Flexible Tactile Sensing Systems: Challenges in Theoretical Research Transferring to Practical Applications
Corresponding Author: Xiang Lin
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 37
Abstract
Since the first design of tactile sensors was proposed by Harmon in 1982, tactile sensors have evolved through four key phases: industrial applications (1980s, basic pressure detection), miniaturization via MEMS (1990s), flexible electronics (2010s, stretchable materials), and intelligent systems (2020s-present, AI-driven multimodal sensing). With the innovation of material, processing techniques, and multimodal fusion of stimuli, the application of tactile sensors has been continuously expanding to a diversity of areas, including but not limited to medical care, aerospace, sports and intelligent robots. Currently, researchers are dedicated to develop tactile sensors with emerging mechanisms and structures, pursuing high-sensitivity, high-resolution, and multimodal characteristics and further constructing tactile systems which imitate and approach the performance of human organs. However, challenges in the combination between the theoretical research and the practical applications are still significant. There is a lack of comprehensive understanding in the state of the art of such knowledge transferring from academic work to technical products. Scaled-up production of laboratory materials faces fatal challenges like high costs, small scale, and inconsistent quality. Ambient factors, such as temperature, humidity, and electromagnetic interference, also impair signal reliability. Moreover, tactile sensors must operate across a wide pressure range (0.1 kPa to several or even dozens of MPa) to meet diverse application needs. Meanwhile, the existing algorithms, data models and sensing systems commonly reveal insufficient precision as well as undesired robustness in data processing, and there is a realistic gap between the designed and the demanded system response speed. In this review, oriented by the design requirements of intelligent tactile sensing systems, we summarize the common sensing mechanisms, inspired structures, key performance, and optimizing strategies, followed by a brief overview of the recent advances in the perspectives of system integration and algorithm implementation, and the possible roadmap of future development of tactile sensors, providing a forward-looking as well as critical discussions in the future industrial applications of flexible tactile sensors.
Highlights:
1 This review presents current advances in flexible tactile sensor research from multifaceted perspectives including mechanisms, materials, structural design, and system integration.
2 It establishes performance-oriented rational design principles for sensors in practical.
3 It summarized the challenges and strategies in translating flexible tactile sensing systems into practical applications, and proposed a research roadmap for future investigations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Coste, J. Mathur, M. Schmidt, T.J. Earley, S. Ranade et al., Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330(6000), 55–60 (2010). https://doi.org/10.1126/science.1193270
- T. Järvilehto, H. Hämäläinen, K. Soininen, Peripheral neural basis of tactile sensations in man: II. Characteristics of human mechanoreceptors in the hairy skin and correlations of their activity with tactile sensations. Brain Res. 219(1), 13–27 (1981). https://doi.org/10.1016/0006-8993(81)90264-X
- D. Deflorio, M. Di Luca, A.M. Wing, Skin and mechanoreceptor contribution to tactile input for perception: a review of simulation models. Front. Hum. Neurosci. 16, 862344 (2022). https://doi.org/10.3389/fnhum.2022.862344
- R.V. Grigorii, J.E. Colgate, R. Klatzky, The spatial profile of skin indentation shapes tactile perception across stimulus frequencies. Sci. Rep. 12, 13185 (2022). https://doi.org/10.1038/s41598-022-17324-7
- S. Jami, A. Erickson, S.M. Brierley, I. Vetter, Pain-causing venom peptides: insights into sensory neuron pharmacology. Toxins 10(1), 15 (2017). https://doi.org/10.3390/toxins10010015
- K. Kim, M. Sim, S.-H. Lim, D. Kim, D. Lee et al., Tactile avatar: tactile sensing system mimicking human tactile cognition. Adv. Sci. 8(7), 2002362 (2021). https://doi.org/10.1002/advs.202002362
- Y. Shao, V. Hayward, Y. Visell, Compression of dynamic tactile information in the human hand. Sci. Adv. 6(16), eaaz1158 (2020). https://doi.org/10.1126/sciadv.aaz1158
- U.B. Rongala, A. Seyfarth, V. Hayward, H. Jörntell, The import of skin tissue dynamics in tactile sensing. Cell Rep. Phys. Sci. 5(5), 101943 (2024). https://doi.org/10.1016/j.xcrp.2024.101943
- S. Sivčev, J. Coleman, E. Omerdić, G. Dooly, D. Toal, Underwater manipulators: a review. Ocean Eng. 163, 431–450 (2018). https://doi.org/10.1016/j.oceaneng.2018.06.018
- H.A.M. Williams, M.H. Jones, M. Nejati, M.J. Seabright, J. Bell et al., Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms. Biosyst. Eng. 181, 140–156 (2019). https://doi.org/10.1016/j.biosystemseng.2019.03.007
- S. Leanza, J. Lu-Yang, B. Kaczmarski, S. Wu, E. Kuhl et al., Elephant trunk inspired multimodal deformations and movements of soft robotic arms. Adv. Funct. Mater. 34(29), 2400396 (2024). https://doi.org/10.1002/adfm.202400396
- G.A. Naselli, R.B.N. Scharff, M. Thielen, F. Visentin, T. Speck et al., A soft continuum robotic arm with a climbing plant-inspired adaptive behavior for minimal sensing, actuation, and control effort. Adv. Intell. Syst. 6(4), 2300537 (2024). https://doi.org/10.1002/aisy.202300537
- F.-C. Li, Z. Kong, J.-H. Wu, X.-Y. Ji, J.-J. Liang, Advances in flexible piezoresistive pressure sensor. Acta Phys. Sin. 70(10), 100703 (2021). https://doi.org/10.7498/aps.70.20210023
- Y. Wang, Y. Yue, F. Cheng, Y. Cheng, B. Ge et al., Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano 16(2), 1734–1758 (2022). https://doi.org/10.1021/acsnano.1c09925
- J.-H. Lee, J.Y. Park, E.B. Cho, T.Y. Kim, S.A. Han et al., Reliable piezoelectricity in bilayer WSe2 for piezoelectric nanogenerators. Adv. Mater. 29(29), 1606667 (2017). https://doi.org/10.1002/adma.201606667
- Z. Yao, J. Deng, L. Li, Piezoelectric performance regulation from 2D materials to devices. Matter 7(3), 855–888 (2024). https://doi.org/10.1016/j.matt.2023.12.031
- H. Niu, H. Li, N. Li, H. Niu, Y. Li et al., Fringing-effect-based capacitive proximity sensors. Adv. Funct. Mater. 34(51), 2409820 (2024). https://doi.org/10.1002/adfm.202409820
- J. Qin, L.-J. Yin, Y.-N. Hao, S.-L. Zhong, D.-L. Zhang et al., Flexible and stretchable capacitive sensors with different microstructures. Adv. Mater. 33(34), 2008267 (2021). https://doi.org/10.1002/adma.202008267
- X. Tao, X. Chen, Z.L. Wang, Design and synthesis of triboelectric polymers for high performance triboelectric nanogenerators. Energy Environ. Sci. 16(9), 3654–3678 (2023). https://doi.org/10.1039/D3EE01325A
- W. Peng, R. Zhu, Q. Ni, J. Zhao, X. Zhu et al., Functional tactile sensor based on arrayed triboelectric nanogenerators. Adv. Energy Mater. 14(44), 2403289 (2024). https://doi.org/10.1002/aenm.202403289
- A. Noor, M. Sun, X. Zhang, S. Li, F. Dong et al., Recent advances in triboelectric tactile sensors for robot hand. Mater. Today Phys. 46, 101496 (2024). https://doi.org/10.1016/j.mtphys.2024.101496
- N. Yao, S. Wang, Recent progress of optical tactile sensors: a review. Opt. Laser Technol. 176, 111040 (2024). https://doi.org/10.1016/j.optlastec.2024.111040
- J. Li, H. Qin, Z. Song, L. Hou, H. Li, A tactile sensor based on magnetic sensing: design and mechanism. IEEE Trans. Instrum. Meas. 73, 1005509 (2024). https://doi.org/10.1109/TIM.2024.3403185
- J. Yang, S. Luo, X. Zhou, J. Li, J. Fu et al., Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Appl. Mater. Interfaces 11(16), 14997–15006 (2019). https://doi.org/10.1021/acsami.9b02049
- X. Huang, Z. Ma, W. Xia, L. Hao, Y. Wu et al., A high-sensitivity flexible piezoelectric tactile sensor utilizing an innovative rigid-in-soft structure. Nano Energy 129, 110019 (2024). https://doi.org/10.1016/j.nanoen.2024.110019
- X. Qu, Z. Liu, P. Tan, C. Wang, Y. Liu et al., Artificial tactile perception smart finger for material identification based on triboelectric sensing. Sci. Adv. 8(31), eabq2521 (2022). https://doi.org/10.1126/sciadv.abq2521
- J. Shin, B. Jeong, J. Kim, V.B. Nam, Y. Yoon et al., Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 32(2), e1905527 (2020). https://doi.org/10.1002/adma.201905527
- J. Wu, M. Sang, J. Zhang, Y. Sun, X. Wang et al., Ultra-stretchable spiral hybrid conductive fiber with 500%-strain electric stability and deformation-independent linear temperature response. Small 19(19), e2207454 (2023). https://doi.org/10.1002/smll.202207454
- S. Zou, L.-Q. Tao, G. Wang, C. Zhu, Z. Peng et al., Humidity-based human-machine interaction system for healthcare applications. ACS Appl. Mater. Interfaces 14(10), 12606–12616 (2022). https://doi.org/10.1021/acsami.1c23725
- H. Luo, G. Pang, K. Xu, Z. Ye, H. Yang et al., A fully printed flexible sensor sheet for simultaneous proximity–pressure–temperature detection. Adv. Mater. Technol. 6(11), 2100616 (2021). https://doi.org/10.1002/admt.202100616
- S. Pyo, J. Lee, K. Bae, S. Sim, J. Kim, Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv. Mater. 33(47), 2170373 (2021). https://doi.org/10.1002/adma.202170373
- A. Schmitz, P. Maiolino, M. Maggiali, L. Natale, G. Cannata et al., Methods and technologies for the implementation of large-scale robot tactile sensors. IEEE Trans. Robot. 27(3), 389–400 (2011). https://doi.org/10.1109/TRO.2011.2132930
- N.T. Tien, S. Jeon, D.-I. Kim, T.Q. Trung, M. Jang et al., A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv. Mater. 26(5), 796–804 (2014). https://doi.org/10.1002/adma.201302869
- D.H. Ho, Q. Sun, S.Y. Kim, J.T. Han, D.H. Kim et al., Stretchable and multimodal all graphene electronic skin. Adv. Mater. 28(13), 2601–2608 (2016). https://doi.org/10.1002/adma.201505739
- C. Zhao, J. Park, S.E. Root, Z. Bao, Skin-inspired soft bioelectronic materials, devices and systems. Nat. Rev. Bioeng. 2(8), 671–690 (2024). https://doi.org/10.1038/s44222-024-00194-1
- Z. Yu, Y. Mao, Z. Wu, F. Li, J. Cao et al., Fully-printed bionic tactile E-skin with coupling enhancement effect to recognize object assisted by machine learning. Adv. Funct. Mater. 34(3), 2307503 (2024). https://doi.org/10.1002/adfm.202307503
- Y. Luo, Y. Li, P. Sharma, W. Shou, K. Wu et al., Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 4(3), 193–201 (2021). https://doi.org/10.1038/s41928-021-00558-0
- Y. Lu, D. Kong, G. Yang, R. Wang, G. Pang et al., Machine learning-enabled tactile sensor design for dynamic touch decoding. Adv. Sci. 10(32), e2303949 (2023). https://doi.org/10.1002/advs.202303949
- E. Hocaoglu, V. Patoglu, Design, implementation, and evaluation of a variable stiffness transradial hand prosthesis. Front Neurorob (2022). https://doi.org/10.48550/arXiv.1910.12569
- A. Bicchi, M. Gabiccini, M. Santello, Modelling natural and artificial hands with synergies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1581), 3153–3161 (2011). https://doi.org/10.1098/rstb.2011.0152
- S.M.M. Rahman, R. Ikeura, Weight-prediction-based predictive optimal position and force controls of a power assist robotic system for object manipulation. IEEE Trans. Ind. Electron. 63(9), 5964–5975 (2016). https://doi.org/10.1109/TIE.2016.2561879
- T. Kawamura, K. Nejigane, K. Tani, H. Yamada, Hybrid tactile sensor system for a robot hand and estimation of fine deformation using the sensor system. Int. J. Soc. Robot. 4(1), 93–100 (2012). https://doi.org/10.1007/s12369-011-0119-6
- W. Wang, Y. Tang, C. Li, Controlling bending deformation of a shape memory alloy-based soft planar gripper to grip deformable objects. Int. J. Mech. Sci. 193, 106181 (2021). https://doi.org/10.1016/j.ijmecsci.2020.106181
- R. Bhirangi, A. DeFranco, J. Adkins, C. Majidi, A. Gupta et al., All the feels: a dexterous hand with large-area tactile sensing. IEEE Robot. Autom. Lett. 8(12), 8311–8318 (2023). https://doi.org/10.1109/LRA.2023.3327619
- M. Totaro, A. Mondini, A. Bellacicca, P. Milani, L. Beccai, Integrated simultaneous detection of tactile and bending cues for soft robotics. Soft Robot. 4(4), 400–410 (2017). https://doi.org/10.1089/soro.2016.0049
- C. Lucarotti, M. Totaro, A. Sadeghi, B. Mazzolai, L. Beccai, Revealing bending and force in a soft body through a plant root inspired approach. Sci. Rep. 5, 8788 (2015). https://doi.org/10.1038/srep08788
- S. Zhang, Y. Liu, J. Deng, X. Gao, J. Li et al., Piezo robotic hand for motion manipulation from micro to macro. Nat. Commun. 14(1), 500 (2023). https://doi.org/10.1038/s41467-023-36243-3
- Z. Ye, C. Zhou, J. Jin, P. Yu, F. Wang, A novel ring-beam piezoelectric actuator for small-size and high-precision manipulator. Ultrasonics 96, 90–95 (2019). https://doi.org/10.1016/j.ultras.2019.02.007
- X. Hou, M. Zhu, L. Sun, T. Ding, Z. Huang et al., Scalable self-attaching/assembling robotic cluster (S2A2RC) system enabled by triboelectric sensors for in-orbit spacecraft application. Nano Energy 93, 106894 (2022). https://doi.org/10.1016/j.nanoen.2021.106894
- K. Qin, C. Chen, X. Pu, Q. Tang, W. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13(1), 51 (2021). https://doi.org/10.1007/s40820-020-00575-2
- J. Cramer, M. Cramer, E. Demeester, K. Kellens, Exploring the potential of magnetorheology in robotic grippers. Procedia CIRP 76, 127–132 (2018). https://doi.org/10.1016/j.procir.2018.01.038
- M. Ohka, H. Kobayashi, Y. Mitsuya, Sensing characteristics of an optical three-axis tactile sensor mounted on a multi-fingered robotic hand. in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. August 2–6, 2005, Edmonton, AB, Canada. IEEE, 2005, pp. 493–498. https://doi.org/10.1109/IROS.2005.1545264
- Y. Du, G. Zhang, M.Y. Wang, 3D contact point cloud reconstruction from vision-based tactile flow. IEEE Robot. Autom. Lett. 7(4), 12177–12184 (2022). https://doi.org/10.1109/LRA.2022.3214786
- H. Liu, K. Sun, X.-L. Guo, Z.-L. Liu, Y.-H. Wang et al., An ultrahigh linear sensitive temperature sensor based on PANI: graphene and PDMS hybrid with negative temperature compensation. ACS Nano 16(12), 21527–21535 (2022). https://doi.org/10.1021/acsnano.2c10342
- J. Pan, S. Liu, H. Zhang, J. Lu, A flexible temperature sensor array with polyaniline/graphene-polyvinyl butyral thin film. Sensors 19(19), 4105 (2019). https://doi.org/10.3390/s19194105
- W. Lu, Y. Feng, C. Zhu, J. Zheng, Temperature compensation of the SAW yarn tension sensor. Ultrasonics 76, 87–91 (2017). https://doi.org/10.1016/j.ultras.2016.12.006
- L. Wen, M. Nie, J. Fan, P. Chen, B. Li et al., Tactile recognition of shape and texture on the same substrate. Adv. Intell. Syst. 5(12), 2300337 (2023). https://doi.org/10.1002/aisy.202300337
- L. Zhao, S. Yu, J. Li, Z. Song, X. Wang, Highly reliable sensitive capacitive tactile sensor with spontaneous micron-pyramid structures for electronic skins. Macromol. Mater. Eng. 307(10), 2200192 (2022). https://doi.org/10.1002/mame.202200192
- G.-Y. Gou, X.-S. Li, J.-M. Jian, H. Tian, F. Wu et al., Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum. Sci. Adv. 8(13), eabn2156 (2022). https://doi.org/10.1126/sciadv.abn2156
- X. Zhang, Y. Zhang, W. Zhang, Y. Dai, F. Xia, Gold nanops-deranged double network for Janus adhesive-tough hydrogel as strain sensor. Chem. Eng. J. 420, 130447 (2021). https://doi.org/10.1016/j.cej.2021.130447
- X. Han, Z. Lv, F. Ran, L. Dai, C. Li et al., Green and stable piezoresistive pressure sensor based on lignin-silver hybrid nanops/polyvinyl alcohol hydrogel. Int. J. Biol. Macromol. 176, 78–86 (2021). https://doi.org/10.1016/j.ijbiomac.2021.02.055
- C. Wang, K. Hu, C. Zhao, Y. Zou, Y. Liu et al., Customization of conductive elastomer based on PVA/PEI for stretchable sensors. Small 16(7), e1904758 (2020). https://doi.org/10.1002/smll.201904758
- D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516(7530), 222–226 (2014). https://doi.org/10.1038/nature14002
