High-Entropy Oxide Memristors for Neuromorphic Computing: From Material Engineering to Functional Integration
Corresponding Author: Xin‑Gui Tang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 41
Abstract
High-entropy oxides (HEOs) have emerged as a promising class of memristive materials, characterized by entropy-stabilized crystal structures, multivalent cation coordination, and tunable defect landscapes. These intrinsic features enable forming-free resistive switching, multilevel conductance modulation, and synaptic plasticity, making HEOs attractive for neuromorphic computing. This review outlines recent progress in HEO-based memristors across materials engineering, switching mechanisms, and synaptic emulation. Particular attention is given to vacancy migration, phase transitions, and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems. Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined. While encouraging results have been achieved at the device level, challenges remain in conductance precision, variability control, and scalable integration. Addressing these demands a concerted effort across materials design, interface optimization, and task-aware modeling. With such integration, HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics.
Highlights:
1 Comprehensive overview of high-entropy oxides (HEOs) in memristive devices, emphasizing their potential in neuromorphic computing and their ability to simulate synaptic plasticity and multilevel conductance modulation.
2 Detailed exploration of resistive switching mechanisms in HEO-based memristors, focusing on vacancy migration, phase transitions, and valence-state dynamics, which underpin their performance in brain-inspired electronics.
3 Insightful discussion on the challenges and opportunities for integrating HEO-based memristors into large-scale neuromorphic systems, highlighting the need for advancements in material design, interface optimization, and scalability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Citri, R.C. Malenka, Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1), 18–41 (2008). https://doi.org/10.1038/sj.npp.1301559
- M. Horowitz, 1.1 computing’s energy problem (and what we can do about it). 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). February 9–13, 2014. San Francisco, CA, USA. IEEE, (2014), pp. 10–14. https://doi.org/10.1109/isscc.2014.6757323
- Z. Jian, W. Li, X. Tang, Y. Liang, R. Zhao et al., Artificial photoelectric synaptic devices with ferroelectric diode effect for high-performance neuromorphic computing. Surf. Interface Anal. 55, 105407 (2024). https://doi.org/10.1016/j.surfin.2024.105407
- G.C. Adam, A. Khiat, T. Prodromakis, Challenges hindering memristive neuromorphic hardware from going mainstream. Nat. Commun. 9(1), 5267 (2018). https://doi.org/10.1038/s41467-018-07565-4
- J. Backus, Can programming be liberated from the von Neumann style? : a functional style and its algebra of programs. Commun. ACM 21(8), 613–641 (1978). https://doi.org/10.1145/359576.359579
- W.A. Wulf, S.A. McKee, Hitting the memory wall: implications of the obvious. ACM SIGARCH Comput. Archit. News 23(1), 20–24 (1995). https://doi.org/10.1145/216585.216588
- L. Chua, Memristor-the missing circuit element. IEEE Trans. Circ. Theory. 18(5), 507–519 (1971). https://doi.org/10.1109/TCT.1971.1083337
- D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008). https://doi.org/10.1038/nature06932
- F. Cai, J.M. Correll, S.H. Lee, Y. Lim, V. Bothra et al., A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations. Nat. Electron. 2(7), 290–299 (2019). https://doi.org/10.1038/s41928-019-0270-x
- A. Mehonic, A. Sebastian, B. Rajendran, O. Simeone, E. Vasilaki et al., Memristors: from in-memory computing, deep learning acceleration, and spiking neural networks to the future of neuromorphic and bio-inspired computing. Adv. Intell. Syst. 2(11), 2000085 (2020). https://doi.org/10.1002/aisy.202000085
- S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder et al., Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010). https://doi.org/10.1021/nl904092h
- A. Serb, J. Bill, A. Khiat, R. Berdan, R. Legenstein et al., Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat. Commun. 7, 12611 (2016). https://doi.org/10.1038/ncomms12611
- P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang et al., Fully hardware-implemented memristor convolutional neural network. Nature 577(7792), 641–646 (2020). https://doi.org/10.1038/s41586-020-1942-4
- W. Zhang, B. Gao, J. Tang, P. Yao, S. Yu et al., Neuro-inspired computing chips. Nat. Electron. 3(7), 371–382 (2020). https://doi.org/10.1038/s41928-020-0435-7
- X. Mu, J. Yu, S. Wang, The extended linear-drift model of memristor and its piecewise linear approximation. Tsinghua Sci. Technol. 19(3), 307–313 (2014). https://doi.org/10.1109/TST.2014.6838202
- X. Xu, T. Zhang, Y. Zhao, W. Dai, S. Wu et al., Application of two general memristor models in chaotic systems. Memristors—the fourth fundamental circuit element—theory, device, and applications. IntechOpen, (2023). https://doi.org/10.5772/intechopen.1003257
- A. Chen, A review of emerging non-volatile memory (NVM) technologies and applications. Solid State Electron. 125, 25–38 (2016). https://doi.org/10.1016/j.sse.2016.07.006
- Y. Chen, ReRAM: history, status, and future. IEEE Trans. Electron Devices 67(4), 1420–1433 (2020). https://doi.org/10.1109/TED.2019.2961505
- A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, E. Eleftheriou, Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15(7), 529–544 (2020). https://doi.org/10.1038/s41565-020-0655-z
- R. Gharpinde, P.L. Thangkhiew, K. Datta, I. Sengupta, A scalable in-memory logic synthesis approach using memristor crossbar. IEEE Trans. Very Large Scale Integr. VLSI Syst. 26(2), 355–366 (2018). https://doi.org/10.1109/TVLSI.2017.2763171
- C.E. Graves, C. Li, X. Sheng, D. Miller, J. Ignowski et al., In-memory computing with memristor content addressable memories for pattern matching. Adv. Mater. 32(37), 2003437 (2020). https://doi.org/10.1002/adma.202003437
- Q. Liu, S. Long, H. Lv, W. Wang, J. Niu et al., Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano 4(10), 6162–6168 (2010). https://doi.org/10.1021/nn1017582
- M. Al-Shedivat, R. Naous, G. Cauwenberghs, K.N. Salama, Memristors empower spiking neurons with stochasticity. IEEE J. Emerg. Sel. Top. Circuits Syst. 5(2), 242–253 (2015). https://doi.org/10.1109/JETCAS.2015.2435512
- F. Yuan, G.-Y. Wang, X.-Y. Wang, Dynamical characteristics of an HP memristor based on an equivalent circuit model in a chaotic oscillator. Chin. Phys. B 24(6), 060506 (2015). https://doi.org/10.1088/1674-1056/24/6/060506
- K. Wu, X. Wang, Enhanced memristor-based MNNs performance on noisy dataset resulting from memristive stochasticity. IET Circuits Devices Syst. 13(5), 704–709 (2019). https://doi.org/10.1049/iet-cds.2018.5532
- W. Banerjee, Q. Liu, H. Hwang, Engineering of defects in resistive random access memory devices. J. Appl. Phys. 127(5), 051101 (2020). https://doi.org/10.1063/1.5136264
- Y. Xiao, B. Jiang, Z. Zhang, S. Ke, Y. Jin et al., A review of memristor: material and structure design, device performance, applications and prospects. Sci. Technol. Adv. Mater. 24(1), 2162323 (2023). https://doi.org/10.1080/14686996.2022.2162323
- G.N. Kotsonis, S.S.I. Almishal, F. Marques dos Santos Vieira, V.H. Crespi, I. Dabo et al., High-entropy oxides: harnessing crystalline disorder for emergent functionality. J. Am. Ceram. Soc. 106(10), 5587–5611 (2023). https://doi.org/10.1111/jace.19252
- S.S. Aamlid, M. Oudah, J. Rottler, A.M. Hallas, Understanding the role of entropy in high entropy oxides. J. Am. Chem. Soc. 145(11), 5991–6006 (2023). https://doi.org/10.1021/jacs.2c11608
- H. Xu, H. Li, M. Gao, W. Yi, Z. Zhao et al., Dual-confinement and oxygen vacancy strategies for ultra-stable sodium storage and mechanisms in high-entropy spinel oxides. J. Energy Storage 113, 115641 (2025). https://doi.org/10.1016/j.est.2025.115641
- Z. Bai, B. Luo, T. Peng, J. Wang, High-entropy perovskite oxide photonic synapses. Adv. Opt. Mater. 12(18), 2303248 (2024). https://doi.org/10.1002/adom.202303248
- J.-Y. Tsai, J.-Y. Chen, C.-W. Huang, H.-Y. Lo, W.-E. Ke et al., A high-entropy-oxides-based memristor: outstanding resistive switching performance and mechanisms in atomic structural evolution. Adv. Mater. 35(41), 2302979 (2023). https://doi.org/10.1002/adma.202302979
- M. Ahn, Y. Park, S.H. Lee, S. Chae, J. Lee et al., Memristors based on (Zr, Hf, Nb, Ta, Mo, W) high-entropy oxides. Adv. Electron. Mater. 7(5), 2001258 (2021). https://doi.org/10.1002/aelm.202001258
- C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey et al., Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015). https://doi.org/10.1038/ncomms9485
- J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004). https://doi.org/10.1002/adem.200300567
