Electrostatic Regulation of Na+ Coordination Chemistry for High-Performance All-Solid-State Sodium Batteries
Corresponding Author: Qingsong Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 72
Abstract
Ion migration capability and interfacial chemistry of solid polymer electrolytes (SPEs) in all-solid-state sodium metal batteries (ASSMBs) are closely related to the Na+ coordination environment. Herein, an electrostatic engineering strategy is proposed to regulate the Na+ coordinated structure by employing a fluorinated metal–organic framework as an electron-rich model. Theoretical and experimental results revealed that the abundant electron-rich F sites can accelerate the disassociation of Na-salt through electrostatic attraction to release free Na+, while forcing anions into a Na+ coordination structure though electrostatic repulsion to weaken the Na+ coordination with polymer, thus promoting rapid Na+ transport. The optimized anion-rich weak solvation structure fosters a stable inorganic-dominated solid–electrolyte interphase, significantly enhancing the interfacial stability toward Na anode. Consequently, the Na/Na symmetric cell delivered stable Na plating/stripping over 2500 h at 0.1 mA cm−2. Impressively, the assembled ASSMBs demonstrated stable performance of over 2000 cycles even under high rate of 2 C with capacity retention nearly 100%, surpassing most reported ASSMBs using various solid-state electrolytes. This work provides a new avenue for regulating the Na+ coordination structure of SPEs by exploration of electrostatic effect engineering to achieve high-performance all-solid-state alkali metal batteries.
Highlights:
1 An electrostatic engineering strategy is proposed to regulate the Na+ coordinated structure by employing a fluorinated metal–organic framework as an electron-rich model.
2 The abundant electron-rich F sites can accelerate Na-salt disassociation while forcing anions into Na+ coordination structure though electrostatic effect to weaken the Na–O coordination, thus promoting rapid Na+ transport.
3 Anion-rich weak Na+ solvation structure is achieved and contributes to a highly stable inorganic-rich solid–electrolyte interphase, significantly enhances the interfacial stability toward Na anode.
4 Impressively, Na/Na symmetric cell delivered stable Na plating/stripping over 2500 h, and the assembled all-solid-state sodium metal batteries demonstrated stable performance of over 2000 cycles under high rate of 2 C with capacity retention nearly 100%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Xiong, T. Lin, C. Tian, G. Jiang, R. Xu et al., Creep-type all-solid-state cathode achieving long life. Nat. Commun. 15(1), 3706 (2024). https://doi.org/10.1038/s41467-024-48174-8
- B. Hu, J. Xu, Z. Fan, C. Xu, S. Han et al., Covalent organic framework based lithium–sulfur batteries: materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 13(10), 2203540 (2023). https://doi.org/10.1002/aenm.202203540
- M. Yang, F. Feng, Y. Ren, S. Chen, F. Chen et al., Coupling anion-capturer with polymer chains in fireproof gel polymer electrolyte enables dendrite-free sodium metal batteries. Adv. Funct. Mater. 33(46), 2305383 (2023). https://doi.org/10.1002/adfm.202305383
- X. Wu, M. Wang, H. Pan, X. Sun, S. Tang et al., Developing high-energy, stable all-solid-state lithium batteries using aluminum-based anodes and high-nickel cathodes. Nano-Micro Lett. 17(1), 239 (2025). https://doi.org/10.1007/s40820-025-01751-y
- H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15(1), 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
- Y. Lu, L. Li, Q. Zhang, Z. Niu, J. Chen, Electrolyte and interface engineering for solid-state sodium batteries. Joule 2(9), 1747–1770 (2018). https://doi.org/10.1016/j.joule.2018.07.028