- C. Zhang, J. Zhang, D. Chen, X. Meng, L. Liu et al., Crack-based and hair-like sensors inspired from arthropods: a review. J. Bionic Eng. 17(5), 867–898 (2020). https://doi.org/10.1007/s42235-020-0092-6
- H. Souri, H. Banerjee, A. Jusufi, N. Radacsi, A.A. Stokes et al., Wearable and stretchable strain sensors: materials, sensing mechanisms, and applications. Adv. Intell. Syst. 2(8), 2000039 (2020). https://doi.org/10.1002/aisy.202000039
- W. Wang, Y. Liu, M. Ding, T. Xia, Q. Gong et al., From network to channel: crack-based strain sensors with high sensitivity, stretchability, and linearity via strain engineering. Nano Energy 116, 108832 (2023). https://doi.org/10.1016/j.nanoen.2023.108832
- L. Wang, X. Xu, J. Chen, W. Su, F. Zhang et al., Crack sensing of cardiomyocyte contractility with high sensitivity and stability. ACS Nano 16(8), 12645–12655 (2022). https://doi.org/10.1021/acsnano.2c04260
- Y. Li, Z. Zhang, S. Du, S. Zong, Z. Ning et al., Highly sensitive biomimetic crack pressure sensor with selective frequency response. ACS Sens. 9(6), 3057–3065 (2024). https://doi.org/10.1021/acssensors.4c00245
- P. Lei, Y. Bao, W. Zhang, L. Gao, X. Zhu et al., Synergy of ZnO nanowire arrays and electrospun membrane gradient wrinkles in piezoresistive materials for wide-sensing range and high-sensitivity flexible pressure sensor. Adv. Fiber Mater. 6(2), 414–429 (2024). https://doi.org/10.1007/s42765-023-00359-4
- Z. Zhang, F. Xiang, D. Mei, Y. Wang, Waterproof and flexible aquatic tactile sensor with interlocked ripple structures for broad range force sensing. Adv. Mater. Technol. 9(2), 2301513 (2024). https://doi.org/10.1002/admt.202301513
- T. Yang, W. Deng, X. Chu, X. Wang, Y. Hu et al., Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics. ACS Nano 15(7), 11555–11563 (2021). https://doi.org/10.1021/acsnano.1c01606
- J. Yang, L. Liu, D. Zhang, H. Zhang, J. Ma et al., Dual-stage surficial microstructure to enhance the sensitivity of MXene pressure sensors for human physiological signal acquisition. ACS Appl. Mater. Interfaces 16(1), 1096–1106 (2024). https://doi.org/10.1021/acsami.3c14780
- J. Liu, X. Zhang, J. Liu, X. Liu, C. Zhang, 3D printing of anisotropic piezoresistive pressure sensors for directional force perception. Adv. Sci. 11(24), 2309607 (2024). https://doi.org/10.1002/advs.202309607
- A. Osman, H. Liu, J. Lu, Sacrificial 3D printing to fabricate MXene-based wearable sensors with tunable performance. Chem. Eng. J. 484, 149461 (2024). https://doi.org/10.1016/j.cej.2024.149461
- J.C. Yang, J.-O. Kim, J. Oh, S.Y. Kwon, J.Y. Sim et al., Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature. ACS Appl. Mater. Interfaces 11(21), 19472–19480 (2019). https://doi.org/10.1021/acsami.9b03261
- S.R.A. Ruth, L. Beker, H. Tran, V.R. Feig, N. Matsuhisa et al., Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals. Adv. Funct. Mater. 30(29), 1903100 (2020). https://doi.org/10.1002/adfm.201903100
- J. Yang, D. Tang, J. Ao, T. Ghosh, T.V. Neumann et al., Ultrasoft liquid metal elastomer foams with positive and negative piezopermittivity for tactile sensing. Adv. Funct. Mater. 30(36), 2002611 (2020). https://doi.org/10.1002/adfm.202002611
- Q. Liu, Y. Liu, J. Shi, Z. Liu, Q. Wang et al., High-porosity foam-based iontronic pressure sensor with superhigh sensitivity of 9280 kPa-1. Nano-Micro Lett. 14(1), 21 (2021). https://doi.org/10.1007/s40820-021-00770-9
- M. Pruvost, W.J. Smit, C. Monteux, P. Poulin, A. Colin, Polymeric foams for flexible and highly sensitive low-pressure capacitive sensors. NPJ Flex. Electron. 3, 7 (2019). https://doi.org/10.1038/s41528-019-0052-6
- Y. Joo, J. Yoon, J. Ha, T. Kim, S. Lee et al., Highly sensitive and bendable capacitive pressure sensor and its application to 1 V operation pressure-sensitive transistor. Adv. Electron. Mater. 3(4), 1600455 (2017). https://doi.org/10.1002/aelm.201600455
- S. Pyo, J. Choi, J. Kim, Flexible, transparent, sensitive, and crosstalk-free capacitive tactile sensor array based on graphene electrodes and air dielectric. Adv. Electron. Mater. 4(1), 1700427 (2018). https://doi.org/10.1002/aelm.201700427
- Y. Luo, J. Shao, S. Chen, X. Chen, H. Tian et al., Flexible capacitive pressure sensor enhanced by tilted micropillar arrays. ACS Appl. Mater. Interfaces 11(19), 17796–17803 (2019). https://doi.org/10.1021/acsami.9b03718
- H. Yu, H. Guo, J. Wang, T. Zhao, W. Zou et al., Skin-inspired capacitive flexible tactile sensor with an asymmetric structure for detecting directional shear forces. Adv. Sci. 11(6), 2305883 (2024). https://doi.org/10.1002/advs.202305883
- Z. Li, K. Zhao, J. Wang, B. Wang, J. Lu et al., Sensitive, robust, wide-range, and high-consistency capacitive tactile sensors with ordered porous dielectric microstructures. ACS Appl. Mater. Interfaces 16(6), 7384–7398 (2024). https://doi.org/10.1021/acsami.3c15368
- Y. Zhong, K. Liu, L. Wu, W. Ji, G. Cheng et al., Flexible tactile sensors with gradient conformal dome structures. ACS Appl. Mater. Interfaces 16(39), 52966–52976 (2024). https://doi.org/10.1021/acsami.4c12736
- L. Wu, X. Li, J. Choi, Z.-J. Zhao, L. Qian et al., Beetle-inspired gradient slant structures for capacitive pressure sensor with a broad linear response range. Adv. Funct. Mater. 34(26), 2312370 (2024). https://doi.org/10.1002/adfm.202312370
- J. Kaur, H. Singh, Fabrication and analysis of piezoelectricity in 0D, 1D and 2D Zinc Oxide nanostructures. Ceram. Int. 46(11), 19401–19407 (2020). https://doi.org/10.1016/j.ceramint.2020.04.283
- P. Lin, C. Pan, Z.L. Wang, Two-dimensional nanomaterials for novel piezotronics and piezophototronics. Mater. Today Nano 4, 17–31 (2018). https://doi.org/10.1016/j.mtnano.2018.11.006
- S. Liu, W. Chen, C. Liu, B. Wang, H. Yin, Coexistence of large out-of-plane and in-plane piezoelectricity in 2D monolayer Li-based ternary chalcogenides LiMX2. Results Phys. 26, 104398 (2021). https://doi.org/10.1016/j.rinp.2021.104398
- M. Yeganeh, D. Vahedi Fakhrabad, Piezoelectric properties in hydrofluorination surface-engineered two-dimensional ScN. Micro NanoStruct. 171, 207424 (2022). https://doi.org/10.1016/j.micrna.2022.207424
- S. Tombelli, M. Minunni, A. Santucci, M.M. Spiriti, M. Mascini, A DNA-based piezoelectric biosensor: strategies for coupling nucleic acids to piezoelectric devices. Talanta 68(3), 806–812 (2006). https://doi.org/10.1016/j.talanta.2005.06.007
- H. Kim, S.-W. Lee, Molecular mechanisms and enhancement of piezoelectricity in the M13 virus. Adv. Funct. Mater. 34(44), 2407462 (2024). https://doi.org/10.1002/adfm.202407462
- B.Y. Lee, J. Zhang, C. Zueger, W.-J. Chung, S.Y. Yoo et al., Virus-based piezoelectric energy generation. Nat. Nanotechnol. 7(6), 351–356 (2012). https://doi.org/10.1038/nnano.2012.69
- S. Tombelli, M. Minunni, M. Mascini, Piezoelectric biosensors: strategies for coupling nucleic acids to piezoelectric devices. Methods 37(1), 48–56 (2005). https://doi.org/10.1016/j.ymeth.2005.05.005
- J. Zhang, H. Yao, J. Mo, S. Chen, Y. Xie et al., Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency. Nat. Commun. 13(1), 5076 (2022). https://doi.org/10.1038/s41467-022-32827-7
- B. Joshi, J. Seol, E. Samuel, W. Lim, C. Park et al., Supersonically sprayed PVDF and ZnO flowers with built-in nanocuboids for wearable piezoelectric nanogenerators. Nano Energy 112, 108447 (2023). https://doi.org/10.1016/j.nanoen.2023.108447
- C. Wei, H. Zhou, B. Zheng, H. Zheng, Q. Shu et al., Fully flexible and mechanically robust tactile sensors containing core–shell structured fibrous piezoelectric mat as sensitive layer. Chem. Eng. J. 476, 146654 (2023). https://doi.org/10.1016/j.cej.2023.146654
- W. Fan, R. Lei, H. Dou, Z. Wu, L. Lu et al., Sweat permeable and ultrahigh strength 3D PVDF piezoelectric nanoyarn fabric strain sensor. Nat. Commun. 15(1), 3509 (2024). https://doi.org/10.1038/s41467-024-47810-7
- J. Xiong, L. Wang, F. Liang, M. Li, Y. Yabuta et al., Flexible piezoelectric sensor based on two-dimensional topological network of PVDF/DA composite nanofiber membrane. Adv. Fiber Mater. 6(4), 1212–1228 (2024). https://doi.org/10.1007/s42765-024-00415-7
- S. Min, D.H. Kim, D.J. Joe, B.W. Kim, Y.H. Jung et al., Clinical validation of a wearable piezoelectric blood-pressure sensor for continuous health monitoring. Adv. Mater. 35(26), 2301627 (2023). https://doi.org/10.1002/adma.202301627
- W. Wu, X. Wen, Z.L. Wang, Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340(6135), 952–957 (2013). https://doi.org/10.1126/science.1234855
- Q. Xu, Y. Tao, Z. Wang, H. Zeng, J. Yang et al., Highly flexible, high-performance, and stretchable piezoelectric sensor based on a hierarchical droplet-shaped ceramics with enhanced damage tolerance. Adv. Mater. 36(18), 2311624 (2024). https://doi.org/10.1002/adma.202311624
- J. Wang, S. Xu, C. Hu, Charge generation and enhancement of key components of triboelectric nanogenerators: a review. Adv. Mater. 36(50), 2409833 (2024). https://doi.org/10.1002/adma.202409833
- G. Khandelwal, N.P.M.J. Raj, S.-J. Kim, Materials beyond conventional triboelectric series for fabrication and applications of triboelectric nanogenerators. Adv. Energy Mater. 11(33), 2101170 (2021). https://doi.org/10.1002/aenm.202101170
- J. Nie, X. Chen, Z.L. Wang, Electrically responsive materials and devices directly driven by the high voltage of triboelectric nanogenerators. Adv. Funct. Mater. 29(41), 1806351 (2019). https://doi.org/10.1002/adfm.201806351
- E. Elsanadidy, I.M. Mosa, D. Luo, X. Xiao, J. Chen et al., Advances in triboelectric nanogenerators for self-powered neuromodulation. Adv. Funct. Mater. 33(8), 2211177 (2023). https://doi.org/10.1002/adfm.202211177
- Y. Lu, H. Tian, J. Cheng, F. Zhu, B. Liu et al., Decoding lip language using triboelectric sensors with deep learning. Nat. Commun. 13(1), 1401 (2022). https://doi.org/10.1038/s41467-022-29083-0
- C. Zhang, J. Zhao, Z. Zhang, T. Bu, G. Liu et al., Tribotronics: an emerging field by coupling triboelectricity and semiconductors. Int. J. Extreme Manuf. 5(4), 042002 (2023). https://doi.org/10.1088/2631-7990/ace669
- Y. Liu, J. Wang, T. Liu, Z. Wei, B. Luo et al., Triboelectric tactile sensor for pressure and temperature sensing in high-temperature applications. Nat. Commun. 16(1), 383 (2025). https://doi.org/10.1038/s41467-024-55771-0
- B. Shao, M.-H. Lu, T.-C. Wu, W.-C. Peng, T.-Y. Ko et al., Large-area, untethered, metamorphic, and omnidirectionally stretchable multiplexing self-powered triboelectric skins. Nat. Commun. 15(1), 1238 (2024). https://doi.org/10.1038/s41467-024-45611-6
- Z. Sun, M. Zhu, X. Shan, C. Lee, Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat. Commun. 13(1), 5224 (2022). https://doi.org/10.1038/s41467-022-32745-8
- W. Liu, Y. Duo, J. Liu, F. Yuan, L. Li et al., Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces. Nat. Commun. 13(1), 5030 (2022). https://doi.org/10.1038/s41467-022-32702-5
- G. Du, Y. Shao, B. Luo, T. Liu, J. Zhao et al., Compliant iontronic triboelectric gels with phase-locked structure enabled by competitive hydrogen bonding. Nano-Micro Lett. 16(1), 170 (2024). https://doi.org/10.1007/s40820-024-01387-4
- J. Man, J. Zhang, G. Chen, N. Xue, J. Chen, A tactile and airflow motion sensor based on flexible double-layer magnetic cilia. Microsyst. Nanoeng. 9, 12 (2023). https://doi.org/10.1038/s41378-022-00478-9
- J. Man, Z. Jin, J. Chen, Magnetic tactile sensor with bionic hair array for sliding sensing and object recognition. Adv. Sci. 11(12), 2306832 (2024). https://doi.org/10.1002/advs.202306832
- J. Dargahi, S. Najarian, Human tactile perception as a standard for artificial tactile sensing: a review. Int. J. Med. Robot. Comput. Assist. Surg. 1(1), 23–35 (2004). https://doi.org/10.1002/rcs.3
- A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15(9), 937–950 (2016). https://doi.org/10.1038/nmat4671
- S. Oh, Y. Jung, S. Kim, S. Kim, X. Hu et al., Remote tactile sensing system integrated with magnetic synapse. Sci. Rep. 7, 16963 (2017). https://doi.org/10.1038/s41598-017-17277-2
- J. Zhang, Z. Jin, G. Chen, J. Chen, An ultrathin, rapidly fabricated, flexible giant magnetoresistive electronic skin. Microsyst. Nanoeng. 10, 109 (2024). https://doi.org/10.1038/s41378-024-00716-2
- Y. Xu, S. Zhang, S. Li, Z. Wu, Y. Li et al., A soft magnetoelectric finger for robots’ multidirectional tactile perception in non-visual recognition environments. NPJ Flex. Electron. 8, 2 (2024). https://doi.org/10.1038/s41528-023-00289-6
- H. Hu, C. Zhang, C. Pan, H. Dai, H. Sun et al., Wireless flexible magnetic tactile sensor with super-resolution in large-areas. ACS Nano 16(11), 19271–19280 (2022). https://doi.org/10.1021/acsnano.2c08664
- H. Hu, C. Zhang, X. Lai, H. Dai, C. Pan et al., Large-area magnetic skin for multi-point and multi-scale tactile sensing with super-resolution. NPJ Flex. Electron. 8, 42 (2024). https://doi.org/10.1038/s41528-024-00325-z
- L. Xu, N. Liu, J. Ge, X. Wang, M.P. Fok, Stretchable fiber-Bragg-grating-based sensor. Opt. Lett. 43(11), 2503–2506 (2018). https://doi.org/10.1364/OL.43.002503
- H. Bai, S. Li, J. Barreiros, Y. Tu, C.R. Pollock et al., Stretchable distributed fiber-optic sensors. Science 370(6518), 848–852 (2020). https://doi.org/10.1126/science.aba5504
- J. Guo, K. Zhao, B. Zhou, W. Ning, K. Jiang et al., Wearable and skin-mountable fiber-optic strain sensors interrogated by a free-running, dual-comb fiber laser. Adv. Opt. Mater. 7(12), 1900086 (2019). https://doi.org/10.1002/adom.201900086
- C. Shang, B. Fu, J. Tuo, X. Guo, Z. Li et al., Soft biomimetic fiber-optic tactile sensors capable of discriminating temperature and pressure. ACS Appl. Mater. Interfaces 15(46), 53264–53272 (2023). https://doi.org/10.1021/acsami.3c12712
- Y. Tang, H. Liu, J. Pan, Z. Zhang, Y. Xu et al., Optical micro/nanofiber-enabled compact tactile sensor for hardness discrimination. ACS Appl. Mater. Interfaces 13(3), 4560–4566 (2021). https://doi.org/10.1021/acsami.0c20392
- C. Jiang, Z. Zhang, J. Pan, Y. Wang, L. Zhang et al., Finger-skin-inspired flexible optical sensor for force sensing and slip detection in robotic grasping. Adv. Mater. Technol. 6(10), 2100285 (2021). https://doi.org/10.1002/admt.202100285
- J. Pan, Q. Wang, S. Gao, Z. Zhang, Y. Xie et al., Knot-inspired optical sensors for slip detection and friction measurement in dexterous robotic manipulation. Opto Electron. Adv. 6(10), 230076 (2023). https://doi.org/10.29026/oea.2023.230076
- B. Mao, K. Zhou, Y. Xiang, Y. Zhang, Q. Yuan et al., A bioinspired robotic finger for multimodal tactile sensing powered by fiber optic sensors. Adv. Intell. Syst. 6(8), 2400175 (2024). https://doi.org/10.1002/aisy.202400175
- J. Guo, F. Guo, H. Zhao, H. Yang, X. Du et al., In-sensor computing with visual-tactile perception enabled by mechano-optical artificial synapse. Adv. Mater. 37(14), e2419405 (2025). https://doi.org/10.1002/adma.202419405
- J. He, R. Wei, S. Ge, W. Wu, J. Guo et al., Artificial visual-tactile perception array for enhanced memory and neuromorphic computations. InfoMat 6(3), e12493 (2024). https://doi.org/10.1002/inf2.12493
- H. Zhao, Y. Zhang, L. Han, W. Qian, J. Wang et al., Intelligent recognition using ultralight multifunctional nano-layered carbon aerogel sensors with human-like tactile perception. Nano-Micro Lett 16(1), 11 (2023). https://doi.org/10.1007/s40820-023-01216-0
- P. Zhao, Y. Song, P. Xie, F. Zhang, T. Xie et al., All-organic smart textile sensor for deep-learning-assisted multimodal sensing. Adv. Funct. Mater. 33(30), 2301816 (2023). https://doi.org/10.1002/adfm.202301816
- X. Xie, Q. Wang, C. Zhao, Q. Sun, H. Gu et al., Neuromorphic computing-assisted triboelectric capacitive-coupled tactile sensor array for wireless mixed reality interaction. ACS Nano 18(26), 17041–17052 (2024). https://doi.org/10.1021/acsnano.4c03554
- M. Liu, Z. Dai, Y. Zhao, H. Ling, L. Sun et al., Tactile sensing and rendering patch with dynamic and static sensing and haptic feedback for immersive communication. ACS Appl. Mater. Interfaces 16(39), 53207–53219 (2024). https://doi.org/10.1021/acsami.4c11050
