Radiative Coupled Evaporation Cooling Hydrogel for Above-Ambient Heat Dissipation and Flame Retardancy
Corresponding Author: Meijie Chen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 50
Abstract
By combining the merits of radiative cooling (RC) and evaporation cooling (EC), radiative coupled evaporative cooling (REC) has attracted considerable attention for sub-ambient cooling purposes. However, for outdoor devices, the interior heating power would increase the working temperature and fire risk, which would suppress their above-ambient heat dissipation capabilities and passive water cycle properties. In this work, we introduced a REC design based on an all-in-one photonic hydrogel for above-ambient heat dissipation and flame retardancy. Unlike conventional design RC film for heat dissipation with limited cooling power and fire risk, REC hydrogel can greatly improve the heat dissipation performance in the daytime with a high workload, indicating a 12.0 °C lower temperature than the RC film under the same conditions in the outdoor experiment. In the nighttime with a low workload, RC-assisted adsorption can improve atmospheric water harvesting to ensure EC in the daytime. In addition, our REC hydrogel significantly enhanced flame retardancy by absorbing heat without a corresponding temperature rise, thus mitigating fire risks. Thus, our design shows a promising solution for the thermal management of outdoor devices, delivering outstanding performance in both heat dissipation and flame retardancy.
Highlights:
1 An all-in-one photonic hydrogel was designed for above-ambient heat dissipation and flame retardancy by sky radiative cooling and evaporation cooling.
2 Radiative coupled with evaporation cooling can greatly improve the heat dissipation performance, indicating a 12.0 °C lower than the radiative cooling film under the same conditions.
3 Radiative cooling-assisted adsorption can improve atmospheric water harvesting to ensure evaporation under periodic workload and meteorological parameters.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Yi, Y. Gan, R. Liu, F. Liu, Y. Li, Experimental investigation on the heat transfer performance of a microchannel thermosiphon array for 5G telecommunication base stations. Appl. Therm. Eng. 242, 122561 (2024). https://doi.org/10.1016/j.applthermaleng.2024.122561
- C. Park, W. Lee, C. Park, S. Park, J. Lee et al., Efficient thermal management and all-season energy harvesting using adaptive radiative cooling and a thermoelectric power generator. J. Energy Chem. 84, 496–501 (2023). https://doi.org/10.1016/j.jechem.2023.05.051
- A. Zuazua-Ros, C. Martín Gómez, J.C. Ramos, J. Bermejo-Busto, Towards cooling systems integration in buildings: experimental analysis of a heat dissipation panel. Renew. Sustain. Energy Rev. 72, 73–82 (2017). https://doi.org/10.1016/j.rser.2017.01.065
- C. Pan, Z. Jia, J. Wang, L. Wang, J. Wu, Optimization of liquid cooling heat dissipation control strategy for electric vehicle power batteries based on linear time-varying model predictive control. Energy 283, 129099 (2023). https://doi.org/10.1016/j.energy.2023.129099
- S. Xue, G. Huang, Q. Chen, X. Wang, J. Fan et al., Personal thermal management by radiative cooling and heating. Nano-Micro Lett. 16(1), 153 (2024). https://doi.org/10.1007/s40820-024-01360-1
- H. Yu, J. Lu, J. Yan, T. Bai, Z. Niu et al., Selective emission fabric for indoor and outdoor passive radiative cooling in personal thermal management. Nano-Micro Lett. 17(1), 192 (2025). https://doi.org/10.1007/s40820-025-01713-4
- A.-Q. Xie, H. Qiu, W. Jiang, Y. Wang, S. Niu et al., Recent advances in spectrally selective daytime radiative cooling materials. Nano-Micro Lett. 17(1), 264 (2025). https://doi.org/10.1007/s40820-025-01771-8
