recent progress in use of MXene in perovskite solar cells: for interfacial modification, work-function tuning and additive engineering. Nanoscale 14(36), 13018–13039 (2022). https://doi.org/10.1039/D2NR02799B
- X.X. Liu, Z. Zhang, J. Jiang, C. Tian, X. Wang et al., Chlorine-terminated MXene quantum dots for improving crystallinity and moisture stability in high-performance perovskite solar cells. Chem. Eng. J. 432, 134382 (2022). https://doi.org/10.1016/j.cej.2021.134382
- Y. Yang, H. Lu, S. Feng, L. Yang, H. Dong et al., Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO2. Energy Environ. Sci. 14(6), 3447–3454 (2021). https://doi.org/10.1039/d1ee00056j
- L. Yin, Y. Li, X. Yao, Y. Wang, L. Jia et al., MXenes for solar cells. Nano-Micro Lett. 13(1), 78 (2021). https://doi.org/10.1007/s40820-021-00604-8
- U.K. Aryal, H. Pazniak, T. Kumari, M. Weber, F.O.L. Johansson et al., 2D MXene-based electron transport layers for nonhalogenated solvent-processed stable organic solar cells. ACS Appl. Energy Mater. 6(9), 4549–4558 (2023). https://doi.org/10.1021/acsaem.2c03789
- B. Deng, H. Lian, B. Xue, R. Song, S. Chen et al., Niobium-carbide MXene modified hybrid hole transport layer enabling high-performance organic solar cells over 19%. Small 19(23), 2207505 (2023). https://doi.org/10.1002/smll.202207505
- Y. Zhang, B. Yu, Y. Sun, J. Zhang, Z. Su et al., An MBene modulating the buried SnO2/perovskite interface in perovskite solar cells. Angew. Chem. Int. Ed. 136(27), e202404385 (2024). https://doi.org/10.1002/ange.202404385
- Y. Yang, R. Chen, J. Wu, Z. Dai, C. Luo et al., Bilateral chemical linking at NiOx buried interface enables efficient and stable inverted perovskite solar cells and modules. Angew. Chem. Int. Ed. 63(36), e202409689 (2024). https://doi.org/10.1002/anie.202409689
- X. Shen, X. Lin, Y. Peng, Y. Zhang, F. Long et al., Two-dimensional materials for highly efficient and stable perovskite solar cells. Nano-Micro Lett. 16(1), 201 (2024). https://doi.org/10.1007/s40820-024-01417-1
- C. Altinkaya, D. Iida, K. Ohkawa, Enhancing the efficiency of InGaN-based micro-LEDs using indium tin oxide p-electrodes. Opt. Express 32(13), 23245–23256 (2024). https://doi.org/10.1364/OE.522961
- A. Minenkov, S. Hollweger, J. Duchoslav, O. Erdene-Ochir, M. Weise et al., Monitoring the electrochemical failure of indium tin oxide electrodes via operando ellipsometry complemented by electron microscopy and spectroscopy. ACS Appl. Mater. Interfaces 16(7), 9517–9531 (2024). https://doi.org/10.1021/acsami.3c17923
- Y. Wang, G. Wang, Y. Xing, M.A. Adil, W. Ali Memon et al., Top and bottom electrode optimization enabled high-performance flexible and semi-transparent organic solar cells. Mater. Chem. Front. 5(11), 4310–4316 (2021). https://doi.org/10.1039/D1QM00151E
- T. Ma, H. Wang, Z. Wu, Y. Zhao, C. Chen et al., Hole transport layer-free low-bandgap perovskite solar cells for efficient all-perovskite tandems. Adv. Mater. 36(3), e2308240 (2024). https://doi.org/10.1002/adma.202308240
- X. Li, W. Wang, K. Wei, J. Deng, P. Huang et al., Conjugated phosphonic acids enable robust hole transport layers for efficient and intrinsically stable perovskite solar cells. Adv. Mater. 36(14), 2308969 (2024). https://doi.org/10.1002/adma.202308969
- Y. Zhang, C. Zhou, L. Lin, F. Pei, M. Xiao et al., Gelation of hole transport layer to improve the stability of perovskite solar cells. Nano-Micro Lett. 15(1), 175 (2023). https://doi.org/10.1007/s40820-023-01145-y
- J. Tan, H. Li, Y. Sun, G. Li, Y. Zhao et al., A ZnO&GeSe composite electron transport layer for organic solar cells. J. Mater. Chem. A 12(3), 1530–1542 (2024). https://doi.org/10.1039/d3ta05900f
- Q. Jiang, X. Zhang, J. You, SnO2: a wonderful electron transport layer for perovskite solar cells. Small (2018). https://doi.org/10.1002/smll.201801154
- S. Foo, M. Thambidurai, P. Senthil Kumar, R. Yuvakkumar, Y. Huang et al., Recent review on electron transport layers in perovskite solar cells. Int. J. Energy Res. 46(15), 21441–21451 (2022). https://doi.org/10.1002/er.7958
- Y. Jin, Y. Sun, K. Wang, Y. Chen, Z. Liang et al., Long-term stable silver nanowire transparent composite as bottom electrode for perovskite solar cells. Nano Res. 11(4), 1998–2011 (2018). https://doi.org/10.1007/s12274-017-1816-8
- P. Li, Z. Wu, H. Hu, Y. Zhang, T. Xiao et al., Efficient flexible perovskite solar cells using low-cost Cu top and bottom electrodes. ACS Appl. Mater. Interfaces 12(23), 26050–26059 (2020). https://doi.org/10.1021/acsami.0c06461
- J. Zhou, S. Li, X. Lv, X. Li, Y. Li et al., Ultra-low-cost all-air processed carbon-based perovskite solar cells from bottom electrode to counter electrode. J. Power. Sources 478, 228764 (2020). https://doi.org/10.1016/j.jpowsour.2020.228764
- S.-H. Turren-Cruz, A. Hagfeldt, M. Saliba, Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 362(6413), 449–453 (2018). https://doi.org/10.1126/science.aat3583
- D. Koushik, W.J.H. Verhees, Y. Kuang, S. Veenstra, D. Zhang et al., High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture. Energy Environ. Sci. 10(1), 91–100 (2017). https://doi.org/10.1039/c6ee02687g
- A.J. Heeger, 25th anniversary : Bulk heterojunction solar cells: understanding the mechanism of operation. Adv. Mater. 26(1), 10–27 (2014). https://doi.org/10.1002/adma.201304373
- G. Dennler, M.C. Scharber, C.J. Brabec, Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21(13), 1323–1338 (2009). https://doi.org/10.1002/adma.200801283
- A.M. Díez-Pascual, J.A. Luceño Sánchez, R. Peña Capilla, P. García Díaz, Recent developments in graphene/polymer nanocomposites for application in polymer solar cells. Polymers 10(2), 217 (2018). https://doi.org/10.3390/polym10020217
- B. Boro, B. Gogoi, B.M. Rajbongshi, A. Ramchiary, Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: a review. Renew. Sustain. Energy Rev. 81, 2264–2270 (2018). https://doi.org/10.1016/j.rser.2017.06.035
- G. Tessema Mola, X.G. Mbuyise, S.O. Oseni, W.M. Dlamini, P. Tonui et al., Nanocomposite for solar energy application. Nano Hybrids Compos. 20, 90–107 (2018). https://doi.org/10.4028/www.scientific.net/nhc.20.90
- F. Fu, T. Feurer, T.P. Weiss, S. Pisoni, E. Avancini et al., High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nat. Energy 2, 16190 (2017). https://doi.org/10.1038/nenergy.2016.190
- C.-H. Chiang, C.-G. Wu, Bulk heterojunction perovskite–PCBM solar cells with high fill factor. Nat. Photonics 10(3), 196–200 (2016). https://doi.org/10.1038/nphoton.2016.3
- P.S. Chandrasekhar, A. Dubey, Q. Qiao, High efficiency perovskite solar cells using nitrogen-doped graphene/ZnO nanorod composite as an electron transport layer. Sol. Energy 197, 78–83 (2020). https://doi.org/10.1016/j.solener.2019.12.062
- N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). https://doi.org/10.1038/nature14133
- G.E. Eperon, T. Leijtens, K.A. Bush, R. Prasanna, T. Green et al., Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354(6314), 861–865 (2016). https://doi.org/10.1126/science.aaf9717
- F. Wang, T. Wang, Y. Sun, X. Liang, G. Yang et al., Two-step perovskite solar cells with > 25% efficiency: unveiling the hidden bottom surface of perovskite layer. Adv. Mater. 36(31), e2401476 (2024). https://doi.org/10.1002/adma.202401476
- G. Tang, P. You, Q. Tai, A. Yang, J. Cao et al., Solution-phase epitaxial growth of perovskite films on 2D material flakes for high-performance solar cells. Adv. Mater. 31(24), 1807689 (2019). https://doi.org/10.1002/adma.201807689
- T. Wang, F. Zheng, G. Tang, J. Cao, P. You et al., 2D WSe2 flakes for synergistic modulation of grain growth and charge transfer in tin-based perovskite solar cells. Adv. Sci. 8(11), 2004315 (2021). https://doi.org/10.1002/advs.202004315
- L. Liu, Y. Ma, Y. Wang, Q. Ma, Z. Wang et al., Hole-transport management enables 23%-efficient and stable inverted perovskite solar cells with 84% fill factor. Nano-Micro Lett. 15(1), 117 (2023). https://doi.org/10.1007/s40820-023-01088-4
- S. Zhang, R. Guo, H. Zeng, Y. Zhao, X. Liu et al., Improved performance and stability of perovskite solar modules by interface modulating with graphene oxide crosslinked CsPbBr3 quantum dots. Energy Environ. Sci. 15(1), 244–253 (2022). https://doi.org/10.1039/d1ee01778k
- J.H. Heo, F. Zhang, J.K. Park, H. Joon Lee, D.S. Lee et al., Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable p-i-n-structured CsPbI3 perovskite solar cells. Joule 6(7), 1672–1688 (2022). https://doi.org/10.1016/j.joule.2022.05.013
- Y. Choi, D. Koo, G. Jeong, U. Kim, H. Kim et al., A vertically oriented two-dimensional Ruddlesden-Popper phase perovskite passivation layer for efficient and stable inverted perovskite solar cells. Energy Environ. Sci. 15(8), 3369–3378 (2022). https://doi.org/10.1039/d2ee00759b
- T. Liu, Y. Liu, M. Chen, X. Guo, S. Tang et al., Fluorinated black phosphorene nanosheets with robust ambient stability for efficient and stable perovskite solar cells. Adv. Funct. Mater. 32(1), 2106779 (2022). https://doi.org/10.1002/adfm.202106779
- J. Tong, Q. Jiang, A.J. Ferguson, A.F. Palmstrom, X. Wang et al., Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nat. Energy 7(7), 642–651 (2022). https://doi.org/10.1038/s41560-022-01046-1
- Y. Zhang, N.-G. Park, Quasi-two-dimensional perovskite solar cells with efficiency exceeding 22%. ACS Energy Lett. 7(2), 757–765 (2022). https://doi.org/10.1021/acsenergylett.1c02645
- C. Wu, W. Fang, Q. Cheng, J. Wan, R. Wen et al., MXene-regulated perovskite vertical growth for high-performance solar cells. Angew. Chem. Int. Ed. 134(43), e202210970 (2022). https://doi.org/10.1002/ange.202210970
- S. Liu, J. Lyu, D. Zhou, X. Zhuang, Z. Shi et al., Dual modification engineering via lanthanide-based halide quantum dots and black phosphorus enabled efficient perovskite solar cells with high open-voltage of 1.235 V. Adv. Funct. Mater. 32(19), 2112647 (2022). https://doi.org/10.1002/adfm.202112647
- H. Chen, S. Teale, B. Chen, Y. Hou, L. Grater et al., Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16(5), 352–358 (2022). https://doi.org/10.1038/s41566-022-00985-1
- Y. Zhang, L. Xu, J. Sun, Y. Wu, Z. Kan et al., 24.11% high performance perovskite solar cells by dual interfacial carrier mobility enhancement and charge-carrier transport balance. Adv. Energy Mater. 12(37), 2201269 (2022). https://doi.org/10.1002/aenm.202201269
- R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah et al., Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376(6588), 73–77 (2022). https://doi.org/10.1126/science.abm5784
- T. Zhou, Z. Xu, R. Wang, X. Dong, Q. Fu et al., Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability. Adv. Mater. 34(17), 2200705 (2022). https://doi.org/10.1002/adma.202200705
- D. Zhao, D. Gao, X. Wu, B. Li, S. Zhang et al., Efficient and stable 3D/2D perovskite solar cells through vertical heterostructures with (BA)(4) AgBiBr(8) nanosheets. Adv. Mater. 34(39), e2204661 (2022). https://doi.org/10.1002/adma.202204661
- H. Sui, B. He, J. Ti, S. Sun, W. Jiao et al., Sulfur vacancy defects healing of WS2 quantum dots boosted hole extraction for all-inorganic perovskite solar cells. Chem. Eng. J. 455, 140728 (2023). https://doi.org/10.1016/j.cej.2022.140728
- X. Yao, Z. Qi, P. Yang, J. Li, W. Yang, Two-Dimensional Ti3C2Tx-Patched-GO heterojunctionas charge booster and defect passivator for Stable, Carbon-Based inorganic perovskite solar cell. Chem. Eng. J. 470, 144315 (2023). https://doi.org/10.1016/j.cej.2023.144315
- Y. Zhang, M. Chen, T. He, H. Chen, Z. Zhang et al., Highly efficient and stable FA-based quasi-2D ruddlesden-popper perovskite solar cells by the incorporation of β-fluorophenylethanamine cations. Adv. Mater. 35(17), e2210836 (2023). https://doi.org/10.1002/adma.202210836
- Q. Fu, M. Chen, Q. Li, H. Liu, R. Wang et al., Selenophene-based 2D ruddlesden-popper perovskite solar cells with an efficiency exceeding 19%. J. Am. Chem. Soc. 145(39), 21687–21695 (2023). https://doi.org/10.1021/jacs.3c08604
- N.H. Hemasiri, M. Ashraf, S. Kazim, R. Graf, R. Berger et al., Interface tweaking of perovskite solar cells with carbon nitride-based 2D materials. Nano Energy 109, 108326 (2023). https://doi.org/10.1016/j.nanoen.2023.108326
- B. Han, Y. Wang, C. Liu, K. Sun, M. Yang et al., Rational design of ferroelectric 2D perovskite for improving the efficiency of flexible perovskite solar cells over 23 %. Angew. Chem. Int. Ed. 62(8), 2217526 (2023). https://doi.org/10.1002/anie.202217526
- G. Li, Y. Hu, M. Li, Y. Tang, Z. Zhang et al., Managing excess lead iodide with functionalized oxo-graphene nanosheets for stable perovskite solar cells. Angew. Chem. Int. Ed. 62(39), e202307395 (2023). https://doi.org/10.1002/anie.202307395
- J. He, G. Hu, Y. Jiang, S. Zeng, G. Niu et al., Dual-interface engineering in perovskite solar cells with 2D carbides. Angew. Chem. Int. Ed. 62(41), e202311865 (2023). https://doi.org/10.1002/anie.202311865