- Y.A. Nikolaev, V.V. Feketa, E.O. Anderson, E.R. Schneider, E.O. Gracheva et al., Lamellar cells in Pacinian and Meissner corpuscles are touch sensors. Sci. Adv. 6(51), eabe6393 (2020). https://doi.org/10.1126/sciadv.abe6393
- N.L. Neubarth, A.J. Emanuel, Y. Liu, M.W. Springel, A. Handler et al., Meissner corpuscles and their spatially intermingled afferents underlie gentle touch perception. Science 368(6497), eabb2751 (2020). https://doi.org/10.1126/science.abb2751
- W. Chang, H. Kanda, R. Ikeda, J. Ling, J.J. DeBerry et al., Merkel disc is a serotonergic synapse in the epidermis for transmitting tactile signals in mammals. Proc. Natl. Acad. Sci. U. S. A. 113(37), E5491–E5500 (2016). https://doi.org/10.1073/pnas.1610176113
- O.P. Hamill, D.W. McBride, A supramolecular complex underlying touch sensitivity. Trends Neurosci. 19(7), 258–261 (1996). https://doi.org/10.1016/S0166-2236(96)30009-X
- E.A. Lumpkin, M.J. Caterina, Mechanisms of sensory transduction in the skin. Nature 445(7130), 858–865 (2007). https://doi.org/10.1038/nature05662
- Y. Qiu, S. Sun, X. Wang, K. Shi, Z. Wang et al., Nondestructive identification of softness via bioinspired multisensory electronic skins integrated on a robotic hand. NPJ Flex. Electron. 6, 45 (2022). https://doi.org/10.1038/s41528-022-00181-9
- H. Tan, Q. Tao, I. Pande, S. Majumdar, F. Liu et al., Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves. Nat. Commun. 11(1), 1369 (2020). https://doi.org/10.1038/s41467-020-15105-2
- S. Chun, J.-S. Kim, Y. Yoo, Y. Choi, S.J. Jung et al., An artificial neural tactile sensing system. Nat. Electron. 4(6), 429–438 (2021). https://doi.org/10.1038/s41928-021-00585-x
- F. Sun, Q. Lu, M. Hao, Y. Wu, Y. Li et al., An artificial neuromorphic somatosensory system with spatio-temporal tactile perception and feedback functions. NPJ Flex. Electron. 6, 72 (2022). https://doi.org/10.1038/s41528-022-00202-7
- H. Niu, H. Li, S. Gao, Y. Li, X. Wei et al., Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv. Mater. 34(31), 2202622 (2022). https://doi.org/10.1002/adma.202202622
- H. Qiao, S. Sun, P. Wu, Non-equilibrium-growing aesthetic ionic skin for fingertip-like strain-undisturbed tactile sensation and texture recognition. Adv. Mater. 35(21), 2300593 (2023). https://doi.org/10.1002/adma.202300593
- H. Niu, H. Li, Q. Zhang, E.-S. Kim, N.-Y. Kim et al., Intuition-and-tactile bimodal sensing based on artificial-intelligence-motivated all-fabric bionic electronic skin for intelligent material perception. Small 20(14), 2308127 (2024). https://doi.org/10.1002/smll.202308127
- J. Tao, W. Zhao, X. Zhou, J. Zhang, Y. Zhang et al., Robust all-fabric e-skin with high-temperature and corrosion tolerance for self-powered tactile sensing. Nano Energy 128, 109930 (2024). https://doi.org/10.1016/j.nanoen.2024.109930
- S. Pyo, J. Lee, W. Kim, E. Jo, J. Kim, Multi-layered, hierarchical fabric-based tactile sensors with high sensitivity and linearity in ultrawide pressure range. Adv. Funct. Mater. 29(35), 1902484 (2019). https://doi.org/10.1002/adfm.201902484
- Z. Su, D. Xu, Y. Liu, C. Gao, C. Ge et al., All-fabric tactile sensors based on sandwich structure design with tunable responsiveness. ACS Appl. Mater. Interfaces 15(26), 32002–32010 (2023). https://doi.org/10.1021/acsami.3c05775
- Y. Luo, C. Liu, Y.J. Lee, J. DelPreto, K. Wu et al., Adaptive tactile interaction transfer via digitally embroidered smart gloves. Nat. Commun. 15(1), 868 (2024). https://doi.org/10.1038/s41467-024-45059-8
- J. Deng, W. Zhuang, L. Bao, X. Wu, J. Gao et al., A tactile sensing textile with bending-independent pressure perception and spatial acuity. Carbon 149, 63–70 (2019). https://doi.org/10.1016/j.carbon.2019.04.019
- Z. Song, W. Li, Y. Bao, W. Wang, Z. Liu et al., Bioinspired microstructured pressure sensor based on a Janus graphene film for monitoring vital signs and cardiovascular assessment. Adv. Electron. Mater. 4(11), 1800252 (2018). https://doi.org/10.1002/aelm.201800252
- J. Jia, J.-H. Pu, J.-H. Liu, X. Zhao, K. Ke et al., Surface structure engineering for a bionic fiber-based sensor toward linear, tunable, and multifunctional sensing. Mater. Horiz. 7(9), 2450–2459 (2020). https://doi.org/10.1039/D0MH00716A
- W. Cheng, X. Wang, Z. Xiong, J. Liu, Z. Liu et al., Frictionless multiphasic interface for near-ideal aero-elastic pressure sensing. Nat. Mater. 22(11), 1352–1360 (2023). https://doi.org/10.1038/s41563-023-01628-8
- X.-F. Zhao, X.-H. Wen, P. Sun, C. Zeng, M.-Y. Liu et al., Spider web-like flexible tactile sensor for pressure-strain simultaneous detection. ACS Appl. Mater. Interfaces 13(8), 10428–10436 (2021). https://doi.org/10.1021/acsami.0c21960
- M. Liu, Y. Zhang, J. Wang, N. Qin, H. Yang et al., A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments. Nat. Commun. 13(1), 79 (2022). https://doi.org/10.1038/s41467-021-27672-z
- X. Guo, W. Hong, L. Liu, D. Wang, L. Xiang et al., Highly sensitive and wide-range flexible bionic tactile sensors inspired by the Octopus sucker structure. ACS Appl. Nano Mater. 5(8), 11028–11036 (2022). https://doi.org/10.1021/acsanm.2c02242
- V.-T. Bui, Q. Zhou, J.-N. Kim, J.-H. Oh, K.-W. Han et al., Treefrog toe pad-inspired micropatterning for high-power triboelectric nanogenerator. Adv. Funct. Mater. 29(28), 1901638 (2019). https://doi.org/10.1002/adfm.201901638
- S. Chen, K. Jiang, Z. Lou, D. Chen, G. Shen, Recent developments in graphene-based tactile sensors and E-skins. Adv. Mater. Technol. 3(2), 1700248 (2018). https://doi.org/10.1002/admt.201700248
- C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31(9), 1801072 (2019). https://doi.org/10.1002/adma.201801072
- H. Chen, F. Zhuo, J. Zhou, Y. Liu, J. Zhang et al., Advances in graphene-based flexible and wearable strain sensors. Chem. Eng. J. 464, 142576 (2023). https://doi.org/10.1016/j.cej.2023.142576
- X. Li, L. Zhi, Graphene hybridization for energy storage applications. Chem. Soc. Rev. 47(9), 3189–3216 (2018). https://doi.org/10.1039/c7cs00871f
- L. Liao, H. Peng, Z. Liu, Chemistry makes graphene beyond graphene. J. Am. Chem. Soc. 136(35), 12194–12200 (2014). https://doi.org/10.1021/ja5048297
- Y. Feng, S.-H. Huang, K. Kang, X.-X. Duan, Preparation and characterization of graphene and few-layer graphene. Carbon 49(8), 2879 (2011). https://doi.org/10.1016/j.carbon.2011.02.035
- Z. Lin, C. Mikhael, C. Dai, J.-H. Cho, Self-assembly for creating vertically-aligned graphene micro helices with monolayer graphene as chiral metamaterials. Adv. Mater. 36(27), 2470213 (2024). https://doi.org/10.1002/adma.202470213
- T. Yu, Z. Ni, C. Du, Y. You, Y. Wang et al., Raman mapping investigation of graphene on transparent flexible substrate: the strain effect. J. Phys. Chem. C 112(33), 12602–12605 (2008). https://doi.org/10.1021/jp806045u
- A. Nakamura, T. Hamanishi, S. Kawakami, M. Takeda, A piezo-resistive graphene strain sensor with a hollow cylindrical geometry. Mater. Sci. Eng. B 219, 20–27 (2017). https://doi.org/10.1016/j.mseb.2017.02.012
- S. Lee, A. Reuveny, J. Reeder, S. Lee, H. Jin et al., A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11(5), 472–478 (2016). https://doi.org/10.1038/nnano.2015.324
- M. Xu, J. Qi, F. Li, Y. Zhang, Transparent and flexible tactile sensors based on graphene films designed for smart panels. J. Mater. Sci. 53(13), 9589–9597 (2018). https://doi.org/10.1007/s10853-018-2216-5
- J. He, R. Zhou, Y. Zhang, W. Gao, T. Chen et al., Strain-insensitive self-powered tactile sensor arrays based on intrinsically stretchable and patternable ultrathin conformal wrinkled graphene-elastomer composite. Adv. Funct. Mater. 32(10), 2107281 (2022). https://doi.org/10.1002/adfm.202107281
- Y. Ma, Z. Li, J. Han, L. Li, M. Wang et al., Vertical graphene canal mesh for strain sensing with a supereminent resolution. ACS Appl. Mater. Interfaces 14(28), 32387–32394 (2022). https://doi.org/10.1021/acsami.2c07658
- K. Cao, M. Wu, J. Bai, Z. Wen, J. Zhang et al., Beyond skin pressure sensing: 3D printed laminated graphene pressure sensing material combines extremely low detection limits with wide detection range. Adv. Funct. Mater. 32(28), 2202360 (2022). https://doi.org/10.1002/adfm.202202360
- U. Khan, T.-H. Kim, H. Ryu, W. Seung, S.-W. Kim, Graphene tribotronics for electronic skin and touch screen applications. Adv. Mater. 29(1), 1603544 (2017). https://doi.org/10.1002/adma.201603544
- S.-H. Shin, S. Ji, S. Choi, K.-H. Pyo, B. Wan An et al., Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges. Nat. Commun. 8, 14950 (2017). https://doi.org/10.1038/ncomms14950
- Y. Chen, G. Gao, J. Zhao, H. Zhang, J. Yu et al., Piezotronic graphene artificial sensory synapse. Adv. Funct. Mater. 29(41), 1900959 (2019). https://doi.org/10.1002/adfm.201900959
- D.H. Ho, Y.Y. Choi, S.B. Jo, J.-M. Myoung, J.H. Cho, Sensing with MXenes: progress and prospects. Adv. Mater. 33(47), 2005846 (2021). https://doi.org/10.1002/adma.202005846
- S. Seyedin, S. Uzun, A. Levitt, B. Anasori, G. Dion et al., MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles. Adv. Funct. Mater. 30(12), 1910504 (2020). https://doi.org/10.1002/adfm.201910504
- C. Ma, M.-G. Ma, C. Si, X.-X. Ji, P. Wan, Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 31(22), 2009524 (2021). https://doi.org/10.1002/adfm.202009524
- X. Wu, P. Ma, Y. Sun, F. Du, D. Song et al., Application of MXene in electrochemical sensors: a review. Electroanalysis 33(8), 1827–1851 (2021). https://doi.org/10.1002/elan.202100192
- A. Ali, S.M. Majhi, L.A. Siddig, A.H. Deshmukh, H. Wen et al., Recent advancements in MXene-based biosensors for health and environmental applications-a review. Biosensors 14(10), 497 (2024). https://doi.org/10.3390/bios14100497
- M.-Y. Yang, M.-L. Huang, Y.-Z. Li, Z.-S. Feng, Y. Huang et al., Printing assembly of flexible devices with oxidation stable MXene for high performance humidity sensing applications. Sens. Actuat. B Chem. 364, 131867 (2022). https://doi.org/10.1016/j.snb.2022.131867
- J. Lu, X. Xu, H.-W. Zhang, M.-L. Huang, Y.-S. Wang et al., All-printed MXene/WS2-based flexible humidity sensor for multi-scenario applications. Sens. Actuat. B Chem. 422, 136605 (2025). https://doi.org/10.1016/j.snb.2024.136605
- B. Li, Q.-B. Zhu, C. Cui, C. Liu, Z.-H. Wang et al., Patterning of wafer-scale MXene films for high-performance image sensor arrays. Adv. Mater. 34(17), e2201298 (2022). https://doi.org/10.1002/adma.202201298
- H. Xu, A. Ren, J. Wu, Z. Wang, Recent advances in 2D MXenes for photodetection. Adv. Funct. Mater. 30(24), 2000907 (2020). https://doi.org/10.1002/adfm.202000907
- D. Jiang, X. Cao, Y. Shi, J. Chen, X. Li et al., Flexible Ti3C2Tx MXene regulated photoelectrochemical sensing platform for sensitive monitoring of dopamine. Adv. Funct. Mater. 34(51), 2410546 (2024). https://doi.org/10.1002/adfm.202410546
- D. Wang, L. Wang, Z. Lou, Y. Zheng, K. Wang et al., Biomimetic, biocompatible and robust silk fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors. Nano Energy 78, 105252 (2020). https://doi.org/10.1016/j.nanoen.2020.105252
- X. Fu, L. Wang, L. Zhao, Z. Yuan, Y. Zhang et al., Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin. Adv. Funct. Mater. 31(17), 2010533 (2021). https://doi.org/10.1002/adfm.202010533
- J. Jeong, H.-J. Seok, H. Shin, S.B. Choi, J.-W. Kim et al., Highly durable and conductive Korea traditional paper (Hanji) embedded with Ti3C2Tx MXene for Hanji-based paper electronics. Nano Energy 131, 110325 (2024). https://doi.org/10.1016/j.nanoen.2024.110325
- Y. Zheng, R. Yin, Y. Zhao, H. Liu, D. Zhang et al., Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem. Eng. J. 420, 127720 (2021). https://doi.org/10.1016/j.cej.2020.127720
- L. Li, Y. Cheng, H. Cao, Z. Liang, Z. Liu et al., MXene/rGO/PS spheres multiple physical networks as high-performance pressure sensor. Nano Energy 95, 106986 (2022). https://doi.org/10.1016/j.nanoen.2022.106986
- S. Duan, Q. Shi, J. Hong, D. Zhu, Y. Lin et al., Water-modulated biomimetic hyper-attribute-gel electronic skin for robotics and skin-attachable wearables. ACS Nano 17(2), 1355–1371 (2023). https://doi.org/10.1021/acsnano.2c09851
- X. Shi, H. Wang, X. Xie, Q. Xue, J. Zhang et al., Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano 13(1), 649–659 (2019). https://doi.org/10.1021/acsnano.8b07805
- Q. Guo, X. Zhang, F. Zhao, Q. Song, G. Su et al., Protein-inspired self-healable Ti3C2 MXenes/rubber-based supramolecular elastomer for intelligent sensing. ACS Nano 14(3), 2788–2797 (2020). https://doi.org/10.1021/acsnano.9b09802
- N. Gupta, S.M. Gupta, S.K. Sharma, Carbon nanotubes: synthesis, properties and engineering applications. Carbon Lett. 29(5), 419–447 (2019). https://doi.org/10.1007/s42823-019-00068-2
- J. Shi, J. Hu, Z. Dai, W. Zhao, P. Liu et al., Graphene welded carbon nanotube crossbars for biaxial strain sensors. Carbon 123, 786–793 (2017). https://doi.org/10.1016/j.carbon.2017.08.006
- X.-F. Zhao, C.-Z. Hang, X.-H. Wen, M.-Y. Liu, H. Zhang et al., Ultrahigh-sensitive finlike double-sided E-skin for force direction detection. ACS Appl. Mater. Interfaces 12(12), 14136–14144 (2020). https://doi.org/10.1021/acsami.9b23110
- P. Avouris, M. Freitag, V. Perebeinos, Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2(6), 341–350 (2008). https://doi.org/10.1038/nphoton.2008.94
- X. Ma, Q. Liu, N. Yu, D. Xu, S. Kim et al., 6 nm super-resolution optical transmission and scattering spectroscopic imaging of carbon nanotubes using a nanometer-scale white light source. Nat. Commun. 12(1), 6868 (2021). https://doi.org/10.1038/s41467-021-27216-5
- B. Hou, D. Yang, X. Ren, L. Yi, X. Liu, A tactile oral pad based on carbon nanotubes for multimodal haptic interaction. Nat. Electron. 7(9), 777–787 (2024). https://doi.org/10.1038/s41928-024-01234-9
- X. Sun, J. Sun, T. Li, S. Zheng, C. Wang et al., Flexible tactile electronic skin sensor with 3D force detection based on porous CNTs/PDMS nanocomposites. Nano-Micro Lett 11(1), 57 (2019). https://doi.org/10.1007/s40820-019-0288-7
- D. Chen, T. Zhang, W. Geng, D. Sun, X. Liu et al., An intelligent tactile sensor based on interlocked carbon nanotube array for ultrasensitive physiological signal detection and real-time monitoring. Adv. Mater. Technol. 7(11), 2200290 (2022). https://doi.org/10.1002/admt.202200290
- Y. Meng, J. Cheng, C. Zhou, Superhydrophobic and stretchable carbon nanotube/thermoplastic urethane-based strain sensor for human motion detection. ACS Appl. Nano Mater. 6(7), 5871–5878 (2023). https://doi.org/10.1021/acsanm.3c00246
- L. Wang, M. Zhang, B. Yang, X. Ding, J. Tan et al., Flexible, robust, and durable aramid fiber/CNT composite paper as a multifunctional sensor for wearable applications. ACS Appl. Mater. Interfaces 13(4), 5486–5497 (2021). https://doi.org/10.1021/acsami.0c18161
- J. Wu, X. Zhou, J. Luo, J. Zhou, Z. Lu et al., Stretchable and self-powered mechanoluminescent triboelectric nanogenerator fibers toward wearable amphibious electro-optical sensor textiles. Adv. Sci. 11(34), 2401109 (2024). https://doi.org/10.1002/advs.202401109
- W. Son, J.M. Lee, J.H. Choi, J. Kim, J. Noh et al., Double-helical carbon nanotube-wrapped elastomeric mandrel for electrical shortage-free, one-body multifunctional fiber systems. Adv. Funct. Mater. 34(30), 2312033 (2024). https://doi.org/10.1002/adfm.202312033
- Y. He, Q. Liu, M. Tian, X. Zhang, L. Qu et al., Highly conductive and elastic multi-responsive phase change smart fiber and textile. Compos. Commun. 44, 101772 (2023). https://doi.org/10.1016/j.coco.2023.101772
- L. Huang, R. Zeng, D. Tang, X. Cao, Bioinspired and multiscale hierarchical design of a pressure sensor with high sensitivity and wide linearity range for high-throughput biodetection. Nano Energy 99, 107376 (2022). https://doi.org/10.1016/j.nanoen.2022.107376
- Y. Ma, L. Shi, M. Chen, Z. Li, L. Wu, Bioinspired hierarchical polydimethylsiloxane/polyaniline array for ultrasensitive pressure monitoring. Chem. Eng. J. 441, 136028 (2022). https://doi.org/10.1016/j.cej.2022.136028