- D. Bérardan, S. Franger, A.K. Meena, N. Dragoe, Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 4(24), 9536–9541 (2016). https://doi.org/10.1039/c6ta03249d
- B.S. Murty, J.W. Yeh, S. Ranganathan, P.P. Bhattacharjee, High-entropy alloys: basic concepts, in High-Entropy Alloys. Elsevier, Amsteram (2019), pp. 13–30. https://doi.org/10.1016/b978-0-12-816067-1.00002-3
- M. Brahlek, M. Gazda, V. Keppens, A.R. Mazza, S.J. McCormack et al., What is in a name: defining “high entropy” oxides. APL Mater. 10(11), 110902 (2022). https://doi.org/10.1063/5.0122727
- A. Sarkar, R. Djenadic, D. Wang, C. Hein, R. Kautenburger et al., Rare earth and transition metal based entropy stabilised perovskite type oxides. J. Eur. Ceram. Soc. 38(5), 2318–2327 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.12.058
- S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie et al., A new class of high-entropy perovskite oxides. Scr. Mater. 142, 116–120 (2018). https://doi.org/10.1016/j.scriptamat.2017.08.040
- J. Dąbrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka et al., Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure. Mater. Lett. 216, 32–36 (2018). https://doi.org/10.1016/j.matlet.2017.12.148
- B. Musicó, Q. Wright, T.Z. Ward, A. Grutter, E. Arenholz et al., Tunable magnetic ordering through cation selection in entropic spinel oxides. Phys. Rev. Mater. 3(10), 104416 (2019). https://doi.org/10.1103/physrevmaterials.3.104416
- A. Sarkar, C. Loho, L. Velasco, T. Thomas, S.S. Bhattacharya et al., Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency. Dalton Trans. 46(36), 12167–12176 (2017). https://doi.org/10.1039/C7DT02077E
- K. Chen, X. Pei, L. Tang, H. Cheng, Z. Li et al., A five-component entropy-stabilized fluorite oxide. J. Eur. Ceram. Soc. 38(11), 4161–4164 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.04.063
- Z. Teng, L. Zhu, Y. Tan, S. Zeng, Y. Xia et al., Synthesis and structures of high-entropy pyrochlore oxides. J. Eur. Ceram. Soc. 40(4), 1639–1643 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.12.008
- F. Li, L. Zhou, J.-X. Liu, Y. Liang, G.-J. Zhang, High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. J. Adv. Ceram. 8(4), 576–582 (2019). https://doi.org/10.1007/s40145-019-0342-4
- S.-M. Choi, C.-H. Lim, W.-S. Seo, Thermoelectric properties of the Ca1-xRxMnO3 perovskite system (R: Pr, Nd, Sm) for high-temperature applications. J. Electron. Mater. 40(5), 551–556 (2011). https://doi.org/10.1007/s11664-010-1446-3
- J. Zhang, S. Liu, Z. Tian, Y. Zhang, Z. Shi, The formation and phase stability of A-site high-entropy perovskite oxides. Materials 16(6), 2214 (2023). https://doi.org/10.3390/ma16062214
- D.A. Vinnik, E.A. Trofimov, V.E. Zhivulin, S.A. Gudkova, O.V. Zaitseva et al., High entropy oxide phases with perovskite structure. Nanomaterials 10(2), 268 (2020). https://doi.org/10.3390/nano10020268
- L. Lin, K. Wang, R. Azmi, J. Wang, A. Sarkar et al., Mechanochemical synthesis: route to novel rock-salt-structured high-entropy oxides and oxyfluorides. J. Mater. Sci. 55(36), 16879–16889 (2020). https://doi.org/10.1007/s10853-020-05183-4
- C.M. Rost, Ph.D. Thesis in materials science, in Entropy-Stabilized Oxides: Explorations of a Novel Class of Multicomponent Materials. James Madison University, September 2016.
- D. Csík, D. Zalka, K. Saksl, D. Capková, R. Džunda, Four-component high entropy spinel oxide as anode material in lithium-ion batteries with excellent cyclability. J. Phys. Conf. Ser. 2382(1), 012003 (2022). https://doi.org/10.1088/1742-6596/2382/1/012003
- Y. Xu, X. Xu, L. Bi, A high-entropy spinel ceramic oxide as the cathode for proton-conducting solid oxide fuel cells. J. Adv. Ceram. 11(5), 794–804 (2022). https://doi.org/10.1007/s40145-022-0573-7
- V. Jacobson, J. Huang, C.J. Titus, R.W. Smaha, M. Papac et al., The role of Co valence in charge transport in the entropy-stabilized oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O. J. Am. Ceram. Soc. 106(2), 1531–1539 (2023). https://doi.org/10.1111/jace.18820
- P.B. Meisenheimer, T.J. Kratofil, J.T. Heron, Giant enhancement of exchange coupling in entropy-stabilized oxide heterostructures. Sci. Rep. 7(1), 13344 (2017). https://doi.org/10.1038/s41598-017-13810-5
- A.R. Mazza, E. Skoropata, Y. Sharma, J. Lapano, T.W. Heitmann et al., Designing magnetism in high entropy oxides. Adv. Sci. 9(10), 2200391 (2022). https://doi.org/10.1002/advs.202200391
- M.R. Chellali, A. Sarkar, S.H. Nandam, S.S. Bhattacharya, B. Breitung et al., On the homogeneity of high entropy oxides: an investigation at the atomic scale. Scr. Mater. 166, 58–63 (2019). https://doi.org/10.1016/j.scriptamat.2019.02.039
- P.B. Meisenheimer, J.T. Heron, Oxides and the high entropy regime: a new mix for engineering physical properties. MRS Adv. 5(64), 3419–3436 (2020). https://doi.org/10.1557/adv.2020.295
- Z. Rák, J.-P. Maria, D.W. Brenner, Evidence for Jahn-Teller compression in the (Mg Co, Ni, Cu, Zn)O entropy-stabilized oxide: a DFT study. Mater. Lett. 217, 300–303 (2018). https://doi.org/10.1016/j.matlet.2018.01.111
- G. Anand, A.P. Wynn, C.M. Handley, C.L. Freeman, Phase stability and distortion in high-entropy oxides. Acta Mater. 146, 119–125 (2018). https://doi.org/10.1016/j.actamat.2017.12.037
- C.M. Rost, Z. Rak, D.W. Brenner, J.-P. Maria, Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy-stabilized oxide: an EXAFS study. J. Am. Ceram. Soc. 100(6), 2732–2738 (2017). https://doi.org/10.1111/jace.14756
- Z. Rak, C.M. Rost, M. Lim, P. Sarker, C. Toher et al., Charge compensation and electrostatic transferability in three entropy-stabilized oxides: results from density functional theory calculations. J. Appl. Phys. 120(9), 095105 (2016). https://doi.org/10.1063/1.4962135
- P.B. Meisenheimer, L.D. Williams, S.H. Sung, J. Gim, P. Shafer et al., Magnetic frustration control through tunable stereochemically driven disorder in entropy-stabilized oxides. Phys. Rev. Mater. 3(10), 104420 (2019). https://doi.org/10.1103/physrevmaterials.3.104420
- S. Chae, L. Williams, J. Lee, J.T. Heron, E. Kioupakis, Effects of local compositional and structural disorder on vacancy formation in entropy-stabilized oxides from first-principles. NPJ Comput. Mater. 8, 95 (2022). https://doi.org/10.1038/s41524-022-00780-0
- B.L. Musicó, D. Gilbert, T.Z. Ward, K. Page, E. George et al., The emergent field of high entropy oxides: design, prospects, challenges, and opportunities for tailoring material properties. APL Mater. 8(4), 040912 (2020). https://doi.org/10.1063/5.0003149
- C. Riley, N. Valdez, C.M. Smyth, R. Grant, B. Burnside et al., Vacancy-driven stabilization of sub-stoichiometric aluminate spinel high entropy oxides. J. Phys. Chem. C 127(23), 11249–11259 (2023). https://doi.org/10.1021/acs.jpcc.3c01499
- F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61(7), 2628–2638 (2013). https://doi.org/10.1016/j.actamat.2013.01.042
- K.C. Pitike, A. Macias, M. Eisenbach, C.A. Bridges, V.R. Cooper, Computationally accelerated discovery of high entropy pyrochlore oxides. Chem. Mater. 34(4), 1459–1472 (2022). https://doi.org/10.1021/acs.chemmater.1c02361
- H. Wu, Q. Lu, Y. Li, J. Wang, Y. Li et al., Rapid joule-heating synthesis for manufacturing high-entropy oxides as efficient electrocatalysts. Nano Lett. 22(16), 6492–6500 (2022). https://doi.org/10.1021/acs.nanolett.2c01147
- Y.-T. Yeh, C.-W. Huang, A.-Y. Hou, C.-Y. Huang, Y.-D. Lin et al., In situ TEM observation of (Cr, Mn, Fe, co, and Ni)3O4 high-entropy spinel oxide formation during calcination at atomic scale. Small 20(15), e2307284 (2024). https://doi.org/10.1002/smll.202307284
- A. Ostovari Moghaddam, S. Mehrabi-Kalajahi, X. Qi, R. Salari, R. Fereidonnejad et al., La(FeCuMnMgTi)O3 high-entropy oxide nanops as highly efficient catalysts for solvent-free aerobic oxidation of benzyl alcohol. J. Phys. Chem. Lett. 15(30), 7577–7583 (2024). https://doi.org/10.1021/acs.jpclett.4c01852
- D. Zhang, S. Xu, T. Li, M. Zhang, J. Qi et al., High-entropy oxides prepared by dealloying method for supercapacitors. ACS Appl. Eng. Mater. 1(2), 780–789 (2023). https://doi.org/10.1021/acsaenm.2c00198
- M. Lal, R. Sundara, High entropy oxides: a cost-effective catalyst for the growth of high yield carbon nanotubes and their energy applications. ACS Appl. Mater. Interfaces 11(34), 30846–30857 (2019). https://doi.org/10.1021/acsami.9b08794
- A.K. Gupta, K. Shubham, N.K. Giri, R.R. Shahi, Electrochemical charge storage properties of novel inverse spinel (CuNiZnAlFe)3O4 type high entropy oxide. Energy Storage 6(1), e527 (2024). https://doi.org/10.1002/est2.527
- J. Jeevanandam, Y.S. Chan, M.K. Danquah, Calcination-dependent morphology transformation of sol-gel- synthesized MgO nanops. ChemistrySelect 2(32), 10393–10404 (2017). https://doi.org/10.1002/slct.201701911