- Q. Ye, X. Chen, H. Yan, M. Chen, Thermal conductive radiative cooling film for local heat dissipation. Mater. Today Phys. 50, 101626 (2025). https://doi.org/10.1016/j.mtphys.2024.101626
- N. Guo, C. Shi, N. Warren, E.A. Sprague-Klein, B.W. Sheldon et al., Challenges and opportunities for passive thermoregulation. Adv. Energy Mater. 14(34), 2401776 (2024). https://doi.org/10.1002/aenm.202401776
- Z. Yan, H. Zhai, D. Fan, Q. Li, Biological optics, photonics and bioinspired radiative cooling. Prog. Mater. Sci. 144, 101291 (2024). https://doi.org/10.1016/j.pmatsci.2024.101291
- Z. Zhang, M. Yu, C. Ma, L. He, X. He et al., A Janus smart window for temperature-adaptive radiative cooling and adjustable solar transmittance. Nano-Micro Lett. 17(1), 233 (2025). https://doi.org/10.1007/s40820-025-01740-1
- Z. Yan, G. Zhu, D. Fan, Q. Li, Bioinspired metafabric with dual-gradient Janus design for personal radiative and evaporative cooling. Adv. Funct. Mater. 35(2), 2412261 (2025). https://doi.org/10.1002/adfm.202412261
- W. Xie, C. Xiao, Y. Sun, Y. Fan, B. Zhao et al., Flexible photonic radiative cooling films: fundamentals, fabrication and applications. Adv. Funct. Mater. 33(46), 2305734 (2023). https://doi.org/10.1002/adfm.202305734
- X. Wang, X. Liu, Z. Li, H. Zhang, Z. Yang et al., Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 30(5), 1907562 (2020). https://doi.org/10.1002/adfm.201907562
- J. Liu, Y. Du, S. Zhang, J. Yan, Spectrally engineered textiles for personal cooling. Joule 8(10), 2727–2731 (2024). https://doi.org/10.1016/j.joule.2024.08.012
- M. Chen, D. Pang, H. Yan, Colored passive daytime radiative cooling coatings based on dielectric and plasmonic spheres. Appl. Therm. Eng. 216, 119125 (2022). https://doi.org/10.1016/j.applthermaleng.2022.119125
- B. Xiang, R. Zhang, Y. Luo, S. Zhang, L. Xu et al., 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 81, 105600 (2021). https://doi.org/10.1016/j.nanoen.2020.105600
- S. Liu, F. Zhang, X. Chen, H. Yan, W. Chen et al., Thin paints for durable and scalable radiative cooling. J. Energy Chem. 90, 176–182 (2024). https://doi.org/10.1016/j.jechem.2023.11.016
- W. Huang, Y. Chen, Y. Luo, J. Mandal, W. Li et al., Scalable aqueous processing-based passive daytime radiative cooling coatings. Adv. Funct. Mater. 31(19), 2010334 (2021). https://doi.org/10.1002/adfm.202010334
- J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
- M. Chen, D. Pang, H. Yan, Sustainable and self-cleaning bilayer coatings for high-efficiency daytime radiative cooling. J. Mater. Chem. C 10(21), 8329–8338 (2022). https://doi.org/10.1039/d2tc00834c
- M. Chen, D. Pang, X. Chen, H. Yan, Enhancing infrared emission behavior of polymer coatings for radiative cooling applications. J. Phys. D Appl. Phys. 54(29), 295501 (2021). https://doi.org/10.1088/1361-6463/abfb19
- J. Huang, D. Fan, Q. Li, Structural rod-like ps for highly efficient radiative cooling. Mater. Today Energy 25, 100955 (2022). https://doi.org/10.1016/j.mtener.2022.100955
- M. Chen, D. Pang, J. Mandal, X. Chen, H. Yan et al., Designing mesoporous photonic structures for high-performance passive daytime radiative cooling. Nano Lett. 21(3), 1412–1418 (2021). https://doi.org/10.1021/acs.nanolett.0c04241
- M. Chen, D. Pang, X. Chen, H. Yan, Investigating the effective radiative cooling performance of random dielectric microsphere coatings. Int. J. Heat Mass Transf. 173, 121263 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121263
- J. Lee, D. Im, S. Sung, J. Yu, H. Kim et al., Scalable and efficient radiative cooling coatings using uniform-hollow silica spheres. Appl. Therm. Eng. 254, 123810 (2024). https://doi.org/10.1016/j.applthermaleng.2024.123810