- L.V. Kayser, D.J. Lipomi, Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS. Adv. Mater. 31(10), 1806133 (2019). https://doi.org/10.1002/adma.201806133
- Q. Fan, K. Zhang, S. Peng, Y. Liu, L. Wei et al., The mechanism of enhancing the conductivity of PEDOT: PSS films through molecular weight optimization of PSS. Prog. Org. Coat. 189, 108308 (2024). https://doi.org/10.1016/j.porgcoat.2024.108308
- M. Seiti, A. Giuri, C.E. Corcione, E. Ferraris, Advancements in tailoring PEDOT: PSS properties for bioelectronic applications: a comprehensive review. Biomater. Adv. 154, 213655 (2023). https://doi.org/10.1016/j.bioadv.2023.213655
- X. Su, X. Wu, S. Chen, A.M. Nedumaran, M. Stephen, K. Hou, B. Czarny, W.L. Leong, A highly conducting polymer for self-healable, printable, and stretchable organic electrochemical transistor arrays and near hysteresis-free soft tactile sensors. Adv. Mater. 34(19), 2200682 (2022). https://doi.org/10.1002/adma.202200682
- Z.-R. Li, T.-R. Lv, Z. Yang, W.-H. Zhang, M.-J. Yin et al., 3D microprinting of QR-code integrated hydrogel tactile sensor for real-time E-healthcare. Chem. Eng. J. 484, 149375 (2024). https://doi.org/10.1016/j.cej.2024.149375
- B. Lu, H. Yuk, S. Lin, N. Jian, K. Qu et al., Pure PEDOT: PSS hydrogels. Nat. Commun. 10, 1043 (2019). https://doi.org/10.1038/s41467-019-09003-5
- Y. Jiang, F. Liang, H.Y. Li, X. Li, Y.J. Fan et al., A flexible and ultra-highly sensitive tactile sensor through a parallel circuit by a magnetic aligned conductive composite. ACS Nano 16(1), 746–754 (2022). https://doi.org/10.1021/acsnano.1c08273
- J. Meng, Z. Li, Schottky-contacted nanowire sensors. Adv. Mater. 32(28), 2000130 (2020). https://doi.org/10.1002/adma.202000130
- J. Song, X. Cui, P. Liu, Y. Shi, X. Wang et al., Organic nanowire sensor with seeing, smelling and heat sensation capabilities. Chem. Eng. J. 486, 150378 (2024). https://doi.org/10.1016/j.cej.2024.150378
- J. Lee, C.-Y. Yoo, Y.A. Lee, S.H. Park, Y. Cho et al., Single-crystalline Co2Si nanowires directly synthesized on silicon substrate for high-performance micro-supercapacitor. Chem. Eng. J. 370, 973–979 (2019). https://doi.org/10.1016/j.cej.2019.03.269
- Y. Jiang, K. Dong, X. Li, J. An, D. Wu et al., Stretchable, washable, and ultrathin triboelectric nanogenerators as skin-like highly sensitive self-powered haptic sensors. Adv. Funct. Mater. 31(1), 2005584 (2021). https://doi.org/10.1002/adfm.202005584
- W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin et al., Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514(7523), 470–474 (2014). https://doi.org/10.1038/nature13792
- L. Luo, J. Gao, L. Zheng, L. Li, W. Li et al., Ultra-low power consumption flexible sensing electronics by dendritic bilayer MoS2. InfoMat 6(12), e12605 (2024). https://doi.org/10.1002/inf2.12605
- T. Li, J. Zou, F. Xing, M. Zhang, X. Cao et al., From dual-mode triboelectric nanogenerator to smart tactile sensor: a multiplexing design. ACS Nano 11(4), 3950–3956 (2017). https://doi.org/10.1021/acsnano.7b00396
- Z. Xiang, L. Li, Z. Lu, X. Yu, Y. Cao et al., High-performance microcone-array flexible piezoelectric acoustic sensor based on multicomponent lead-free perovskite rods. Matter 6(2), 554–569 (2023). https://doi.org/10.1016/j.matt.2022.11.023
- G. Li, F. Liu, S. Yang, J.-T. Liu, W. Li et al., High-sensitivity MEMS force and acceleration sensor based on graphene-induced non-radiative transition. Carbon 209, 118001 (2023). https://doi.org/10.1016/j.carbon.2023.118001
- Q. Wang, T. Ruan, Q. Xu, B. Yang, J. Liu, Wearable multifunctional piezoelectric MEMS device for motion monitoring, health warning, and earphone. Nano Energy 89, 106324 (2021). https://doi.org/10.1016/j.nanoen.2021.106324
- A.C. Richards Grayson, R. Scheidt Shawgo, Y. Li, M.J. Cima, Electronic MEMS for triggered delivery. Adv. Drug Deliv. Rev. 56(2), 173–184 (2004). https://doi.org/10.1016/j.addr.2003.07.012
- F. Wang, H. Luo, H. Chen, D. Zhai, X. Jiang et al., Surface-confined winding assembly of SiO2 on the surface of BaTiO3 leading to enhanced performance of dielectric nanocomposites. Adv. Funct. Mater. 34(52), 2410862 (2024). https://doi.org/10.1002/adfm.202410862
- Z. Ma, Y. Cui, Y. Song, Y. Yu, H. Zhao et al., Low-humidity sensor and biomimetic power supply based on mesoporous silica/polymerizable deep eutectic solvent ionogels. Chem. Eng. J. 493, 152233 (2024). https://doi.org/10.1016/j.cej.2024.152233
- C. Xu, Y. Wang, J. Zhang, J. Wan, Z. Xiang et al., Three-dimensional micro strain gauges as flexible, modular tactile sensors for versatile integration with micro- and macroelectronics. Sci. Adv. 10(34), eadp6094 (2024). https://doi.org/10.1126/sciadv.adp6094
- R. He, P. Yang, Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 1(1), 42–46 (2006). https://doi.org/10.1038/nnano.2006.53
- Z. Zhou, X. Du, J. Luo, L. Yao, Z. Zhang et al., Coupling of interface effects and porous microstructures in translucent piezoelectric composites for enhanced energy harvesting and sensing. Nano Energy 84, 105895 (2021). https://doi.org/10.1016/j.nanoen.2021.105895
- J. Zhang, S. Ye, H. Liu, X. Chen, X. Chen et al., 3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors. Nano Energy 77, 105300 (2020). https://doi.org/10.1016/j.nanoen.2020.105300
- D. Corzo, E.B. Alexandre, Y. Alshareef, F. Bokhari, Y. Xin et al., Cure-on-demand 3D printing of complex geometries for enhanced tactile sensing in soft robotics and extended reality. Mater. Today 78, 20–31 (2024). https://doi.org/10.1016/j.mattod.2024.06.015
- S.-Z. Guo, K. Qiu, F. Meng, S.H. Park, M.C. McAlpine, 3D printed stretchable tactile sensors. Adv. Mater. 29(27), 1701218 (2017). https://doi.org/10.1002/adma.201701218
- H. Nassar, G. Khandelwal, R. Chirila, X. Karagiorgis, R.E. Ginesi et al., Fully 3D printed piezoelectric pressure sensor for dynamic tactile sensing. Addit. Manuf. 71, 103601 (2023). https://doi.org/10.1016/j.addma.2023.103601
- Y. Shi, X. Lü, W. Wang, X. Meng, J. Zhao et al., Multilayer flexible pressure sensor with high sensitivity over wide linearity detection range (August 2021). IEEE Trans. Instrum. Meas. 70, 9511809 (2021). https://doi.org/10.1109/TIM.2021.3101307
- H. Kim, Y.-G. Jeong, K. Chun, Improvement of the linearity of a capacitive pressure sensor using an interdigitated electrode structure. Sens. Actuat. A Phys. 62(1–3), 586–590 (1997). https://doi.org/10.1016/S0924-4247(97)01591-4
- Y. Zang, F. Zhang, C.-A. Di, D. Zhu, Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2(2), 140–156 (2015). https://doi.org/10.1039/C4MH00147H
- L. Yang, Y. Liu, C.D.M. Filipe, D. Ljubic, Y. Luo et al., Development of a highly sensitive, broad-range hierarchically structured reduced graphene oxide/PolyHIPE foam for pressure sensing. ACS Appl. Mater. Interfaces 11(4), 4318–4327 (2019). https://doi.org/10.1021/acsami.8b17020
- G.Y. Bae, S.W. Pak, D. Kim, G. Lee, D.H. Kim et al., Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv. Mater. 28(26), 5300–5306 (2016). https://doi.org/10.1002/adma.201600408
- Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju et al., Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12(3), 2346–2354 (2018). https://doi.org/10.1021/acsnano.7b07613
- K. Wang, Z. Lou, L. Wang, L. Zhao, S. Zhao et al., Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 13(8), 9139–9147 (2019). https://doi.org/10.1021/acsnano.9b03454
- A.C. Lihua Jin, Microstructural origin of resistance–strain hysteresis in carbon nanotube thin film conductors. Proc. Natl. Acad. Sci. U.S.A. 115(9), 1986–1991 (2018). https://doi.org/10.2307/26507928
- L. Ci, J. Suhr, V. Pushparaj, X. Zhang, P.M. Ajayan, Continuous carbon nanotube reinforced composites. Nano Lett. 8(9), 2762–2766 (2008). https://doi.org/10.1021/nl8012715
- K. Park, S. Kim, H. Lee, I. Park, J. Kim, Low-hysteresis and low-interference soft tactile sensor using a conductive coated porous elastomer and a structure for interference reduction. Sens. Actuators, A Phys. 295, 541–550 (2019). https://doi.org/10.1016/j.sna.2019.06.026
- J.A. Sánchez-Durán, J.A. Hidalgo-López, J. Castellanos-Ramos, Ó. Oballe-Peinado, F. Vidal-Verdú, Influence of errors in tactile sensors on some high level parameters used for manipulation with robotic hands. Sensors 15(8), 20409–20435 (2015). https://doi.org/10.3390/s150820409
- L. Wang, R. Zhu, G. Li, Temperature and strain compensation for flexible sensors based on thermosensation. ACS Appl. Mater. Interfaces 12(1), 1953–1961 (2020). https://doi.org/10.1021/acsami.9b21474
- X. Liu, L. Fang, F. Zhang, Q. Zhang, Z. Wan et al., All-optical diffractive deep neural networks enabled laser-reduced graphene oxide tactile sensor for Braille recognition. ACS Appl. Electron. Mater. 6(3), 2049–2058 (2024). https://doi.org/10.1021/acsaelm.4c00116
- C. Chi, X. Sun, N. Xue, T. Li, C. Liu, Recent progress in technologies for tactile sensors. Sensors 18(4), 948 (2018). https://doi.org/10.3390/s18040948
- G.Y. Bae, J.T. Han, G. Lee, S. Lee, S.W. Kim et al., Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity. Adv. Mater. 30(43), 1803388 (2018). https://doi.org/10.1002/adma.201803388
- R.Y. Tay, H. Li, J. Lin, H. Wang, J.S.K. Lim et al., Lightweight, superelastic boron nitride/polydimethylsiloxane foam as air dielectric substitute for multifunctional capacitive sensor applications. Adv. Funct. Mater. 30(10), 1909604 (2020). https://doi.org/10.1002/adfm.201909604
- C. Zhang, S. Liu, X. Huang, W. Guo, Y. Li et al., A stretchable dual-mode sensor array for multifunctional robotic electronic skin. Nano Energy 62, 164–170 (2019). https://doi.org/10.1016/j.nanoen.2019.05.046
- Z. Lei, P. Wu, A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities. Nat. Commun. 9(1), 1134 (2018). https://doi.org/10.1038/s41467-018-03456-w
- S. Gong, L.W. Yap, B. Zhu, Q. Zhai, Y. Liu et al., Local crack-programmed gold nanowire electronic skin tattoos for in-plane multisensor integration. Adv. Mater. 31(41), 1903789 (2019). https://doi.org/10.1002/adma.201903789
- H. Song, G. Luo, Z. Ji, R. Bo, Z. Xue et al., Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials. Sci. Adv. 8(11), eabm3785 (2022). https://doi.org/10.1126/sciadv.abm3785
- Q. Zhuang, K. Yao, C. Zhang, X. Song, J. Zhou et al., Permeable, three-dimensional integrated electronic skins with stretchable hybrid liquid metal solders. Nat. Electron. 7(7), 598–609 (2024). https://doi.org/10.1038/s41928-024-01189-x
- C. Fan, Y. Liu, Y. Zhang, A universal, highly sensitive and seamlessly integratable textile resistive strain sensor. Adv. Fiber Mater. 6(4), 1152–1161 (2024). https://doi.org/10.1007/s42765-024-00405-9
- J. Li, S. Li, Y. Su, Stretchable strain sensors based on deterministic-contact-resistance braided structures with high performance and capability of continuous production. Adv. Funct. Mater. 32(49), 2208216 (2022). https://doi.org/10.1002/adfm.202208216
- Z. Liu, X. Hu, R. Bo, Y. Yang, X. Cheng et al., A three-dimensionally architected electronic skin mimicking human mechanosensation. Science 384(6699), 987–994 (2024). https://doi.org/10.1126/science.adk5556
- D. Yan, J. Chang, H. Zhang, J. Liu, H. Song et al., Soft three-dimensional network materials with rational bio-mimetic designs. Nat. Commun. 11(1), 1180 (2020). https://doi.org/10.1038/s41467-020-14996-5
- S. Zhao, R. Zhu, Electronic skin with multifunction sensors based on thermosensation. Adv. Mater. 29(15), 1606151 (2017). https://doi.org/10.1002/adma.201606151
- T. Li, T. Zhao, H. Zhang, L. Yuan, C. Cheng et al., A skin-conformal and breathable humidity sensor for emotional mode recognition and non-contact human-machine interface. NPJ Flex. Electron. 8, 3 (2024). https://doi.org/10.1038/s41528-023-00290-z
- X. Zhao, Z. Sun, C. Lee, Augmented tactile perception of robotic fingers enabled by AI-enhanced triboelectric multimodal sensors. Adv. Funct. Mater. 34(49), 2409558 (2024). https://doi.org/10.1002/adfm.202409558
- S. Wang, X. Wang, Q. Wang, S. Ma, J. Xiao et al., Flexible optoelectronic multimodal proximity/pressure/temperature sensors with low signal interference. Adv. Mater. 35(49), e2304701 (2023). https://doi.org/10.1002/adma.202304701
- Y.S. Oh, J.-H. Kim, Z. Xie, S. Cho, H. Han et al., Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. Nat. Commun. 12, 5008 (2021). https://doi.org/10.1038/s41467-021-25324-w
- Z. Xiang, H. Wang, P. Zhao, X. Fa, J. Wan et al., Hard magnetic graphene nanocomposite for multimodal, reconfigurable soft electronics. Adv. Mater. 36(14), e2308575 (2024). https://doi.org/10.1002/adma.202308575
- J. Min, S. Demchyshyn, J.R. Sempionatto, Y. Song, B. Hailegnaw et al., An autonomous wearable biosensor powered by a perovskite solar cell. Nat. Electron. 6(8), 630–641 (2023). https://doi.org/10.1038/s41928-023-00996-y
- J. Choi, D. Kwon, B. Kim, K. Kang, J. Gu et al., Wearable self-powered pressure sensor by integration of piezo-transmittance microporous elastomer with organic solar cell. Nano Energy 74, 104749 (2020). https://doi.org/10.1016/j.nanoen.2020.104749
- S. Li, Y. Cheng, K. Deng, H. Sun, A self-powered flexible tactile sensor utilizing chemical battery reactions to detect static and dynamic stimuli. Nano Energy 124, 109461 (2024). https://doi.org/10.1016/j.nanoen.2024.109461
- D. Lu, T. Liu, X. Meng, B. Luo, J. Yuan et al., Wearable triboelectric visual sensors for tactile perception. Adv. Mater. 35(7), 2209117 (2023). https://doi.org/10.1002/adma.202209117
- J. Zhu, J.J. Fox, N. Yi, H. Cheng, Structural design for stretchable microstrip antennas. ACS Appl. Mater. Interfaces 11(9), 8867–8877 (2019). https://doi.org/10.1021/acsami.8b22021
- S. Han, J. Kim, S.M. Won, Y. Ma, D. Kang et al., Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci. Transl. Med. 10(435), eaan4950 (2018). https://doi.org/10.1126/scitranslmed.aan4950
- G.-H. Lee, J.-K. Park, J. Byun, J.C. Yang, S.Y. Kwon et al., Parallel signal processing of a wireless pressure-sensing platform combined with machine-learning-based cognition, inspired by the human somatosensory system. Adv. Mater. 32(8), 1906269 (2020). https://doi.org/10.1002/adma.201906269
- W. Zhong, C. Liu, Q. Liu, L. Piao, H. Jiang et al., Ultrasensitive wearable pressure sensors assembled by surface-patterned polyolefin elastomer nanofiber membrane interpenetrated with silver nanowires. ACS Appl. Mater. Interfaces 10(49), 42706–42714 (2018). https://doi.org/10.1021/acsami.8b12363
- M.I. Jordan, T.M. Mitchell, Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015). https://doi.org/10.1126/science.aaa8415
- H. Chen, J. Zhou, H. Cao, D. Liang, L. Chen et al., Thermo-responsive and phase-separated hydrogels for cardiac arrhythmia diagnosis with deep learning algorithms. Biosens. Bioelectron. 276, 117262 (2025). https://doi.org/10.1016/j.bios.2025.117262
- Y. Jung, J. Choi, W. Lee, J.S. Ko, I. Park et al., Irregular microdome structure-based sensitive pressure sensor using internal popping of microspheres. Adv. Funct. Mater. 32(27), 2270158 (2022). https://doi.org/10.1002/adfm.202270158
- P. Tan, X. Han, Y. Zou, X. Qu, J. Xue et al., Self-powered gesture recognition wristband enabled by machine learning for full keyboard and multicommand input. Adv. Mater. 34(21), 2200793 (2022). https://doi.org/10.1002/adma.202200793
- S.K. Ravi, N. Paul, L. Suresh, A.T. Salim, T. Wu et al., Bio-photocapacitive tactile sensors as a touch-to-audio Braille reader and solar capacitor. Mater. Horiz. 7(3), 866–876 (2020). https://doi.org/10.1039/C9MH01798D
- S. Dai, Y. Zhao, Y. Wang, J. Zhang, L. Fang et al., Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 29(42), 1903700 (2019). https://doi.org/10.1002/adfm.201903700
- H.-L. Park, Y. Lee, N. Kim, D.-G. Seo, G.-T. Go et al., Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Adv. Mater. 32(15), 1903558 (2020). https://doi.org/10.1002/adma.201903558
- Z. Hu, L. Lin, W. Lin, Y. Xu, X. Xia et al., Machine learning for tactile perception: advancements, challenges, and opportunities. Adv. Intell. Syst. 5(7), 2200371 (2023). https://doi.org/10.1002/aisy.202200371
- G. Li, S. Liu, Q. Mao, R. Zhu, Multifunctional electronic skins enable robots to safely and dexterously interact with human. Adv. Sci. 9(11), 2104969 (2022). https://doi.org/10.1002/advs.202104969