- J. Baek, M.D. Hossain, P. Mukherjee, J. Lee, K.T. Winther et al., Synergistic effects of mixing and strain in high entropy spinel oxides for oxygen evolution reaction. Nat. Commun. 14(1), 5936 (2023). https://doi.org/10.1038/s41467-023-41359-7
- D.-I. Băilă, C. Zaharia, O.C. Mocioiu, Contact angle measurements at the interface of Co–Cr alloy sintered by DMLS and coated with hydroxyapatite. Tech. Gaz. 27(2), 531–538 (2020). https://doi.org/10.17559/tv-20170624152700
- N. Sreenivasulu, U.N. Kumar, K.M.V.V. Madhav, T. Thomas, S.S. Bhattacharya, Structural and electrochemical investigations on nanocrystalline high entropy spinel oxides for battery-like supercapacitor applications. ChemistrySelect 7(5), e202104015 (2022). https://doi.org/10.1002/slct.202104015
- C. Huang, J. Luo, Z.R. Mansley, A. Kingan, A. Rodriguez Campos et al., Manganese-rich high entropy oxides for lithium-ion batteries: materials design approaches to address voltage fade. J. Mater. Chem. A 12(38), 26253–26265 (2024). https://doi.org/10.1039/D4TA05416D
- P.R. Jothi, W. Liyanage, B. Jiang, S. Paladugu, D. Olds et al., Persistent structure and frustrated magnetism in high entropy rare-earth zirconates. Small 18(5), e2101323 (2022). https://doi.org/10.1002/smll.202101323
- M. Biesuz, L. Spiridigliozzi, G. Dell’Agli, M. Bortolotti, V.M. Sglavo, Synthesis and sintering of (Mg Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods. J. Mater. Sci. 53(11), 8074–8085 (2018). https://doi.org/10.1007/s10853-018-2168-9
- P. Wei, S. Zhao, L. Zhuang, H. Yu, Y. Qin et al., Chemical co-precipitation synthesis of high-entropy rare-earth silicate nanopowders. J. Am. Ceram. Soc. 107(5), 3577–3586 (2024). https://doi.org/10.1111/jace.19667
- Q. Dong, M. Hong, J. Gao, T. Li, M. Cui et al., Rapid synthesis of high-entropy oxide microps. Small 18(11), 2104761 (2022). https://doi.org/10.1002/smll.202104761
- A. Abdelhafiz, B. Wang, A.R. Harutyunyan, J. Li, Carbothermal shock synthesis of high entropy oxide catalysts: dynamic structural and chemical reconstruction boosting the catalytic activity and stability toward oxygen evolution reaction. Adv. Energy Mater. 12(35), 2200742 (2022). https://doi.org/10.1002/aenm.202200742
- K. Gu, D. Wang, C. Xie, T. Wang, G. Huang et al., Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew. Chem. Int. Ed. 60(37), 20253–20258 (2021). https://doi.org/10.1002/anie.202107390
- Y. Gao, X. Tian, Q. Niu, P. Zhang, General synthesis of high-entropy oxides and carbon-supported high-entropy oxides by mechanochemistry. Chemsuschem 18(2), e202401517 (2025). https://doi.org/10.1002/cssc.202401517
- J. Patra, T.X. Nguyen, C.-C. Tsai, O. Clemens, J. Li et al., Effects of elemental modulation on phase purity and electrochemical properties of co-free high-entropy spinel oxide anodes for lithium-ion batteries. Adv. Funct. Mater. 32(17), 2110992 (2022). https://doi.org/10.1002/adfm.202110992
- X. Zou, Y.-R. Zhang, Z.-P. Huang, K. Yue, Z.-H. Guo, High-entropy oxides: an emerging anode material for lithium-ion batteries. Chem. Commun. 59(91), 13535–13550 (2023). https://doi.org/10.1039/d3cc04225a
- Y. Zeng, B. Ouyang, J. Liu, Y.-W. Byeon, Z. Cai et al., High-entropy mechanism to boost ionic conductivity. Science 378(6626), 1320–1324 (2022). https://doi.org/10.1126/science.abq1346
- H. Chen, N. Qiu, B. Wu, Z. Yang, S. Sun et al., A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries. RSC Adv. 10(16), 9736–9744 (2020). https://doi.org/10.1039/d0ra00255k
- P. Ghigna, L. Airoldi, M. Fracchia, D. Callegari, U. Anselmi-Tamburini et al., Lithiation mechanism in high-entropy oxides as anode materials for Li-ion batteries: an operando XAS study. ACS Appl. Mater. Interfaces 12(45), 50344–50354 (2020). https://doi.org/10.1021/acsami.0c13161
- M.A. Zidan, J.P. Strachan, W.D. Lu, The future of electronics based on memristive systems. Nat. Electron. 1(1), 22–29 (2018). https://doi.org/10.1038/s41928-017-0006-8
- Z. Li, J. Zheng, W. Zhang, Y. Zheng, W. Zhao et al., A promising high-entropy thermal barrier material with the formula (Y0.2Dy0.2Ho0.2Er0.2Yb0.2)3Al5O12. Materials 15(22), 8079 (2022). https://doi.org/10.3390/ma15228079
- P. Sharma, P. Singh, G. Balasubramanian, Engineering phonon transport through cation disorder in dimensionally constricted high entropy MXene. Carbon 223, 119015 (2024). https://doi.org/10.1016/j.carbon.2024.119015
- P.A. Krawczyk, W. Salamon, M. Marzec, M. Szuwarzyński, J. Pawlak et al., High-entropy perovskite thin film in the Gd-Nd-Sm-La-Y-co system: deposition, structure and optoelectronic properties. Materials 16(12), 4210 (2023). https://doi.org/10.3390/ma16124210
- Z.J. Corey, P. Lu, G. Zhang, Y. Sharma, B.X. Rutherford et al., Structural and optical properties of high entropy (La, Lu, Y, Gd, Ce)AlO3 perovskite thin films. Adv. Sci. 9(29), e2202671 (2022). https://doi.org/10.1002/advs.202202671
- J. Zou, L. Tang, W. He, X. Zhang, High-entropy oxides: pioneering the future of multifunctional materials. ACS Nano 18(51), 34492–34530 (2024). https://doi.org/10.1021/acsnano.4c12538
- C.-Y. He, X.-H. Gao, X.-L. Qiu, D.-M. Yu, H.-X. Guo et al., Scalable and ultrathin high-temperature solar selective absorbing coatings based on the high-entropy nanoceramic AlCrWTaNbTiN with high photothermal conversion efficiency. Solar RRL 5(4), 2000790 (2021). https://doi.org/10.1002/solr.202000790
- P. Zhao, M. Dong, X. Liu, Y.-F. Wang, W.-M. Wang et al., Ultrahigh thermal robustness of high-entropy spectrally selective absorbers for next-generation concentrated solar power system. Adv. Funct. Mater. 34(52), 2411316 (2024). https://doi.org/10.1002/adfm.202411316
- L. Chua, Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011). https://doi.org/10.1007/s00339-011-6264-9
- X. He, J. Zhang, W. Wang, W. Xuan, X. Wang et al., Transient resistive switching devices made from egg albumen dielectrics and dissolvable electrodes. ACS Appl. Mater. Interfaces 8(17), 10954–10960 (2016). https://doi.org/10.1021/acsami.5b10414
- Y. Zhang, G.-Q. Mao, X. Zhao, Y. Li, M. Zhang et al., Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging. Nat. Commun. 12(1), 7232 (2021). https://doi.org/10.1038/s41467-021-27575-z
- J. Wen, Z.-Y. Zhu, X. Guo, Artificial visual neuron based on threshold switching memristors. Neuromorph. Comput. Eng. 3(1), 014015 (2023). https://doi.org/10.1088/2634-4386/acc050
- Y. Huang, Y. Luo, Z. Shen, G. Yuan, H. Zeng, Unipolar resistive switching of ZnO-single-wire memristors. Nanoscale Res. Lett. 9(1), 381 (2014). https://doi.org/10.1186/1556-276X-9-381
- X. Xiao, J. Hu, S. Tang, K. Yan, B. Gao et al., Recent advances in halide perovskite memristors: materials, structures, mechanisms, and applications. Adv. Mater. Technol. 5(6), 1900914 (2020). https://doi.org/10.1002/admt.201900914
- Y. Wang, Y. Zhang, Y. Wang, X. Wang, H. Zhang et al., A self-organizing map spiking neural network based on tin oxide memristive synapses and neurons. Adv. Electron. Mater. 11(2), 2400421 (2025). https://doi.org/10.1002/aelm.202400421
- Y. Yu, M. Xiao, D. Fieser, W. Zhou, A. Hu, Nanoscale memristor devices: materials, fabrication, and artificial intelligence. J. Mater. Chem. C 12(11), 3770–3810 (2024). https://doi.org/10.1039/d3tc04510b
- C.-H. Huang, J.-S. Huang, C.-C. Lai, H.-W. Huang, S.-J. Lin et al., Manipulated transformation of filamentary and homogeneous resistive switching on ZnO thin film memristor with controllable multistate. ACS Appl. Mater. Interfaces 5(13), 6017–6023 (2013). https://doi.org/10.1021/am4007287
- R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009). https://doi.org/10.1002/adma.200900375
- H.-Y. Lee, P.-S. Chen, C.-C. Wang, S. Maikap, P.-J. Tzeng et al., Low-power switching of nonvolatile resistive memory using hafnium oxide. Jpn. J. Appl. Phys. 46(4S), 2175 (2007). https://doi.org/10.1143/jjap.46.2175
- N. Gogurla, S.P. Mondal, A.K. Sinha, A.K. Katiyar, W. Banerjee et al., Transparent and flexible resistive switching memory devices with a very high ON/OFF ratio using gold nanops embedded in a silk protein matrix. Nanotechnology 24(34), 345202 (2013). https://doi.org/10.1088/0957-4484/24/34/345202
- J. Guo, L. Liu, B. Bian, J. Wang, X. Zhao et al., Ligand exchange reaction enables digital-to-analog resistive switching and artificial synapse within metal nanops. Adv. Funct. Mater. 33(16), 2212666 (2023). https://doi.org/10.1002/adfm.202212666
- X. Sun, G. Li, L. Chen, Z. Shi, W. Zhang, Bipolar resistance switching characteristics with opposite polarity of Au/SrTiO3/Ti memory cells. Nanoscale Res. Lett. 6(1), 599 (2011). https://doi.org/10.1186/1556-276X-6-599
- B. Gao, J.F. Kang, Y.S. Chen, F.F. Zhang, B. Chen et al., Oxide-based RRAM: unified microscopic principle for both unipolar and bipolar switching, in 2011 International Electron Devices Meeting. December 5–7, 2011, Washington, DC, USA. IEEE, (2011), 17.4.1–17.4.4. https://doi.org/10.1109/IEDM.2011.6131573