- T. Yang, C. Ma, W. Cai, S. Wang, Y. Wu et al., Amidino-based Dion-Jacobson 2D perovskite for efficient and stable 2D/3D heterostructure perovskite solar cells. Joule 7(3), 574–586 (2023). https://doi.org/10.1016/j.joule.2023.02.003
- K. Li, X. Gan, R. Zheng, H. Zhang, M. Xiang et al., Comparative analysis of thiophene-based interlayer cations for enhanced performance in 2D ruddlesden–popper perovskite solar cells. ACS Appl. Mater. Interfaces 16(6), 7161–7170 (2024). https://doi.org/10.1021/acsami.3c16640
- V. Shweta, K. Singh, A. Kumar, Performance evaluation of 2D MoS2-based solar cells and realization of transparent ultra-thin devices. Model. Simul. Mater. Sci. Eng. 32(3), 035005 (2024). https://doi.org/10.1088/1361-651x/ad237d
- T. Zhou, Q. Li, L. Zhou, Fluorinated quasi 2D perovskite solar cells with improved stability and over 19% efficiency. Adv. Energy Mater. 14(22), 2400050 (2024). https://doi.org/10.1002/aenm.202400050
- A. Mahjoory, K. Karimi, R. Teimouri, M. Kolahdouz, R. Mohammadpour, Performance enhancement of a planar perovskite solar cell with a PCE of 1929% utilizing MoS22D material as a hole transport layer: a computational study. J. Nanopart. Res. 26(3), 46 (2024). https://doi.org/10.1007/s11051-024-05933-4
- T. Bie, R. Li, X. Gao, L. Yang, P. Ma et al., Halogen-functionalized hole transport materials with strong passivation effects for stable and highly efficient quasi-2D perovskite solar cells. ACS Nano 18(34), 23615–23624 (2024). https://doi.org/10.1021/acsnano.4c08018
- X. Zang, S. Xiong, S. Jiang, D. Li, H. Wu et al., Passivating dipole layer bridged 3D/2D perovskite heterojunction for highly efficient and stable p-i-n solar cells. Adv. Mater. 36(13), e2309991 (2024). https://doi.org/10.1002/adma.202309991
- W. Shen, A. Azmy, G. Li, A. Mishra, Z. Syrgiannis et al., A crystalline 2D fullerene-based metal halide semiconductor for efficient and stable ideal-bandgap perovskite solar cells. Adv. Energy Mater. 14(23), 2400582 (2024). https://doi.org/10.1002/aenm.202400582
- S. Gohri, J. Madan, D.P. Samajdar, S. Bhattarai, M.K.A. Mohammed et al., Achieving 24.6% efficiency in 2D perovskite solar cells: Bandgap tuning and MXene contact optimization in (BDA)(MA)n−1PbnI3n+1 structures. Chem. Phys. Lett. 845, 141291 (2024). https://doi.org/10.1016/j.cplett.2024.141291
- N. Alharbi, M.M. Alotaibi, L.K. Obeas, I.I. Marhoon, M. Zorah et al., Boosting efficiency and long-lifespan in perovskite solar cells via 2D-MXene/Janus MoSSe integration. J. Alloys Compd. 1013, 178501 (2025). https://doi.org/10.1016/j.jallcom.2025.178501
- X. Yang, X. Zhao, L. Zhao, S. Wang, Enhanced the efficiency of carbon based perovskite solar cells via g-C3N4 as functional additives. J. Photochem. Photobiol. A Chem. 461, 116145 (2025). https://doi.org/10.1016/j.jphotochem.2024.116145
- X. Wei, Y. Sun, Y. Zhang, B. Yu, H. Yu, A X-bit optimized 2D solid solution Ti3CNTx MXene as the electron transport layer toward high-performance perovskite solar cells. Nano Energy 133, 110513 (2025). https://doi.org/10.1016/j.nanoen.2024.110513
- X. Dong, H. Zhang, J. Li, L. Yang, Y. Ma et al., Semiconductor spacer with donor-acceptor structure drives 2D ruddlesden–popper perovskite solar cells beyond 20% efficiency. Angew. Chem. Int. Ed. 64(22), e202501210 (2025). https://doi.org/10.1002/anie.202501210
- C. Hanmandlu, S. Banerjee, A. Kumar, Z. Alam Ansari, R. Kumar et al., Ion mitigation and strain regulation with 2D Semi-Metals for MA-Based perovskite materials in highly efficient solar cells. Chem. Eng. J. 504, 158070 (2025). https://doi.org/10.1016/j.cej.2024.158070
- Y. Zhang, B. Yu, X. Wei, H. Yu, Using post-treatment additives for crystal modulation and interface passivation enables the fabrication of efficient and stable perovskite solar cells in air. Adv. Energy Mater. 15(7), 2402990 (2025). https://doi.org/10.1002/aenm.202402990
- J.-S. Yeo, R. Kang, S. Lee, Y.-J. Jeon, N. Myoung et al., Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy 12, 96–104 (2015). https://doi.org/10.1016/j.nanoen.2014.12.022
- M.V. Khenkin, E.A. Katz, A. Abate, G. Bardizza, J.J. Berry et al., Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5(1), 35–49 (2020). https://doi.org/10.1038/s41560-019-0529-5
- J. Yoon, H. Sung, G. Lee, W. Cho, N. Ahn et al., Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ. Sci. 10(1), 337–345 (2017). https://doi.org/10.1039/c6ee02650h
- Z. Zhou, J. Lv, C. Tan, L. Yang, Z. Wang, Emerging frontiers of 2D transition metal dichalcogenides in photovoltaics solar cell. Adv. Funct. Mater. 34(29), 2316175 (2024). https://doi.org/10.1002/adfm.202316175
- L. Najafi, B. Taheri, B. Martín-García, S. Bellani, D. Di Girolamo et al., MoS2 quantum dot/graphene hybrids for advanced interface engineering of a CH3NH3PbI3 perovskite solar cell with an efficiency of over 20%. ACS Nano 12(11), 10736–10754 (2018). https://doi.org/10.1021/acsnano.8b05514
- C. Gong, C. Zhang, Q. Zhuang, H. Li, H. Yang et al., Stabilizing buried interface via synergistic effect of fluorine and sulfonyl functional groups toward efficient and stable perovskite solar cells. Nano-Micro Lett. 15(1), 17 (2022). https://doi.org/10.1007/s40820-022-00992-5
- P. Zeng, W. Wang, D. Han, J. Zhang, Z. Yu et al., MoS2/WSe2 vdW heterostructures decorated with PbS quantum dots for the development of high-performance photovoltaic and broadband photodiodes. ACS Nano 16(6), 9329–9338 (2022). https://doi.org/10.1021/acsnano.2c02012
- L. Bai, L. Sun, Y. Wang, Z. Liu, Q. Gao et al., Solution-processed black phosphorus/PCBM hybrid heterojunctions for solar cells. J. Mater. Chem. A 5(18), 8280–8286 (2017). https://doi.org/10.1039/c6ta08140a
- S. Memaran, N.R. Pradhan, Z. Lu, D. Rhodes, J. Ludwig et al., Pronounced photovoltaic response from multilayered transition-metal dichalcogenides PN-junctions. Nano Lett. 15(11), 7532–7538 (2015). https://doi.org/10.1021/acs.nanolett.5b03265
- S. Aryal, A.B. Puthirath, B. Jones, A.S.R. Bati, B. Chen et al., Solution-processed tungsten diselenide as an inorganic hole transport material for moisture-stable perovskite solar cells in the n-i-p architecture. Sol. Energy Mater. Sol. Cells 282, 113313 (2025). https://doi.org/10.1016/j.solmat.2024.113313
- M. Batmunkh, K. Vimalanathan, C. Wu, A.S.R. Bati, L. Yu et al., Efficient production of phosphorene nanosheets via shear stress mediated exfoliation for low-temperature perovskite solar cells. Small Meth. 3(5), 1800521 (2019). https://doi.org/10.1002/smtd.201800521
- P. Ding, D. Yang, S. Yang, Z. Ge, Stability of organic solar cells: toward commercial applications. Chem. Soc. Rev. 53(5), 2350–2387 (2024). https://doi.org/10.1039/d3cs00492a
- Y. Lin, B. Adilbekova, Y. Firdaus, E. Yengel, H. Faber et al., 17% efficient organic solar cells based on liquid exfoliated WS(2) as a replacement for PEDOT: PSS. Adv. Mater. 31(46), e1902965 (2019). https://doi.org/10.1002/adma.201902965
- J.-M. Yun, Y.-J. Noh, J.-S. Yeo, Y.-J. Go, S.-I. Na et al., Efficient work-function engineering of solution-processed MoS2 thin-films for novel hole and electron transport layers leading to high-performance polymer solar cells. J. Mater. Chem. C 1(24), 3777 (2013). https://doi.org/10.1039/c3tc30504j
- S. Xu, Y. Zhang, Y. Sun, P. Cheng, Z. Yao et al., An unprecedented efficiency with approaching 21% enabled by additive-assisted layer-by-layer processing in organic solar cells. Nano-Micro Lett. 17(1), 37 (2024). https://doi.org/10.1007/s40820-024-01529-8
- P. Qin, G. Fang, W. Ke, F. Cheng, Q. Zheng et al., In situ growth of double-layer MoO3/MoS2 film from MoS2 for hole-transport layers in organic solar cell. J. Mater. Chem. A 2(8), 2742 (2014). https://doi.org/10.1039/c3ta13579a
- D.H. Shin, C.W. Jang, J.S. Ko, S.-H. Choi, Enhancement of efficiency and stability in organic solar cells by employing MoS2 transport layer, graphene electrode, and graphene quantum dots-added active layer. Appl. Surf. Sci. 538, 148155 (2021). https://doi.org/10.1016/j.apsusc.2020.148155
- X. Hu, L. Chen, L. Tan, Y. Zhang, L. Hu et al., Versatile MoS2 nanosheets in ITO-free and semi-transparent polymer power-generating glass. Sci. Rep. 5, 12161 (2015). https://doi.org/10.1038/srep12161
- K.S. Lee, Y.J. Park, J. Shim, C.-H. Lee, G.-H. Lim et al., Effective charge separation of inverted polymer solar cells using versatile MoS2 nanosheets as an electron transport layer. J. Mater. Chem. A 7(25), 15356–15363 (2019). https://doi.org/10.1039/c9ta03989a
- X. Yang, W. Liu, M. Xiong, Y. Zhang, T. Liang et al., Au nanops on ultrathin MoS2 sheets for plasmonic organic solar cells. J. Mater. Chem. A 2(36), 14798–14806 (2014). https://doi.org/10.1039/c4ta03178d
- W. Liu, X. Yang, Y. Zhang, M. Xu, H. Chen, Ultra-stable two-dimensional MoS2 solution for highly efficient organic solar cells. RSC Adv. 4(62), 32744–32748 (2014). https://doi.org/10.1039/c4ra04116j
- I.P. Murray, S.J. Lou, L.J. Cote, S. Loser, C.J. Kadleck et al., Graphene oxide interlayers for robust, high-efficiency organic photovoltaics. J. Phys. Chem. Lett. 2(24), 3006–3012 (2011). https://doi.org/10.1021/jz201493d
- X. Gu, W. Cui, H. Li, Z. Wu, Z. Zeng et al., A solution-processed hole extraction layer made from ultrathin MoS2 nanosheets for efficient organic solar cells. Adv. Energy Mater. 3(10), 1262–1268 (2013). https://doi.org/10.1002/aenm201300549
- X. Gu, W. Cui, T. Song, C. Liu, X. Shi et al., Solution-processed 2D niobium diselenide nanosheets as efficient hole-transport layers in organic solar cells. Chemsuschem 7(2), 416–420 (2014). https://doi.org/10.1002/cssc.201300615
- A.V. Kesavan, A.D. Rao, P.C. Ramamurthy, Optical and electronic property tailoring by MoS2-polymer hybrid solar cell. Org. Electron. 48, 138–146 (2017). https://doi.org/10.1016/j.orgel.2017.05.027
- X. Cheng, J. Long, R. Wu, L. Huang, L. Tan et al., Fluorinated reduced graphene oxide as an efficient hole-transport layer for efficient and stable polymer solar cells. ACS Omega 2(5), 2010–2016 (2017). https://doi.org/10.1021/acsomega.7b00408
- Z. Wang, Z. Wang, Z. Wang, M. Zhao, Y. Zhou et al., Novel 2D material from AMQS-based defect engineering for efficient and stable organic solar cells. 2D Mater. 6(4), 045017 (2019). https://doi.org/10.1088/2053-1583/ab277d
- Z. Yu, W. Feng, W. Lu, B. Li, H. Yao et al., MXenes with tunable work functions and their application as electron- and hole-transport materials in non-fullerene organic solar cells. J. Mater. Chem. A 7(18), 11160–11169 (2019). https://doi.org/10.1039/c9ta01195a
- Y. Liu, Q. Tao, Y. Jin, X. Liu, H. Sun et al., Mo1.33C MXene-assisted PEDOT: PSS hole transport layer for high-performance bulk-heterojunction polymer solar cells. ACS Appl. Electron. Mater. 2(1), 163–169 (2020). https://doi.org/10.1021/acsaelm.9b00668
- W. Yang, Z. Ye, T. Liang, J. Ye, H. Chen, Facilitate charge transfer at donor/acceptor interface in bulk heterojunction organic photovoltaics by two-dimensional nanoflakes. Sol. Energy Mater. Sol. Cells 190, 75–82 (2019). https://doi.org/10.1016/j.solmat.2018.10.003
- G. Kakavelakis, A.E. Del Rio Castillo, V. Pellegrini, A. Ansaldo, P. Tzourmpakis et al., Size-tuning of WSe2 flakes for high efficiency inverted organic solar cells. ACS Nano 11(4), 3517–3531 (2017). https://doi.org/10.1021/acsnano.7b00323
- D. Zheng, W. Huang, P. Fan, Y. Zheng, J. Huang et al., Preparation of reduced graphene oxide: ZnO hybrid cathode interlayer using in situ thermal reduction/annealing for interconnecting nanostructure and its effect on organic solar cell. ACS Appl. Mater. Interfaces 9(5), 4898–4907 (2017). https://doi.org/10.1021/acsami.6b15411
- C. Hou, H. Yu, C. Huang, Solution-processable Ti3C2Tx nanosheets as an efficient hole transport layer for high-performance and stable polymer solar cells. J. Mater. Chem. C 7(37), 11549–11558 (2019). https://doi.org/10.1039/c9tc03415c
- J. Wang, H. Yu, C. Hou, J. Zhang, Solution-processable PEDOT: PSS: α-In2Se3 with enhanced conductivity as a hole transport layer for high-performance polymer solar cells. ACS Appl. Mater. Interfaces 12(23), 26543–26554 (2020). https://doi.org/10.1021/acsami.0c02489
- W. Yang, L. Ye, F. Yao, C. Jin, H. Ade et al., Black phosphorus nanoflakes as morphology modifier for efficient fullerene-free organic solar cells with high fill-factor and better morphological stability. Nano Res. 12(4), 777–783 (2019). https://doi.org/10.1007/s12274-019-2288-9
- C. Huang, H. Yu, Enhanced carrier mobility and power conversion efficiency of organic solar cells by adding 2D Bi2OS2. 2D Mater. 7(2), 025023 (2020). https://doi.org/10.1088/2053-1583/ab6e3d
- C. Hou, H. Yu, Modifying the nanostructures of PEDOT: PSS/Ti3C2TX composite hole transport layers for highly efficient polymer solar cells. J. Mater. Chem. C 8(12), 4169–4180 (2020). https://doi.org/10.1039/d0tc00075b
- F. Pan, C. Sun, Y. Li, D. Tang, Y. Zou et al., Solution-processable n-doped graphene-containing cathode interfacial materials for high-performance organic solar cells. Energy Environ. Sci. 12(11), 3400–3411 (2019). https://doi.org/10.1039/C9EE02433F