- T.G. Thuruthel, B. Shih, C. Laschi, M.T. Tolley, Soft robot perception using embedded soft sensors and recurrent neural networks. Sci. Robot. 4(26), eaav1488 (2019). https://doi.org/10.1126/scirobotics.aav1488
- J.G. Greener, S.M. Kandathil, L. Moffat, D.T. Jones, A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23(1), 40–55 (2022). https://doi.org/10.1038/s41580-021-00407-0
- L. Massari, G. Fransvea, J. D’Abbraccio, M. Filosa, G. Terruso et al., Functional mimicry of Ruffini receptors with fibre Bragg gratings and deep neural networks enables a bio-inspired large-area tactile-sensitive skin. Nat. Mach. Intell. 4(5), 425–435 (2022). https://doi.org/10.1038/s42256-022-00487-3
- S. Sundaram, P. Kellnhofer, Y. Li, J.-Y. Zhu, A. Torralba et al., Learning the signatures of the human grasp using a scalable tactile glove. Nature 569(7758), 698–702 (2019). https://doi.org/10.1038/s41586-019-1234-z
- N. Guo, X. Han, X. Liu, S. Zhong, Z. Zhou et al., Autoencoding a soft touch to learn grasping from on-land to underwater. Adv. Intell. Syst. 6(1), 2300382 (2024). https://doi.org/10.1002/aisy.202300382
- N. Bai, Y. Xue, S. Chen, L. Shi, J. Shi et al., A robotic sensory system with high spatiotemporal resolution for texture recognition. Nat. Commun. 14(1), 7121 (2023). https://doi.org/10.1038/s41467-023-42722-4
- J. Li, T. Duan, J. Wang, W. Tian, K. Liu et al., Conductive polymer decorated alginate fabrics as flexible triboelectric-piezoresistive haptic tactile sensors for action and texture recognitions. Chem. Eng. J. 512, 162532 (2025). https://doi.org/10.1016/j.cej.2025.162532
- X. Wei, B. Wang, Z. Wu, Z.L. Wang, An open-environment tactile sensing system: toward simple and efficient material identification
References
B. Coste, J. Mathur, M. Schmidt, T.J. Earley, S. Ranade et al., Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330(6000), 55–60 (2010). https://doi.org/10.1126/science.1193270
T. Järvilehto, H. Hämäläinen, K. Soininen, Peripheral neural basis of tactile sensations in man: II. Characteristics of human mechanoreceptors in the hairy skin and correlations of their activity with tactile sensations. Brain Res. 219(1), 13–27 (1981). https://doi.org/10.1016/0006-8993(81)90264-X
D. Deflorio, M. Di Luca, A.M. Wing, Skin and mechanoreceptor contribution to tactile input for perception: a review of simulation models. Front. Hum. Neurosci. 16, 862344 (2022). https://doi.org/10.3389/fnhum.2022.862344
R.V. Grigorii, J.E. Colgate, R. Klatzky, The spatial profile of skin indentation shapes tactile perception across stimulus frequencies. Sci. Rep. 12, 13185 (2022). https://doi.org/10.1038/s41598-022-17324-7
S. Jami, A. Erickson, S.M. Brierley, I. Vetter, Pain-causing venom peptides: insights into sensory neuron pharmacology. Toxins 10(1), 15 (2017). https://doi.org/10.3390/toxins10010015
K. Kim, M. Sim, S.-H. Lim, D. Kim, D. Lee et al., Tactile avatar: tactile sensing system mimicking human tactile cognition. Adv. Sci. 8(7), 2002362 (2021). https://doi.org/10.1002/advs.202002362
Y. Shao, V. Hayward, Y. Visell, Compression of dynamic tactile information in the human hand. Sci. Adv. 6(16), eaaz1158 (2020). https://doi.org/10.1126/sciadv.aaz1158
U.B. Rongala, A. Seyfarth, V. Hayward, H. Jörntell, The import of skin tissue dynamics in tactile sensing. Cell Rep. Phys. Sci. 5(5), 101943 (2024). https://doi.org/10.1016/j.xcrp.2024.101943
S. Sivčev, J. Coleman, E. Omerdić, G. Dooly, D. Toal, Underwater manipulators: a review. Ocean Eng. 163, 431–450 (2018). https://doi.org/10.1016/j.oceaneng.2018.06.018
H.A.M. Williams, M.H. Jones, M. Nejati, M.J. Seabright, J. Bell et al., Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms. Biosyst. Eng. 181, 140–156 (2019). https://doi.org/10.1016/j.biosystemseng.2019.03.007
S. Leanza, J. Lu-Yang, B. Kaczmarski, S. Wu, E. Kuhl et al., Elephant trunk inspired multimodal deformations and movements of soft robotic arms. Adv. Funct. Mater. 34(29), 2400396 (2024). https://doi.org/10.1002/adfm.202400396
G.A. Naselli, R.B.N. Scharff, M. Thielen, F. Visentin, T. Speck et al., A soft continuum robotic arm with a climbing plant-inspired adaptive behavior for minimal sensing, actuation, and control effort. Adv. Intell. Syst. 6(4), 2300537 (2024). https://doi.org/10.1002/aisy.202300537
F.-C. Li, Z. Kong, J.-H. Wu, X.-Y. Ji, J.-J. Liang, Advances in flexible piezoresistive pressure sensor. Acta Phys. Sin. 70(10), 100703 (2021). https://doi.org/10.7498/aps.70.20210023
Y. Wang, Y. Yue, F. Cheng, Y. Cheng, B. Ge et al., Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano 16(2), 1734–1758 (2022). https://doi.org/10.1021/acsnano.1c09925
J.-H. Lee, J.Y. Park, E.B. Cho, T.Y. Kim, S.A. Han et al., Reliable piezoelectricity in bilayer WSe2 for piezoelectric nanogenerators. Adv. Mater. 29(29), 1606667 (2017). https://doi.org/10.1002/adma.201606667
Z. Yao, J. Deng, L. Li, Piezoelectric performance regulation from 2D materials to devices. Matter 7(3), 855–888 (2024). https://doi.org/10.1016/j.matt.2023.12.031
H. Niu, H. Li, N. Li, H. Niu, Y. Li et al., Fringing-effect-based capacitive proximity sensors. Adv. Funct. Mater. 34(51), 2409820 (2024). https://doi.org/10.1002/adfm.202409820
J. Qin, L.-J. Yin, Y.-N. Hao, S.-L. Zhong, D.-L. Zhang et al., Flexible and stretchable capacitive sensors with different microstructures. Adv. Mater. 33(34), 2008267 (2021). https://doi.org/10.1002/adma.202008267
X. Tao, X. Chen, Z.L. Wang, Design and synthesis of triboelectric polymers for high performance triboelectric nanogenerators. Energy Environ. Sci. 16(9), 3654–3678 (2023). https://doi.org/10.1039/D3EE01325A
W. Peng, R. Zhu, Q. Ni, J. Zhao, X. Zhu et al., Functional tactile sensor based on arrayed triboelectric nanogenerators. Adv. Energy Mater. 14(44), 2403289 (2024). https://doi.org/10.1002/aenm.202403289
A. Noor, M. Sun, X. Zhang, S. Li, F. Dong et al., Recent advances in triboelectric tactile sensors for robot hand. Mater. Today Phys. 46, 101496 (2024). https://doi.org/10.1016/j.mtphys.2024.101496
N. Yao, S. Wang, Recent progress of optical tactile sensors: a review. Opt. Laser Technol. 176, 111040 (2024). https://doi.org/10.1016/j.optlastec.2024.111040
J. Li, H. Qin, Z. Song, L. Hou, H. Li, A tactile sensor based on magnetic sensing: design and mechanism. IEEE Trans. Instrum. Meas. 73, 1005509 (2024). https://doi.org/10.1109/TIM.2024.3403185
J. Yang, S. Luo, X. Zhou, J. Li, J. Fu et al., Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Appl. Mater. Interfaces 11(16), 14997–15006 (2019). https://doi.org/10.1021/acsami.9b02049
X. Huang, Z. Ma, W. Xia, L. Hao, Y. Wu et al., A high-sensitivity flexible piezoelectric tactile sensor utilizing an innovative rigid-in-soft structure. Nano Energy 129, 110019 (2024). https://doi.org/10.1016/j.nanoen.2024.110019
X. Qu, Z. Liu, P. Tan, C. Wang, Y. Liu et al., Artificial tactile perception smart finger for material identification based on triboelectric sensing. Sci. Adv. 8(31), eabq2521 (2022). https://doi.org/10.1126/sciadv.abq2521
J. Shin, B. Jeong, J. Kim, V.B. Nam, Y. Yoon et al., Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 32(2), e1905527 (2020). https://doi.org/10.1002/adma.201905527
J. Wu, M. Sang, J. Zhang, Y. Sun, X. Wang et al., Ultra-stretchable spiral hybrid conductive fiber with 500%-strain electric stability and deformation-independent linear temperature response. Small 19(19), e2207454 (2023). https://doi.org/10.1002/smll.202207454
S. Zou, L.-Q. Tao, G. Wang, C. Zhu, Z. Peng et al., Humidity-based human-machine interaction system for healthcare applications. ACS Appl. Mater. Interfaces 14(10), 12606–12616 (2022). https://doi.org/10.1021/acsami.1c23725
H. Luo, G. Pang, K. Xu, Z. Ye, H. Yang et al., A fully printed flexible sensor sheet for simultaneous proximity–pressure–temperature detection. Adv. Mater. Technol. 6(11), 2100616 (2021). https://doi.org/10.1002/admt.202100616
S. Pyo, J. Lee, K. Bae, S. Sim, J. Kim, Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv. Mater. 33(47), 2170373 (2021). https://doi.org/10.1002/adma.202170373
A. Schmitz, P. Maiolino, M. Maggiali, L. Natale, G. Cannata et al., Methods and technologies for the implementation of large-scale robot tactile sensors. IEEE Trans. Robot. 27(3), 389–400 (2011). https://doi.org/10.1109/TRO.2011.2132930
N.T. Tien, S. Jeon, D.-I. Kim, T.Q. Trung, M. Jang et al., A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv. Mater. 26(5), 796–804 (2014). https://doi.org/10.1002/adma.201302869
D.H. Ho, Q. Sun, S.Y. Kim, J.T. Han, D.H. Kim et al., Stretchable and multimodal all graphene electronic skin. Adv. Mater. 28(13), 2601–2608 (2016). https://doi.org/10.1002/adma.201505739
C. Zhao, J. Park, S.E. Root, Z. Bao, Skin-inspired soft bioelectronic materials, devices and systems. Nat. Rev. Bioeng. 2(8), 671–690 (2024). https://doi.org/10.1038/s44222-024-00194-1
Z. Yu, Y. Mao, Z. Wu, F. Li, J. Cao et al., Fully-printed bionic tactile E-skin with coupling enhancement effect to recognize object assisted by machine learning. Adv. Funct. Mater. 34(3), 2307503 (2024). https://doi.org/10.1002/adfm.202307503
Y. Luo, Y. Li, P. Sharma, W. Shou, K. Wu et al., Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 4(3), 193–201 (2021). https://doi.org/10.1038/s41928-021-00558-0
Y. Lu, D. Kong, G. Yang, R. Wang, G. Pang et al., Machine learning-enabled tactile sensor design for dynamic touch decoding. Adv. Sci. 10(32), e2303949 (2023). https://doi.org/10.1002/advs.202303949
E. Hocaoglu, V. Patoglu, Design, implementation, and evaluation of a variable stiffness transradial hand prosthesis. Front Neurorob (2022). https://doi.org/10.48550/arXiv.1910.12569
A. Bicchi, M. Gabiccini, M. Santello, Modelling natural and artificial hands with synergies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1581), 3153–3161 (2011). https://doi.org/10.1098/rstb.2011.0152
S.M.M. Rahman, R. Ikeura, Weight-prediction-based predictive optimal position and force controls of a power assist robotic system for object manipulation. IEEE Trans. Ind. Electron. 63(9), 5964–5975 (2016). https://doi.org/10.1109/TIE.2016.2561879
T. Kawamura, K. Nejigane, K. Tani, H. Yamada, Hybrid tactile sensor system for a robot hand and estimation of fine deformation using the sensor system. Int. J. Soc. Robot. 4(1), 93–100 (2012). https://doi.org/10.1007/s12369-011-0119-6
W. Wang, Y. Tang, C. Li, Controlling bending deformation of a shape memory alloy-based soft planar gripper to grip deformable objects. Int. J. Mech. Sci. 193, 106181 (2021). https://doi.org/10.1016/j.ijmecsci.2020.106181
R. Bhirangi, A. DeFranco, J. Adkins, C. Majidi, A. Gupta et al., All the feels: a dexterous hand with large-area tactile sensing. IEEE Robot. Autom. Lett. 8(12), 8311–8318 (2023). https://doi.org/10.1109/LRA.2023.3327619
M. Totaro, A. Mondini, A. Bellacicca, P. Milani, L. Beccai, Integrated simultaneous detection of tactile and bending cues for soft robotics. Soft Robot. 4(4), 400–410 (2017). https://doi.org/10.1089/soro.2016.0049
C. Lucarotti, M. Totaro, A. Sadeghi, B. Mazzolai, L. Beccai, Revealing bending and force in a soft body through a plant root inspired approach. Sci. Rep. 5, 8788 (2015). https://doi.org/10.1038/srep08788
S. Zhang, Y. Liu, J. Deng, X. Gao, J. Li et al., Piezo robotic hand for motion manipulation from micro to macro. Nat. Commun. 14(1), 500 (2023). https://doi.org/10.1038/s41467-023-36243-3
Z. Ye, C. Zhou, J. Jin, P. Yu, F. Wang, A novel ring-beam piezoelectric actuator for small-size and high-precision manipulator. Ultrasonics 96, 90–95 (2019). https://doi.org/10.1016/j.ultras.2019.02.007
X. Hou, M. Zhu, L. Sun, T. Ding, Z. Huang et al., Scalable self-attaching/assembling robotic cluster (S2A2RC) system enabled by triboelectric sensors for in-orbit spacecraft application. Nano Energy 93, 106894 (2022). https://doi.org/10.1016/j.nanoen.2021.106894
K. Qin, C. Chen, X. Pu, Q. Tang, W. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13(1), 51 (2021). https://doi.org/10.1007/s40820-020-00575-2
J. Cramer, M. Cramer, E. Demeester, K. Kellens, Exploring the potential of magnetorheology in robotic grippers. Procedia CIRP 76, 127–132 (2018). https://doi.org/10.1016/j.procir.2018.01.038
M. Ohka, H. Kobayashi, Y. Mitsuya, Sensing characteristics of an optical three-axis tactile sensor mounted on a multi-fingered robotic hand. in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. August 2–6, 2005, Edmonton, AB, Canada. IEEE, 2005, pp. 493–498. https://doi.org/10.1109/IROS.2005.1545264
Y. Du, G. Zhang, M.Y. Wang, 3D contact point cloud reconstruction from vision-based tactile flow. IEEE Robot. Autom. Lett. 7(4), 12177–12184 (2022). https://doi.org/10.1109/LRA.2022.3214786
H. Liu, K. Sun, X.-L. Guo, Z.-L. Liu, Y.-H. Wang et al., An ultrahigh linear sensitive temperature sensor based on PANI: graphene and PDMS hybrid with negative temperature compensation. ACS Nano 16(12), 21527–21535 (2022). https://doi.org/10.1021/acsnano.2c10342
J. Pan, S. Liu, H. Zhang, J. Lu, A flexible temperature sensor array with polyaniline/graphene-polyvinyl butyral thin film. Sensors 19(19), 4105 (2019). https://doi.org/10.3390/s19194105
W. Lu, Y. Feng, C. Zhu, J. Zheng, Temperature compensation of the SAW yarn tension sensor. Ultrasonics 76, 87–91 (2017). https://doi.org/10.1016/j.ultras.2016.12.006
L. Wen, M. Nie, J. Fan, P. Chen, B. Li et al., Tactile recognition of shape and texture on the same substrate. Adv. Intell. Syst. 5(12), 2300337 (2023). https://doi.org/10.1002/aisy.202300337
L. Zhao, S. Yu, J. Li, Z. Song, X. Wang, Highly reliable sensitive capacitive tactile sensor with spontaneous micron-pyramid structures for electronic skins. Macromol. Mater. Eng. 307(10), 2200192 (2022). https://doi.org/10.1002/mame.202200192
G.-Y. Gou, X.-S. Li, J.-M. Jian, H. Tian, F. Wu et al., Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum. Sci. Adv. 8(13), eabn2156 (2022). https://doi.org/10.1126/sciadv.abn2156
X. Zhang, Y. Zhang, W. Zhang, Y. Dai, F. Xia, Gold nanops-deranged double network for Janus adhesive-tough hydrogel as strain sensor. Chem. Eng. J. 420, 130447 (2021). https://doi.org/10.1016/j.cej.2021.130447
X. Han, Z. Lv, F. Ran, L. Dai, C. Li et al., Green and stable piezoresistive pressure sensor based on lignin-silver hybrid nanops/polyvinyl alcohol hydrogel. Int. J. Biol. Macromol. 176, 78–86 (2021). https://doi.org/10.1016/j.ijbiomac.2021.02.055
C. Wang, K. Hu, C. Zhao, Y. Zou, Y. Liu et al., Customization of conductive elastomer based on PVA/PEI for stretchable sensors. Small 16(7), e1904758 (2020). https://doi.org/10.1002/smll.201904758
D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516(7530), 222–226 (2014). https://doi.org/10.1038/nature14002
C. Zhang, J. Zhang, D. Chen, X. Meng, L. Liu et al., Crack-based and hair-like sensors inspired from arthropods: a review. J. Bionic Eng. 17(5), 867–898 (2020). https://doi.org/10.1007/s42235-020-0092-6
H. Souri, H. Banerjee, A. Jusufi, N. Radacsi, A.A. Stokes et al., Wearable and stretchable strain sensors: materials, sensing mechanisms, and applications. Adv. Intell. Syst. 2(8), 2000039 (2020). https://doi.org/10.1002/aisy.202000039
W. Wang, Y. Liu, M. Ding, T. Xia, Q. Gong et al., From network to channel: crack-based strain sensors with high sensitivity, stretchability, and linearity via strain engineering. Nano Energy 116, 108832 (2023). https://doi.org/10.1016/j.nanoen.2023.108832
L. Wang, X. Xu, J. Chen, W. Su, F. Zhang et al., Crack sensing of cardiomyocyte contractility with high sensitivity and stability. ACS Nano 16(8), 12645–12655 (2022). https://doi.org/10.1021/acsnano.2c04260
Y. Li, Z. Zhang, S. Du, S. Zong, Z. Ning et al., Highly sensitive biomimetic crack pressure sensor with selective frequency response. ACS Sens. 9(6), 3057–3065 (2024). https://doi.org/10.1021/acssensors.4c00245
P. Lei, Y. Bao, W. Zhang, L. Gao, X. Zhu et al., Synergy of ZnO nanowire arrays and electrospun membrane gradient wrinkles in piezoresistive materials for wide-sensing range and high-sensitivity flexible pressure sensor. Adv. Fiber Mater. 6(2), 414–429 (2024). https://doi.org/10.1007/s42765-023-00359-4