- L. Xiang, X. Li, J. Xiao, L. Zhu, X. Zhan, Interface issues and challenges for NASICON-based solid-state sodium-metal batteries. Advanced Powder Materials 3(3), 100181 (2024). https://doi.org/10.1016/j.apmate.2024.100181
- A. Hayashi, N. Masuzawa, S. Yubuchi, F. Tsuji, C. Hotehama et al., A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature. Nat. Commun. 10(1), 5266 (2019). https://doi.org/10.1038/s41467-019-13178-2
- L. Xiang, D. Jiang, Y. Gao, C. Zhang, X. Ren et al., Self-formed fluorinated interphase with Fe valence gradient for dendrite-free solid-state sodium-metal batteries. Adv. Funct. Mater. 34(5), 2301670 (2024). https://doi.org/10.1002/adfm.202301670
- F. Gebert, J. Knott, R. Gorkin, S.-L. Chou, S.-X. Dou, Polymer electrolytes for sodium-ion batteries. Energy Storage Mater. 36, 10–30 (2021). https://doi.org/10.1016/j.ensm.2020.11.030
- J. Guo, F. Feng, S. Zhao, Z. Shi, R. Wang et al., High FeLS(C) electrochemical activity of an iron hexacyanoferrate cathode boosts superior sodium ion storage. Carbon Energy 5(5), e314 (2023). https://doi.org/10.1002/cey2.314
- Y. Mu, Z. Liao, Y. Chu, Q. Zhang, L. Zou et al., Electron acceptor-driven solid electrolyte interphases with elevated LiF content for 4.7 V lithium metal batteries. Nano-Micro Lett. 17(1), 163 (2025). https://doi.org/10.1007/s40820-025-01663-x
- J. Zhu, Z. Zhang, S. Zhao, A.S. Westover, I. Belharouak, P.-F. Cao, Single-ion conducting polymer electrolytes for solid-state lithium–metal batteries: design, performance, and challenges. Adv. Energy Mater. 11(14), 2003836 (2021). https://doi.org/10.1002/aenm.202003836
- S. Han, P. Wen, H. Wang, Y. Zhou, Y. Gu et al., Sequencing polymers to enable solid-state lithium batteries. Nat. Mater. 22(12), 1515–1522 (2023). https://doi.org/10.1038/s41563-023-01693-z
- D.M. Reinoso, M.A. Frechero, Strategies for rational design of polymer-based solid electrolytes for advanced lithium energy storage applications. Energy Storage Mater. 52, 430–464 (2022). https://doi.org/10.1016/j.ensm.2022.08.019
- J. Guo, F. Feng, S. Zhao, R. Wang, M. Yang et al., Achieving ultra-stable all-solid-state sodium metal batteries with anion-trapping 3D fiber network enhanced polymer electrolyte. Small 19(16), 2206740 (2023). https://doi.org/10.1002/smll.202206740
- J. Guo, F. Feng, X. Jiang, R. Wang, D. Chu et al., Boosting selective Na+ migration kinetics in structuring composite polymer electrolyte realizes ultrastable all-solid-state sodium batteries. Adv. Funct. Mater. 34(26), 2313496 (2024). https://doi.org/10.1002/adfm.202313496
- X. Miao, S. Guan, C. Ma, L. Li, C.-W. Nan, Role of interfaces in solid-state batteries. Adv. Mater. 35(50), 2206402 (2023). https://doi.org/10.1002/adma.202206402
- M. Yang, F. Feng, J. Guo, R. Wang, J. Yu et al., Anion trapping-coupling strategy driven asymmetric nonflammable gel electrolyte for high performance sodium batteries. Energy Storage Mater. 70, 103492 (2024). https://doi.org/10.1016/j.ensm.2024.103492
- Y.-X. Yao, X. Chen, C. Yan, X.-Q. Zhang, W.-L. Cai et al., Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. 133(8), 4136–4143 (2021). https://doi.org/10.1002/ange.202011482
- W. Zhang, T. Yang, X. Liao, Y. Song, Y. Zhao, All-fluorinated electrolyte directly tuned Li+ solvation sheath enabling high-quality passivated interfaces for robust Li metal battery under high voltage operation. Energy Storage Mater. 57, 249–259 (2023). https://doi.org/10.1016/j.ensm.2023.02.027
- X. Xie, Z. Wang, S. He, K. Chen, Q. Huang et al., Influencing factors on Li-ion conductivity and interfacial stability of solid polymer electrolytes, exampled by polycarbonates, polyoxalates and polymalonates. Angew. Chem. Int. Ed. 62(13), e202218229 (2023). https://doi.org/10.1002/anie.202218229