- Y. Lin, B. Adilbekova, Y. Firdaus, E. Yengel, H. Faber et al., 17% efficient organic solar cells based on liquid exfoliated WS2 as a replacement for PEDOT: PSS. Adv. Mater. 31(46), 1902965 (2019). https://doi.org/10.1002/adma.201902965
- H. Li, B. Yu, H. Yu, An efficient and stable inverted structure organic solar cell using ZnO modified by 2D ZrSe2 as a composite electron transport layer. Adv. Funct. Mater. 34(37), 2402128 (2024). https://doi.org/10.1002/adfm.202402128
- M. Günther, S. Lotfi, S.S. Rivas, D. Blätte, J.P. Hofmann et al., The neglected influence of zinc oxide light-soaking on stability measurements of inverted organic solar cells. Adv. Funct. Mater. 33(13), 2209768 (2023). https://doi.org/10.1002/adfm.202209768
- O. Dulub, U. Diebold, G. Kresse, Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn. Phys. Rev. Lett. 90, 016102 (2003). https://doi.org/10.1103/physrevlett.90.016102
- H. Xu, L. Dong, X.Q. Shi, M.A. Van Hove, W.K. Ho et al., Stabilizing forces acting on ZnO polar surfaces: STM, LEED, and DFT. Phys. Rev. B 89(23), 235403 (2014). https://doi.org/10.1103/physrevb.89.235403
- C. Huang, J. Tian, S. Yang, Y. Zhao, H. Yu, Amino acid modified Ti3C2Tx as electron transport layers for high-performance organic solar cells. Nano Energy 115, 108691 (2023). https://doi.org/10.1016/j.nanoen.2023.108691
- D. Garcia Romero, L. Di Mario, F. Yan, C.M. Ibarra-Barreno, S. Mutalik et al., Understanding the surface chemistry of SnO2 nanops for high performance and stable organic solar cells. Adv. Funct. Mater. 34(6), 2307958 (2024). https://doi.org/10.1002/adfm.202307958
- Y. Yan, Y. Zhang, Y. Zhao, F. Ding, Y. Lei et al., Review on TiO2 nanostructured photoanode and novel dyes for dye-sensitized solar cells application. J. Mater. Sci. 60(11), 4975–5005 (2025). https://doi.org/10.1007/s10853-025-10734-8
- S.D.B. George, K. Nagarajan, A.A. Ali, S. Madamala, D. Subramanian et al., Morphology-optimized ZnSnO3 nanopentagons as efficient electron transport layers for high-efficient perovskite solar cells. J. Solid State Chem. 347, 125322 (2025). https://doi.org/10.1016/j.jssc.2025.125322
- W. Zhao, P. Guo, J. Wu, D. Lin, N. Jia et al., TiO2 electron transport layer with p-n homojunctions for efficient and stable perovskite solar cells. Nano-Micro Lett. 16(1), 191 (2024). https://doi.org/10.1007/s40820-024-01407-3
- Y. Hong, S. Zhang, H. Shen, X. Tian, B. Zhang et al., Bathocuproine, an old dog, new tricks for boosting the performance of perovskite solar cells. Mater. Today Energy 42, 101554 (2024). https://doi.org/10.1016/j.mtener.2024.101554
- J.P. Akash, Tiwari, Recent advancements in perylene diimide as an electron acceptor in organic solar cells. J. Mater. Chem. C 12(3), 838–853 (2024). https://doi.org/10.1039/d3tc04054b
- Y. Guo, X. Ma, H. Song, J. Chen, W. Zhang et al., 19.5%-efficiency organic solar cells with high thickness tolerance and exceptional device stability enabled by TEMPO-functionalized perylene diimide as a cathode interface layer. Adv. Funct. Mater. 35(9), 2416356 (2025). https://doi.org/10.1002/adfm.202416356
- J. Yao, S. Lu, Y. Meng, F. Zhou, D. Chen et al., Electronic regulation by constructing RGO/MoCQD/CF double interface to enhance performance in solar cells. Appl. Surf. Sci. 679, 161247 (2025). https://doi.org/10.1016/j.apsusc.2024.161247
- L.-Y. Chen, T. Sun, T.-J. Zhang, Y. Xie, J.-M. Zhang, Modulating the band alignment, carrier mobility and optical absorption of graphene/MoS2 heterostructure via synergistic effects of doping and strain. Surf. Interfaces 46, 104024 (2024). https://doi.org/10.1016/j.surfin.2024.104024
- F. Nie, H. Zhao, S. Liu, Y. Li, H. Zhang et al., Laminated 2D-Ti3C2-MXenes as high-performance counter electrode for triiodide reduction in dye-sensitized solar cells. Diam. Relat. Mater. 141, 110586 (2024). https://doi.org/10.1016/j.diamond.2023.110586
- M. Zhang, J. Zai, J. Liu, M. Chen, Z. Wang et al., A hierarchical CoFeS2/reduced graphene oxide composite for highly efficient counter electrodes in dye-sensitized solar cells. Dalton Trans. 46(29), 9511–9516 (2017). https://doi.org/10.1039/C7DT01511A
- N. Kanjana, S. Pimsopa, W. Maiaugree, P. Laokul, I. Chaiya et al., Novel micro-ceramic bottom ash mixed PEDOT: PSS/PVP for a low-cost Pt-free counter electrode in a dye sensitized solar cell. J. Electrochem. Soc. 169(8), 083503 (2022). https://doi.org/10.1149/1945-7111/ac86fa
- N. Kanjana, W. Maiaugree, T. Lunnoo, P. Laokul, I. Chaiya et al., One-step hydrothermal synthesis and electrocatalytic properties of MoS2/activated carbon composite derived from shallots. J. Appl. Electrochem. 53(12), 2311–2320 (2023). https://doi.org/10.1007/s10800-023-01921-z
- H. Sun, Y. Luo, Y. Zhang, D. Li, Z. Yu et al., In situ preparation of a flexible polyaniline/carbon composite counter electrode and its application in dye-sensitized solar cells. J. Phys. Chem. C 114(26), 11673–11679 (2010). https://doi.org/10.1021/jp1030015
- T.-C. Wei, C.-C. Wan, Y.-Y. Wang, C.-M. Chen, H.-S. Shiu, Immobilization of poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium–tin oxide glass and its application in dye-sensitized solar cells. J. Phys. Chem. C 111(12), 4847–4853 (2007). https://doi.org/10.1021/jp067501c
- M. Wu, X. Lin, T. Wang, J. Qiu, T. Ma, Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes. Energy Environ. Sci. 4(6), 2308 (2011). https://doi.org/10.1039/c1ee01059j
- T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho et al., Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J. Electrochem. Soc. 153(12), A2255 (2006). https://doi.org/10.1149/1.2358087
- W. Ghann, H. Kang, T. Sheikh, S. Yadav, T. Chavez-Gil et al., Fabrication, optimization and characterization of natural dye sensitized solar cell. Sci. Rep. 7, 41470 (2017). https://doi.org/10.1038/srep41470
- J. Dong, J. Wu, J. Jia, L. Hu, S. Dai, Cobalt/molybdenum ternary hybrid with hierarchical architecture used as high efficient counter electrode for dye-sensitized solar cells. Sol. Energy 122, 326–333 (2015). https://doi.org/10.1016/j.solener.2015.09.011
- J. Ae, C. Mi, B. Ho, Metal selenide films as the counter electrode in dye-sensitized solar cell. Mater. Lett. 123, 51–54 (2014). https://doi.org/10.1016/j.matlet.2014.02.080
- X. Qian, H. Li, L. Shao, X. Jiang, L. Hou, Morphology-tuned synthesis of nickel cobalt selenides as highly efficient Pt-free counter electrode catalysts for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 8(43), 29486–29495 (2016). https://doi.org/10.1021/acsami.6b09966
- J. Guo, S. Liang, Y. Shi, C. Hao, X. Wang et al., Transition metal selenides as efficient counter-electrode materials for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 17(43), 28985–28992 (2015). https://doi.org/10.1039/c5cp04862a
- E. Bi, H. Chen, X. Yang, F. Ye, M. Yin et al., Fullerene-structured MoSe2 hollow spheres anchored on highly nitrogen-doped graphene as a conductive catalyst for photovoltaic applications. Sci. Rep. 5, 13214 (2015). https://doi.org/10.1038/srep13214
- J. Guo, Y. Shi, C. Zhu, L. Wang, N. Wang et al., Cost-effective and morphology-controllable niobium diselenides for highly efficient counter electrodes of dye-sensitized solar cells. J. Mater. Chem. A 1(38), 11874 (2013). https://doi.org/10.1039/c3ta12349a
- W. Wang, X. Pan, W. Liu, B. Zhang, H. Chen et al., FeSe2 films with controllable morphologies as efficient counter electrodes for dye-sensitized solar cells. Chem. Commun. 50(20), 2618–2620 (2014). https://doi.org/10.1039/C3CC49175G
- J. Dong, J. Wu, J. Jia, S. Wu, P. Zhou et al., Cobalt selenide nanorods used as a high efficient counter electrode for dye-sensitized solar cells. Electrochim. Acta 168, 69–75 (2015). https://doi.org/10.1016/j.electacta.2015.03.226
- S. Huang, Q. He, W. Chen, Q. Qiao, J. Zai et al., Ultrathin FeSe2 nanosheets: controlled synthesis and application as a heterogeneous catalyst in dye-sensitized solar cells. Chem. 21(10), 4085–4091 (2015). https://doi.org/10.1002/chem.201406124
- Y.-J. Huang, M.-S. Fan, C.-T. Li, C.-P. Lee, T.-Y. Chen et al., MoSe2 nanosheet/poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) composite film as a Pt-free counter electrode for dye-sensitized solar cells. Electrochim. Acta 211, 794–803 (2016). https://doi.org/10.1016/j.electacta.2016.06.086
- Y. Duan, Q. Tang, J. Liu, B. He, L. Yu, Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells. Angew. Chem. Int. Ed. 53(52), 14569–14574 (2014). https://doi.org/10.1002/anie.201409422
- S. Huang, Q. He, W. Chen, J. Zai, Q. Qiao et al., 3D hierarchical FeSe2 microspheres: Controlled synthesis and applications in dye-sensitized solar cells. Nano Energy 15, 205–215 (2015). https://doi.org/10.1016/j.nanoen.2015.04.027
- J. Huo, J. Wu, M. Zheng, Y. Tu, Z. Lan, Flower-like nickel cobalt sulfide microspheres modified with nickel sulfide as Pt-free counter electrode for dye-sensitized solar cells. J. Power. Sources 304, 266–272 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.062
- M.A. Ibrahem, W.-C. Huang, T.-W. Lan, K.M. Boopathi, Y.-C. Hsiao et al., Controlled mechanical cleavage of bulk niobium diselenide to nanoscaled sheet, rod, and p structures for Pt-free dye-sensitized solar cells. J. Mater. Chem. A 2(29), 11382–11390 (2014). https://doi.org/10.1039/c4ta01881h
- I.-T. Chiu, C.-T. Li, C.-P. Lee, P.-Y. Chen, Y.-H. Tseng et al., Nanoclimbing-wall-like CoSe2/carbon composite film for the counter electrode of a highly efficient dye-sensitized solar cell: a study on the morphology control. Nano Energy 22, 594–606 (2016). https://doi.org/10.1016/j.nanoen.2016.02.060
- F. Gong, X. Xu, Z. Li, G. Zhou, Z.-S. Wang, NiSe2 as an efficient electrocatalyst for a Pt-free counter electrode of dye-sensitized solar cells. Chem. Commun. 49(14), 1437–1439 (2013). https://doi.org/10.1039/C2CC38621F
- H. Chen, Y. Xie, H. Cui, W. Zhao, X. Zhu et al., In situ growth of a MoSe2/Mo counter electrode for high efficiency dye-sensitized solar cells. Chem. Commun. 50(34), 4475–4477 (2014). https://doi.org/10.1039/c3cc49600g
- F. Gong, H. Wang, X. Xu, G. Zhou, Z.-S. Wang, In situ growth of Co(0.85)Se and Ni(0.85)Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J. Am. Chem. Soc. 134(26), 10953–10958 (2012). https://doi.org/10.1021/ja303034w
- L.T.L. Lee, J. He, B. Wang, Y. Ma, K.Y. Wong et al., Few-layer MoSe₂ possessing high catalytic activity towards iodide/tri-iodide redox shuttles. Sci. Rep. 4, 4063 (2014). https://doi.org/10.1038/srep04063
- M. Ahmadi, S.J. Anaghizi, M. Asemi, M. Ghanaatshoar, Plasma-treated room temperature synthesized CuCrO2/Au/CuCrO2 on Polyethylene terephthalate: Towards a high-performance flexible p-type transparent conductor. Thin Solid Films 723, 138582 (2021). https://doi.org/10.1016/j.tsf.2021.138582
- R.H. Althomali, E.A.M. Saleh, R.S. Bhat, S. Askar, I. Sapaev et al., Novel ZnCO2O4/WO3 nanocomposite as the counter electrode for dye-sensitized solar cells (DSSCS): study of electrocatalytic activity and charge transfer properties. Opt. Mater. 143, 114248 (2023). https://doi.org/10.1016/j.optmat.2023.114248
- Y. He, G. Yue, J. Huo, C. Dong, G. Xie et al., A dye-sensitized solar cells with an efficiency of 10.01% based on the MoP/MoNiP2@Ti3C2 composite counter electrode. Mater. Today Sustain. 22, 100329 (2023). https://doi.org/10.1016/j.mtsust.2023.100329
- K. Zhao, X. Zhang, M. Wang, W. Zhang, X. Li et al., Electrospun carbon nanofibers decorated with Pt-Ni2P nanops as high efficiency counter electrode for dye-sensitized solar cells. J. Alloys Compd. 786, 50–55 (2019). https://doi.org/10.1016/j.jallcom.2019.01.295
- W. Wang, Q. Cui, D. Sun, Q. Yang, J. Xu et al., Enhanced electrocatalytic performance in dye-sensitized solar cell via coupling CoSe2@N-doped carbon and carbon nanotubes. J. Mater. Chem. C 9(22), 7046–7056 (2021). https://doi.org/10.1039/D1TC01205C
- L. Shen, K. Sun, F. Xi, Z. Jiang, S. Li et al., Conversion of photovoltaic waste silicon into amorphous silicon nanowire anodes. Energy Environ. Sci. 18(9), 4348–4361 (2025). https://doi.org/10.1039/d5ee00020c
- A. Liu, X. Zhang, Z. Liu, Y. Li, X. Peng et al., The roadmap of 2D materials and devices toward chips. Nano-Micro Lett. 16(1), 119 (2024). https://doi.org/10.1007/s40820-023-01273-5
- F. Nie, H. Fang, J. Wang, L. Zhao, C. Jia et al., An adaptive solid-state synapse with bi-directional relaxation for multimodal recognition and spatio-temporal learning. Adv. Mater. 37(17), 2412006 (2025). https://doi.org/10.1002/adma.202412006
- X. Tian, R. Xun, T. Chang, J. Yu, Distribution function of thermal ripples in h-BN, graphene and MoS2. Phys. Lett. A 550, 130597 (2025). https://doi.org/10.1016/j.physleta.2025.130597
- Q. Meng, Y. He, S. Li, S. Hussain, J. Lu et al., Adaptive two-step power prediction and improved perturbation method for accelerated MPPT with reduced oscillations in photovoltaic systems. Energy Rep. 13, 5328–5338 (2025). https://doi.org/10.1016/j.egyr.2025.04.055