- C. Park, C. Park, S. Park, J. Lee, Y.S. Kim et al., Hybrid emitters with raspberry-like hollow SiO2 spheres for passive daytime radiative cooling. Chem. Eng. J. 459, 141652 (2023). https://doi.org/10.1016/j.cej.2023.141652
- J. Yu, C. Park, B. Kim, S. Sung, H. Kim et al., Enhancing passive radiative cooling films with hollow yttrium-oxide spheres insights from FDTD simulation. Macromol. Rapid Commun. 46(3), 2400770 (2025). https://doi.org/10.1002/marc.202400770
- M. Li, Z. Yan, D. Fan, Flexible radiative cooling textiles based on composite nanoporous fibers for personal thermal management. ACS Appl. Mater. Interfaces 15(14), 17848–17857 (2023). https://doi.org/10.1021/acsami.3c00252
- C. Cui, J. Lu, S. Zhang, J. Su, J. Han, Hierarchical-porous coating coupled with textile for passive daytime radiative cooling and self-cleaning. Sol. Energy Mater. Sol. Cells 247, 111954 (2022). https://doi.org/10.1016/j.solmat.2022.111954
- J. Huang, M. Li, D. Fan, Core-shell ps for devising high-performance full-day radiative cooling paint. Appl. Mater. Today 25, 101209 (2021). https://doi.org/10.1016/j.apmt.2021.101209
- X. Song, H. Gong, H. Li, M. Zhang, L. Jiang et al., Molecularly and structurally designed polyimide nanofiber radiative cooling films for spacecraft thermal management. Adv. Funct. Mater. 35(2), 2413191 (2025). https://doi.org/10.1002/adfm.202413191
- Y. Zhao, D. Pang, M. Chen, Z. Chen, H. Yan, Scalable aqueous processing-based radiative cooling coatings for heat dissipation applications. Appl. Mater. Today 26, 101298 (2022). https://doi.org/10.1016/j.apmt.2021.101298
- M. Chen, D. Pang, X. Chen, H. Yan, Y. Yang, Passive daytime radiative cooling: fundamentals, material designs, and applications. EcoMat 4(1), e12153 (2022). https://doi.org/10.1002/eom2.12153
- L. Lei, S. Meng, Y. Si, S. Shi, H. Wu et al., Wettability gradient-induced diode: MXene-engineered membrane for passive-evaporative cooling. Nano-Micro Lett. 16(1), 159 (2024). https://doi.org/10.1007/s40820-024-01359-8
- H. Li, J. Ma, W. Yan, J. Lan, W. Hong, Lithium-based water-absorbent hydrogel with a high solar cell cooling flux. Renew. Energy 235, 121277 (2024). https://doi.org/10.1016/j.renene.2024.121277
- H. Liu, J. Yu, C. Wang, Z. Zeng, P. Poredoš et al., Passive thermal management of electronic devices using sorption-based evaporative cooling. Device 1(6), 100122 (2023). https://doi.org/10.1016/j.device.2023.100122
- X. Liu, P. Li, J. Chen, P. Jiang, Y.-W. Mai et al., Hierarchically porous composite fabrics with ultrahigh metal–organic framework loading for zero-energy-consumption heat dissipation. Sci. Bull. 67(19), 1991–2000 (2022). https://doi.org/10.1016/j.scib.2022.09.014
- L. Yu, Y. Huang, W. Li, C. Shi, B.W. Sheldon et al., Radiative-coupled evaporative cooling: fundamentals, development, and applications. Nano Res. Energy 3(2), e9120107 (2024). https://doi.org/10.26599/nre.2023.9120107
- X. Dong, K.-Y. Chan, X. Yin, Y. Zhang, X. Zhao et al., Anisotropic hygroscopic hydrogels with synergistic insulation-radiation-evaporation for high-power and self-sustained passive daytime cooling. Nano-Micro Lett. 17(1), 240 (2025). https://doi.org/10.1007/s40820-025-01766-5
- Q. Ye, D. Chen, Z. Zhao, H. Yan, M. Chen, Adhesive hydrogel paint for passive heat dissipation via radiative coupled evaporation cooling. Small 21(17), 2412221 (2025). https://doi.org/10.1002/smll.202412221
- Y. Sun, Y. Ji, M. Javed, X. Li, Z. Fan et al., Preparation of passive daytime cooling fabric with the synergistic effect of radiative cooling and evaporative cooling. Adv. Mater. Technol. 7(3), 2100803 (2022). https://doi.org/10.1002/admt.202100803