- J. Qi, M. Olmedo, J. Ren, N. Zhan, J. Zhao et al., Resistive switching in single epitaxial ZnO nanoislands. ACS Nano 6(2), 1051–1058 (2012). https://doi.org/10.1021/nn204809a
- G. Milano, M. Aono, L. Boarino, U. Celano, T. Hasegawa et al., Quantum conductance in memristive devices: fundamentals, developments, and applications. Adv. Mater. 34(32), 2201248 (2022). https://doi.org/10.1002/adma.202201248
- H. Jiang, L. Han, P. Lin, Z. Wang, M.H. Jang et al., Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor. Sci. Rep. 6, 28525 (2016). https://doi.org/10.1038/srep28525
- F. Wan, Q. Wang, T. Harumoto, T. Gao, K. Ando et al., Truly electroforming-free memristor based on TiO2-CoO phase-separated oxides with extremely high uniformity and low power consumption. Adv. Funct. Mater. 30(51), 2007101 (2020). https://doi.org/10.1002/adfm.202007101
- S. Poddar, Y. Zhang, L. Gu, D. Zhang, Q. Zhang et al., Down-scalable and ultra-fast memristors with ultra-high density three-dimensional arrays of perovskite quantum wires. Nano Lett. 21(12), 5036–5044 (2021). https://doi.org/10.1021/acs.nanolett.1c00834
- S. Bhattacharjee, E. Caruso, N. McEvoy, C.Ó. Coileáin, K. O’Neill et al., Insights into multilevel resistive switching in monolayer MoS2. ACS Appl. Mater. Interfaces 12(5), 6022–6029 (2020). https://doi.org/10.1021/acsami.9b15677
- H.-L. Park, M.-H. Kim, H. Kim, S.-H. Lee, Self-selective organic memristor by engineered conductive nanofilament diffusion for realization of practical neuromorphic system. Adv. Electron. Mater. 7(8), 2100299 (2021). https://doi.org/10.1002/aelm.202100299
- S. Lan, F. Meng, B. Yang, Y. Wang, Y. Liu et al., Enhanced energy storage properties in paraelectrics via entropy engineering. Adv. Phys. Res. 2(11), 2300006 (2023). https://doi.org/10.1002/apxr.202300006
- H. Li, Y. Zhou, Z. Liang, H. Ning, X. Fu et al., High-entropy oxides: advanced research on electrical properties. Coatings 11(6), 628 (2021). https://doi.org/10.3390/coatings11060628
- X. Xiong, Z. Liu, R. Zhang, L. Yang, G. Liang et al., Atomic-level electric polarization in entropy-driven perovskites for boosting dielectric response. Adv. Mater. 37(4), e2415351 (2025). https://doi.org/10.1002/adma.202415351
- M. Einert, A. Waheed, S. Lauterbach, M. Mellin, M. Rohnke et al., Sol-gel-derived ordered mesoporous high entropy spinel ferrites and assessment of their photoelectrochemical and electrocatalytic water splitting performance. Small 19(14), 2205412 (2023). https://doi.org/10.1002/smll.202205412
- X. Tang, L. Hu, X. Zhu, X. Zhu, Y. Wang et al., Orientations-dependent metal-to-insulator transition in solution-deposited high-entropy nickelate thin films. Cryst. Growth Des. 22(12), 7317–7324 (2022). https://doi.org/10.1021/acs.cgd.2c00945
- Z. Zhao, A.K. Jaiswal, D. Wang, V. Wollersen, Z. Xiao et al., Strain-driven bidirectional spin orientation control in epitaxial high entropy oxide films. Adv. Sci. 10(27), 2304038 (2023). https://doi.org/10.1002/advs.202304038
- L. Miao, J.T. Sivak, G. Kotsonis, J. Ciston, C.L. Ophus et al., Chemical environment and structural variations in high entropy oxide thin film probed with electron microscopy. ACS Nano 18(23), 14968–14977 (2024). https://doi.org/10.1021/acsnano.4c00787
- T. Kim, D. Lee, M. Chae, K.-H. Kim, H.-D. Kim, Enhancing the resistive switching properties of transparent HfO2-based memristor devices for reliable gasistor applications. Sensors 24(19), 6382 (2024). https://doi.org/10.3390/s24196382
- R. Zhang, H. Huang, Q. Xia, C. Ye, X. Wei et al., Role of oxygen vacancies at the TiO2/HfO2 interface in flexible oxide-based resistive switching memory. Adv. Electron. Mater. 5(5), 1800833 (2019). https://doi.org/10.1002/aelm.201800833
- Z. Cao, Y. Liu, B. Sun, G. Zhou, K. Gao et al., A high-stability pressure-sensitive implantable memristor for pulmonary hypertension monitoring. Adv. Mater. 37(3), e2411659 (2025). https://doi.org/10.1002/adma.202411659
- D. Kumar, H. Li, D.D. Kumbhar, M.K. Rajbhar, U.K. Das et al., Highly efficient back-end-of-line compatible flexible Si-based optical memristive crossbar array for edge neuromorphic physiological signal processing and bionic machine vision. Nano-Micro Lett. 16(1), 238 (2024). https://doi.org/10.1007/s40820-024-01456-8
- J.H. Yoon, Y.-W. Song, W. Ham, J.-M. Park, J.-Y. Kwon, A review on device requirements of resistive random access memory (RRAM)-based neuromorphic computing. APL Mater. 11(9), 090701 (2023). https://doi.org/10.1063/5.0149393
- F. Aguirre, A. Sebastian, M. Le Gallo, W. Song, T. Wang et al., Hardware implementation of memristor-based artificial neural networks. Nat. Commun. 15, 1974 (2024). https://doi.org/10.1038/s41467-024-45670-9
- M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev et al., Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61–64 (2015). https://doi.org/10.1038/nature14441
- V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S.R. Nandakumar et al., Accurate deep neural network inference using computational phase-change memory. Nat. Commun. 11, 2473 (2020). https://doi.org/10.1038/s41467-020-16108-9
- C. Li, D. Belkin, Y. Li, P. Yan, M. Hu et al., Efficient and self-adaptive in situ learning in multilayer memristor neural networks. Nat. Commun. 9(1), 2385 (2018). https://doi.org/10.1038/s41467-018-04484-2
- J. Xie, J. Yan, H. Han, Y. Zhao, M. Luo et al., Photonic chip based on ultrafast laser-induced reversible phase change for convolutional neural network. Nano-Micro Lett. 17(1), 179 (2025). https://doi.org/10.1007/s40820-025-01693-5
- X. Duan, Z. Cao, K. Gao, W. Yan, S. Sun et al., Memristor-based neuromorphic chips. Adv. Mater. 36(14), 2310704 (2024). https://doi.org/10.1002/adma.202310704
- H. Zhou, S. Li, K.-W. Ang, Y.-W. Zhang, Recent advances in in-memory computing: exploring memristor and memtransistor arrays with 2D materials. Nano-Micro Lett. 16(1), 121 (2024). https://doi.org/10.1007/s40820-024-01335-2
- T. Sun, B. Feng, J. Huo, Y. Xiao, W. Wang et al., Artificial intelligence meets flexible sensors: emerging smart flexible sensing systems driven by machine learning and artificial synapses. Nano-Micro Lett. 16(1), 14 (2023). https://doi.org/10.1007/s40820-023-01235-x
- Z. Xu, Y. Li, Y. Xia, C. Shi, S. Chen et al., Organic frameworks memristor: an emerging candidate for data storage, artificial synapse, and neuromorphic device. Adv. Funct. Mater. 34(16), 2312658 (2024). https://doi.org/10.1002/adfm.202312658
- Z. Ren, Z. Zhang, Y. Zhuge, Z. Xiao, S. Xu et al., Near-sensor edge computing system enabled by a CMOS compatible photonic integrated circuit platform using bilayer AlN/Si waveguides. Nano-Micro Lett. 17(1), 261 (2025). https://doi.org/10.1007/s40820-025-01743-y
- S. Zhong, L. Su, M. Xu, D. Loke, B. Yu et al., Recent advances in artificial sensory neurons: biological fundamentals, devices, applications, and challenges. Nano-Micro Lett. 17(1), 61 (2024). https://doi.org/10.1007/s40820-024-01550-x
- X. Liu, J. Yu, P. Ye, L. Gu, H. Qin et al., Experimental and first-principles study of visible light responsive memristor based on CuAlAgCr/TiO2/W structure for artificial synapses with visual perception. Adv. Electron. Mater. 9(5), 2201320 (2023). https://doi.org/10.1002/aelm.202201320
- J. Oh, S. Kim, J. Choi, J.-H. Cha, S.G. Im et al., Memristor-based security primitives robust to malicious attacks for highly secure neuromorphic systems. Adv. Intell. Syst. 4(11), 2200177 (2022). https://doi.org/10.1002/aisy.202200177
- Y. He, Y.-Y. Ting, H. Hu, T. Diemant, Y. Dai et al., Printed high-entropy Prussian blue analogs for advanced non-volatile memristive devices. Adv. Mater. 37(8), e2410060 (2025). https://doi.org/10.1002/adma.202410060
References
A. Citri, R.C. Malenka, Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1), 18–41 (2008). https://doi.org/10.1038/sj.npp.1301559
M. Horowitz, 1.1 computing’s energy problem (and what we can do about it). 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). February 9–13, 2014. San Francisco, CA, USA. IEEE, (2014), pp. 10–14. https://doi.org/10.1109/isscc.2014.6757323
Z. Jian, W. Li, X. Tang, Y. Liang, R. Zhao et al., Artificial photoelectric synaptic devices with ferroelectric diode effect for high-performance neuromorphic computing. Surf. Interface Anal. 55, 105407 (2024). https://doi.org/10.1016/j.surfin.2024.105407
G.C. Adam, A. Khiat, T. Prodromakis, Challenges hindering memristive neuromorphic hardware from going mainstream. Nat. Commun. 9(1), 5267 (2018). https://doi.org/10.1038/s41467-018-07565-4
J. Backus, Can programming be liberated from the von Neumann style? : a functional style and its algebra of programs. Commun. ACM 21(8), 613–641 (1978). https://doi.org/10.1145/359576.359579
W.A. Wulf, S.A. McKee, Hitting the memory wall: implications of the obvious. ACM SIGARCH Comput. Archit. News 23(1), 20–24 (1995). https://doi.org/10.1145/216585.216588