- Z. Liu, S.Y. Tee, G. Guan, M.-Y. Han, Atomically substitutional engineering of transition metal dichalcogenide layers for enhancing tailored properties and superior applications. Nano-Micro Lett. 16(1), 95 (2024). https://doi.org/10.1007/s40820-023-01315-y
- Y. Jia, G. Chen, L. Zhao, Defect detection of photovoltaic modules based on improved VarifocalNet. Sci. Rep. 14, 15170 (2024). https://doi.org/10.1038/s41598-024-66234-3
- Z. Lin, A. McCreary, N. Briggs, S. Subramanian, K. Zhang et al., 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater. 3(4), 042001 (2016). https://doi.org/10.1088/2053-1583/3/4/042001
- D. Rhodes, S.H. Chae, R. Ribeiro-Palau, J. Hone, Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18(6), 541–549 (2019). https://doi.org/10.1038/s41563-019-0366-8
- Z. Ye, C. Tan, X. Huang, Y. Ouyang, L. Yang et al., Emerging MoS2 wafer-scale technique for integrated circuits. Nano-Micro Lett. 15(1), 38 (2023). https://doi.org/10.1007/s40820-022-01010-4
- A.-F. Wang, H.-P. Ma, Q.-M. Huang, L. Gu, Y. Shen et al., Band alignment, thermal transport property, and electrical performance of high-quality β-Ga2O3/AlN Schottky barrier diode grown via MOCVD. ACS Appl. Mater. Interfaces 17(18), 27517–27529 (2025). https://doi.org/10.1021/acsami.5c04203
- F. Tabarkhoon, M. Bazmi, N.A. Welchert, T.T. Tsotsis, M. Gupta, One-pot fabrication of silicon carbide thin films via plasma-enhanced chemical vapor deposition (PECVD) followed by in situ pyrolysis. Ind. Eng. Chem. Res. 64(11), 5973–5981 (2025). https://doi.org/10.1021/acs.iecr.4c03786
- Y. Bai, Y. Xu, L. Sun, Z. Ward, H. Wang et al., Two-dimensional nanosheets by liquid metal exfoliation. Adv. Mater. 37(8), 2416375 (2025). https://doi.org/10.1002/adma.202416375
- M. Ojrzyńska, J. Jamroz, M. Maciałowicz, K. Wilczyński, A. Daniszewska et al., Quality and thickness control of graphene nanoplatelets during large-scale production using liquid phase exfoliation. Mater. Today Commun. 42, 111543 (2025). https://doi.org/10.1016/j.mtcomm.2025.111543
- S. Eom, M. Park, B. Koo, C.-E. Yang, J. Kang et al., Suppressing organic cation reactivity in locally concentrated ionic liquid electrolytes for lithium metal batteries. Energy Storage Mater. 74, 103966 (2025). https://doi.org/10.1016/j.ensm.2024.103966
- F. Meierhofer, C. Orlob, L. Krieg, G.W. Harm, J. Zhu et al., Lateral microstructuring of oCVD PEDOT nanolayers fabricated by EDOT/SbCl5 chemistry and photoresist-based lift-off. ACS Appl. Polym. Mater. 7(11), 6874–6886 (2025). https://doi.org/10.1021/acsapm.5c00492
- A. Quellmalz, X. Wang, S. Sawallich, B. Uzlu, M. Otto et al., Large-area integration of two-dimensional materials and their heterostructures by wafer bonding. Nat. Commun. 12, 917 (2021). https://doi.org/10.1038/s41467-021-21136-0
- Z. Li, Y. Luo, X. Xie, J. Yang, H. Zhuang et al., High-resolution copper micropatterning on flex
References
C.D. Daudu, A. Adefemi, O.O. Adekoya, C.E. Okoli, O.B. Ayorinde et al., Lng and climate change: evaluating its carbon footprint in comparison to other fossil fuels. Eng. Sci. Technol. J. 5(2), 412–426 (2024). https://doi.org/10.51594/estj.v5i2.803
R. Murphy, What is undermining climate change mitigation? How fossil-fuelled practices challenge low-carbon transitions. Energy Res. Soc. Sci. 108, 103390 (2024). https://doi.org/10.1016/j.erss.2023.103390
E.A. Etukudoh, A. Fabuyide, K.I. Ibekwe, S. Sonko, V.I. Ilojianya, Electrical engineering in renewable energy systems: a review of design and integration challenges. Eng. Sci. Technol. J. 5(1), 231–244 (2024). https://doi.org/10.51594/estj.v5i1.746
Q. Hassan, S. Algburi, A.Z. Sameen, T.J. Al-Musawi, A.K. Al-Jiboory et al., A comprehensive review of international renewable energy growth. Energy Built Environ. (2024). https://doi.org/10.1016/j.enbenv.2023.12.002
D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25(5), 676–677 (1954). https://doi.org/10.1063/1.1721711
B.Y.H. Liu, R.C. Jordan, The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol. Energy 4(3), 1–19 (1960). https://doi.org/10.1016/0038-092X(60)90062-1
W. Liu, Y. Liu, Z. Yang, C. Xu, X. Li et al., Flexible solar cells based on foldable silicon wafers with blunted edges. Nature 617(7962), 717–723 (2023). https://doi.org/10.1038/s41586-023-05921-z
W. Chai, W. Zhu, H. Xi, D. Chen, H. Dong et al., Buried interface regulation with TbCl3 for highly-efficient all-inorganic perovskite/silicon tandem solar cells. Nano-Micro Lett. 17(1), 244 (2025). https://doi.org/10.1007/s40820-025-01763-8
S. Yoo, B. Domercq, B. Kippelen, Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions. Appl. Phys. Lett. 85(22), 5427–5429 (2004). https://doi.org/10.1063/1.1829777
J. Gong, J. Liang, K. Sumathy, Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renew. Sustain. Energy Rev. 16(8), 5848–5860 (2012). https://doi.org/10.1016/j.rser.2012.04.044
N. Tétreault, M. Grätzel, Novel nanostructures for next generation dye-sensitized solar cells. Energy Environ. Sci. 5(9), 8506 (2012). https://doi.org/10.1039/c2ee03242b
X. Li, S. Aftab, S. Hussain, F. Kabir, A.M.A. Henaish et al., Dimensional diversity (0D, 1D, 2D, and 3D) in perovskite solar cells: exploring the potential of mixed-dimensional integrations. J. Mater. Chem. A 12(8), 4421–4440 (2024). https://doi.org/10.1039/d3ta06953b
G. Dastgeer, S. Nisar, M.W. Zulfiqar, J. Eom, M. Imran et al., A review on recent progress and challenges in high-efficiency perovskite solar cells. Nano Energy 132, 110401 (2024). https://doi.org/10.1016/j.nanoen.2024.110401
J. Keller, K. Kiselman, O. Donzel-Gargand, N.M. Martin, M. Babucci et al., High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 23.6% efficiency. Nat. Energy 9(4), 467–478 (2024). https://doi.org/10.1038/s41560-024-01472-3
M. Schmid, M. Ketharan, J. Lucaßen, I. Kardosh, Sequentially PVD-grown indium and gallium selenides under compositional and layer thickness variation: preparation, structural and optical characterization. Adv. Mater. Interfaces 11(15), 2301086 (2024). https://doi.org/10.1002/admi.202301086
M. Hao, S. Ding, S. Gaznaghi, H. Cheng, L. Wang, Perovskite quantum dot solar cells: current status and future outlook. ACS Energy Lett. 9(1), 308–322 (2024). https://doi.org/10.1021/acsenergylett.3c01983
Y. Wei, C. Ding, G. Shi, H. Bi, Y. Li et al., Stronger coupling of quantum dots in hole transport layer through intermediate ligand exchange to enhance the efficiency of PbS quantum dot solar cells. Small Meth. 8(12), 2400015 (2024). https://doi.org/10.1002/smtd.202400015
H. Asghar, T. Riaz, H.A. Mannan, S.M. Khan, O.M. Butt, Rheology and modeling insights into dye-sensitized solar cells (DSSCs) material: Bridging the gap to solar energy advancements. Renew. Sustain. Energy Rev. 193, 114298 (2024). https://doi.org/10.1016/j.rser.2024.114298
P.S. Saud, A. Bist, A.A. Kim, A. Yousef, A. Abutaleb et al., Dye-sensitized solar cells: Fundamentals, recent progress, and Optoelectrical properties improvement strategies. Opt. Mater. 150, 115242 (2024). https://doi.org/10.1016/j.optmat.2024.115242
J. Yi, G. Zhang, H. Yu, H. Yan, Advantages, challenges and molecular design of different material types used in organic solar cells. Nat. Rev. Mater. 9(1), 46–62 (2024). https://doi.org/10.1038/s41578-023-00618-1
H. Tang, Y. Bai, H. Zhao, X. Qin, Z. Hu et al., Interface engineering for highly efficient organic solar cells. Adv. Mater. 36(16), 2212236 (2024). https://doi.org/10.1002/adma.202212236
G. Dastgeer, S. Nisar, A. Rasheed, K. Akbar, V.D. Chavan et al., Atomically engineered, high-speed non-volatile flash memory device exhibiting multibit data storage operations. Nano Energy 119, 109106 (2024). https://doi.org/10.1016/j.nanoen.2023.109106
G. Dastgeer, S. Nisar, Z.M. Shahzad, A. Rasheed, D.-K. Kim et al., Low-power negative-differential-resistance device for sensing the selective protein via supporter molecule engineering. Adv. Sci. 10(1), 2204779 (2023). https://doi.org/10.1002/advs.202204779
S. Nisar, B. Basha, G. Dastgeer, Z.M. Shahzad, H. Kim et al., A novel biosensing approach: improving SnS2 FET sensitivity with a tailored supporter molecule and custom substrate. Adv. Sci. 10(33), 2303654 (2023). https://doi.org/10.1002/advs.202303654
A.G. Ricciardulli, P.W.M. Blom, Solution-processable 2D materials applied in light-emitting diodes and solar cells. Adv. Mater. Technol. 5(8), 1900972 (2020). https://doi.org/10.1002/admt.201900972
F. Wang, S. Bai, W. Tress, A. Hagfeldt, F. Gao, Defects engineering for high-performance perovskite solar cells. NPJ Flex. Electron. 2, 22 (2018). https://doi.org/10.1038/s41528-018-0035-z
Z. Ni, L. Zhao, Z. Shi, A. Singh, J. Wiktor et al., Identification and suppression of point defects in bromide perovskite single crystals enabling gamma-ray spectroscopy. Adv. Mater. 36(35), 2406193 (2024). https://doi.org/10.1002/adma.202406193
X. Liao, M. Liu, H. Pei, P. Zhu, X. Xia et al., Regulating crystallinity mismatch between donor and acceptor to improve exciton/charge transport in efficient organic solar cells. Angew. Chem. Int. Ed. 63(11), e202318595 (2024). https://doi.org/10.1002/anie.202318595
Z. Wang, Y. Guo, X. Liu, W. Shu, G. Han et al., The role of interfacial donor-acceptor percolation in efficient and stable all-polymer solar cells. Nat. Commun. 15(1), 1212 (2024). https://doi.org/10.1038/s41467-024-45455-0
M. Shoaib, S. Siddique, R. Nazar, A. Ishaq, A. Abrar et al., Novel 2D heterostructure composites of V2C MXene/TiO2 and graphene/TiO2 for platinum replacement in dye-sensitized solar cells. Diam. Relat. Mater. 148, 111498 (2024). https://doi.org/10.1016/j.diamond.2024.111498
M.A. Abbood, E.A.M. Saleh, A. Kumar, P. Rodrigues, S. Askar et al., Enhancing dye-sensitized solar cell performance by employing an innovative WSe2: Zn counter electrode for improved electrocatalytic activity. Mater. Sci. Semicond. Process. 171, 108015 (2024). https://doi.org/10.1016/j.mssp.2023.108015
H. Zai, P. Yang, J. Su, R. Yin, R. Fan et al., Wafer-scale monolayer MoS2 film integration for stable, efficient perovskite solar cells. Science 387(6730), 186–192 (2025). https://doi.org/10.1126/science.ado2351
Z. Qin, Y. Chen, X. Wang, X. Liu, Y. Miao et al., Incorporation of two-dimensional WSe2 into MAPbI3 perovskite for efficient and stable photovoltaics. J. Phys. Chem. Lett. 12(29), 6883–6888 (2021). https://doi.org/10.1021/acs.jpclett.1c02012
E. Aydin, J.K. El-Demellawi, E. Yarali, F. Aljamaan, S. Sansoni et al., Scaled deposition of Ti3C2Tx MXene on complex surfaces: application assessment as rear electrodes for silicon heterojunction solar cells. ACS Nano 16(2), 2419–2428 (2022). https://doi.org/10.1021/acsnano.1c08871
S. Lin, S. Liu, Z. Yang, Y. Li, T.W. Ng et al., Solution-processable ultrathin black phosphorus as an effective electron transport layer in organic photovoltaics. Adv. Funct. Mater. 26(6), 864–871 (2016). https://doi.org/10.1002/adfm.201503273
G. Yue, J.-Y. Lin, S.-Y. Tai, Y. Xiao, J. Wu, A catalytic composite film of MoS2/graphene flake as a counter electrode for Pt-free dye-sensitized solar cells. Electrochim. Acta 85, 162–168 (2012). https://doi.org/10.1016/j.electacta.2012.08.040
Y. Li, B. Huang, X. Zhang, J. Ding, Y. Zhang et al., Lifetime over 10000 hours for organic solar cells with Ir/IrO(x) electron-transporting layer. Nat. Commun. 14(1), 1241 (2023). https://doi.org/10.1038/s41467-023-36937-8
https://www.Nrel.Gov/pv/cell-efficiency
S. Yu, X. Wu, Y. Wang, X. Guo, L. Tong, 2D materials for optical modulation: challenges and opportunities. Adv. Mater. 29(14), 1606128 (2017). https://doi.org/10.1002/adma.201606128
G. Dastgeer, Z.M. Shahzad, H. Chae, Y.H. Kim, B.M. Ko et al., Bipolar junction transistor exhibiting excellent output characteristics with a prompt response against the selective protein. Adv. Funct. Mater. 32(38), 2204781 (2022). https://doi.org/10.1002/adfm.202204781
L. Duan, D. Walter, N. Chang, J. Bullock, D. Kang et al., Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 8(4), 261–281 (2023). https://doi.org/10.1038/s41578-022-00521-1
Q. Wang, Y. Qin, M. Li, L. Ye, Y. Geng, Molecular engineering and morphology control of polythiophene: nonfullerene acceptor blends for high-performance solar cells. Adv. Energy Mater. 10(45), 2002572 (2020). https://doi.org/10.1002/aenm.202002572
S. Mahalingam, A. Manap, A. Omar, F.W. Low, N.F. Afandi et al., Functionalized graphene quantum dots for dye-sensitized solar cell: Key challenges, recent developments and future prospects. Renew. Sustain. Energy Rev. 144, 110999 (2021). https://doi.org/10.1016/j.rser.2021.110999
H. Sung, N. Ahn, M.S. Jang, J.-K. Lee, H. Yoon et al., Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 6(3), 1501873 (2016). https://doi.org/10.1002/aenm.201501873
X. Zhao, L. Tao, H. Li, W. Huang, P. Sun et al., Efficient planar perovskite solar cells with improved fill factor via interface engineering with graphene. Nano Lett. 18(4), 2442–2449 (2018). https://doi.org/10.1021/acs.nanolett.8b00025