- J. Li, X. Wang, D. Liang, N. Xu, B. Zhu et al., A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Sci. Adv. 8(32), eabq0411 (2022). https://doi.org/10.1126/sciadv.abq0411
- L. Yu, Y. Huang, Y. Zhao, Z. Rao, W. Li et al., Self-sustained and insulated radiative/evaporative cooler for daytime subambient passive cooling. ACS Appl. Mater. Interfaces 16(5), 6513–6522 (2024). https://doi.org/10.1021/acsami.3c19223
- C. Lei, Y. Guo, W. Guan, H. Lu, W. Shi et al., Polyzwitterionic hydrogels for efficient atmospheric water harvesting. Angew. Chem. Int. Ed. 61(13), e202200271 (2022). https://doi.org/10.1002/anie.202200271
- C. Shi, S.-H. Kim, N. Warren, N. Guo, X. Zhang et al., Hierarchically micro- and nanostructured polymer via crystallinity alteration for sustainable environmental cooling. Langmuir 40(38), 20195–20203 (2024). https://doi.org/10.1021/acs.langmuir.4c02567
- Q. Ye, N. Guo, M. Chen, Reversible solar heating and radiative cooling coupled with latent heat for self-adaptive thermoregulation. Appl. Phys. Lett. 126(11), 113903 (2025). https://doi.org/10.1063/5.0262028
References
F. Yi, Y. Gan, R. Liu, F. Liu, Y. Li, Experimental investigation on the heat transfer performance of a microchannel thermosiphon array for 5G telecommunication base stations. Appl. Therm. Eng. 242, 122561 (2024). https://doi.org/10.1016/j.applthermaleng.2024.122561
C. Park, W. Lee, C. Park, S. Park, J. Lee et al., Efficient thermal management and all-season energy harvesting using adaptive radiative cooling and a thermoelectric power generator. J. Energy Chem. 84, 496–501 (2023). https://doi.org/10.1016/j.jechem.2023.05.051
A. Zuazua-Ros, C. Martín Gómez, J.C. Ramos, J. Bermejo-Busto, Towards cooling systems integration in buildings: experimental analysis of a heat dissipation panel. Renew. Sustain. Energy Rev. 72, 73–82 (2017). https://doi.org/10.1016/j.rser.2017.01.065
C. Pan, Z. Jia, J. Wang, L. Wang, J. Wu, Optimization of liquid cooling heat dissipation control strategy for electric vehicle power batteries based on linear time-varying model predictive control. Energy 283, 129099 (2023). https://doi.org/10.1016/j.energy.2023.129099
S. Xue, G. Huang, Q. Chen, X. Wang, J. Fan et al., Personal thermal management by radiative cooling and heating. Nano-Micro Lett. 16(1), 153 (2024). https://doi.org/10.1007/s40820-024-01360-1
H. Yu, J. Lu, J. Yan, T. Bai, Z. Niu et al., Selective emission fabric for indoor and outdoor passive radiative cooling in personal thermal management. Nano-Micro Lett. 17(1), 192 (2025). https://doi.org/10.1007/s40820-025-01713-4
A.-Q. Xie, H. Qiu, W. Jiang, Y. Wang, S. Niu et al., Recent advances in spectrally selective daytime radiative cooling materials. Nano-Micro Lett. 17(1), 264 (2025). https://doi.org/10.1007/s40820-025-01771-8
Q. Ye, X. Chen, H. Yan, M. Chen, Thermal conductive radiative cooling film for local heat dissipation. Mater. Today Phys. 50, 101626 (2025). https://doi.org/10.1016/j.mtphys.2024.101626
N. Guo, C. Shi, N. Warren, E.A. Sprague-Klein, B.W. Sheldon et al., Challenges and opportunities for passive thermoregulation. Adv. Energy Mater. 14(34), 2401776 (2024). https://doi.org/10.1002/aenm.202401776
Z. Yan, H. Zhai, D. Fan, Q. Li, Biological optics, photonics and bioinspired radiative cooling. Prog. Mater. Sci. 144, 101291 (2024). https://doi.org/10.1016/j.pmatsci.2024.101291
Z. Zhang, M. Yu, C. Ma, L. He, X. He et al., A Janus smart window for temperature-adaptive radiative cooling and adjustable solar transmittance. Nano-Micro Lett. 17(1), 233 (2025). https://doi.org/10.1007/s40820-025-01740-1
Z. Yan, G. Zhu, D. Fan, Q. Li, Bioinspired metafabric with dual-gradient Janus design for personal radiative and evaporative cooling. Adv. Funct. Mater. 35(2), 2412261 (2025). https://doi.org/10.1002/adfm.202412261