L. Chua, Memristor-the missing circuit element. IEEE Trans. Circ. Theory. 18(5), 507–519 (1971). https://doi.org/10.1109/TCT.1971.1083337
D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008). https://doi.org/10.1038/nature06932
F. Cai, J.M. Correll, S.H. Lee, Y. Lim, V. Bothra et al., A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations. Nat. Electron. 2(7), 290–299 (2019). https://doi.org/10.1038/s41928-019-0270-x
A. Mehonic, A. Sebastian, B. Rajendran, O. Simeone, E. Vasilaki et al., Memristors: from in-memory computing, deep learning acceleration, and spiking neural networks to the future of neuromorphic and bio-inspired computing. Adv. Intell. Syst. 2(11), 2000085 (2020). https://doi.org/10.1002/aisy.202000085
S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder et al., Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010). https://doi.org/10.1021/nl904092h
A. Serb, J. Bill, A. Khiat, R. Berdan, R. Legenstein et al., Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat. Commun. 7, 12611 (2016). https://doi.org/10.1038/ncomms12611
P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang et al., Fully hardware-implemented memristor convolutional neural network. Nature 577(7792), 641–646 (2020). https://doi.org/10.1038/s41586-020-1942-4
W. Zhang, B. Gao, J. Tang, P. Yao, S. Yu et al., Neuro-inspired computing chips. Nat. Electron. 3(7), 371–382 (2020). https://doi.org/10.1038/s41928-020-0435-7
X. Mu, J. Yu, S. Wang, The extended linear-drift model of memristor and its piecewise linear approximation. Tsinghua Sci. Technol. 19(3), 307–313 (2014). https://doi.org/10.1109/TST.2014.6838202
X. Xu, T. Zhang, Y. Zhao, W. Dai, S. Wu et al., Application of two general memristor models in chaotic systems. Memristors—the fourth fundamental circuit element—theory, device, and applications. IntechOpen, (2023). https://doi.org/10.5772/intechopen.1003257
A. Chen, A review of emerging non-volatile memory (NVM) technologies and applications. Solid State Electron. 125, 25–38 (2016). https://doi.org/10.1016/j.sse.2016.07.006
Y. Chen, ReRAM: history, status, and future. IEEE Trans. Electron Devices 67(4), 1420–1433 (2020). https://doi.org/10.1109/TED.2019.2961505
A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, E. Eleftheriou, Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15(7), 529–544 (2020). https://doi.org/10.1038/s41565-020-0655-z
R. Gharpinde, P.L. Thangkhiew, K. Datta, I. Sengupta, A scalable in-memory logic synthesis approach using memristor crossbar. IEEE Trans. Very Large Scale Integr. VLSI Syst. 26(2), 355–366 (2018). https://doi.org/10.1109/TVLSI.2017.2763171
C.E. Graves, C. Li, X. Sheng, D. Miller, J. Ignowski et al., In-memory computing with memristor content addressable memories for pattern matching. Adv. Mater. 32(37), 2003437 (2020). https://doi.org/10.1002/adma.202003437
Q. Liu, S. Long, H. Lv, W. Wang, J. Niu et al., Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano 4(10), 6162–6168 (2010). https://doi.org/10.1021/nn1017582
M. Al-Shedivat, R. Naous, G. Cauwenberghs, K.N. Salama, Memristors empower spiking neurons with stochasticity. IEEE J. Emerg. Sel. Top. Circuits Syst. 5(2), 242–253 (2015). https://doi.org/10.1109/JETCAS.2015.2435512
F. Yuan, G.-Y. Wang, X.-Y. Wang, Dynamical characteristics of an HP memristor based on an equivalent circuit model in a chaotic oscillator. Chin. Phys. B 24(6), 060506 (2015). https://doi.org/10.1088/1674-1056/24/6/060506
K. Wu, X. Wang, Enhanced memristor-based MNNs performance on noisy dataset resulting from memristive stochasticity. IET Circuits Devices Syst. 13(5), 704–709 (2019). https://doi.org/10.1049/iet-cds.2018.5532
W. Banerjee, Q. Liu, H. Hwang, Engineering of defects in resistive random access memory devices. J. Appl. Phys. 127(5), 051101 (2020). https://doi.org/10.1063/1.5136264
Y. Xiao, B. Jiang, Z. Zhang, S. Ke, Y. Jin et al., A review of memristor: material and structure design, device performance, applications and prospects. Sci. Technol. Adv. Mater. 24(1), 2162323 (2023). https://doi.org/10.1080/14686996.2022.2162323
G.N. Kotsonis, S.S.I. Almishal, F. Marques dos Santos Vieira, V.H. Crespi, I. Dabo et al., High-entropy oxides: harnessing crystalline disorder for emergent functionality. J. Am. Ceram. Soc. 106(10), 5587–5611 (2023). https://doi.org/10.1111/jace.19252
S.S. Aamlid, M. Oudah, J. Rottler, A.M. Hallas, Understanding the role of entropy in high entropy oxides. J. Am. Chem. Soc. 145(11), 5991–6006 (2023). https://doi.org/10.1021/jacs.2c11608
H. Xu, H. Li, M. Gao, W. Yi, Z. Zhao et al., Dual-confinement and oxygen vacancy strategies for ultra-stable sodium storage and mechanisms in high-entropy spinel oxides. J. Energy Storage 113, 115641 (2025). https://doi.org/10.1016/j.est.2025.115641
Z. Bai, B. Luo, T. Peng, J. Wang, High-entropy perovskite oxide photonic synapses. Adv. Opt. Mater. 12(18), 2303248 (2024). https://doi.org/10.1002/adom.202303248
J.-Y. Tsai, J.-Y. Chen, C.-W. Huang, H.-Y. Lo, W.-E. Ke et al., A high-entropy-oxides-based memristor: outstanding resistive switching performance and mechanisms in atomic structural evolution. Adv. Mater. 35(41), 2302979 (2023). https://doi.org/10.1002/adma.202302979
M. Ahn, Y. Park, S.H. Lee, S. Chae, J. Lee et al., Memristors based on (Zr, Hf, Nb, Ta, Mo, W) high-entropy oxides. Adv. Electron. Mater. 7(5), 2001258 (2021). https://doi.org/10.1002/aelm.202001258
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey et al., Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015). https://doi.org/10.1038/ncomms9485
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004). https://doi.org/10.1002/adem.200300567
D. Bérardan, S. Franger, A.K. Meena, N. Dragoe, Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 4(24), 9536–9541 (2016). https://doi.org/10.1039/c6ta03249d
B.S. Murty, J.W. Yeh, S. Ranganathan, P.P. Bhattacharjee, High-entropy alloys: basic concepts, in High-Entropy Alloys. Elsevier, Amsteram (2019), pp. 13–30. https://doi.org/10.1016/b978-0-12-816067-1.00002-3
M. Brahlek, M. Gazda, V. Keppens, A.R. Mazza, S.J. McCormack et al., What is in a name: defining “high entropy” oxides. APL Mater. 10(11), 110902 (2022). https://doi.org/10.1063/5.0122727
A. Sarkar, R. Djenadic, D. Wang, C. Hein, R. Kautenburger et al., Rare earth and transition metal based entropy stabilised perovskite type oxides. J. Eur. Ceram. Soc. 38(5), 2318–2327 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.12.058
S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie et al., A new class of high-entropy perovskite oxides. Scr. Mater. 142, 116–120 (2018). https://doi.org/10.1016/j.scriptamat.2017.08.040
J. Dąbrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka et al., Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure. Mater. Lett. 216, 32–36 (2018). https://doi.org/10.1016/j.matlet.2017.12.148
B. Musicó, Q. Wright, T.Z. Ward, A. Grutter, E. Arenholz et al., Tunable magnetic ordering through cation selection in entropic spinel oxides. Phys. Rev. Mater. 3(10), 104416 (2019). https://doi.org/10.1103/physrevmaterials.3.104416
A. Sarkar, C. Loho, L. Velasco, T. Thomas, S.S. Bhattacharya et al., Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency. Dalton Trans. 46(36), 12167–12176 (2017). https://doi.org/10.1039/C7DT02077E
K. Chen, X. Pei, L. Tang, H. Cheng, Z. Li et al., A five-component entropy-stabilized fluorite oxide. J. Eur. Ceram. Soc. 38(11), 4161–4164 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.04.063
Z. Teng, L. Zhu, Y. Tan, S. Zeng, Y. Xia et al., Synthesis and structures of high-entropy pyrochlore oxides. J. Eur. Ceram. Soc. 40(4), 1639–1643 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.12.008
F. Li, L. Zhou, J.-X. Liu, Y. Liang, G.-J. Zhang, High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. J. Adv. Ceram. 8(4), 576–582 (2019). https://doi.org/10.1007/s40145-019-0342-4
S.-M. Choi, C.-H. Lim, W.-S. Seo, Thermoelectric properties of the Ca1-xRxMnO3 perovskite system (R: Pr, Nd, Sm) for high-temperature applications. J. Electron. Mater. 40(5), 551–556 (2011). https://doi.org/10.1007/s11664-010-1446-3
J. Zhang, S. Liu, Z. Tian, Y. Zhang, Z. Shi, The formation and phase stability of A-site high-entropy perovskite oxides. Materials 16(6), 2214 (2023). https://doi.org/10.3390/ma16062214
D.A. Vinnik, E.A. Trofimov, V.E. Zhivulin, S.A. Gudkova, O.V. Zaitseva et al., High entropy oxide phases with perovskite structure. Nanomaterials 10(2), 268 (2020). https://doi.org/10.3390/nano10020268
L. Lin, K. Wang, R. Azmi, J. Wang, A. Sarkar et al., Mechanochemical synthesis: route to novel rock-salt-structured high-entropy oxides and oxyfluorides. J. Mater. Sci. 55(36), 16879–16889 (2020). https://doi.org/10.1007/s10853-020-05183-4
C.M. Rost, Ph.D. Thesis in materials science, in Entropy-Stabilized Oxides: Explorations of a Novel Class of Multicomponent Materials. James Madison University, September 2016.