H. Park, S. Chang, X. Zhou, J. Kong, T. Palacios et al., Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Lett. 14(9), 5148–5154 (2014). https://doi.org/10.1021/nl501981f
C. Cavallo, F. Di Pascasio, A. Latini, M. Bonomo, D. Dini, Nanostructured semiconductor materials for dye-sensitized solar cells. J. Nanomater. 2017, 5323164 (2017). https://doi.org/10.1155/2017/5323164
Y. Areerob, W.-C. Oh, C. Hamontree, T. Nachaithong, S. Nijpanich et al., A novel of WS2–MoCuO3 supported with graphene quantum dot as counter electrode for dye-sensitized solar cells application. Sci. Rep. 13, 7762 (2023). https://doi.org/10.1038/s41598-023-34637-3
S. Pescetelli, A. Agresti, G. Viskadouros, S. Razza, K. Rogdakis et al., Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm. Nat. Energy 7(7), 597–607 (2022). https://doi.org/10.1038/s41560-022-01035-4
C. Zhang, C. Gong, Y. Nie, K.-A. Min, C. Liang et al., Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in Van der Waals heterostructures. 2D Mater. 4(1), 015026 (2017). https://doi.org/10.1088/2053-1583/4/1/015026
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
A. Castellanos-Gomez, Why all the fuss about 2D semiconductors? Nat. Photonics 10(4), 202–204 (2016). https://doi.org/10.1038/nphoton.2016.53
M. Alzaid, Recent progress in the role of two-dimensional materials as an efficient charge transport layer in perovskite solar cells. Int. J. Energy Res. 45(9), 12598–12613 (2021). https://doi.org/10.1002/er.6672
G. Schusteritsch, M. Uhrin, C.J. Pickard, Single-layered Hittorf’s phosphorus: a wide-bandgap high mobility 2D material. Nano Lett. 16(5), 2975–2980 (2016). https://doi.org/10.1021/acs.nanolett.5b05068
X. Zhao, S. Liu, H. Zhang, S.-Y. Chang, W. Huang et al., 20% efficient perovskite solar cells with 2D electron transporting layer. Adv. Funct. Mater. 29(4), 1805168 (2019). https://doi.org/10.1002/adfm.201805168
W. Yang, B. Ding, Z. Lin, J. Sun, Y. Meng et al., Visualizing interfacial energy offset and defects in efficient 2D/3D heterojunction perovskite solar cells and modules. Adv. Mater. 35(35), 2302071 (2023). https://doi.org/10.1002/adma.202302071
T. Arfin, S. Athar, Graphene for advanced organic photovoltaics, in Nanomaterials: Biomedical, Environmental, and Engineering Applications, 93–103 (2018). https://doi.org/10.1002/9781119370383.ch3
N.N. Rosli, M.A. Ibrahim, N. Ahmad Ludin, M.A. Mat Teridi, K. Sopian, A review of graphene based transparent conducting films for use in solar photovoltaic applications. Renew. Sustain. Energy Rev. 99, 83–99 (2019). https://doi.org/10.1016/j.rser.2018.09.011
Z. Jiang, Y. Zhang, H.L. Stormer, P. Kim, Quantum hall states near the charge-neutral Dirac point in graphene. Phys. Rev. Lett. 99(10), 106802 (2007). https://doi.org/10.1103/physrevlett.99.106802
A.V. Kolobov, J. Tominaga, Two-Dimensional Transition-Metal Dichalcogenides (Springer, Berlin, 2016). https://doi.org/10.1007/978-3-319-31450-1
D. Voiry, A. Mohite, M. Chhowalla, Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44(9), 2702–2712 (2015). https://doi.org/10.1039/c5cs00151j
S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20(3), 116–130 (2017). https://doi.org/10.1016/j.mattod.2016.10.002
G. Wang, C. Robert, A. Suslu, B. Chen, S. Yang et al., Spin-orbit engineering in transition metal dichalcogenide alloy monolayers. Nat. Commun. 6, 10110 (2015). https://doi.org/10.1038/ncomms10110
K. Zollner, P.E.F. Junior, J. Fabian, Strain-tunable orbital, spin-orbit, and optical properties of monolayer transition-metal dichalcogenides. Phys. Rev. B 100(19), 195126 (2019). https://doi.org/10.1103/physrevb.100.195126
Y. Ye, J. Xiao, H. Wang, Z. Ye, H. Zhu et al., Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat. Nanotechnol. 11(7), 598–602 (2016). https://doi.org/10.1038/nnano.2016.49
S. Zhao, X. Li, B. Dong, H. Wang, H. Wang et al., Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: status and challenges. Rep. Prog. Phys. 84(2), 026401 (2021). https://doi.org/10.1088/1361-6633/abdb98
Y. Tatsumi, K. Ghalamkari, R. Saito, Laser energy dependence of valley polarization in transition-metal dichalcogenides. Phys. Rev. B 94(23), 235408 (2016). https://doi.org/10.1103/physrevb.94.235408
G. Long, D. Maryenko, J. Shen, S. Xu, J. Hou et al., Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett. 16(12), 7768–7773 (2016). https://doi.org/10.1021/acs.nanolett.6b03951
X. Liu, C.R. Ryder, S.A. Wells, M.C. Hersam, Resolving the in-plane anisotropic properties of black phosphorus. Small Meth. 1(6), 1700143 (2017). https://doi.org/10.1002/smtd.201700143
Z. Luo, J. Maassen, Y. Deng, Y. Du, R.P. Garrelts et al., Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015). https://doi.org/10.1038/ncomms9572
S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee et al., Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun. 6, 8573 (2015). https://doi.org/10.1038/ncomms9573
J. Guan, D. Liu, Z. Zhu, D. Tománek, Two-dimensional phosphorus carbide: competition between sp2 and sp3 bonding. Nano Lett. 16(5), 3247–3252 (2016). https://doi.org/10.1021/acs.nanolett.6b00767
W. Xu, Y.-P. Shao, J.-L. Wang, J.-D. Zheng, W.-Y. Tong et al., Origin of metallic ferroelectricity in group-V monolayer black phosphorus. Phys. Rev. B 109(3), 035421 (2024). https://doi.org/10.1103/physrevb.109.035421
L. Vaquero-Garzon, R. Frisenda, A. Castellanos-Gomez, Anisotropic buckling of few-layer black phosphorus. Nanoscale 11(25), 12080–12086 (2019). https://doi.org/10.1039/c9nr03009c
R. Gusmão, Z. Sofer, M. Pumera, Black phosphorus rediscovered: from bulk material to monolayers. Angew. Chem. Int. Ed. 56(28), 8052–8072 (2017). https://doi.org/10.1002/anie.201610512
Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan et al., Black arsenic: a layered semiconductor with extreme in-plane anisotropy. Adv. Mater. 30(30), e1800754 (2018). https://doi.org/10.1002/adma.201800754
D. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014). https://doi.org/10.1038/ncomms6678
N.R. Pradhan, D. Rhodes, S. Memaran, J.M. Poumirol, D. Smirnov et al., Hall and field-effect mobilities in few layered p-WSe₂ field-effect transistors. Sci. Rep. 5, 8979 (2015). https://doi.org/10.1038/srep08979
M. Tosun, S. Chuang, H. Fang, A.B. Sachid, M. Hettick et al., High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano 8(5), 4948–4953 (2014). https://doi.org/10.1021/nn5009929
C.G. Hawkins, L. Whittaker-Brooks, Controlling sulfur vacancies in TiS2–x cathode insertion hosts via the conversion of TiS3 nanobelts for energy-storage applications. ACS Appl. Nano Mater. 1(2), 851–859 (2018). https://doi.org/10.1021/acsanm.7b00266
C. Wan, X. Gu, F. Dang, T. Itoh, Y. Wang et al., Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14(6), 622–627 (2015). https://doi.org/10.1038/nmat4251
Y. Huang, E. Sutter, J.T. Sadowski, M. Cotlet, O.L.A. Monti et al., Tin disulfide: an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics. ACS Nano 8(10), 10743–10755 (2014). https://doi.org/10.1021/nn504481r
J. Yu, C.-Y. Xu, Y. Li, F. Zhou, X.-S. Chen et al., Ternary SnS2-xSex alloys nanosheets and nanosheet assemblies with tunable chemical compositions and band gaps for photodetector applications. Sci. Rep. 5, 17109 (2015). https://doi.org/10.1038/srep17109
H. Peelaers, C.G. Van de Walle, Effects of strain on band structure and effective masses in MoS2. Phys. Rev. B 86(24), 241401 (2012). https://doi.org/10.1103/physrevb.86.241401
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
X. Zhang, X. Zhao, D. Wu, Y. Jing, Z. Zhou, High and anisotropic carrier mobility in experimentally possible Ti2CO2 (MXene) monolayers and nanoribbons. Nanoscale 7(38), 16020–16025 (2015). https://doi.org/10.1039/C5NR04717J
X. Liu, J. Hu, C. Yue, N. Della Fera, Y. Ling et al., High performance field-effect transistor based on multilayer tungsten disulfide. ACS Nano 8(10), 10396–10402 (2014). https://doi.org/10.1021/nn505253p
Z. Guo, J. Zhou, L. Zhu, Z. Sun, MXene: a promising photocatalyst for water splitting. J. Mater. Chem. A 4(29), 11446–11452 (2016). https://doi.org/10.1039/c6ta04414j
C. Grazianetti, E. Cinquanta, A. Molle, Two-dimensional silicon: the advent of silicene. 2D Mater. 3(1), 012001 (2016). https://doi.org/10.1088/2053-1583/3/1/012001
F. Bechstedt, P. Gori, O. Pulci, Beyond graphene: clean, hydrogenated and halogenated silicene, germanene, stanene, and plumbene. Prog. Surf. Sci. 96(3), 100615 (2021). https://doi.org/10.1016/j.progsurf.2021.100615
S. Chowdhury, A. Bandyopadhyay, N. Dhar, D. Jana, Optical and magnetic properties of free-standing silicene, germanene and T-graphene system. Phys. Sci. Rev. 2(5), 20165102 (2017). https://doi.org/10.1515/psr-2016-5102
F.-F. Zhu, W.-J. Chen, Y. Xu, C.-L. Gao, D.-D. Guan et al., Epitaxial growth of two-dimensional stanene. Nat. Mater. 14(10), 1020–1025 (2015). https://doi.org/10.1038/nmat4384
M.E. Dávila, L. Xian, S. Cahangirov, A. Rubio, G. Le Lay, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16(9), 095002 (2014). https://doi.org/10.1088/1367-2630/16/9/095002
L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli et al., Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10(3), 227–231 (2015). https://doi.org/10.1038/nnano.2014.325
T. Low, A.S. Rodin, A. Carvalho, Y. Jiang, H. Wang et al., Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 90(7), 075434 (2014). https://doi.org/10.1103/physrevb.90.075434
A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499(7459), 419–425 (2013). https://doi.org/10.1038/nature12385
P.K. Kanti, D.K. Jayan, J. Swapnalin, P. Banerjee, P. Paramasivam et al., A critical review on MXene as promising photovoltaic materials. Sol. Energy Mater. Sol. Cells 277, 113147 (2024). https://doi.org/10.1016/j.solmat.2024.113147
C. Ma, M.-G. Ma, C. Si, X.-X. Ji, P. Wan, Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 31(22), 2009524 (2021). https://doi.org/10.1002/adfm.202009524
M.A. Saeed, A. Shahzad, K. Rasool, F. Mateen, J.-M. Oh et al., 2D MXene: a potential candidate for photovoltaic cells? a critical review. Adv. Sci. 9(10), e2104743 (2022). https://doi.org/10.1002/advs.202104743
S. Palei, G. Murali, C.-H. Kim, I. In, S.-Y. Lee et al., A review on interface engineering of MXenes for perovskite solar cells. Nano-Micro Lett. 15(1), 123 (2023). https://doi.org/10.1007/s40820-023-01083-9
S. Qamar, K. Fatima, N. Ullah, Z. Akhter, A. Waseem et al., Recent progress in use of MXene in perovskite solar cells: for interfacial modification, work-function tuning and additive engineering. Nanoscale 14(36), 13018–13039 (2022). https://doi.org/10.1039/D2NR02799B
X.X. Liu, Z. Zhang, J. Jiang, C. Tian, X. Wang et al., Chlorine-terminated MXene quantum dots for improving crystallinity and moisture stability in high-performance perovskite solar cells. Chem. Eng. J. 432, 134382 (2022). https://doi.org/10.1016/j.cej.2021.134382
Y. Yang, H. Lu, S. Feng, L. Yang, H. Dong et al., Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO2. Energy Environ. Sci. 14(6), 3447–3454 (2021). https://doi.org/10.1039/d1ee00056j
L. Yin, Y. Li, X. Yao, Y. Wang, L. Jia et al., MXenes for solar cells. Nano-Micro Lett. 13(1), 78 (2021). https://doi.org/10.1007/s40820-021-00604-8
U.K. Aryal, H. Pazniak, T. Kumari, M. Weber, F.O.L. Johansson et al., 2D MXene-based electron transport layers for nonhalogenated solvent-processed stable organic solar cells. ACS Appl. Energy Mater. 6(9), 4549–4558 (2023). https://doi.org/10.1021/acsaem.2c03789
B. Deng, H. Lian, B. Xue, R. Song, S. Chen et al., Niobium-carbide MXene modified hybrid hole transport layer enabling high-performance organic solar cells over 19%. Small 19(23), 2207505 (2023). https://doi.org/10.1002/smll.202207505
Y. Zhang, B. Yu, Y. Sun, J. Zhang, Z. Su et al., An MBene modulating the buried SnO2/perovskite interface in perovskite solar cells. Angew. Chem. Int. Ed. 136(27), e202404385 (2024). https://doi.org/10.1002/ange.202404385
Y. Yang, R. Chen, J. Wu, Z. Dai, C. Luo et al., Bilateral chemical linking at NiOx buried interface enables efficient and stable inverted perovskite solar cells and modules. Angew. Chem. Int. Ed. 63(36), e202409689 (2024). https://doi.org/10.1002/anie.202409689
X. Shen, X. Lin, Y. Peng, Y. Zhang, F. Long et al., Two-dimensional materials for highly efficient and stable perovskite solar cells. Nano-Micro Lett. 16(1), 201 (2024). https://doi.org/10.1007/s40820-024-01417-1
C. Altinkaya, D. Iida, K. Ohkawa, Enhancing the efficiency of InGaN-based micro-LEDs using indium tin oxide p-electrodes. Opt. Express 32(13), 23245–23256 (2024). https://doi.org/10.1364/OE.522961
A. Minenkov, S. Hollweger, J. Duchoslav, O. Erdene-Ochir, M. Weise et al., Monitoring the electrochemical failure of indium tin oxide electrodes via operando ellipsometry complemented by electron microscopy and spectroscopy. ACS Appl. Mater. Interfaces 16(7), 9517–9531 (2024). https://doi.org/10.1021/acsami.3c17923