Z. Zhang, F. Xiang, D. Mei, Y. Wang, Waterproof and flexible aquatic tactile sensor with interlocked ripple structures for broad range force sensing. Adv. Mater. Technol. 9(2), 2301513 (2024). https://doi.org/10.1002/admt.202301513
T. Yang, W. Deng, X. Chu, X. Wang, Y. Hu et al., Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics. ACS Nano 15(7), 11555–11563 (2021). https://doi.org/10.1021/acsnano.1c01606
J. Yang, L. Liu, D. Zhang, H. Zhang, J. Ma et al., Dual-stage surficial microstructure to enhance the sensitivity of MXene pressure sensors for human physiological signal acquisition. ACS Appl. Mater. Interfaces 16(1), 1096–1106 (2024). https://doi.org/10.1021/acsami.3c14780
J. Liu, X. Zhang, J. Liu, X. Liu, C. Zhang, 3D printing of anisotropic piezoresistive pressure sensors for directional force perception. Adv. Sci. 11(24), 2309607 (2024). https://doi.org/10.1002/advs.202309607
A. Osman, H. Liu, J. Lu, Sacrificial 3D printing to fabricate MXene-based wearable sensors with tunable performance. Chem. Eng. J. 484, 149461 (2024). https://doi.org/10.1016/j.cej.2024.149461
J.C. Yang, J.-O. Kim, J. Oh, S.Y. Kwon, J.Y. Sim et al., Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature. ACS Appl. Mater. Interfaces 11(21), 19472–19480 (2019). https://doi.org/10.1021/acsami.9b03261
S.R.A. Ruth, L. Beker, H. Tran, V.R. Feig, N. Matsuhisa et al., Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals. Adv. Funct. Mater. 30(29), 1903100 (2020). https://doi.org/10.1002/adfm.201903100
J. Yang, D. Tang, J. Ao, T. Ghosh, T.V. Neumann et al., Ultrasoft liquid metal elastomer foams with positive and negative piezopermittivity for tactile sensing. Adv. Funct. Mater. 30(36), 2002611 (2020). https://doi.org/10.1002/adfm.202002611
Q. Liu, Y. Liu, J. Shi, Z. Liu, Q. Wang et al., High-porosity foam-based iontronic pressure sensor with superhigh sensitivity of 9280 kPa-1. Nano-Micro Lett. 14(1), 21 (2021). https://doi.org/10.1007/s40820-021-00770-9
M. Pruvost, W.J. Smit, C. Monteux, P. Poulin, A. Colin, Polymeric foams for flexible and highly sensitive low-pressure capacitive sensors. NPJ Flex. Electron. 3, 7 (2019). https://doi.org/10.1038/s41528-019-0052-6
Y. Joo, J. Yoon, J. Ha, T. Kim, S. Lee et al., Highly sensitive and bendable capacitive pressure sensor and its application to 1 V operation pressure-sensitive transistor. Adv. Electron. Mater. 3(4), 1600455 (2017). https://doi.org/10.1002/aelm.201600455
S. Pyo, J. Choi, J. Kim, Flexible, transparent, sensitive, and crosstalk-free capacitive tactile sensor array based on graphene electrodes and air dielectric. Adv. Electron. Mater. 4(1), 1700427 (2018). https://doi.org/10.1002/aelm.201700427
Y. Luo, J. Shao, S. Chen, X. Chen, H. Tian et al., Flexible capacitive pressure sensor enhanced by tilted micropillar arrays. ACS Appl. Mater. Interfaces 11(19), 17796–17803 (2019). https://doi.org/10.1021/acsami.9b03718
H. Yu, H. Guo, J. Wang, T. Zhao, W. Zou et al., Skin-inspired capacitive flexible tactile sensor with an asymmetric structure for detecting directional shear forces. Adv. Sci. 11(6), 2305883 (2024). https://doi.org/10.1002/advs.202305883
Z. Li, K. Zhao, J. Wang, B. Wang, J. Lu et al., Sensitive, robust, wide-range, and high-consistency capacitive tactile sensors with ordered porous dielectric microstructures. ACS Appl. Mater. Interfaces 16(6), 7384–7398 (2024). https://doi.org/10.1021/acsami.3c15368
Y. Zhong, K. Liu, L. Wu, W. Ji, G. Cheng et al., Flexible tactile sensors with gradient conformal dome structures. ACS Appl. Mater. Interfaces 16(39), 52966–52976 (2024). https://doi.org/10.1021/acsami.4c12736
L. Wu, X. Li, J. Choi, Z.-J. Zhao, L. Qian et al., Beetle-inspired gradient slant structures for capacitive pressure sensor with a broad linear response range. Adv. Funct. Mater. 34(26), 2312370 (2024). https://doi.org/10.1002/adfm.202312370
J. Kaur, H. Singh, Fabrication and analysis of piezoelectricity in 0D, 1D and 2D Zinc Oxide nanostructures. Ceram. Int. 46(11), 19401–19407 (2020). https://doi.org/10.1016/j.ceramint.2020.04.283
P. Lin, C. Pan, Z.L. Wang, Two-dimensional nanomaterials for novel piezotronics and piezophototronics. Mater. Today Nano 4, 17–31 (2018). https://doi.org/10.1016/j.mtnano.2018.11.006
S. Liu, W. Chen, C. Liu, B. Wang, H. Yin, Coexistence of large out-of-plane and in-plane piezoelectricity in 2D monolayer Li-based ternary chalcogenides LiMX2. Results Phys. 26, 104398 (2021). https://doi.org/10.1016/j.rinp.2021.104398
M. Yeganeh, D. Vahedi Fakhrabad, Piezoelectric properties in hydrofluorination surface-engineered two-dimensional ScN. Micro NanoStruct. 171, 207424 (2022). https://doi.org/10.1016/j.micrna.2022.207424
S. Tombelli, M. Minunni, A. Santucci, M.M. Spiriti, M. Mascini, A DNA-based piezoelectric biosensor: strategies for coupling nucleic acids to piezoelectric devices. Talanta 68(3), 806–812 (2006). https://doi.org/10.1016/j.talanta.2005.06.007
H. Kim, S.-W. Lee, Molecular mechanisms and enhancement of piezoelectricity in the M13 virus. Adv. Funct. Mater. 34(44), 2407462 (2024). https://doi.org/10.1002/adfm.202407462
B.Y. Lee, J. Zhang, C. Zueger, W.-J. Chung, S.Y. Yoo et al., Virus-based piezoelectric energy generation. Nat. Nanotechnol. 7(6), 351–356 (2012). https://doi.org/10.1038/nnano.2012.69
S. Tombelli, M. Minunni, M. Mascini, Piezoelectric biosensors: strategies for coupling nucleic acids to piezoelectric devices. Methods 37(1), 48–56 (2005). https://doi.org/10.1016/j.ymeth.2005.05.005
J. Zhang, H. Yao, J. Mo, S. Chen, Y. Xie et al., Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency. Nat. Commun. 13(1), 5076 (2022). https://doi.org/10.1038/s41467-022-32827-7
B. Joshi, J. Seol, E. Samuel, W. Lim, C. Park et al., Supersonically sprayed PVDF and ZnO flowers with built-in nanocuboids for wearable piezoelectric nanogenerators. Nano Energy 112, 108447 (2023). https://doi.org/10.1016/j.nanoen.2023.108447
C. Wei, H. Zhou, B. Zheng, H. Zheng, Q. Shu et al., Fully flexible and mechanically robust tactile sensors containing core–shell structured fibrous piezoelectric mat as sensitive layer. Chem. Eng. J. 476, 146654 (2023). https://doi.org/10.1016/j.cej.2023.146654
W. Fan, R. Lei, H. Dou, Z. Wu, L. Lu et al., Sweat permeable and ultrahigh strength 3D PVDF piezoelectric nanoyarn fabric strain sensor. Nat. Commun. 15(1), 3509 (2024). https://doi.org/10.1038/s41467-024-47810-7
J. Xiong, L. Wang, F. Liang, M. Li, Y. Yabuta et al., Flexible piezoelectric sensor based on two-dimensional topological network of PVDF/DA composite nanofiber membrane. Adv. Fiber Mater. 6(4), 1212–1228 (2024). https://doi.org/10.1007/s42765-024-00415-7
S. Min, D.H. Kim, D.J. Joe, B.W. Kim, Y.H. Jung et al., Clinical validation of a wearable piezoelectric blood-pressure sensor for continuous health monitoring. Adv. Mater. 35(26), 2301627 (2023). https://doi.org/10.1002/adma.202301627
W. Wu, X. Wen, Z.L. Wang, Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340(6135), 952–957 (2013). https://doi.org/10.1126/science.1234855
Q. Xu, Y. Tao, Z. Wang, H. Zeng, J. Yang et al., Highly flexible, high-performance, and stretchable piezoelectric sensor based on a hierarchical droplet-shaped ceramics with enhanced damage tolerance. Adv. Mater. 36(18), 2311624 (2024). https://doi.org/10.1002/adma.202311624
J. Wang, S. Xu, C. Hu, Charge generation and enhancement of key components of triboelectric nanogenerators: a review. Adv. Mater. 36(50), 2409833 (2024). https://doi.org/10.1002/adma.202409833
G. Khandelwal, N.P.M.J. Raj, S.-J. Kim, Materials beyond conventional triboelectric series for fabrication and applications of triboelectric nanogenerators. Adv. Energy Mater. 11(33), 2101170 (2021). https://doi.org/10.1002/aenm.202101170
J. Nie, X. Chen, Z.L. Wang, Electrically responsive materials and devices directly driven by the high voltage of triboelectric nanogenerators. Adv. Funct. Mater. 29(41), 1806351 (2019). https://doi.org/10.1002/adfm.201806351
E. Elsanadidy, I.M. Mosa, D. Luo, X. Xiao, J. Chen et al., Advances in triboelectric nanogenerators for self-powered neuromodulation. Adv. Funct. Mater. 33(8), 2211177 (2023). https://doi.org/10.1002/adfm.202211177
Y. Lu, H. Tian, J. Cheng, F. Zhu, B. Liu et al., Decoding lip language using triboelectric sensors with deep learning. Nat. Commun. 13(1), 1401 (2022). https://doi.org/10.1038/s41467-022-29083-0
C. Zhang, J. Zhao, Z. Zhang, T. Bu, G. Liu et al., Tribotronics: an emerging field by coupling triboelectricity and semiconductors. Int. J. Extreme Manuf. 5(4), 042002 (2023). https://doi.org/10.1088/2631-7990/ace669
Y. Liu, J. Wang, T. Liu, Z. Wei, B. Luo et al., Triboelectric tactile sensor for pressure and temperature sensing in high-temperature applications. Nat. Commun. 16(1), 383 (2025). https://doi.org/10.1038/s41467-024-55771-0
B. Shao, M.-H. Lu, T.-C. Wu, W.-C. Peng, T.-Y. Ko et al., Large-area, untethered, metamorphic, and omnidirectionally stretchable multiplexing self-powered triboelectric skins. Nat. Commun. 15(1), 1238 (2024). https://doi.org/10.1038/s41467-024-45611-6
Z. Sun, M. Zhu, X. Shan, C. Lee, Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat. Commun. 13(1), 5224 (2022). https://doi.org/10.1038/s41467-022-32745-8
W. Liu, Y. Duo, J. Liu, F. Yuan, L. Li et al., Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces. Nat. Commun. 13(1), 5030 (2022). https://doi.org/10.1038/s41467-022-32702-5
G. Du, Y. Shao, B. Luo, T. Liu, J. Zhao et al., Compliant iontronic triboelectric gels with phase-locked structure enabled by competitive hydrogen bonding. Nano-Micro Lett. 16(1), 170 (2024). https://doi.org/10.1007/s40820-024-01387-4
J. Man, J. Zhang, G. Chen, N. Xue, J. Chen, A tactile and airflow motion sensor based on flexible double-layer magnetic cilia. Microsyst. Nanoeng. 9, 12 (2023). https://doi.org/10.1038/s41378-022-00478-9
J. Man, Z. Jin, J. Chen, Magnetic tactile sensor with bionic hair array for sliding sensing and object recognition. Adv. Sci. 11(12), 2306832 (2024). https://doi.org/10.1002/advs.202306832
J. Dargahi, S. Najarian, Human tactile perception as a standard for artificial tactile sensing: a review. Int. J. Med. Robot. Comput. Assist. Surg. 1(1), 23–35 (2004). https://doi.org/10.1002/rcs.3
A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15(9), 937–950 (2016). https://doi.org/10.1038/nmat4671
S. Oh, Y. Jung, S. Kim, S. Kim, X. Hu et al., Remote tactile sensing system integrated with magnetic synapse. Sci. Rep. 7, 16963 (2017). https://doi.org/10.1038/s41598-017-17277-2
J. Zhang, Z. Jin, G. Chen, J. Chen, An ultrathin, rapidly fabricated, flexible giant magnetoresistive electronic skin. Microsyst. Nanoeng. 10, 109 (2024). https://doi.org/10.1038/s41378-024-00716-2
Y. Xu, S. Zhang, S. Li, Z. Wu, Y. Li et al., A soft magnetoelectric finger for robots’ multidirectional tactile perception in non-visual recognition environments. NPJ Flex. Electron. 8, 2 (2024). https://doi.org/10.1038/s41528-023-00289-6
H. Hu, C. Zhang, C. Pan, H. Dai, H. Sun et al., Wireless flexible magnetic tactile sensor with super-resolution in large-areas. ACS Nano 16(11), 19271–19280 (2022). https://doi.org/10.1021/acsnano.2c08664
H. Hu, C. Zhang, X. Lai, H. Dai, C. Pan et al., Large-area magnetic skin for multi-point and multi-scale tactile sensing with super-resolution. NPJ Flex. Electron. 8, 42 (2024). https://doi.org/10.1038/s41528-024-00325-z
L. Xu, N. Liu, J. Ge, X. Wang, M.P. Fok, Stretchable fiber-Bragg-grating-based sensor. Opt. Lett. 43(11), 2503–2506 (2018). https://doi.org/10.1364/OL.43.002503
H. Bai, S. Li, J. Barreiros, Y. Tu, C.R. Pollock et al., Stretchable distributed fiber-optic sensors. Science 370(6518), 848–852 (2020). https://doi.org/10.1126/science.aba5504
J. Guo, K. Zhao, B. Zhou, W. Ning, K. Jiang et al., Wearable and skin-mountable fiber-optic strain sensors interrogated by a free-running, dual-comb fiber laser. Adv. Opt. Mater. 7(12), 1900086 (2019). https://doi.org/10.1002/adom.201900086
C. Shang, B. Fu, J. Tuo, X. Guo, Z. Li et al., Soft biomimetic fiber-optic tactile sensors capable of discriminating temperature and pressure. ACS Appl. Mater. Interfaces 15(46), 53264–53272 (2023). https://doi.org/10.1021/acsami.3c12712
Y. Tang, H. Liu, J. Pan, Z. Zhang, Y. Xu et al., Optical micro/nanofiber-enabled compact tactile sensor for hardness discrimination. ACS Appl. Mater. Interfaces 13(3), 4560–4566 (2021). https://doi.org/10.1021/acsami.0c20392
C. Jiang, Z. Zhang, J. Pan, Y. Wang, L. Zhang et al., Finger-skin-inspired flexible optical sensor for force sensing and slip detection in robotic grasping. Adv. Mater. Technol. 6(10), 2100285 (2021). https://doi.org/10.1002/admt.202100285
J. Pan, Q. Wang, S. Gao, Z. Zhang, Y. Xie et al., Knot-inspired optical sensors for slip detection and friction measurement in dexterous robotic manipulation. Opto Electron. Adv. 6(10), 230076 (2023). https://doi.org/10.29026/oea.2023.230076
B. Mao, K. Zhou, Y. Xiang, Y. Zhang, Q. Yuan et al., A bioinspired robotic finger for multimodal tactile sensing powered by fiber optic sensors. Adv. Intell. Syst. 6(8), 2400175 (2024). https://doi.org/10.1002/aisy.202400175
J. Guo, F. Guo, H. Zhao, H. Yang, X. Du et al., In-sensor computing with visual-tactile perception enabled by mechano-optical artificial synapse. Adv. Mater. 37(14), e2419405 (2025). https://doi.org/10.1002/adma.202419405
J. He, R. Wei, S. Ge, W. Wu, J. Guo et al., Artificial visual-tactile perception array for enhanced memory and neuromorphic computations. InfoMat 6(3), e12493 (2024). https://doi.org/10.1002/inf2.12493
H. Zhao, Y. Zhang, L. Han, W. Qian, J. Wang et al., Intelligent recognition using ultralight multifunctional nano-layered carbon aerogel sensors with human-like tactile perception. Nano-Micro Lett 16(1), 11 (2023). https://doi.org/10.1007/s40820-023-01216-0
P. Zhao, Y. Song, P. Xie, F. Zhang, T. Xie et al., All-organic smart textile sensor for deep-learning-assisted multimodal sensing. Adv. Funct. Mater. 33(30), 2301816 (2023). https://doi.org/10.1002/adfm.202301816
X. Xie, Q. Wang, C. Zhao, Q. Sun, H. Gu et al., Neuromorphic computing-assisted triboelectric capacitive-coupled tactile sensor array for wireless mixed reality interaction. ACS Nano 18(26), 17041–17052 (2024). https://doi.org/10.1021/acsnano.4c03554
M. Liu, Z. Dai, Y. Zhao, H. Ling, L. Sun et al., Tactile sensing and rendering patch with dynamic and static sensing and haptic feedback for immersive communication. ACS Appl. Mater. Interfaces 16(39), 53207–53219 (2024). https://doi.org/10.1021/acsami.4c11050
Y.A. Nikolaev, V.V. Feketa, E.O. Anderson, E.R. Schneider, E.O. Gracheva et al., Lamellar cells in Pacinian and Meissner corpuscles are touch sensors. Sci. Adv. 6(51), eabe6393 (2020). https://doi.org/10.1126/sciadv.abe6393
N.L. Neubarth, A.J. Emanuel, Y. Liu, M.W. Springel, A. Handler et al., Meissner corpuscles and their spatially intermingled afferents underlie gentle touch perception. Science 368(6497), eabb2751 (2020). https://doi.org/10.1126/science.abb2751
W. Chang, H. Kanda, R. Ikeda, J. Ling, J.J. DeBerry et al., Merkel disc is a serotonergic synapse in the epidermis for transmitting tactile signals in mammals. Proc. Natl. Acad. Sci. U. S. A. 113(37), E5491–E5500 (2016). https://doi.org/10.1073/pnas.1610176113
O.P. Hamill, D.W. McBride, A supramolecular complex underlying touch sensitivity. Trends Neurosci. 19(7), 258–261 (1996). https://doi.org/10.1016/S0166-2236(96)30009-X
E.A. Lumpkin, M.J. Caterina, Mechanisms of sensory transduction in the skin. Nature 445(7130), 858–865 (2007). https://doi.org/10.1038/nature05662
Y. Qiu, S. Sun, X. Wang, K. Shi, Z. Wang et al., Nondestructive identification of softness via bioinspired multisensory electronic skins integrated on a robotic hand. NPJ Flex. Electron. 6, 45 (2022). https://doi.org/10.1038/s41528-022-00181-9
H. Tan, Q. Tao, I. Pande, S. Majumdar, F. Liu et al., Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves. Nat. Commun. 11(1), 1369 (2020). https://doi.org/10.1038/s41467-020-15105-2