W. Xie, C. Xiao, Y. Sun, Y. Fan, B. Zhao et al., Flexible photonic radiative cooling films: fundamentals, fabrication and applications. Adv. Funct. Mater. 33(46), 2305734 (2023). https://doi.org/10.1002/adfm.202305734
X. Wang, X. Liu, Z. Li, H. Zhang, Z. Yang et al., Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 30(5), 1907562 (2020). https://doi.org/10.1002/adfm.201907562
J. Liu, Y. Du, S. Zhang, J. Yan, Spectrally engineered textiles for personal cooling. Joule 8(10), 2727–2731 (2024). https://doi.org/10.1016/j.joule.2024.08.012
M. Chen, D. Pang, H. Yan, Colored passive daytime radiative cooling coatings based on dielectric and plasmonic spheres. Appl. Therm. Eng. 216, 119125 (2022). https://doi.org/10.1016/j.applthermaleng.2022.119125
B. Xiang, R. Zhang, Y. Luo, S. Zhang, L. Xu et al., 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 81, 105600 (2021). https://doi.org/10.1016/j.nanoen.2020.105600
S. Liu, F. Zhang, X. Chen, H. Yan, W. Chen et al., Thin paints for durable and scalable radiative cooling. J. Energy Chem. 90, 176–182 (2024). https://doi.org/10.1016/j.jechem.2023.11.016
W. Huang, Y. Chen, Y. Luo, J. Mandal, W. Li et al., Scalable aqueous processing-based passive daytime radiative cooling coatings. Adv. Funct. Mater. 31(19), 2010334 (2021). https://doi.org/10.1002/adfm.202010334
J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
M. Chen, D. Pang, H. Yan, Sustainable and self-cleaning bilayer coatings for high-efficiency daytime radiative cooling. J. Mater. Chem. C 10(21), 8329–8338 (2022). https://doi.org/10.1039/d2tc00834c
M. Chen, D. Pang, X. Chen, H. Yan, Enhancing infrared emission behavior of polymer coatings for radiative cooling applications. J. Phys. D Appl. Phys. 54(29), 295501 (2021). https://doi.org/10.1088/1361-6463/abfb19
J. Huang, D. Fan, Q. Li, Structural rod-like ps for highly efficient radiative cooling. Mater. Today Energy 25, 100955 (2022). https://doi.org/10.1016/j.mtener.2022.100955
M. Chen, D. Pang, J. Mandal, X. Chen, H. Yan et al., Designing mesoporous photonic structures for high-performance passive daytime radiative cooling. Nano Lett. 21(3), 1412–1418 (2021). https://doi.org/10.1021/acs.nanolett.0c04241
M. Chen, D. Pang, X. Chen, H. Yan, Investigating the effective radiative cooling performance of random dielectric microsphere coatings. Int. J. Heat Mass Transf. 173, 121263 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121263
J. Lee, D. Im, S. Sung, J. Yu, H. Kim et al., Scalable and efficient radiative cooling coatings using uniform-hollow silica spheres. Appl. Therm. Eng. 254, 123810 (2024). https://doi.org/10.1016/j.applthermaleng.2024.123810
C. Park, C. Park, S. Park, J. Lee, Y.S. Kim et al., Hybrid emitters with raspberry-like hollow SiO2 spheres for passive daytime radiative cooling. Chem. Eng. J. 459, 141652 (2023). https://doi.org/10.1016/j.cej.2023.141652
J. Yu, C. Park, B. Kim, S. Sung, H. Kim et al., Enhancing passive radiative cooling films with hollow yttrium-oxide spheres insights from FDTD simulation. Macromol. Rapid Commun. 46(3), 2400770 (2025). https://doi.org/10.1002/marc.202400770
M. Li, Z. Yan, D. Fan, Flexible radiative cooling textiles based on composite nanoporous fibers for personal thermal management. ACS Appl. Mater. Interfaces 15(14), 17848–17857 (2023). https://doi.org/10.1021/acsami.3c00252
C. Cui, J. Lu, S. Zhang, J. Su, J. Han, Hierarchical-porous coating coupled with textile for passive daytime radiative cooling and self-cleaning. Sol. Energy Mater. Sol. Cells 247, 111954 (2022). https://doi.org/10.1016/j.solmat.2022.111954