Y. Wang, G. Wang, Y. Xing, M.A. Adil, W. Ali Memon et al., Top and bottom electrode optimization enabled high-performance flexible and semi-transparent organic solar cells. Mater. Chem. Front. 5(11), 4310–4316 (2021). https://doi.org/10.1039/D1QM00151E
T. Ma, H. Wang, Z. Wu, Y. Zhao, C. Chen et al., Hole transport layer-free low-bandgap perovskite solar cells for efficient all-perovskite tandems. Adv. Mater. 36(3), e2308240 (2024). https://doi.org/10.1002/adma.202308240
X. Li, W. Wang, K. Wei, J. Deng, P. Huang et al., Conjugated phosphonic acids enable robust hole transport layers for efficient and intrinsically stable perovskite solar cells. Adv. Mater. 36(14), 2308969 (2024). https://doi.org/10.1002/adma.202308969
Y. Zhang, C. Zhou, L. Lin, F. Pei, M. Xiao et al., Gelation of hole transport layer to improve the stability of perovskite solar cells. Nano-Micro Lett. 15(1), 175 (2023). https://doi.org/10.1007/s40820-023-01145-y
J. Tan, H. Li, Y. Sun, G. Li, Y. Zhao et al., A ZnO&GeSe composite electron transport layer for organic solar cells. J. Mater. Chem. A 12(3), 1530–1542 (2024). https://doi.org/10.1039/d3ta05900f
Q. Jiang, X. Zhang, J. You, SnO2: a wonderful electron transport layer for perovskite solar cells. Small (2018). https://doi.org/10.1002/smll.201801154
S. Foo, M. Thambidurai, P. Senthil Kumar, R. Yuvakkumar, Y. Huang et al., Recent review on electron transport layers in perovskite solar cells. Int. J. Energy Res. 46(15), 21441–21451 (2022). https://doi.org/10.1002/er.7958
Y. Jin, Y. Sun, K. Wang, Y. Chen, Z. Liang et al., Long-term stable silver nanowire transparent composite as bottom electrode for perovskite solar cells. Nano Res. 11(4), 1998–2011 (2018). https://doi.org/10.1007/s12274-017-1816-8
P. Li, Z. Wu, H. Hu, Y. Zhang, T. Xiao et al., Efficient flexible perovskite solar cells using low-cost Cu top and bottom electrodes. ACS Appl. Mater. Interfaces 12(23), 26050–26059 (2020). https://doi.org/10.1021/acsami.0c06461
J. Zhou, S. Li, X. Lv, X. Li, Y. Li et al., Ultra-low-cost all-air processed carbon-based perovskite solar cells from bottom electrode to counter electrode. J. Power. Sources 478, 228764 (2020). https://doi.org/10.1016/j.jpowsour.2020.228764
S.-H. Turren-Cruz, A. Hagfeldt, M. Saliba, Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 362(6413), 449–453 (2018). https://doi.org/10.1126/science.aat3583
D. Koushik, W.J.H. Verhees, Y. Kuang, S. Veenstra, D. Zhang et al., High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture. Energy Environ. Sci. 10(1), 91–100 (2017). https://doi.org/10.1039/c6ee02687g
A.J. Heeger, 25th anniversary : Bulk heterojunction solar cells: understanding the mechanism of operation. Adv. Mater. 26(1), 10–27 (2014). https://doi.org/10.1002/adma.201304373
G. Dennler, M.C. Scharber, C.J. Brabec, Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21(13), 1323–1338 (2009). https://doi.org/10.1002/adma.200801283
A.M. Díez-Pascual, J.A. Luceño Sánchez, R. Peña Capilla, P. García Díaz, Recent developments in graphene/polymer nanocomposites for application in polymer solar cells. Polymers 10(2), 217 (2018). https://doi.org/10.3390/polym10020217
B. Boro, B. Gogoi, B.M. Rajbongshi, A. Ramchiary, Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: a review. Renew. Sustain. Energy Rev. 81, 2264–2270 (2018). https://doi.org/10.1016/j.rser.2017.06.035
G. Tessema Mola, X.G. Mbuyise, S.O. Oseni, W.M. Dlamini, P. Tonui et al., Nanocomposite for solar energy application. Nano Hybrids Compos. 20, 90–107 (2018). https://doi.org/10.4028/www.scientific.net/nhc.20.90
F. Fu, T. Feurer, T.P. Weiss, S. Pisoni, E. Avancini et al., High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nat. Energy 2, 16190 (2017). https://doi.org/10.1038/nenergy.2016.190
C.-H. Chiang, C.-G. Wu, Bulk heterojunction perovskite–PCBM solar cells with high fill factor. Nat. Photonics 10(3), 196–200 (2016). https://doi.org/10.1038/nphoton.2016.3
P.S. Chandrasekhar, A. Dubey, Q. Qiao, High efficiency perovskite solar cells using nitrogen-doped graphene/ZnO nanorod composite as an electron transport layer. Sol. Energy 197, 78–83 (2020). https://doi.org/10.1016/j.solener.2019.12.062
N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). https://doi.org/10.1038/nature14133
G.E. Eperon, T. Leijtens, K.A. Bush, R. Prasanna, T. Green et al., Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354(6314), 861–865 (2016). https://doi.org/10.1126/science.aaf9717
F. Wang, T. Wang, Y. Sun, X. Liang, G. Yang et al., Two-step perovskite solar cells with > 25% efficiency: unveiling the hidden bottom surface of perovskite layer. Adv. Mater. 36(31), e2401476 (2024). https://doi.org/10.1002/adma.202401476
G. Tang, P. You, Q. Tai, A. Yang, J. Cao et al., Solution-phase epitaxial growth of perovskite films on 2D material flakes for high-performance solar cells. Adv. Mater. 31(24), 1807689 (2019). https://doi.org/10.1002/adma.201807689
T. Wang, F. Zheng, G. Tang, J. Cao, P. You et al., 2D WSe2 flakes for synergistic modulation of grain growth and charge transfer in tin-based perovskite solar cells. Adv. Sci. 8(11), 2004315 (2021). https://doi.org/10.1002/advs.202004315
L. Liu, Y. Ma, Y. Wang, Q. Ma, Z. Wang et al., Hole-transport management enables 23%-efficient and stable inverted perovskite solar cells with 84% fill factor. Nano-Micro Lett. 15(1), 117 (2023). https://doi.org/10.1007/s40820-023-01088-4
S. Zhang, R. Guo, H. Zeng, Y. Zhao, X. Liu et al., Improved performance and stability of perovskite solar modules by interface modulating with graphene oxide crosslinked CsPbBr3 quantum dots. Energy Environ. Sci. 15(1), 244–253 (2022). https://doi.org/10.1039/d1ee01778k
J.H. Heo, F. Zhang, J.K. Park, H. Joon Lee, D.S. Lee et al., Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable p-i-n-structured CsPbI3 perovskite solar cells. Joule 6(7), 1672–1688 (2022). https://doi.org/10.1016/j.joule.2022.05.013
Y. Choi, D. Koo, G. Jeong, U. Kim, H. Kim et al., A vertically oriented two-dimensional Ruddlesden-Popper phase perovskite passivation layer for efficient and stable inverted perovskite solar cells. Energy Environ. Sci. 15(8), 3369–3378 (2022). https://doi.org/10.1039/d2ee00759b
T. Liu, Y. Liu, M. Chen, X. Guo, S. Tang et al., Fluorinated black phosphorene nanosheets with robust ambient stability for efficient and stable perovskite solar cells. Adv. Funct. Mater. 32(1), 2106779 (2022). https://doi.org/10.1002/adfm.202106779
J. Tong, Q. Jiang, A.J. Ferguson, A.F. Palmstrom, X. Wang et al., Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nat. Energy 7(7), 642–651 (2022). https://doi.org/10.1038/s41560-022-01046-1
Y. Zhang, N.-G. Park, Quasi-two-dimensional perovskite solar cells with efficiency exceeding 22%. ACS Energy Lett. 7(2), 757–765 (2022). https://doi.org/10.1021/acsenergylett.1c02645
C. Wu, W. Fang, Q. Cheng, J. Wan, R. Wen et al., MXene-regulated perovskite vertical growth for high-performance solar cells. Angew. Chem. Int. Ed. 134(43), e202210970 (2022). https://doi.org/10.1002/ange.202210970
S. Liu, J. Lyu, D. Zhou, X. Zhuang, Z. Shi et al., Dual modification engineering via lanthanide-based halide quantum dots and black phosphorus enabled efficient perovskite solar cells with high open-voltage of 1.235 V. Adv. Funct. Mater. 32(19), 2112647 (2022). https://doi.org/10.1002/adfm.202112647
H. Chen, S. Teale, B. Chen, Y. Hou, L. Grater et al., Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16(5), 352–358 (2022). https://doi.org/10.1038/s41566-022-00985-1
Y. Zhang, L. Xu, J. Sun, Y. Wu, Z. Kan et al., 24.11% high performance perovskite solar cells by dual interfacial carrier mobility enhancement and charge-carrier transport balance. Adv. Energy Mater. 12(37), 2201269 (2022). https://doi.org/10.1002/aenm.202201269
R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah et al., Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376(6588), 73–77 (2022). https://doi.org/10.1126/science.abm5784
T. Zhou, Z. Xu, R. Wang, X. Dong, Q. Fu et al., Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability. Adv. Mater. 34(17), 2200705 (2022). https://doi.org/10.1002/adma.202200705
D. Zhao, D. Gao, X. Wu, B. Li, S. Zhang et al., Efficient and stable 3D/2D perovskite solar cells through vertical heterostructures with (BA)(4) AgBiBr(8) nanosheets. Adv. Mater. 34(39), e2204661 (2022). https://doi.org/10.1002/adma.202204661
H. Sui, B. He, J. Ti, S. Sun, W. Jiao et al., Sulfur vacancy defects healing of WS2 quantum dots boosted hole extraction for all-inorganic perovskite solar cells. Chem. Eng. J. 455, 140728 (2023). https://doi.org/10.1016/j.cej.2022.140728
X. Yao, Z. Qi, P. Yang, J. Li, W. Yang, Two-Dimensional Ti3C2Tx-Patched-GO heterojunctionas charge booster and defect passivator for Stable, Carbon-Based inorganic perovskite solar cell. Chem. Eng. J. 470, 144315 (2023). https://doi.org/10.1016/j.cej.2023.144315
Y. Zhang, M. Chen, T. He, H. Chen, Z. Zhang et al., Highly efficient and stable FA-based quasi-2D ruddlesden-popper perovskite solar cells by the incorporation of β-fluorophenylethanamine cations. Adv. Mater. 35(17), e2210836 (2023). https://doi.org/10.1002/adma.202210836
Q. Fu, M. Chen, Q. Li, H. Liu, R. Wang et al., Selenophene-based 2D ruddlesden-popper perovskite solar cells with an efficiency exceeding 19%. J. Am. Chem. Soc. 145(39), 21687–21695 (2023). https://doi.org/10.1021/jacs.3c08604
N.H. Hemasiri, M. Ashraf, S. Kazim, R. Graf, R. Berger et al., Interface tweaking of perovskite solar cells with carbon nitride-based 2D materials. Nano Energy 109, 108326 (2023). https://doi.org/10.1016/j.nanoen.2023.108326
B. Han, Y. Wang, C. Liu, K. Sun, M. Yang et al., Rational design of ferroelectric 2D perovskite for improving the efficiency of flexible perovskite solar cells over 23 %. Angew. Chem. Int. Ed. 62(8), 2217526 (2023). https://doi.org/10.1002/anie.202217526
G. Li, Y. Hu, M. Li, Y. Tang, Z. Zhang et al., Managing excess lead iodide with functionalized oxo-graphene nanosheets for stable perovskite solar cells. Angew. Chem. Int. Ed. 62(39), e202307395 (2023). https://doi.org/10.1002/anie.202307395
J. He, G. Hu, Y. Jiang, S. Zeng, G. Niu et al., Dual-interface engineering in perovskite solar cells with 2D carbides. Angew. Chem. Int. Ed. 62(41), e202311865 (2023). https://doi.org/10.1002/anie.202311865
T. Yang, C. Ma, W. Cai, S. Wang, Y. Wu et al., Amidino-based Dion-Jacobson 2D perovskite for efficient and stable 2D/3D heterostructure perovskite solar cells. Joule 7(3), 574–586 (2023). https://doi.org/10.1016/j.joule.2023.02.003
K. Li, X. Gan, R. Zheng, H. Zhang, M. Xiang et al., Comparative analysis of thiophene-based interlayer cations for enhanced performance in 2D ruddlesden–popper perovskite solar cells. ACS Appl. Mater. Interfaces 16(6), 7161–7170 (2024). https://doi.org/10.1021/acsami.3c16640
V. Shweta, K. Singh, A. Kumar, Performance evaluation of 2D MoS2-based solar cells and realization of transparent ultra-thin devices. Model. Simul. Mater. Sci. Eng. 32(3), 035005 (2024). https://doi.org/10.1088/1361-651x/ad237d
T. Zhou, Q. Li, L. Zhou, Fluorinated quasi 2D perovskite solar cells with improved stability and over 19% efficiency. Adv. Energy Mater. 14(22), 2400050 (2024). https://doi.org/10.1002/aenm.202400050
A. Mahjoory, K. Karimi, R. Teimouri, M. Kolahdouz, R. Mohammadpour, Performance enhancement of a planar perovskite solar cell with a PCE of 1929% utilizing MoS22D material as a hole transport layer: a computational study. J. Nanopart. Res. 26(3), 46 (2024). https://doi.org/10.1007/s11051-024-05933-4
T. Bie, R. Li, X. Gao, L. Yang, P. Ma et al., Halogen-functionalized hole transport materials with strong passivation effects for stable and highly efficient quasi-2D perovskite solar cells. ACS Nano 18(34), 23615–23624 (2024). https://doi.org/10.1021/acsnano.4c08018
X. Zang, S. Xiong, S. Jiang, D. Li, H. Wu et al., Passivating dipole layer bridged 3D/2D perovskite heterojunction for highly efficient and stable p-i-n solar cells. Adv. Mater. 36(13), e2309991 (2024). https://doi.org/10.1002/adma.202309991
W. Shen, A. Azmy, G. Li, A. Mishra, Z. Syrgiannis et al., A crystalline 2D fullerene-based metal halide semiconductor for efficient and stable ideal-bandgap perovskite solar cells. Adv. Energy Mater. 14(23), 2400582 (2024). https://doi.org/10.1002/aenm.202400582
S. Gohri, J. Madan, D.P. Samajdar, S. Bhattarai, M.K.A. Mohammed et al., Achieving 24.6% efficiency in 2D perovskite solar cells: Bandgap tuning and MXene contact optimization in (BDA)(MA)n−1PbnI3n+1 structures. Chem. Phys. Lett. 845, 141291 (2024). https://doi.org/10.1016/j.cplett.2024.141291
N. Alharbi, M.M. Alotaibi, L.K. Obeas, I.I. Marhoon, M. Zorah et al., Boosting efficiency and long-lifespan in perovskite solar cells via 2D-MXene/Janus MoSSe integration. J. Alloys Compd. 1013, 178501 (2025). https://doi.org/10.1016/j.jallcom.2025.178501
X. Yang, X. Zhao, L. Zhao, S. Wang, Enhanced the efficiency of carbon based perovskite solar cells via g-C3N4 as functional additives. J. Photochem. Photobiol. A Chem. 461, 116145 (2025). https://doi.org/10.1016/j.jphotochem.2024.116145