S. Chun, J.-S. Kim, Y. Yoo, Y. Choi, S.J. Jung et al., An artificial neural tactile sensing system. Nat. Electron. 4(6), 429–438 (2021). https://doi.org/10.1038/s41928-021-00585-x
F. Sun, Q. Lu, M. Hao, Y. Wu, Y. Li et al., An artificial neuromorphic somatosensory system with spatio-temporal tactile perception and feedback functions. NPJ Flex. Electron. 6, 72 (2022). https://doi.org/10.1038/s41528-022-00202-7
H. Niu, H. Li, S. Gao, Y. Li, X. Wei et al., Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv. Mater. 34(31), 2202622 (2022). https://doi.org/10.1002/adma.202202622
H. Qiao, S. Sun, P. Wu, Non-equilibrium-growing aesthetic ionic skin for fingertip-like strain-undisturbed tactile sensation and texture recognition. Adv. Mater. 35(21), 2300593 (2023). https://doi.org/10.1002/adma.202300593
H. Niu, H. Li, Q. Zhang, E.-S. Kim, N.-Y. Kim et al., Intuition-and-tactile bimodal sensing based on artificial-intelligence-motivated all-fabric bionic electronic skin for intelligent material perception. Small 20(14), 2308127 (2024). https://doi.org/10.1002/smll.202308127
J. Tao, W. Zhao, X. Zhou, J. Zhang, Y. Zhang et al., Robust all-fabric e-skin with high-temperature and corrosion tolerance for self-powered tactile sensing. Nano Energy 128, 109930 (2024). https://doi.org/10.1016/j.nanoen.2024.109930
S. Pyo, J. Lee, W. Kim, E. Jo, J. Kim, Multi-layered, hierarchical fabric-based tactile sensors with high sensitivity and linearity in ultrawide pressure range. Adv. Funct. Mater. 29(35), 1902484 (2019). https://doi.org/10.1002/adfm.201902484
Z. Su, D. Xu, Y. Liu, C. Gao, C. Ge et al., All-fabric tactile sensors based on sandwich structure design with tunable responsiveness. ACS Appl. Mater. Interfaces 15(26), 32002–32010 (2023). https://doi.org/10.1021/acsami.3c05775
Y. Luo, C. Liu, Y.J. Lee, J. DelPreto, K. Wu et al., Adaptive tactile interaction transfer via digitally embroidered smart gloves. Nat. Commun. 15(1), 868 (2024). https://doi.org/10.1038/s41467-024-45059-8
J. Deng, W. Zhuang, L. Bao, X. Wu, J. Gao et al., A tactile sensing textile with bending-independent pressure perception and spatial acuity. Carbon 149, 63–70 (2019). https://doi.org/10.1016/j.carbon.2019.04.019
Z. Song, W. Li, Y. Bao, W. Wang, Z. Liu et al., Bioinspired microstructured pressure sensor based on a Janus graphene film for monitoring vital signs and cardiovascular assessment. Adv. Electron. Mater. 4(11), 1800252 (2018). https://doi.org/10.1002/aelm.201800252
J. Jia, J.-H. Pu, J.-H. Liu, X. Zhao, K. Ke et al., Surface structure engineering for a bionic fiber-based sensor toward linear, tunable, and multifunctional sensing. Mater. Horiz. 7(9), 2450–2459 (2020). https://doi.org/10.1039/D0MH00716A
W. Cheng, X. Wang, Z. Xiong, J. Liu, Z. Liu et al., Frictionless multiphasic interface for near-ideal aero-elastic pressure sensing. Nat. Mater. 22(11), 1352–1360 (2023). https://doi.org/10.1038/s41563-023-01628-8
X.-F. Zhao, X.-H. Wen, P. Sun, C. Zeng, M.-Y. Liu et al., Spider web-like flexible tactile sensor for pressure-strain simultaneous detection. ACS Appl. Mater. Interfaces 13(8), 10428–10436 (2021). https://doi.org/10.1021/acsami.0c21960
M. Liu, Y. Zhang, J. Wang, N. Qin, H. Yang et al., A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments. Nat. Commun. 13(1), 79 (2022). https://doi.org/10.1038/s41467-021-27672-z
X. Guo, W. Hong, L. Liu, D. Wang, L. Xiang et al., Highly sensitive and wide-range flexible bionic tactile sensors inspired by the Octopus sucker structure. ACS Appl. Nano Mater. 5(8), 11028–11036 (2022). https://doi.org/10.1021/acsanm.2c02242
V.-T. Bui, Q. Zhou, J.-N. Kim, J.-H. Oh, K.-W. Han et al., Treefrog toe pad-inspired micropatterning for high-power triboelectric nanogenerator. Adv. Funct. Mater. 29(28), 1901638 (2019). https://doi.org/10.1002/adfm.201901638
S. Chen, K. Jiang, Z. Lou, D. Chen, G. Shen, Recent developments in graphene-based tactile sensors and E-skins. Adv. Mater. Technol. 3(2), 1700248 (2018). https://doi.org/10.1002/admt.201700248
C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31(9), 1801072 (2019). https://doi.org/10.1002/adma.201801072
H. Chen, F. Zhuo, J. Zhou, Y. Liu, J. Zhang et al., Advances in graphene-based flexible and wearable strain sensors. Chem. Eng. J. 464, 142576 (2023). https://doi.org/10.1016/j.cej.2023.142576
X. Li, L. Zhi, Graphene hybridization for energy storage applications. Chem. Soc. Rev. 47(9), 3189–3216 (2018). https://doi.org/10.1039/c7cs00871f
L. Liao, H. Peng, Z. Liu, Chemistry makes graphene beyond graphene. J. Am. Chem. Soc. 136(35), 12194–12200 (2014). https://doi.org/10.1021/ja5048297
Y. Feng, S.-H. Huang, K. Kang, X.-X. Duan, Preparation and characterization of graphene and few-layer graphene. Carbon 49(8), 2879 (2011). https://doi.org/10.1016/j.carbon.2011.02.035
Z. Lin, C. Mikhael, C. Dai, J.-H. Cho, Self-assembly for creating vertically-aligned graphene micro helices with monolayer graphene as chiral metamaterials. Adv. Mater. 36(27), 2470213 (2024). https://doi.org/10.1002/adma.202470213
T. Yu, Z. Ni, C. Du, Y. You, Y. Wang et al., Raman mapping investigation of graphene on transparent flexible substrate: the strain effect. J. Phys. Chem. C 112(33), 12602–12605 (2008). https://doi.org/10.1021/jp806045u
A. Nakamura, T. Hamanishi, S. Kawakami, M. Takeda, A piezo-resistive graphene strain sensor with a hollow cylindrical geometry. Mater. Sci. Eng. B 219, 20–27 (2017). https://doi.org/10.1016/j.mseb.2017.02.012
S. Lee, A. Reuveny, J. Reeder, S. Lee, H. Jin et al., A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11(5), 472–478 (2016). https://doi.org/10.1038/nnano.2015.324
M. Xu, J. Qi, F. Li, Y. Zhang, Transparent and flexible tactile sensors based on graphene films designed for smart panels. J. Mater. Sci. 53(13), 9589–9597 (2018). https://doi.org/10.1007/s10853-018-2216-5
J. He, R. Zhou, Y. Zhang, W. Gao, T. Chen et al., Strain-insensitive self-powered tactile sensor arrays based on intrinsically stretchable and patternable ultrathin conformal wrinkled graphene-elastomer composite. Adv. Funct. Mater. 32(10), 2107281 (2022). https://doi.org/10.1002/adfm.202107281
Y. Ma, Z. Li, J. Han, L. Li, M. Wang et al., Vertical graphene canal mesh for strain sensing with a supereminent resolution. ACS Appl. Mater. Interfaces 14(28), 32387–32394 (2022). https://doi.org/10.1021/acsami.2c07658
K. Cao, M. Wu, J. Bai, Z. Wen, J. Zhang et al., Beyond skin pressure sensing: 3D printed laminated graphene pressure sensing material combines extremely low detection limits with wide detection range. Adv. Funct. Mater. 32(28), 2202360 (2022). https://doi.org/10.1002/adfm.202202360
U. Khan, T.-H. Kim, H. Ryu, W. Seung, S.-W. Kim, Graphene tribotronics for electronic skin and touch screen applications. Adv. Mater. 29(1), 1603544 (2017). https://doi.org/10.1002/adma.201603544
S.-H. Shin, S. Ji, S. Choi, K.-H. Pyo, B. Wan An et al., Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges. Nat. Commun. 8, 14950 (2017). https://doi.org/10.1038/ncomms14950
Y. Chen, G. Gao, J. Zhao, H. Zhang, J. Yu et al., Piezotronic graphene artificial sensory synapse. Adv. Funct. Mater. 29(41), 1900959 (2019). https://doi.org/10.1002/adfm.201900959
D.H. Ho, Y.Y. Choi, S.B. Jo, J.-M. Myoung, J.H. Cho, Sensing with MXenes: progress and prospects. Adv. Mater. 33(47), 2005846 (2021). https://doi.org/10.1002/adma.202005846
S. Seyedin, S. Uzun, A. Levitt, B. Anasori, G. Dion et al., MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles. Adv. Funct. Mater. 30(12), 1910504 (2020). https://doi.org/10.1002/adfm.201910504
C. Ma, M.-G. Ma, C. Si, X.-X. Ji, P. Wan, Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 31(22), 2009524 (2021). https://doi.org/10.1002/adfm.202009524
X. Wu, P. Ma, Y. Sun, F. Du, D. Song et al., Application of MXene in electrochemical sensors: a review. Electroanalysis 33(8), 1827–1851 (2021). https://doi.org/10.1002/elan.202100192
A. Ali, S.M. Majhi, L.A. Siddig, A.H. Deshmukh, H. Wen et al., Recent advancements in MXene-based biosensors for health and environmental applications-a review. Biosensors 14(10), 497 (2024). https://doi.org/10.3390/bios14100497
M.-Y. Yang, M.-L. Huang, Y.-Z. Li, Z.-S. Feng, Y. Huang et al., Printing assembly of flexible devices with oxidation stable MXene for high performance humidity sensing applications. Sens. Actuat. B Chem. 364, 131867 (2022). https://doi.org/10.1016/j.snb.2022.131867
J. Lu, X. Xu, H.-W. Zhang, M.-L. Huang, Y.-S. Wang et al., All-printed MXene/WS2-based flexible humidity sensor for multi-scenario applications. Sens. Actuat. B Chem. 422, 136605 (2025). https://doi.org/10.1016/j.snb.2024.136605
B. Li, Q.-B. Zhu, C. Cui, C. Liu, Z.-H. Wang et al., Patterning of wafer-scale MXene films for high-performance image sensor arrays. Adv. Mater. 34(17), e2201298 (2022). https://doi.org/10.1002/adma.202201298
H. Xu, A. Ren, J. Wu, Z. Wang, Recent advances in 2D MXenes for photodetection. Adv. Funct. Mater. 30(24), 2000907 (2020). https://doi.org/10.1002/adfm.202000907
D. Jiang, X. Cao, Y. Shi, J. Chen, X. Li et al., Flexible Ti3C2Tx MXene regulated photoelectrochemical sensing platform for sensitive monitoring of dopamine. Adv. Funct. Mater. 34(51), 2410546 (2024). https://doi.org/10.1002/adfm.202410546
D. Wang, L. Wang, Z. Lou, Y. Zheng, K. Wang et al., Biomimetic, biocompatible and robust silk fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors. Nano Energy 78, 105252 (2020). https://doi.org/10.1016/j.nanoen.2020.105252
X. Fu, L. Wang, L. Zhao, Z. Yuan, Y. Zhang et al., Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin. Adv. Funct. Mater. 31(17), 2010533 (2021). https://doi.org/10.1002/adfm.202010533
J. Jeong, H.-J. Seok, H. Shin, S.B. Choi, J.-W. Kim et al., Highly durable and conductive Korea traditional paper (Hanji) embedded with Ti3C2Tx MXene for Hanji-based paper electronics. Nano Energy 131, 110325 (2024). https://doi.org/10.1016/j.nanoen.2024.110325
Y. Zheng, R. Yin, Y. Zhao, H. Liu, D. Zhang et al., Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem. Eng. J. 420, 127720 (2021). https://doi.org/10.1016/j.cej.2020.127720
L. Li, Y. Cheng, H. Cao, Z. Liang, Z. Liu et al., MXene/rGO/PS spheres multiple physical networks as high-performance pressure sensor. Nano Energy 95, 106986 (2022). https://doi.org/10.1016/j.nanoen.2022.106986
S. Duan, Q. Shi, J. Hong, D. Zhu, Y. Lin et al., Water-modulated biomimetic hyper-attribute-gel electronic skin for robotics and skin-attachable wearables. ACS Nano 17(2), 1355–1371 (2023). https://doi.org/10.1021/acsnano.2c09851
X. Shi, H. Wang, X. Xie, Q. Xue, J. Zhang et al., Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano 13(1), 649–659 (2019). https://doi.org/10.1021/acsnano.8b07805
Q. Guo, X. Zhang, F. Zhao, Q. Song, G. Su et al., Protein-inspired self-healable Ti3C2 MXenes/rubber-based supramolecular elastomer for intelligent sensing. ACS Nano 14(3), 2788–2797 (2020). https://doi.org/10.1021/acsnano.9b09802
N. Gupta, S.M. Gupta, S.K. Sharma, Carbon nanotubes: synthesis, properties and engineering applications. Carbon Lett. 29(5), 419–447 (2019). https://doi.org/10.1007/s42823-019-00068-2
J. Shi, J. Hu, Z. Dai, W. Zhao, P. Liu et al., Graphene welded carbon nanotube crossbars for biaxial strain sensors. Carbon 123, 786–793 (2017). https://doi.org/10.1016/j.carbon.2017.08.006
X.-F. Zhao, C.-Z. Hang, X.-H. Wen, M.-Y. Liu, H. Zhang et al., Ultrahigh-sensitive finlike double-sided E-skin for force direction detection. ACS Appl. Mater. Interfaces 12(12), 14136–14144 (2020). https://doi.org/10.1021/acsami.9b23110
P. Avouris, M. Freitag, V. Perebeinos, Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2(6), 341–350 (2008). https://doi.org/10.1038/nphoton.2008.94
X. Ma, Q. Liu, N. Yu, D. Xu, S. Kim et al., 6 nm super-resolution optical transmission and scattering spectroscopic imaging of carbon nanotubes using a nanometer-scale white light source. Nat. Commun. 12(1), 6868 (2021). https://doi.org/10.1038/s41467-021-27216-5
B. Hou, D. Yang, X. Ren, L. Yi, X. Liu, A tactile oral pad based on carbon nanotubes for multimodal haptic interaction. Nat. Electron. 7(9), 777–787 (2024). https://doi.org/10.1038/s41928-024-01234-9
X. Sun, J. Sun, T. Li, S. Zheng, C. Wang et al., Flexible tactile electronic skin sensor with 3D force detection based on porous CNTs/PDMS nanocomposites. Nano-Micro Lett 11(1), 57 (2019). https://doi.org/10.1007/s40820-019-0288-7
D. Chen, T. Zhang, W. Geng, D. Sun, X. Liu et al., An intelligent tactile sensor based on interlocked carbon nanotube array for ultrasensitive physiological signal detection and real-time monitoring. Adv. Mater. Technol. 7(11), 2200290 (2022). https://doi.org/10.1002/admt.202200290
Y. Meng, J. Cheng, C. Zhou, Superhydrophobic and stretchable carbon nanotube/thermoplastic urethane-based strain sensor for human motion detection. ACS Appl. Nano Mater. 6(7), 5871–5878 (2023). https://doi.org/10.1021/acsanm.3c00246
L. Wang, M. Zhang, B. Yang, X. Ding, J. Tan et al., Flexible, robust, and durable aramid fiber/CNT composite paper as a multifunctional sensor for wearable applications. ACS Appl. Mater. Interfaces 13(4), 5486–5497 (2021). https://doi.org/10.1021/acsami.0c18161
J. Wu, X. Zhou, J. Luo, J. Zhou, Z. Lu et al., Stretchable and self-powered mechanoluminescent triboelectric nanogenerator fibers toward wearable amphibious electro-optical sensor textiles. Adv. Sci. 11(34), 2401109 (2024). https://doi.org/10.1002/advs.202401109
W. Son, J.M. Lee, J.H. Choi, J. Kim, J. Noh et al., Double-helical carbon nanotube-wrapped elastomeric mandrel for electrical shortage-free, one-body multifunctional fiber systems. Adv. Funct. Mater. 34(30), 2312033 (2024). https://doi.org/10.1002/adfm.202312033
Y. He, Q. Liu, M. Tian, X. Zhang, L. Qu et al., Highly conductive and elastic multi-responsive phase change smart fiber and textile. Compos. Commun. 44, 101772 (2023). https://doi.org/10.1016/j.coco.2023.101772
L. Huang, R. Zeng, D. Tang, X. Cao, Bioinspired and multiscale hierarchical design of a pressure sensor with high sensitivity and wide linearity range for high-throughput biodetection. Nano Energy 99, 107376 (2022). https://doi.org/10.1016/j.nanoen.2022.107376
Y. Ma, L. Shi, M. Chen, Z. Li, L. Wu, Bioinspired hierarchical polydimethylsiloxane/polyaniline array for ultrasensitive pressure monitoring. Chem. Eng. J. 441, 136028 (2022). https://doi.org/10.1016/j.cej.2022.136028
L.V. Kayser, D.J. Lipomi, Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS. Adv. Mater. 31(10), 1806133 (2019). https://doi.org/10.1002/adma.201806133
Q. Fan, K. Zhang, S. Peng, Y. Liu, L. Wei et al., The mechanism of enhancing the conductivity of PEDOT: PSS films through molecular weight optimization of PSS. Prog. Org. Coat. 189, 108308 (2024). https://doi.org/10.1016/j.porgcoat.2024.108308
M. Seiti, A. Giuri, C.E. Corcione, E. Ferraris, Advancements in tailoring PEDOT: PSS properties for bioelectronic applications: a comprehensive review. Biomater. Adv. 154, 213655 (2023). https://doi.org/10.1016/j.bioadv.2023.213655
X. Su, X. Wu, S. Chen, A.M. Nedumaran, M. Stephen, K. Hou, B. Czarny, W.L. Leong, A highly conducting polymer for self-healable, printable, and stretchable organic electrochemical transistor arrays and near hysteresis-free soft tactile sensors. Adv. Mater. 34(19), 2200682 (2022). https://doi.org/10.1002/adma.202200682
Z.-R. Li, T.-R. Lv, Z. Yang, W.-H. Zhang, M.-J. Yin et al., 3D microprinting of QR-code integrated hydrogel tactile sensor for real-time E-healthcare. Chem. Eng. J. 484, 149375 (2024). https://doi.org/10.1016/j.cej.2024.149375
B. Lu, H. Yuk, S. Lin, N. Jian, K. Qu et al., Pure PEDOT: PSS hydrogels. Nat. Commun. 10, 1043 (2019). https://doi.org/10.1038/s41467-019-09003-5
Y. Jiang, F. Liang, H.Y. Li, X. Li, Y.J. Fan et al., A flexible and ultra-highly sensitive tactile sensor through a parallel circuit by a magnetic aligned conductive composite. ACS Nano 16(1), 746–754 (2022). https://doi.org/10.1021/acsnano.1c08273
J. Meng, Z. Li, Schottky-contacted nanowire sensors. Adv. Mater. 32(28), 2000130 (2020). https://doi.org/10.1002/adma.202000130