J. Huang, M. Li, D. Fan, Core-shell ps for devising high-performance full-day radiative cooling paint. Appl. Mater. Today 25, 101209 (2021). https://doi.org/10.1016/j.apmt.2021.101209
X. Song, H. Gong, H. Li, M. Zhang, L. Jiang et al., Molecularly and structurally designed polyimide nanofiber radiative cooling films for spacecraft thermal management. Adv. Funct. Mater. 35(2), 2413191 (2025). https://doi.org/10.1002/adfm.202413191
Y. Zhao, D. Pang, M. Chen, Z. Chen, H. Yan, Scalable aqueous processing-based radiative cooling coatings for heat dissipation applications. Appl. Mater. Today 26, 101298 (2022). https://doi.org/10.1016/j.apmt.2021.101298
M. Chen, D. Pang, X. Chen, H. Yan, Y. Yang, Passive daytime radiative cooling: fundamentals, material designs, and applications. EcoMat 4(1), e12153 (2022). https://doi.org/10.1002/eom2.12153
L. Lei, S. Meng, Y. Si, S. Shi, H. Wu et al., Wettability gradient-induced diode: MXene-engineered membrane for passive-evaporative cooling. Nano-Micro Lett. 16(1), 159 (2024). https://doi.org/10.1007/s40820-024-01359-8
H. Li, J. Ma, W. Yan, J. Lan, W. Hong, Lithium-based water-absorbent hydrogel with a high solar cell cooling flux. Renew. Energy 235, 121277 (2024). https://doi.org/10.1016/j.renene.2024.121277
H. Liu, J. Yu, C. Wang, Z. Zeng, P. Poredoš et al., Passive thermal management of electronic devices using sorption-based evaporative cooling. Device 1(6), 100122 (2023). https://doi.org/10.1016/j.device.2023.100122
X. Liu, P. Li, J. Chen, P. Jiang, Y.-W. Mai et al., Hierarchically porous composite fabrics with ultrahigh metal–organic framework loading for zero-energy-consumption heat dissipation. Sci. Bull. 67(19), 1991–2000 (2022). https://doi.org/10.1016/j.scib.2022.09.014
L. Yu, Y. Huang, W. Li, C. Shi, B.W. Sheldon et al., Radiative-coupled evaporative cooling: fundamentals, development, and applications. Nano Res. Energy 3(2), e9120107 (2024). https://doi.org/10.26599/nre.2023.9120107
X. Dong, K.-Y. Chan, X. Yin, Y. Zhang, X. Zhao et al., Anisotropic hygroscopic hydrogels with synergistic insulation-radiation-evaporation for high-power and self-sustained passive daytime cooling. Nano-Micro Lett. 17(1), 240 (2025). https://doi.org/10.1007/s40820-025-01766-5
Q. Ye, D. Chen, Z. Zhao, H. Yan, M. Chen, Adhesive hydrogel paint for passive heat dissipation via radiative coupled evaporation cooling. Small 21(17), 2412221 (2025). https://doi.org/10.1002/smll.202412221
Y. Sun, Y. Ji, M. Javed, X. Li, Z. Fan et al., Preparation of passive daytime cooling fabric with the synergistic effect of radiative cooling and evaporative cooling. Adv. Mater. Technol. 7(3), 2100803 (2022). https://doi.org/10.1002/admt.202100803
J. Li, X. Wang, D. Liang, N. Xu, B. Zhu et al., A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Sci. Adv. 8(32), eabq0411 (2022). https://doi.org/10.1126/sciadv.abq0411
L. Yu, Y. Huang, Y. Zhao, Z. Rao, W. Li et al., Self-sustained and insulated radiative/evaporative cooler for daytime subambient passive cooling. ACS Appl. Mater. Interfaces 16(5), 6513–6522 (2024). https://doi.org/10.1021/acsami.3c19223
C. Lei, Y. Guo, W. Guan, H. Lu, W. Shi et al., Polyzwitterionic hydrogels for efficient atmospheric water harvesting. Angew. Chem. Int. Ed. 61(13), e202200271 (2022). https://doi.org/10.1002/anie.202200271
C. Shi, S.-H. Kim, N. Warren, N. Guo, X. Zhang et al., Hierarchically micro- and nanostructured polymer via crystallinity alteration for sustainable environmental cooling. Langmuir 40(38), 20195–20203 (2024). https://doi.org/10.1021/acs.langmuir.4c02567
Q. Ye, N. Guo, M. Chen, Reversible solar heating and radiative cooling coupled with latent heat for self-adaptive thermoregulation. Appl. Phys. Lett. 126(11), 113903 (2025). https://doi.org/10.1063/5.0262028