X. Wei, Y. Sun, Y. Zhang, B. Yu, H. Yu, A X-bit optimized 2D solid solution Ti3CNTx MXene as the electron transport layer toward high-performance perovskite solar cells. Nano Energy 133, 110513 (2025). https://doi.org/10.1016/j.nanoen.2024.110513
X. Dong, H. Zhang, J. Li, L. Yang, Y. Ma et al., Semiconductor spacer with donor-acceptor structure drives 2D ruddlesden–popper perovskite solar cells beyond 20% efficiency. Angew. Chem. Int. Ed. 64(22), e202501210 (2025). https://doi.org/10.1002/anie.202501210
C. Hanmandlu, S. Banerjee, A. Kumar, Z. Alam Ansari, R. Kumar et al., Ion mitigation and strain regulation with 2D Semi-Metals for MA-Based perovskite materials in highly efficient solar cells. Chem. Eng. J. 504, 158070 (2025). https://doi.org/10.1016/j.cej.2024.158070
Y. Zhang, B. Yu, X. Wei, H. Yu, Using post-treatment additives for crystal modulation and interface passivation enables the fabrication of efficient and stable perovskite solar cells in air. Adv. Energy Mater. 15(7), 2402990 (2025). https://doi.org/10.1002/aenm.202402990
J.-S. Yeo, R. Kang, S. Lee, Y.-J. Jeon, N. Myoung et al., Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy 12, 96–104 (2015). https://doi.org/10.1016/j.nanoen.2014.12.022
M.V. Khenkin, E.A. Katz, A. Abate, G. Bardizza, J.J. Berry et al., Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5(1), 35–49 (2020). https://doi.org/10.1038/s41560-019-0529-5
J. Yoon, H. Sung, G. Lee, W. Cho, N. Ahn et al., Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ. Sci. 10(1), 337–345 (2017). https://doi.org/10.1039/c6ee02650h
Z. Zhou, J. Lv, C. Tan, L. Yang, Z. Wang, Emerging frontiers of 2D transition metal dichalcogenides in photovoltaics solar cell. Adv. Funct. Mater. 34(29), 2316175 (2024). https://doi.org/10.1002/adfm.202316175
L. Najafi, B. Taheri, B. Martín-García, S. Bellani, D. Di Girolamo et al., MoS2 quantum dot/graphene hybrids for advanced interface engineering of a CH3NH3PbI3 perovskite solar cell with an efficiency of over 20%. ACS Nano 12(11), 10736–10754 (2018). https://doi.org/10.1021/acsnano.8b05514
C. Gong, C. Zhang, Q. Zhuang, H. Li, H. Yang et al., Stabilizing buried interface via synergistic effect of fluorine and sulfonyl functional groups toward efficient and stable perovskite solar cells. Nano-Micro Lett. 15(1), 17 (2022). https://doi.org/10.1007/s40820-022-00992-5
P. Zeng, W. Wang, D. Han, J. Zhang, Z. Yu et al., MoS2/WSe2 vdW heterostructures decorated with PbS quantum dots for the development of high-performance photovoltaic and broadband photodiodes. ACS Nano 16(6), 9329–9338 (2022). https://doi.org/10.1021/acsnano.2c02012
L. Bai, L. Sun, Y. Wang, Z. Liu, Q. Gao et al., Solution-processed black phosphorus/PCBM hybrid heterojunctions for solar cells. J. Mater. Chem. A 5(18), 8280–8286 (2017). https://doi.org/10.1039/c6ta08140a
S. Memaran, N.R. Pradhan, Z. Lu, D. Rhodes, J. Ludwig et al., Pronounced photovoltaic response from multilayered transition-metal dichalcogenides PN-junctions. Nano Lett. 15(11), 7532–7538 (2015). https://doi.org/10.1021/acs.nanolett.5b03265
S. Aryal, A.B. Puthirath, B. Jones, A.S.R. Bati, B. Chen et al., Solution-processed tungsten diselenide as an inorganic hole transport material for moisture-stable perovskite solar cells in the n-i-p architecture. Sol. Energy Mater. Sol. Cells 282, 113313 (2025). https://doi.org/10.1016/j.solmat.2024.113313
M. Batmunkh, K. Vimalanathan, C. Wu, A.S.R. Bati, L. Yu et al., Efficient production of phosphorene nanosheets via shear stress mediated exfoliation for low-temperature perovskite solar cells. Small Meth. 3(5), 1800521 (2019). https://doi.org/10.1002/smtd.201800521
P. Ding, D. Yang, S. Yang, Z. Ge, Stability of organic solar cells: toward commercial applications. Chem. Soc. Rev. 53(5), 2350–2387 (2024). https://doi.org/10.1039/d3cs00492a
Y. Lin, B. Adilbekova, Y. Firdaus, E. Yengel, H. Faber et al., 17% efficient organic solar cells based on liquid exfoliated WS(2) as a replacement for PEDOT: PSS. Adv. Mater. 31(46), e1902965 (2019). https://doi.org/10.1002/adma.201902965
J.-M. Yun, Y.-J. Noh, J.-S. Yeo, Y.-J. Go, S.-I. Na et al., Efficient work-function engineering of solution-processed MoS2 thin-films for novel hole and electron transport layers leading to high-performance polymer solar cells. J. Mater. Chem. C 1(24), 3777 (2013). https://doi.org/10.1039/c3tc30504j
S. Xu, Y. Zhang, Y. Sun, P. Cheng, Z. Yao et al., An unprecedented efficiency with approaching 21% enabled by additive-assisted layer-by-layer processing in organic solar cells. Nano-Micro Lett. 17(1), 37 (2024). https://doi.org/10.1007/s40820-024-01529-8
P. Qin, G. Fang, W. Ke, F. Cheng, Q. Zheng et al., In situ growth of double-layer MoO3/MoS2 film from MoS2 for hole-transport layers in organic solar cell. J. Mater. Chem. A 2(8), 2742 (2014). https://doi.org/10.1039/c3ta13579a
D.H. Shin, C.W. Jang, J.S. Ko, S.-H. Choi, Enhancement of efficiency and stability in organic solar cells by employing MoS2 transport layer, graphene electrode, and graphene quantum dots-added active layer. Appl. Surf. Sci. 538, 148155 (2021). https://doi.org/10.1016/j.apsusc.2020.148155
X. Hu, L. Chen, L. Tan, Y. Zhang, L. Hu et al., Versatile MoS2 nanosheets in ITO-free and semi-transparent polymer power-generating glass. Sci. Rep. 5, 12161 (2015). https://doi.org/10.1038/srep12161
K.S. Lee, Y.J. Park, J. Shim, C.-H. Lee, G.-H. Lim et al., Effective charge separation of inverted polymer solar cells using versatile MoS2 nanosheets as an electron transport layer. J. Mater. Chem. A 7(25), 15356–15363 (2019). https://doi.org/10.1039/c9ta03989a
X. Yang, W. Liu, M. Xiong, Y. Zhang, T. Liang et al., Au nanops on ultrathin MoS2 sheets for plasmonic organic solar cells. J. Mater. Chem. A 2(36), 14798–14806 (2014). https://doi.org/10.1039/c4ta03178d
W. Liu, X. Yang, Y. Zhang, M. Xu, H. Chen, Ultra-stable two-dimensional MoS2 solution for highly efficient organic solar cells. RSC Adv. 4(62), 32744–32748 (2014). https://doi.org/10.1039/c4ra04116j
I.P. Murray, S.J. Lou, L.J. Cote, S. Loser, C.J. Kadleck et al., Graphene oxide interlayers for robust, high-efficiency organic photovoltaics. J. Phys. Chem. Lett. 2(24), 3006–3012 (2011). https://doi.org/10.1021/jz201493d
X. Gu, W. Cui, H. Li, Z. Wu, Z. Zeng et al., A solution-processed hole extraction layer made from ultrathin MoS2 nanosheets for efficient organic solar cells. Adv. Energy Mater. 3(10), 1262–1268 (2013). https://doi.org/10.1002/aenm201300549
X. Gu, W. Cui, T. Song, C. Liu, X. Shi et al., Solution-processed 2D niobium diselenide nanosheets as efficient hole-transport layers in organic solar cells. Chemsuschem 7(2), 416–420 (2014). https://doi.org/10.1002/cssc.201300615
A.V. Kesavan, A.D. Rao, P.C. Ramamurthy, Optical and electronic property tailoring by MoS2-polymer hybrid solar cell. Org. Electron. 48, 138–146 (2017). https://doi.org/10.1016/j.orgel.2017.05.027
X. Cheng, J. Long, R. Wu, L. Huang, L. Tan et al., Fluorinated reduced graphene oxide as an efficient hole-transport layer for efficient and stable polymer solar cells. ACS Omega 2(5), 2010–2016 (2017). https://doi.org/10.1021/acsomega.7b00408
Z. Wang, Z. Wang, Z. Wang, M. Zhao, Y. Zhou et al., Novel 2D material from AMQS-based defect engineering for efficient and stable organic solar cells. 2D Mater. 6(4), 045017 (2019). https://doi.org/10.1088/2053-1583/ab277d
Z. Yu, W. Feng, W. Lu, B. Li, H. Yao et al., MXenes with tunable work functions and their application as electron- and hole-transport materials in non-fullerene organic solar cells. J. Mater. Chem. A 7(18), 11160–11169 (2019). https://doi.org/10.1039/c9ta01195a
Y. Liu, Q. Tao, Y. Jin, X. Liu, H. Sun et al., Mo1.33C MXene-assisted PEDOT: PSS hole transport layer for high-performance bulk-heterojunction polymer solar cells. ACS Appl. Electron. Mater. 2(1), 163–169 (2020). https://doi.org/10.1021/acsaelm.9b00668
W. Yang, Z. Ye, T. Liang, J. Ye, H. Chen, Facilitate charge transfer at donor/acceptor interface in bulk heterojunction organic photovoltaics by two-dimensional nanoflakes. Sol. Energy Mater. Sol. Cells 190, 75–82 (2019). https://doi.org/10.1016/j.solmat.2018.10.003
G. Kakavelakis, A.E. Del Rio Castillo, V. Pellegrini, A. Ansaldo, P. Tzourmpakis et al., Size-tuning of WSe2 flakes for high efficiency inverted organic solar cells. ACS Nano 11(4), 3517–3531 (2017). https://doi.org/10.1021/acsnano.7b00323
D. Zheng, W. Huang, P. Fan, Y. Zheng, J. Huang et al., Preparation of reduced graphene oxide: ZnO hybrid cathode interlayer using in situ thermal reduction/annealing for interconnecting nanostructure and its effect on organic solar cell. ACS Appl. Mater. Interfaces 9(5), 4898–4907 (2017). https://doi.org/10.1021/acsami.6b15411
C. Hou, H. Yu, C. Huang, Solution-processable Ti3C2Tx nanosheets as an efficient hole transport layer for high-performance and stable polymer solar cells. J. Mater. Chem. C 7(37), 11549–11558 (2019). https://doi.org/10.1039/c9tc03415c
J. Wang, H. Yu, C. Hou, J. Zhang, Solution-processable PEDOT: PSS: α-In2Se3 with enhanced conductivity as a hole transport layer for high-performance polymer solar cells. ACS Appl. Mater. Interfaces 12(23), 26543–26554 (2020). https://doi.org/10.1021/acsami.0c02489
W. Yang, L. Ye, F. Yao, C. Jin, H. Ade et al., Black phosphorus nanoflakes as morphology modifier for efficient fullerene-free organic solar cells with high fill-factor and better morphological stability. Nano Res. 12(4), 777–783 (2019). https://doi.org/10.1007/s12274-019-2288-9
C. Huang, H. Yu, Enhanced carrier mobility and power conversion efficiency of organic solar cells by adding 2D Bi2OS2. 2D Mater. 7(2), 025023 (2020). https://doi.org/10.1088/2053-1583/ab6e3d
C. Hou, H. Yu, Modifying the nanostructures of PEDOT: PSS/Ti3C2TX composite hole transport layers for highly efficient polymer solar cells. J. Mater. Chem. C 8(12), 4169–4180 (2020). https://doi.org/10.1039/d0tc00075b
F. Pan, C. Sun, Y. Li, D. Tang, Y. Zou et al., Solution-processable n-doped graphene-containing cathode interfacial materials for high-performance organic solar cells. Energy Environ. Sci. 12(11), 3400–3411 (2019). https://doi.org/10.1039/C9EE02433F
Y. Lin, B. Adilbekova, Y. Firdaus, E. Yengel, H. Faber et al., 17% efficient organic solar cells based on liquid exfoliated WS2 as a replacement for PEDOT: PSS. Adv. Mater. 31(46), 1902965 (2019). https://doi.org/10.1002/adma.201902965
H. Li, B. Yu, H. Yu, An efficient and stable inverted structure organic solar cell using ZnO modified by 2D ZrSe2 as a composite electron transport layer. Adv. Funct. Mater. 34(37), 2402128 (2024). https://doi.org/10.1002/adfm.202402128
M. Günther, S. Lotfi, S.S. Rivas, D. Blätte, J.P. Hofmann et al., The neglected influence of zinc oxide light-soaking on stability measurements of inverted organic solar cells. Adv. Funct. Mater. 33(13), 2209768 (2023). https://doi.org/10.1002/adfm.202209768
O. Dulub, U. Diebold, G. Kresse, Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn. Phys. Rev. Lett. 90, 016102 (2003). https://doi.org/10.1103/physrevlett.90.016102
H. Xu, L. Dong, X.Q. Shi, M.A. Van Hove, W.K. Ho et al., Stabilizing forces acting on ZnO polar surfaces: STM, LEED, and DFT. Phys. Rev. B 89(23), 235403 (2014). https://doi.org/10.1103/physrevb.89.235403
C. Huang, J. Tian, S. Yang, Y. Zhao, H. Yu, Amino acid modified Ti3C2Tx as electron transport layers for high-performance organic solar cells. Nano Energy 115, 108691 (2023). https://doi.org/10.1016/j.nanoen.2023.108691
D. Garcia Romero, L. Di Mario, F. Yan, C.M. Ibarra-Barreno, S. Mutalik et al., Understanding the surface chemistry of SnO2 nanops for high performance and stable organic solar cells. Adv. Funct. Mater. 34(6), 2307958 (2024). https://doi.org/10.1002/adfm.202307958
Y. Yan, Y. Zhang, Y. Zhao, F. Ding, Y. Lei et al., Review on TiO2 nanostructured photoanode and novel dyes for dye-sensitized solar cells application. J. Mater. Sci. 60(11), 4975–5005 (2025). https://doi.org/10.1007/s10853-025-10734-8
S.D.B. George, K. Nagarajan, A.A. Ali, S. Madamala, D. Subramanian et al., Morphology-optimized ZnSnO3 nanopentagons as efficient electron transport layers for high-efficient perovskite solar cells. J. Solid State Chem. 347, 125322 (2025). https://doi.org/10.1016/j.jssc.2025.125322
W. Zhao, P. Guo, J. Wu, D. Lin, N. Jia et al., TiO2 electron transport layer with p-n homojunctions for efficient and stable perovskite solar cells. Nano-Micro Lett. 16(1), 191 (2024). https://doi.org/10.1007/s40820-024-01407-3
Y. Hong, S. Zhang, H. Shen, X. Tian, B. Zhang et al., Bathocuproine, an old dog, new tricks for boosting the performance of perovskite solar cells. Mater. Today Energy 42, 101554 (2024). https://doi.org/10.1016/j.mtener.2024.101554
J.P. Akash, Tiwari, Recent advancements in perylene diimide as an electron acceptor in organic solar cells. J. Mater. Chem. C 12(3), 838–853 (2024). https://doi.org/10.1039/d3tc04054b