D. Csík, D. Zalka, K. Saksl, D. Capková, R. Džunda, Four-component high entropy spinel oxide as anode material in lithium-ion batteries with excellent cyclability. J. Phys. Conf. Ser. 2382(1), 012003 (2022). https://doi.org/10.1088/1742-6596/2382/1/012003
Y. Xu, X. Xu, L. Bi, A high-entropy spinel ceramic oxide as the cathode for proton-conducting solid oxide fuel cells. J. Adv. Ceram. 11(5), 794–804 (2022). https://doi.org/10.1007/s40145-022-0573-7
V. Jacobson, J. Huang, C.J. Titus, R.W. Smaha, M. Papac et al., The role of Co valence in charge transport in the entropy-stabilized oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O. J. Am. Ceram. Soc. 106(2), 1531–1539 (2023). https://doi.org/10.1111/jace.18820
P.B. Meisenheimer, T.J. Kratofil, J.T. Heron, Giant enhancement of exchange coupling in entropy-stabilized oxide heterostructures. Sci. Rep. 7(1), 13344 (2017). https://doi.org/10.1038/s41598-017-13810-5
A.R. Mazza, E. Skoropata, Y. Sharma, J. Lapano, T.W. Heitmann et al., Designing magnetism in high entropy oxides. Adv. Sci. 9(10), 2200391 (2022). https://doi.org/10.1002/advs.202200391
M.R. Chellali, A. Sarkar, S.H. Nandam, S.S. Bhattacharya, B. Breitung et al., On the homogeneity of high entropy oxides: an investigation at the atomic scale. Scr. Mater. 166, 58–63 (2019). https://doi.org/10.1016/j.scriptamat.2019.02.039
P.B. Meisenheimer, J.T. Heron, Oxides and the high entropy regime: a new mix for engineering physical properties. MRS Adv. 5(64), 3419–3436 (2020). https://doi.org/10.1557/adv.2020.295
Z. Rák, J.-P. Maria, D.W. Brenner, Evidence for Jahn-Teller compression in the (Mg Co, Ni, Cu, Zn)O entropy-stabilized oxide: a DFT study. Mater. Lett. 217, 300–303 (2018). https://doi.org/10.1016/j.matlet.2018.01.111
G. Anand, A.P. Wynn, C.M. Handley, C.L. Freeman, Phase stability and distortion in high-entropy oxides. Acta Mater. 146, 119–125 (2018). https://doi.org/10.1016/j.actamat.2017.12.037
C.M. Rost, Z. Rak, D.W. Brenner, J.-P. Maria, Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy-stabilized oxide: an EXAFS study. J. Am. Ceram. Soc. 100(6), 2732–2738 (2017). https://doi.org/10.1111/jace.14756
Z. Rak, C.M. Rost, M. Lim, P. Sarker, C. Toher et al., Charge compensation and electrostatic transferability in three entropy-stabilized oxides: results from density functional theory calculations. J. Appl. Phys. 120(9), 095105 (2016). https://doi.org/10.1063/1.4962135
P.B. Meisenheimer, L.D. Williams, S.H. Sung, J. Gim, P. Shafer et al., Magnetic frustration control through tunable stereochemically driven disorder in entropy-stabilized oxides. Phys. Rev. Mater. 3(10), 104420 (2019). https://doi.org/10.1103/physrevmaterials.3.104420
S. Chae, L. Williams, J. Lee, J.T. Heron, E. Kioupakis, Effects of local compositional and structural disorder on vacancy formation in entropy-stabilized oxides from first-principles. NPJ Comput. Mater. 8, 95 (2022). https://doi.org/10.1038/s41524-022-00780-0
B.L. Musicó, D. Gilbert, T.Z. Ward, K. Page, E. George et al., The emergent field of high entropy oxides: design, prospects, challenges, and opportunities for tailoring material properties. APL Mater. 8(4), 040912 (2020). https://doi.org/10.1063/5.0003149
C. Riley, N. Valdez, C.M. Smyth, R. Grant, B. Burnside et al., Vacancy-driven stabilization of sub-stoichiometric aluminate spinel high entropy oxides. J. Phys. Chem. C 127(23), 11249–11259 (2023). https://doi.org/10.1021/acs.jpcc.3c01499
F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61(7), 2628–2638 (2013). https://doi.org/10.1016/j.actamat.2013.01.042
K.C. Pitike, A. Macias, M. Eisenbach, C.A. Bridges, V.R. Cooper, Computationally accelerated discovery of high entropy pyrochlore oxides. Chem. Mater. 34(4), 1459–1472 (2022). https://doi.org/10.1021/acs.chemmater.1c02361
H. Wu, Q. Lu, Y. Li, J. Wang, Y. Li et al., Rapid joule-heating synthesis for manufacturing high-entropy oxides as efficient electrocatalysts. Nano Lett. 22(16), 6492–6500 (2022). https://doi.org/10.1021/acs.nanolett.2c01147
Y.-T. Yeh, C.-W. Huang, A.-Y. Hou, C.-Y. Huang, Y.-D. Lin et al., In situ TEM observation of (Cr, Mn, Fe, co, and Ni)3O4 high-entropy spinel oxide formation during calcination at atomic scale. Small 20(15), e2307284 (2024). https://doi.org/10.1002/smll.202307284
A. Ostovari Moghaddam, S. Mehrabi-Kalajahi, X. Qi, R. Salari, R. Fereidonnejad et al., La(FeCuMnMgTi)O3 high-entropy oxide nanops as highly efficient catalysts for solvent-free aerobic oxidation of benzyl alcohol. J. Phys. Chem. Lett. 15(30), 7577–7583 (2024). https://doi.org/10.1021/acs.jpclett.4c01852
D. Zhang, S. Xu, T. Li, M. Zhang, J. Qi et al., High-entropy oxides prepared by dealloying method for supercapacitors. ACS Appl. Eng. Mater. 1(2), 780–789 (2023). https://doi.org/10.1021/acsaenm.2c00198
M. Lal, R. Sundara, High entropy oxides: a cost-effective catalyst for the growth of high yield carbon nanotubes and their energy applications. ACS Appl. Mater. Interfaces 11(34), 30846–30857 (2019). https://doi.org/10.1021/acsami.9b08794
A.K. Gupta, K. Shubham, N.K. Giri, R.R. Shahi, Electrochemical charge storage properties of novel inverse spinel (CuNiZnAlFe)3O4 type high entropy oxide. Energy Storage 6(1), e527 (2024). https://doi.org/10.1002/est2.527
J. Jeevanandam, Y.S. Chan, M.K. Danquah, Calcination-dependent morphology transformation of sol-gel- synthesized MgO nanops. ChemistrySelect 2(32), 10393–10404 (2017). https://doi.org/10.1002/slct.201701911
J. Baek, M.D. Hossain, P. Mukherjee, J. Lee, K.T. Winther et al., Synergistic effects of mixing and strain in high entropy spinel oxides for oxygen evolution reaction. Nat. Commun. 14(1), 5936 (2023). https://doi.org/10.1038/s41467-023-41359-7
D.-I. Băilă, C. Zaharia, O.C. Mocioiu, Contact angle measurements at the interface of Co–Cr alloy sintered by DMLS and coated with hydroxyapatite. Tech. Gaz. 27(2), 531–538 (2020). https://doi.org/10.17559/tv-20170624152700
N. Sreenivasulu, U.N. Kumar, K.M.V.V. Madhav, T. Thomas, S.S. Bhattacharya, Structural and electrochemical investigations on nanocrystalline high entropy spinel oxides for battery-like supercapacitor applications. ChemistrySelect 7(5), e202104015 (2022). https://doi.org/10.1002/slct.202104015
C. Huang, J. Luo, Z.R. Mansley, A. Kingan, A. Rodriguez Campos et al., Manganese-rich high entropy oxides for lithium-ion batteries: materials design approaches to address voltage fade. J. Mater. Chem. A 12(38), 26253–26265 (2024). https://doi.org/10.1039/D4TA05416D
P.R. Jothi, W. Liyanage, B. Jiang, S. Paladugu, D. Olds et al., Persistent structure and frustrated magnetism in high entropy rare-earth zirconates. Small 18(5), e2101323 (2022). https://doi.org/10.1002/smll.202101323
M. Biesuz, L. Spiridigliozzi, G. Dell’Agli, M. Bortolotti, V.M. Sglavo, Synthesis and sintering of (Mg Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods. J. Mater. Sci. 53(11), 8074–8085 (2018). https://doi.org/10.1007/s10853-018-2168-9
P. Wei, S. Zhao, L. Zhuang, H. Yu, Y. Qin et al., Chemical co-precipitation synthesis of high-entropy rare-earth silicate nanopowders. J. Am. Ceram. Soc. 107(5), 3577–3586 (2024). https://doi.org/10.1111/jace.19667
Q. Dong, M. Hong, J. Gao, T. Li, M. Cui et al., Rapid synthesis of high-entropy oxide microps. Small 18(11), 2104761 (2022). https://doi.org/10.1002/smll.202104761