J. Song, X. Cui, P. Liu, Y. Shi, X. Wang et al., Organic nanowire sensor with seeing, smelling and heat sensation capabilities. Chem. Eng. J. 486, 150378 (2024). https://doi.org/10.1016/j.cej.2024.150378
J. Lee, C.-Y. Yoo, Y.A. Lee, S.H. Park, Y. Cho et al., Single-crystalline Co2Si nanowires directly synthesized on silicon substrate for high-performance micro-supercapacitor. Chem. Eng. J. 370, 973–979 (2019). https://doi.org/10.1016/j.cej.2019.03.269
Y. Jiang, K. Dong, X. Li, J. An, D. Wu et al., Stretchable, washable, and ultrathin triboelectric nanogenerators as skin-like highly sensitive self-powered haptic sensors. Adv. Funct. Mater. 31(1), 2005584 (2021). https://doi.org/10.1002/adfm.202005584
W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin et al., Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514(7523), 470–474 (2014). https://doi.org/10.1038/nature13792
L. Luo, J. Gao, L. Zheng, L. Li, W. Li et al., Ultra-low power consumption flexible sensing electronics by dendritic bilayer MoS2. InfoMat 6(12), e12605 (2024). https://doi.org/10.1002/inf2.12605
T. Li, J. Zou, F. Xing, M. Zhang, X. Cao et al., From dual-mode triboelectric nanogenerator to smart tactile sensor: a multiplexing design. ACS Nano 11(4), 3950–3956 (2017). https://doi.org/10.1021/acsnano.7b00396
Z. Xiang, L. Li, Z. Lu, X. Yu, Y. Cao et al., High-performance microcone-array flexible piezoelectric acoustic sensor based on multicomponent lead-free perovskite rods. Matter 6(2), 554–569 (2023). https://doi.org/10.1016/j.matt.2022.11.023
G. Li, F. Liu, S. Yang, J.-T. Liu, W. Li et al., High-sensitivity MEMS force and acceleration sensor based on graphene-induced non-radiative transition. Carbon 209, 118001 (2023). https://doi.org/10.1016/j.carbon.2023.118001
Q. Wang, T. Ruan, Q. Xu, B. Yang, J. Liu, Wearable multifunctional piezoelectric MEMS device for motion monitoring, health warning, and earphone. Nano Energy 89, 106324 (2021). https://doi.org/10.1016/j.nanoen.2021.106324
A.C. Richards Grayson, R. Scheidt Shawgo, Y. Li, M.J. Cima, Electronic MEMS for triggered delivery. Adv. Drug Deliv. Rev. 56(2), 173–184 (2004). https://doi.org/10.1016/j.addr.2003.07.012
F. Wang, H. Luo, H. Chen, D. Zhai, X. Jiang et al., Surface-confined winding assembly of SiO2 on the surface of BaTiO3 leading to enhanced performance of dielectric nanocomposites. Adv. Funct. Mater. 34(52), 2410862 (2024). https://doi.org/10.1002/adfm.202410862
Z. Ma, Y. Cui, Y. Song, Y. Yu, H. Zhao et al., Low-humidity sensor and biomimetic power supply based on mesoporous silica/polymerizable deep eutectic solvent ionogels. Chem. Eng. J. 493, 152233 (2024). https://doi.org/10.1016/j.cej.2024.152233
C. Xu, Y. Wang, J. Zhang, J. Wan, Z. Xiang et al., Three-dimensional micro strain gauges as flexible, modular tactile sensors for versatile integration with micro- and macroelectronics. Sci. Adv. 10(34), eadp6094 (2024). https://doi.org/10.1126/sciadv.adp6094
R. He, P. Yang, Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 1(1), 42–46 (2006). https://doi.org/10.1038/nnano.2006.53
Z. Zhou, X. Du, J. Luo, L. Yao, Z. Zhang et al., Coupling of interface effects and porous microstructures in translucent piezoelectric composites for enhanced energy harvesting and sensing. Nano Energy 84, 105895 (2021). https://doi.org/10.1016/j.nanoen.2021.105895
J. Zhang, S. Ye, H. Liu, X. Chen, X. Chen et al., 3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors. Nano Energy 77, 105300 (2020). https://doi.org/10.1016/j.nanoen.2020.105300
D. Corzo, E.B. Alexandre, Y. Alshareef, F. Bokhari, Y. Xin et al., Cure-on-demand 3D printing of complex geometries for enhanced tactile sensing in soft robotics and extended reality. Mater. Today 78, 20–31 (2024). https://doi.org/10.1016/j.mattod.2024.06.015
S.-Z. Guo, K. Qiu, F. Meng, S.H. Park, M.C. McAlpine, 3D printed stretchable tactile sensors. Adv. Mater. 29(27), 1701218 (2017). https://doi.org/10.1002/adma.201701218
H. Nassar, G. Khandelwal, R. Chirila, X. Karagiorgis, R.E. Ginesi et al., Fully 3D printed piezoelectric pressure sensor for dynamic tactile sensing. Addit. Manuf. 71, 103601 (2023). https://doi.org/10.1016/j.addma.2023.103601
Y. Shi, X. Lü, W. Wang, X. Meng, J. Zhao et al., Multilayer flexible pressure sensor with high sensitivity over wide linearity detection range (August 2021). IEEE Trans. Instrum. Meas. 70, 9511809 (2021). https://doi.org/10.1109/TIM.2021.3101307
H. Kim, Y.-G. Jeong, K. Chun, Improvement of the linearity of a capacitive pressure sensor using an interdigitated electrode structure. Sens. Actuat. A Phys. 62(1–3), 586–590 (1997). https://doi.org/10.1016/S0924-4247(97)01591-4
Y. Zang, F. Zhang, C.-A. Di, D. Zhu, Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2(2), 140–156 (2015). https://doi.org/10.1039/C4MH00147H
L. Yang, Y. Liu, C.D.M. Filipe, D. Ljubic, Y. Luo et al., Development of a highly sensitive, broad-range hierarchically structured reduced graphene oxide/PolyHIPE foam for pressure sensing. ACS Appl. Mater. Interfaces 11(4), 4318–4327 (2019). https://doi.org/10.1021/acsami.8b17020
G.Y. Bae, S.W. Pak, D. Kim, G. Lee, D.H. Kim et al., Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv. Mater. 28(26), 5300–5306 (2016). https://doi.org/10.1002/adma.201600408
Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju et al., Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12(3), 2346–2354 (2018). https://doi.org/10.1021/acsnano.7b07613
K. Wang, Z. Lou, L. Wang, L. Zhao, S. Zhao et al., Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 13(8), 9139–9147 (2019). https://doi.org/10.1021/acsnano.9b03454
A.C. Lihua Jin, Microstructural origin of resistance–strain hysteresis in carbon nanotube thin film conductors. Proc. Natl. Acad. Sci. U.S.A. 115(9), 1986–1991 (2018). https://doi.org/10.2307/26507928
L. Ci, J. Suhr, V. Pushparaj, X. Zhang, P.M. Ajayan, Continuous carbon nanotube reinforced composites. Nano Lett. 8(9), 2762–2766 (2008). https://doi.org/10.1021/nl8012715
K. Park, S. Kim, H. Lee, I. Park, J. Kim, Low-hysteresis and low-interference soft tactile sensor using a conductive coated porous elastomer and a structure for interference reduction. Sens. Actuators, A Phys. 295, 541–550 (2019). https://doi.org/10.1016/j.sna.2019.06.026
J.A. Sánchez-Durán, J.A. Hidalgo-López, J. Castellanos-Ramos, Ó. Oballe-Peinado, F. Vidal-Verdú, Influence of errors in tactile sensors on some high level parameters used for manipulation with robotic hands. Sensors 15(8), 20409–20435 (2015). https://doi.org/10.3390/s150820409
L. Wang, R. Zhu, G. Li, Temperature and strain compensation for flexible sensors based on thermosensation. ACS Appl. Mater. Interfaces 12(1), 1953–1961 (2020). https://doi.org/10.1021/acsami.9b21474
X. Liu, L. Fang, F. Zhang, Q. Zhang, Z. Wan et al., All-optical diffractive deep neural networks enabled laser-reduced graphene oxide tactile sensor for Braille recognition. ACS Appl. Electron. Mater. 6(3), 2049–2058 (2024). https://doi.org/10.1021/acsaelm.4c00116
C. Chi, X. Sun, N. Xue, T. Li, C. Liu, Recent progress in technologies for tactile sensors. Sensors 18(4), 948 (2018). https://doi.org/10.3390/s18040948
G.Y. Bae, J.T. Han, G. Lee, S. Lee, S.W. Kim et al., Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity. Adv. Mater. 30(43), 1803388 (2018). https://doi.org/10.1002/adma.201803388
R.Y. Tay, H. Li, J. Lin, H. Wang, J.S.K. Lim et al., Lightweight, superelastic boron nitride/polydimethylsiloxane foam as air dielectric substitute for multifunctional capacitive sensor applications. Adv. Funct. Mater. 30(10), 1909604 (2020). https://doi.org/10.1002/adfm.201909604
C. Zhang, S. Liu, X. Huang, W. Guo, Y. Li et al., A stretchable dual-mode sensor array for multifunctional robotic electronic skin. Nano Energy 62, 164–170 (2019). https://doi.org/10.1016/j.nanoen.2019.05.046
Z. Lei, P. Wu, A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities. Nat. Commun. 9(1), 1134 (2018). https://doi.org/10.1038/s41467-018-03456-w
S. Gong, L.W. Yap, B. Zhu, Q. Zhai, Y. Liu et al., Local crack-programmed gold nanowire electronic skin tattoos for in-plane multisensor integration. Adv. Mater. 31(41), 1903789 (2019). https://doi.org/10.1002/adma.201903789
H. Song, G. Luo, Z. Ji, R. Bo, Z. Xue et al., Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials. Sci. Adv. 8(11), eabm3785 (2022). https://doi.org/10.1126/sciadv.abm3785
Q. Zhuang, K. Yao, C. Zhang, X. Song, J. Zhou et al., Permeable, three-dimensional integrated electronic skins with stretchable hybrid liquid metal solders. Nat. Electron. 7(7), 598–609 (2024). https://doi.org/10.1038/s41928-024-01189-x
C. Fan, Y. Liu, Y. Zhang, A universal, highly sensitive and seamlessly integratable textile resistive strain sensor. Adv. Fiber Mater. 6(4), 1152–1161 (2024). https://doi.org/10.1007/s42765-024-00405-9
J. Li, S. Li, Y. Su, Stretchable strain sensors based on deterministic-contact-resistance braided structures with high performance and capability of continuous production. Adv. Funct. Mater. 32(49), 2208216 (2022). https://doi.org/10.1002/adfm.202208216
Z. Liu, X. Hu, R. Bo, Y. Yang, X. Cheng et al., A three-dimensionally architected electronic skin mimicking human mechanosensation. Science 384(6699), 987–994 (2024). https://doi.org/10.1126/science.adk5556
D. Yan, J. Chang, H. Zhang, J. Liu, H. Song et al., Soft three-dimensional network materials with rational bio-mimetic designs. Nat. Commun. 11(1), 1180 (2020). https://doi.org/10.1038/s41467-020-14996-5
S. Zhao, R. Zhu, Electronic skin with multifunction sensors based on thermosensation. Adv. Mater. 29(15), 1606151 (2017). https://doi.org/10.1002/adma.201606151
T. Li, T. Zhao, H. Zhang, L. Yuan, C. Cheng et al., A skin-conformal and breathable humidity sensor for emotional mode recognition and non-contact human-machine interface. NPJ Flex. Electron. 8, 3 (2024). https://doi.org/10.1038/s41528-023-00290-z
X. Zhao, Z. Sun, C. Lee, Augmented tactile perception of robotic fingers enabled by AI-enhanced triboelectric multimodal sensors. Adv. Funct. Mater. 34(49), 2409558 (2024). https://doi.org/10.1002/adfm.202409558
S. Wang, X. Wang, Q. Wang, S. Ma, J. Xiao et al., Flexible optoelectronic multimodal proximity/pressure/temperature sensors with low signal interference. Adv. Mater. 35(49), e2304701 (2023). https://doi.org/10.1002/adma.202304701
Y.S. Oh, J.-H. Kim, Z. Xie, S. Cho, H. Han et al., Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. Nat. Commun. 12, 5008 (2021). https://doi.org/10.1038/s41467-021-25324-w
Z. Xiang, H. Wang, P. Zhao, X. Fa, J. Wan et al., Hard magnetic graphene nanocomposite for multimodal, reconfigurable soft electronics. Adv. Mater. 36(14), e2308575 (2024). https://doi.org/10.1002/adma.202308575
J. Min, S. Demchyshyn, J.R. Sempionatto, Y. Song, B. Hailegnaw et al., An autonomous wearable biosensor powered by a perovskite solar cell. Nat. Electron. 6(8), 630–641 (2023). https://doi.org/10.1038/s41928-023-00996-y
J. Choi, D. Kwon, B. Kim, K. Kang, J. Gu et al., Wearable self-powered pressure sensor by integration of piezo-transmittance microporous elastomer with organic solar cell. Nano Energy 74, 104749 (2020). https://doi.org/10.1016/j.nanoen.2020.104749
S. Li, Y. Cheng, K. Deng, H. Sun, A self-powered flexible tactile sensor utilizing chemical battery reactions to detect static and dynamic stimuli. Nano Energy 124, 109461 (2024). https://doi.org/10.1016/j.nanoen.2024.109461
D. Lu, T. Liu, X. Meng, B. Luo, J. Yuan et al., Wearable triboelectric visual sensors for tactile perception. Adv. Mater. 35(7), 2209117 (2023). https://doi.org/10.1002/adma.202209117
J. Zhu, J.J. Fox, N. Yi, H. Cheng, Structural design for stretchable microstrip antennas. ACS Appl. Mater. Interfaces 11(9), 8867–8877 (2019). https://doi.org/10.1021/acsami.8b22021
S. Han, J. Kim, S.M. Won, Y. Ma, D. Kang et al., Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci. Transl. Med. 10(435), eaan4950 (2018). https://doi.org/10.1126/scitranslmed.aan4950
G.-H. Lee, J.-K. Park, J. Byun, J.C. Yang, S.Y. Kwon et al., Parallel signal processing of a wireless pressure-sensing platform combined with machine-learning-based cognition, inspired by the human somatosensory system. Adv. Mater. 32(8), 1906269 (2020). https://doi.org/10.1002/adma.201906269
W. Zhong, C. Liu, Q. Liu, L. Piao, H. Jiang et al., Ultrasensitive wearable pressure sensors assembled by surface-patterned polyolefin elastomer nanofiber membrane interpenetrated with silver nanowires. ACS Appl. Mater. Interfaces 10(49), 42706–42714 (2018). https://doi.org/10.1021/acsami.8b12363
M.I. Jordan, T.M. Mitchell, Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015). https://doi.org/10.1126/science.aaa8415
H. Chen, J. Zhou, H. Cao, D. Liang, L. Chen et al., Thermo-responsive and phase-separated hydrogels for cardiac arrhythmia diagnosis with deep learning algorithms. Biosens. Bioelectron. 276, 117262 (2025). https://doi.org/10.1016/j.bios.2025.117262
Y. Jung, J. Choi, W. Lee, J.S. Ko, I. Park et al., Irregular microdome structure-based sensitive pressure sensor using internal popping of microspheres. Adv. Funct. Mater. 32(27), 2270158 (2022). https://doi.org/10.1002/adfm.202270158
P. Tan, X. Han, Y. Zou, X. Qu, J. Xue et al., Self-powered gesture recognition wristband enabled by machine learning for full keyboard and multicommand input. Adv. Mater. 34(21), 2200793 (2022). https://doi.org/10.1002/adma.202200793
S.K. Ravi, N. Paul, L. Suresh, A.T. Salim, T. Wu et al., Bio-photocapacitive tactile sensors as a touch-to-audio Braille reader and solar capacitor. Mater. Horiz. 7(3), 866–876 (2020). https://doi.org/10.1039/C9MH01798D
S. Dai, Y. Zhao, Y. Wang, J. Zhang, L. Fang et al., Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 29(42), 1903700 (2019). https://doi.org/10.1002/adfm.201903700
H.-L. Park, Y. Lee, N. Kim, D.-G. Seo, G.-T. Go et al., Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Adv. Mater. 32(15), 1903558 (2020). https://doi.org/10.1002/adma.201903558
Z. Hu, L. Lin, W. Lin, Y. Xu, X. Xia et al., Machine learning for tactile perception: advancements, challenges, and opportunities. Adv. Intell. Syst. 5(7), 2200371 (2023). https://doi.org/10.1002/aisy.202200371
G. Li, S. Liu, Q. Mao, R. Zhu, Multifunctional electronic skins enable robots to safely and dexterously interact with human. Adv. Sci. 9(11), 2104969 (2022). https://doi.org/10.1002/advs.202104969
T.G. Thuruthel, B. Shih, C. Laschi, M.T. Tolley, Soft robot perception using embedded soft sensors and recurrent neural networks. Sci. Robot. 4(26), eaav1488 (2019). https://doi.org/10.1126/scirobotics.aav1488
J.G. Greener, S.M. Kandathil, L. Moffat, D.T. Jones, A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23(1), 40–55 (2022). https://doi.org/10.1038/s41580-021-00407-0
L. Massari, G. Fransvea, J. D’Abbraccio, M. Filosa, G. Terruso et al., Functional mimicry of Ruffini receptors with fibre Bragg gratings and deep neural networks enables a bio-inspired large-area tactile-sensitive skin. Nat. Mach. Intell. 4(5), 425–435 (2022). https://doi.org/10.1038/s42256-022-00487-3
S. Sundaram, P. Kellnhofer, Y. Li, J.-Y. Zhu, A. Torralba et al., Learning the signatures of the human grasp using a scalable tactile glove. Nature 569(7758), 698–702 (2019). https://doi.org/10.1038/s41586-019-1234-z
N. Guo, X. Han, X. Liu, S. Zhong, Z. Zhou et al., Autoencoding a soft touch to learn grasping from on-land to underwater. Adv. Intell. Syst. 6(1), 2300382 (2024). https://doi.org/10.1002/aisy.202300382
N. Bai, Y. Xue, S. Chen, L. Shi, J. Shi et al., A robotic sensory system with high spatiotemporal resolution for texture recognition. Nat. Commun. 14(1), 7121 (2023). https://doi.org/10.1038/s41467-023-42722-4
J. Li, T. Duan, J. Wang, W. Tian, K. Liu et al., Conductive polymer decorated alginate fabrics as flexible triboelectric-piezoresistive haptic tactile sensors for action and texture recognitions. Chem. Eng. J. 512, 162532 (2025). https://doi.org/10.1016/j.cej.2025.162532
X. Wei, B. Wang, Z. Wu, Z.L. Wang, An open-environment tactile sensing system: toward simple and efficient material identification