Y. Guo, X. Ma, H. Song, J. Chen, W. Zhang et al., 19.5%-efficiency organic solar cells with high thickness tolerance and exceptional device stability enabled by TEMPO-functionalized perylene diimide as a cathode interface layer. Adv. Funct. Mater. 35(9), 2416356 (2025). https://doi.org/10.1002/adfm.202416356
J. Yao, S. Lu, Y. Meng, F. Zhou, D. Chen et al., Electronic regulation by constructing RGO/MoCQD/CF double interface to enhance performance in solar cells. Appl. Surf. Sci. 679, 161247 (2025). https://doi.org/10.1016/j.apsusc.2024.161247
L.-Y. Chen, T. Sun, T.-J. Zhang, Y. Xie, J.-M. Zhang, Modulating the band alignment, carrier mobility and optical absorption of graphene/MoS2 heterostructure via synergistic effects of doping and strain. Surf. Interfaces 46, 104024 (2024). https://doi.org/10.1016/j.surfin.2024.104024
F. Nie, H. Zhao, S. Liu, Y. Li, H. Zhang et al., Laminated 2D-Ti3C2-MXenes as high-performance counter electrode for triiodide reduction in dye-sensitized solar cells. Diam. Relat. Mater. 141, 110586 (2024). https://doi.org/10.1016/j.diamond.2023.110586
M. Zhang, J. Zai, J. Liu, M. Chen, Z. Wang et al., A hierarchical CoFeS2/reduced graphene oxide composite for highly efficient counter electrodes in dye-sensitized solar cells. Dalton Trans. 46(29), 9511–9516 (2017). https://doi.org/10.1039/C7DT01511A
N. Kanjana, S. Pimsopa, W. Maiaugree, P. Laokul, I. Chaiya et al., Novel micro-ceramic bottom ash mixed PEDOT: PSS/PVP for a low-cost Pt-free counter electrode in a dye sensitized solar cell. J. Electrochem. Soc. 169(8), 083503 (2022). https://doi.org/10.1149/1945-7111/ac86fa
N. Kanjana, W. Maiaugree, T. Lunnoo, P. Laokul, I. Chaiya et al., One-step hydrothermal synthesis and electrocatalytic properties of MoS2/activated carbon composite derived from shallots. J. Appl. Electrochem. 53(12), 2311–2320 (2023). https://doi.org/10.1007/s10800-023-01921-z
H. Sun, Y. Luo, Y. Zhang, D. Li, Z. Yu et al., In situ preparation of a flexible polyaniline/carbon composite counter electrode and its application in dye-sensitized solar cells. J. Phys. Chem. C 114(26), 11673–11679 (2010). https://doi.org/10.1021/jp1030015
T.-C. Wei, C.-C. Wan, Y.-Y. Wang, C.-M. Chen, H.-S. Shiu, Immobilization of poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium–tin oxide glass and its application in dye-sensitized solar cells. J. Phys. Chem. C 111(12), 4847–4853 (2007). https://doi.org/10.1021/jp067501c
M. Wu, X. Lin, T. Wang, J. Qiu, T. Ma, Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes. Energy Environ. Sci. 4(6), 2308 (2011). https://doi.org/10.1039/c1ee01059j
T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho et al., Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J. Electrochem. Soc. 153(12), A2255 (2006). https://doi.org/10.1149/1.2358087
W. Ghann, H. Kang, T. Sheikh, S. Yadav, T. Chavez-Gil et al., Fabrication, optimization and characterization of natural dye sensitized solar cell. Sci. Rep. 7, 41470 (2017). https://doi.org/10.1038/srep41470
J. Dong, J. Wu, J. Jia, L. Hu, S. Dai, Cobalt/molybdenum ternary hybrid with hierarchical architecture used as high efficient counter electrode for dye-sensitized solar cells. Sol. Energy 122, 326–333 (2015). https://doi.org/10.1016/j.solener.2015.09.011
J. Ae, C. Mi, B. Ho, Metal selenide films as the counter electrode in dye-sensitized solar cell. Mater. Lett. 123, 51–54 (2014). https://doi.org/10.1016/j.matlet.2014.02.080
X. Qian, H. Li, L. Shao, X. Jiang, L. Hou, Morphology-tuned synthesis of nickel cobalt selenides as highly efficient Pt-free counter electrode catalysts for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 8(43), 29486–29495 (2016). https://doi.org/10.1021/acsami.6b09966
J. Guo, S. Liang, Y. Shi, C. Hao, X. Wang et al., Transition metal selenides as efficient counter-electrode materials for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 17(43), 28985–28992 (2015). https://doi.org/10.1039/c5cp04862a
E. Bi, H. Chen, X. Yang, F. Ye, M. Yin et al., Fullerene-structured MoSe2 hollow spheres anchored on highly nitrogen-doped graphene as a conductive catalyst for photovoltaic applications. Sci. Rep. 5, 13214 (2015). https://doi.org/10.1038/srep13214
J. Guo, Y. Shi, C. Zhu, L. Wang, N. Wang et al., Cost-effective and morphology-controllable niobium diselenides for highly efficient counter electrodes of dye-sensitized solar cells. J. Mater. Chem. A 1(38), 11874 (2013). https://doi.org/10.1039/c3ta12349a
W. Wang, X. Pan, W. Liu, B. Zhang, H. Chen et al., FeSe2 films with controllable morphologies as efficient counter electrodes for dye-sensitized solar cells. Chem. Commun. 50(20), 2618–2620 (2014). https://doi.org/10.1039/C3CC49175G
J. Dong, J. Wu, J. Jia, S. Wu, P. Zhou et al., Cobalt selenide nanorods used as a high efficient counter electrode for dye-sensitized solar cells. Electrochim. Acta 168, 69–75 (2015). https://doi.org/10.1016/j.electacta.2015.03.226
S. Huang, Q. He, W. Chen, Q. Qiao, J. Zai et al., Ultrathin FeSe2 nanosheets: controlled synthesis and application as a heterogeneous catalyst in dye-sensitized solar cells. Chem. 21(10), 4085–4091 (2015). https://doi.org/10.1002/chem.201406124
Y.-J. Huang, M.-S. Fan, C.-T. Li, C.-P. Lee, T.-Y. Chen et al., MoSe2 nanosheet/poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) composite film as a Pt-free counter electrode for dye-sensitized solar cells. Electrochim. Acta 211, 794–803 (2016). https://doi.org/10.1016/j.electacta.2016.06.086
Y. Duan, Q. Tang, J. Liu, B. He, L. Yu, Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells. Angew. Chem. Int. Ed. 53(52), 14569–14574 (2014). https://doi.org/10.1002/anie.201409422
S. Huang, Q. He, W. Chen, J. Zai, Q. Qiao et al., 3D hierarchical FeSe2 microspheres: Controlled synthesis and applications in dye-sensitized solar cells. Nano Energy 15, 205–215 (2015). https://doi.org/10.1016/j.nanoen.2015.04.027
J. Huo, J. Wu, M. Zheng, Y. Tu, Z. Lan, Flower-like nickel cobalt sulfide microspheres modified with nickel sulfide as Pt-free counter electrode for dye-sensitized solar cells. J. Power. Sources 304, 266–272 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.062
M.A. Ibrahem, W.-C. Huang, T.-W. Lan, K.M. Boopathi, Y.-C. Hsiao et al., Controlled mechanical cleavage of bulk niobium diselenide to nanoscaled sheet, rod, and p structures for Pt-free dye-sensitized solar cells. J. Mater. Chem. A 2(29), 11382–11390 (2014). https://doi.org/10.1039/c4ta01881h
I.-T. Chiu, C.-T. Li, C.-P. Lee, P.-Y. Chen, Y.-H. Tseng et al., Nanoclimbing-wall-like CoSe2/carbon composite film for the counter electrode of a highly efficient dye-sensitized solar cell: a study on the morphology control. Nano Energy 22, 594–606 (2016). https://doi.org/10.1016/j.nanoen.2016.02.060
F. Gong, X. Xu, Z. Li, G. Zhou, Z.-S. Wang, NiSe2 as an efficient electrocatalyst for a Pt-free counter electrode of dye-sensitized solar cells. Chem. Commun. 49(14), 1437–1439 (2013). https://doi.org/10.1039/C2CC38621F
H. Chen, Y. Xie, H. Cui, W. Zhao, X. Zhu et al., In situ growth of a MoSe2/Mo counter electrode for high efficiency dye-sensitized solar cells. Chem. Commun. 50(34), 4475–4477 (2014). https://doi.org/10.1039/c3cc49600g
F. Gong, H. Wang, X. Xu, G. Zhou, Z.-S. Wang, In situ growth of Co(0.85)Se and Ni(0.85)Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J. Am. Chem. Soc. 134(26), 10953–10958 (2012). https://doi.org/10.1021/ja303034w
L.T.L. Lee, J. He, B. Wang, Y. Ma, K.Y. Wong et al., Few-layer MoSe₂ possessing high catalytic activity towards iodide/tri-iodide redox shuttles. Sci. Rep. 4, 4063 (2014). https://doi.org/10.1038/srep04063
M. Ahmadi, S.J. Anaghizi, M. Asemi, M. Ghanaatshoar, Plasma-treated room temperature synthesized CuCrO2/Au/CuCrO2 on Polyethylene terephthalate: Towards a high-performance flexible p-type transparent conductor. Thin Solid Films 723, 138582 (2021). https://doi.org/10.1016/j.tsf.2021.138582
R.H. Althomali, E.A.M. Saleh, R.S. Bhat, S. Askar, I. Sapaev et al., Novel ZnCO2O4/WO3 nanocomposite as the counter electrode for dye-sensitized solar cells (DSSCS): study of electrocatalytic activity and charge transfer properties. Opt. Mater. 143, 114248 (2023). https://doi.org/10.1016/j.optmat.2023.114248
Y. He, G. Yue, J. Huo, C. Dong, G. Xie et al., A dye-sensitized solar cells with an efficiency of 10.01% based on the MoP/MoNiP2@Ti3C2 composite counter electrode. Mater. Today Sustain. 22, 100329 (2023). https://doi.org/10.1016/j.mtsust.2023.100329
K. Zhao, X. Zhang, M. Wang, W. Zhang, X. Li et al., Electrospun carbon nanofibers decorated with Pt-Ni2P nanops as high efficiency counter electrode for dye-sensitized solar cells. J. Alloys Compd. 786, 50–55 (2019). https://doi.org/10.1016/j.jallcom.2019.01.295
W. Wang, Q. Cui, D. Sun, Q. Yang, J. Xu et al., Enhanced electrocatalytic performance in dye-sensitized solar cell via coupling CoSe2@N-doped carbon and carbon nanotubes. J. Mater. Chem. C 9(22), 7046–7056 (2021). https://doi.org/10.1039/D1TC01205C
L. Shen, K. Sun, F. Xi, Z. Jiang, S. Li et al., Conversion of photovoltaic waste silicon into amorphous silicon nanowire anodes. Energy Environ. Sci. 18(9), 4348–4361 (2025). https://doi.org/10.1039/d5ee00020c
A. Liu, X. Zhang, Z. Liu, Y. Li, X. Peng et al., The roadmap of 2D materials and devices toward chips. Nano-Micro Lett. 16(1), 119 (2024). https://doi.org/10.1007/s40820-023-01273-5
F. Nie, H. Fang, J. Wang, L. Zhao, C. Jia et al., An adaptive solid-state synapse with bi-directional relaxation for multimodal recognition and spatio-temporal learning. Adv. Mater. 37(17), 2412006 (2025). https://doi.org/10.1002/adma.202412006
X. Tian, R. Xun, T. Chang, J. Yu, Distribution function of thermal ripples in h-BN, graphene and MoS2. Phys. Lett. A 550, 130597 (2025). https://doi.org/10.1016/j.physleta.2025.130597
Q. Meng, Y. He, S. Li, S. Hussain, J. Lu et al., Adaptive two-step power prediction and improved perturbation method for accelerated MPPT with reduced oscillations in photovoltaic systems. Energy Rep. 13, 5328–5338 (2025). https://doi.org/10.1016/j.egyr.2025.04.055
Z. Liu, S.Y. Tee, G. Guan, M.-Y. Han, Atomically substitutional engineering of transition metal dichalcogenide layers for enhancing tailored properties and superior applications. Nano-Micro Lett. 16(1), 95 (2024). https://doi.org/10.1007/s40820-023-01315-y
Y. Jia, G. Chen, L. Zhao, Defect detection of photovoltaic modules based on improved VarifocalNet. Sci. Rep. 14, 15170 (2024). https://doi.org/10.1038/s41598-024-66234-3
Z. Lin, A. McCreary, N. Briggs, S. Subramanian, K. Zhang et al., 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater. 3(4), 042001 (2016). https://doi.org/10.1088/2053-1583/3/4/042001
D. Rhodes, S.H. Chae, R. Ribeiro-Palau, J. Hone, Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18(6), 541–549 (2019). https://doi.org/10.1038/s41563-019-0366-8
Z. Ye, C. Tan, X. Huang, Y. Ouyang, L. Yang et al., Emerging MoS2 wafer-scale technique for integrated circuits. Nano-Micro Lett. 15(1), 38 (2023). https://doi.org/10.1007/s40820-022-01010-4
A.-F. Wang, H.-P. Ma, Q.-M. Huang, L. Gu, Y. Shen et al., Band alignment, thermal transport property, and electrical performance of high-quality β-Ga2O3/AlN Schottky barrier diode grown via MOCVD. ACS Appl. Mater. Interfaces 17(18), 27517–27529 (2025). https://doi.org/10.1021/acsami.5c04203
F. Tabarkhoon, M. Bazmi, N.A. Welchert, T.T. Tsotsis, M. Gupta, One-pot fabrication of silicon carbide thin films via plasma-enhanced chemical vapor deposition (PECVD) followed by in situ pyrolysis. Ind. Eng. Chem. Res. 64(11), 5973–5981 (2025). https://doi.org/10.1021/acs.iecr.4c03786
Y. Bai, Y. Xu, L. Sun, Z. Ward, H. Wang et al., Two-dimensional nanosheets by liquid metal exfoliation. Adv. Mater. 37(8), 2416375 (2025). https://doi.org/10.1002/adma.202416375
M. Ojrzyńska, J. Jamroz, M. Maciałowicz, K. Wilczyński, A. Daniszewska et al., Quality and thickness control of graphene nanoplatelets during large-scale production using liquid phase exfoliation. Mater. Today Commun. 42, 111543 (2025). https://doi.org/10.1016/j.mtcomm.2025.111543
S. Eom, M. Park, B. Koo, C.-E. Yang, J. Kang et al., Suppressing organic cation reactivity in locally concentrated ionic liquid electrolytes for lithium metal batteries. Energy Storage Mater. 74, 103966 (2025). https://doi.org/10.1016/j.ensm.2024.103966
F. Meierhofer, C. Orlob, L. Krieg, G.W. Harm, J. Zhu et al., Lateral microstructuring of oCVD PEDOT nanolayers fabricated by EDOT/SbCl5 chemistry and photoresist-based lift-off. ACS Appl. Polym. Mater. 7(11), 6874–6886 (2025). https://doi.org/10.1021/acsapm.5c00492
A. Quellmalz, X. Wang, S. Sawallich, B. Uzlu, M. Otto et al., Large-area integration of two-dimensional materials and their heterostructures by wafer bonding. Nat. Commun. 12, 917 (2021). https://doi.org/10.1038/s41467-021-21136-0
Z. Li, Y. Luo, X. Xie, J. Yang, H. Zhuang et al., High-resolution copper micropatterning on flex