A. Abdelhafiz, B. Wang, A.R. Harutyunyan, J. Li, Carbothermal shock synthesis of high entropy oxide catalysts: dynamic structural and chemical reconstruction boosting the catalytic activity and stability toward oxygen evolution reaction. Adv. Energy Mater. 12(35), 2200742 (2022). https://doi.org/10.1002/aenm.202200742
K. Gu, D. Wang, C. Xie, T. Wang, G. Huang et al., Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew. Chem. Int. Ed. 60(37), 20253–20258 (2021). https://doi.org/10.1002/anie.202107390
Y. Gao, X. Tian, Q. Niu, P. Zhang, General synthesis of high-entropy oxides and carbon-supported high-entropy oxides by mechanochemistry. Chemsuschem 18(2), e202401517 (2025). https://doi.org/10.1002/cssc.202401517
J. Patra, T.X. Nguyen, C.-C. Tsai, O. Clemens, J. Li et al., Effects of elemental modulation on phase purity and electrochemical properties of co-free high-entropy spinel oxide anodes for lithium-ion batteries. Adv. Funct. Mater. 32(17), 2110992 (2022). https://doi.org/10.1002/adfm.202110992
X. Zou, Y.-R. Zhang, Z.-P. Huang, K. Yue, Z.-H. Guo, High-entropy oxides: an emerging anode material for lithium-ion batteries. Chem. Commun. 59(91), 13535–13550 (2023). https://doi.org/10.1039/d3cc04225a
Y. Zeng, B. Ouyang, J. Liu, Y.-W. Byeon, Z. Cai et al., High-entropy mechanism to boost ionic conductivity. Science 378(6626), 1320–1324 (2022). https://doi.org/10.1126/science.abq1346
H. Chen, N. Qiu, B. Wu, Z. Yang, S. Sun et al., A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries. RSC Adv. 10(16), 9736–9744 (2020). https://doi.org/10.1039/d0ra00255k
P. Ghigna, L. Airoldi, M. Fracchia, D. Callegari, U. Anselmi-Tamburini et al., Lithiation mechanism in high-entropy oxides as anode materials for Li-ion batteries: an operando XAS study. ACS Appl. Mater. Interfaces 12(45), 50344–50354 (2020). https://doi.org/10.1021/acsami.0c13161
M.A. Zidan, J.P. Strachan, W.D. Lu, The future of electronics based on memristive systems. Nat. Electron. 1(1), 22–29 (2018). https://doi.org/10.1038/s41928-017-0006-8
Z. Li, J. Zheng, W. Zhang, Y. Zheng, W. Zhao et al., A promising high-entropy thermal barrier material with the formula (Y0.2Dy0.2Ho0.2Er0.2Yb0.2)3Al5O12. Materials 15(22), 8079 (2022). https://doi.org/10.3390/ma15228079
P. Sharma, P. Singh, G. Balasubramanian, Engineering phonon transport through cation disorder in dimensionally constricted high entropy MXene. Carbon 223, 119015 (2024). https://doi.org/10.1016/j.carbon.2024.119015
P.A. Krawczyk, W. Salamon, M. Marzec, M. Szuwarzyński, J. Pawlak et al., High-entropy perovskite thin film in the Gd-Nd-Sm-La-Y-co system: deposition, structure and optoelectronic properties. Materials 16(12), 4210 (2023). https://doi.org/10.3390/ma16124210
Z.J. Corey, P. Lu, G. Zhang, Y. Sharma, B.X. Rutherford et al., Structural and optical properties of high entropy (La, Lu, Y, Gd, Ce)AlO3 perovskite thin films. Adv. Sci. 9(29), e2202671 (2022). https://doi.org/10.1002/advs.202202671
J. Zou, L. Tang, W. He, X. Zhang, High-entropy oxides: pioneering the future of multifunctional materials. ACS Nano 18(51), 34492–34530 (2024). https://doi.org/10.1021/acsnano.4c12538
C.-Y. He, X.-H. Gao, X.-L. Qiu, D.-M. Yu, H.-X. Guo et al., Scalable and ultrathin high-temperature solar selective absorbing coatings based on the high-entropy nanoceramic AlCrWTaNbTiN with high photothermal conversion efficiency. Solar RRL 5(4), 2000790 (2021). https://doi.org/10.1002/solr.202000790
P. Zhao, M. Dong, X. Liu, Y.-F. Wang, W.-M. Wang et al., Ultrahigh thermal robustness of high-entropy spectrally selective absorbers for next-generation concentrated solar power system. Adv. Funct. Mater. 34(52), 2411316 (2024). https://doi.org/10.1002/adfm.202411316
L. Chua, Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011). https://doi.org/10.1007/s00339-011-6264-9
X. He, J. Zhang, W. Wang, W. Xuan, X. Wang et al., Transient resistive switching devices made from egg albumen dielectrics and dissolvable electrodes. ACS Appl. Mater. Interfaces 8(17), 10954–10960 (2016). https://doi.org/10.1021/acsami.5b10414
Y. Zhang, G.-Q. Mao, X. Zhao, Y. Li, M. Zhang et al., Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging. Nat. Commun. 12(1), 7232 (2021). https://doi.org/10.1038/s41467-021-27575-z
J. Wen, Z.-Y. Zhu, X. Guo, Artificial visual neuron based on threshold switching memristors. Neuromorph. Comput. Eng. 3(1), 014015 (2023). https://doi.org/10.1088/2634-4386/acc050
Y. Huang, Y. Luo, Z. Shen, G. Yuan, H. Zeng, Unipolar resistive switching of ZnO-single-wire memristors. Nanoscale Res. Lett. 9(1), 381 (2014). https://doi.org/10.1186/1556-276X-9-381
X. Xiao, J. Hu, S. Tang, K. Yan, B. Gao et al., Recent advances in halide perovskite memristors: materials, structures, mechanisms, and applications. Adv. Mater. Technol. 5(6), 1900914 (2020). https://doi.org/10.1002/admt.201900914
Y. Wang, Y. Zhang, Y. Wang, X. Wang, H. Zhang et al., A self-organizing map spiking neural network based on tin oxide memristive synapses and neurons. Adv. Electron. Mater. 11(2), 2400421 (2025). https://doi.org/10.1002/aelm.202400421
Y. Yu, M. Xiao, D. Fieser, W. Zhou, A. Hu, Nanoscale memristor devices: materials, fabrication, and artificial intelligence. J. Mater. Chem. C 12(11), 3770–3810 (2024). https://doi.org/10.1039/d3tc04510b
C.-H. Huang, J.-S. Huang, C.-C. Lai, H.-W. Huang, S.-J. Lin et al., Manipulated transformation of filamentary and homogeneous resistive switching on ZnO thin film memristor with controllable multistate. ACS Appl. Mater. Interfaces 5(13), 6017–6023 (2013). https://doi.org/10.1021/am4007287
R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009). https://doi.org/10.1002/adma.200900375
H.-Y. Lee, P.-S. Chen, C.-C. Wang, S. Maikap, P.-J. Tzeng et al., Low-power switching of nonvolatile resistive memory using hafnium oxide. Jpn. J. Appl. Phys. 46(4S), 2175 (2007). https://doi.org/10.1143/jjap.46.2175
N. Gogurla, S.P. Mondal, A.K. Sinha, A.K. Katiyar, W. Banerjee et al., Transparent and flexible resistive switching memory devices with a very high ON/OFF ratio using gold nanops embedded in a silk protein matrix. Nanotechnology 24(34), 345202 (2013). https://doi.org/10.1088/0957-4484/24/34/345202
J. Guo, L. Liu, B. Bian, J. Wang, X. Zhao et al., Ligand exchange reaction enables digital-to-analog resistive switching and artificial synapse within metal nanops. Adv. Funct. Mater. 33(16), 2212666 (2023). https://doi.org/10.1002/adfm.202212666
X. Sun, G. Li, L. Chen, Z. Shi, W. Zhang, Bipolar resistance switching characteristics with opposite polarity of Au/SrTiO3/Ti memory cells. Nanoscale Res. Lett. 6(1), 599 (2011). https://doi.org/10.1186/1556-276X-6-599
B. Gao, J.F. Kang, Y.S. Chen, F.F. Zhang, B. Chen et al., Oxide-based RRAM: unified microscopic principle for both unipolar and bipolar switching, in 2011 International Electron Devices Meeting. December 5–7, 2011, Washington, DC, USA. IEEE, (2011), 17.4.1–17.4.4. https://doi.org/10.1109/IEDM.2011.6131573
J. Qi, M. Olmedo, J. Ren, N. Zhan, J. Zhao et al., Resistive switching in single epitaxial ZnO nanoislands. ACS Nano 6(2), 1051–1058 (2012). https://doi.org/10.1021/nn204809a
G. Milano, M. Aono, L. Boarino, U. Celano, T. Hasegawa et al., Quantum conductance in memristive devices: fundamentals, developments, and applications. Adv. Mater. 34(32), 2201248 (2022). https://doi.org/10.1002/adma.202201248
H. Jiang, L. Han, P. Lin, Z. Wang, M.H. Jang et al., Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor. Sci. Rep. 6, 28525 (2016). https://doi.org/10.1038/srep28525
F. Wan, Q. Wang, T. Harumoto, T. Gao, K. Ando et al., Truly electroforming-free memristor based on TiO2-CoO phase-separated oxides with extremely high uniformity and low power consumption. Adv. Funct. Mater. 30(51), 2007101 (2020). https://doi.org/10.1002/adfm.202007101
S. Poddar, Y. Zhang, L. Gu, D. Zhang, Q. Zhang et al., Down-scalable and ultra-fast memristors with ultra-high density three-dimensional arrays of perovskite quantum wires. Nano Lett. 21(12), 5036–5044 (2021). https://doi.org/10.1021/acs.nanolett.1c00834
S. Bhattacharjee, E. Caruso, N. McEvoy, C.Ó. Coileáin, K. O’Neill et al., Insights into multilevel resistive switching in monolayer MoS2. ACS Appl. Mater. Interfaces 12(5), 6022–6029 (2020). https://doi.org/10.1021/acsami.9b15677
H.-L. Park, M.-H. Kim, H. Kim, S.-H. Lee, Self-selective organic memristor by engineered conductive nanofilament diffusion for realization of practical neuromorphic system. Adv. Electron. Mater. 7(8), 2100299 (2021). https://doi.org/10.1002/aelm.202100299
S. Lan, F. Meng, B. Yang, Y. Wang, Y. Liu et al., Enhanced energy storage properties in paraelectrics via entropy engineering. Adv. Phys. Res. 2(11), 2300006 (2023). https://doi.org/10.1002/apxr.202300006
H. Li, Y. Zhou, Z. Liang, H. Ning, X. Fu et al., High-entropy oxides: advanced research on electrical properties. Coatings 11(6), 628 (2021). https://doi.org/10.3390/coatings11060628
X. Xiong, Z. Liu, R. Zhang, L. Yang, G. Liang et al., Atomic-level electric polarization in entropy-driven perovskites for boosting dielectric response. Adv. Mater. 37(4), e2415351 (2025). https://doi.org/10.1002/adma.202415351
M. Einert, A. Waheed, S. Lauterbach, M. Mellin, M. Rohnke et al., Sol-gel-derived ordered mesoporous high entropy spinel ferrites and assessment of their photoelectrochemical and electrocatalytic water splitting performance. Small 19(14), 2205412 (2023). https://doi.org/10.1002/smll.202205412
X. Tang, L. Hu, X. Zhu, X. Zhu, Y. Wang et al., Orientations-dependent metal-to-insulator transition in solution-deposited high-entropy nickelate thin films. Cryst. Growth Des. 22(12), 7317–7324 (2022). https://doi.org/10.1021/acs.cgd.2c00945
Z. Zhao, A.K. Jaiswal, D. Wang, V. Wollersen, Z. Xiao et al., Strain-driven bidirectional spin orientation control in epitaxial high entropy oxide films. Adv. Sci. 10(27), 2304038 (2023). https://doi.org/10.1002/advs.202304038
L. Miao, J.T. Sivak, G. Kotsonis, J. Ciston, C.L. Ophus et al., Chemical environment and structural variations in high entropy oxide thin film probed with electron microscopy. ACS Nano 18(23), 14968–14977 (2024). https://doi.org/10.1021/acsnano.4c00787
T. Kim, D. Lee, M. Chae, K.-H. Kim, H.-D. Kim, Enhancing the resistive switching properties of transparent HfO2-based memristor devices for reliable gasistor applications. Sensors 24(19), 6382 (2024). https://doi.org/10.3390/s24196382
R. Zhang, H. Huang, Q. Xia, C. Ye, X. Wei et al., Role of oxygen vacancies at the TiO2/HfO2 interface in flexible oxide-based resistive switching memory. Adv. Electron. Mater. 5(5), 1800833 (2019). https://doi.org/10.1002/aelm.201800833
Z. Cao, Y. Liu, B. Sun, G. Zhou, K. Gao et al., A high-stability pressure-sensitive implantable memristor for pulmonary hypertension monitoring. Adv. Mater. 37(3), e2411659 (2025). https://doi.org/10.1002/adma.202411659
D. Kumar, H. Li, D.D. Kumbhar, M.K. Rajbhar, U.K. Das et al., Highly efficient back-end-of-line compatible flexible Si-based optical memristive crossbar array for edge neuromorphic physiological signal processing and bionic machine vision. Nano-Micro Lett. 16(1), 238 (2024). https://doi.org/10.1007/s40820-024-01456-8
J.H. Yoon, Y.-W. Song, W. Ham, J.-M. Park, J.-Y. Kwon, A review on device requirements of resistive random access memory (RRAM)-based neuromorphic computing. APL Mater. 11(9), 090701 (2023). https://doi.org/10.1063/5.0149393
F. Aguirre, A. Sebastian, M. Le Gallo, W. Song, T. Wang et al., Hardware implementation of memristor-based artificial neural networks. Nat. Commun. 15, 1974 (2024). https://doi.org/10.1038/s41467-024-45670-9
M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev et al., Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61–64 (2015). https://doi.org/10.1038/nature14441
V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S.R. Nandakumar et al., Accurate deep neural network inference using computational phase-change memory. Nat. Commun. 11, 2473 (2020). https://doi.org/10.1038/s41467-020-16108-9
C. Li, D. Belkin, Y. Li, P. Yan, M. Hu et al., Efficient and self-adaptive in situ learning in multilayer memristor neural networks. Nat. Commun. 9(1), 2385 (2018). https://doi.org/10.1038/s41467-018-04484-2
J. Xie, J. Yan, H. Han, Y. Zhao, M. Luo et al., Photonic chip based on ultrafast laser-induced reversible phase change for convolutional neural network. Nano-Micro Lett. 17(1), 179 (2025). https://doi.org/10.1007/s40820-025-01693-5
X. Duan, Z. Cao, K. Gao, W. Yan, S. Sun et al., Memristor-based neuromorphic chips. Adv. Mater. 36(14), 2310704 (2024). https://doi.org/10.1002/adma.202310704
H. Zhou, S. Li, K.-W. Ang, Y.-W. Zhang, Recent advances in in-memory computing: exploring memristor and memtransistor arrays with 2D materials. Nano-Micro Lett. 16(1), 121 (2024). https://doi.org/10.1007/s40820-024-01335-2
T. Sun, B. Feng, J. Huo, Y. Xiao, W. Wang et al., Artificial intelligence meets flexible sensors: emerging smart flexible sensing systems driven by machine learning and artificial synapses. Nano-Micro Lett. 16(1), 14 (2023). https://doi.org/10.1007/s40820-023-01235-x
Z. Xu, Y. Li, Y. Xia, C. Shi, S. Chen et al., Organic frameworks memristor: an emerging candidate for data storage, artificial synapse, and neuromorphic device. Adv. Funct. Mater. 34(16), 2312658 (2024). https://doi.org/10.1002/adfm.202312658
Z. Ren, Z. Zhang, Y. Zhuge, Z. Xiao, S. Xu et al., Near-sensor edge computing system enabled by a CMOS compatible photonic integrated circuit platform using bilayer AlN/Si waveguides. Nano-Micro Lett. 17(1), 261 (2025). https://doi.org/10.1007/s40820-025-01743-y
S. Zhong, L. Su, M. Xu, D. Loke, B. Yu et al., Recent advances in artificial sensory neurons: biological fundamentals, devices, applications, and challenges. Nano-Micro Lett. 17(1), 61 (2024). https://doi.org/10.1007/s40820-024-01550-x
X. Liu, J. Yu, P. Ye, L. Gu, H. Qin et al., Experimental and first-principles study of visible light responsive memristor based on CuAlAgCr/TiO2/W structure for artificial synapses with visual perception. Adv. Electron. Mater. 9(5), 2201320 (2023). https://doi.org/10.1002/aelm.202201320
J. Oh, S. Kim, J. Choi, J.-H. Cha, S.G. Im et al., Memristor-based security primitives robust to malicious attacks for highly secure neuromorphic systems. Adv. Intell. Syst. 4(11), 2200177 (2022). https://doi.org/10.1002/aisy.202200177
Y. He, Y.-Y. Ting, H. Hu, T. Diemant, Y. Dai et al., Printed high-entropy Prussian blue analogs for advanced non-volatile memristive devices. Adv. Mater. 37(8), e2410060 (2025). https://doi.org/10.1002/adma.202410060