- X. Song, K. Ma, H. Wang, J. Wang, J. Chen et al., Enhancing Li+ transfer efficiency and strength of PEO-based composite solid electrolyte for long stable cycling of all-solid-state lithium metal batteries. Compos. Commun. 50, 102013 (2024). https://doi.org/10.1016/j.coco.2024.102013
- Q. Zhao, X. Liu, S. Stalin, K. Khan, L.A. Archer, Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4(5), 365–373 (2019). https://doi.org/10.1038/s41560-019-0349-7
- Y. Ren, S. Chen, M. Odziomek, J. Guo, P. Xu et al., Mixing functionality in polymer electrolytes: a new horizon for achieving high-performance all-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 64(18), e202422169 (2025). https://doi.org/10.1002/anie.202422169
- Y. Wang, T. Pan, G. Yuan, Q. Li, H. Pang, MOF and MOF-derived composites for flexible energy storage devices. Compos. Commun. 52, 102144 (2024). https://doi.org/10.1016/j.coco.2024.102144
- X.X. Liu, L. Pan, H. Zhang, P. Yuan, M. Cao et al., Host-guest inversion engineering induced superionic composite solid electrolytes for high-rate solid-state alkali metal batteries. Nano-Micro Lett. 17(1), 190 (2025). https://doi.org/10.1007/s40820-025-01691-7
- Y. Liu, Z. Jin, Z. Liu, H. Xu, F. Sun et al., Regulating the solvation structure in polymer electrolytes for high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 63(34), e202405802 (2024). https://doi.org/10.1002/anie.202405802
- Z. Fan, X. Chen, J. Shi, H. Nie, X. Zhang et al., Functionalized separators boosting electrochemical performances for lithium batteries. Nano-Micro Lett. 17(1), 128 (2025). https://doi.org/10.1007/s40820-024-01596-x
- Z. Hu, Y. Peng, Z. Kang, Y. Qian, D. Zhao, A modulated hydrothermal (MHT) approach for the facile synthesis of UiO-66-type MOFs. Inorg. Chem. 54(10), 4862–4868 (2015). https://doi.org/10.1021/acs.inorgchem.5b00435
- S. Wang, S. Xiao, S. Li, C. Liu, H. Cai et al., Organic cationic-coordinated perfluoropolymer electrolytes with strong Li+-solvent interaction for solid state Li-metal batteries. Angew. Chem. Int. Ed. 63(52), e202412434 (2024). https://doi.org/10.1002/anie.202412434
- Y. Liu, X. Xu, O.O. Kapitanova, P.V. Evdokimov, Z. Song et al., Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv. Energy Mater. 12(9), 2103589 (2022). https://doi.org/10.1002/aenm.202103589
- W. Wen, Q. Zeng, P. Chen, X. Wen, Z. Li et al., Enhancing Li-ion conduction and mechanical properties via addition of fluorine-containing metal: organic frameworks in all-solid-state cross-linked hyperbranched polymer electrolytes. Nano Res. 15(10), 8946–8954 (2022). https://doi.org/10.1007/s12274-022-4523-z
- M.C. Nguyen, H.L. Nguyen, T.P.M. Duong, S.-H. Kim, J.-Y. Kim et al., Highly safe, ultra-thin MOF-based solid polymer electrolytes for superior all-solid-state lithium-metal battery performance. Adv. Funct. Mater. 34(42), 2406987 (2024). https://doi.org/10.1002/adfm.202406987
- M. Yao, H. Zhang, C. Xing, Q. Li, Y. Tang et al., Rational design of biomimetic ant-nest solid polymer electrolyte for high-voltage Li-metal battery with robust mechanical and electrochemical performance. Energy Storage Mater. 41, 51–60 (2021). https://doi.org/10.1016/j.ensm.2021.05.049
- Y. Ren, M. Yang, Z. Shi, J. Guo, D. Chu et al., A metalophilic, anion-trapped composite gel electrolyte enables highly stable electrode/electrolyte interfaces in sodium metal batteries. Energy Storage Mater. 61, 102909 (2023). https://doi.org/10.1016/j.ensm.2023.102909
- X. Zhou, C. Li, B. Zhang, F. Huang, P. Zhou et al., Difunctional NH2-modified MOF supporting plentiful ion channels and stable LiF-rich SEI construction via organocatalysis for all-solid-state lithium metal batteries. J. Mater. Sci. Technol. 136, 140–148 (2023). https://doi.org/10.1016/j.jmst.2022.07.017
- S. Liu, X. Shen, L. Wei, R. Wang, B. Ding et al., Molecular coordination induced high ionic conductivity of composite electrolytes and stable LiF/Li3N interface in long-term cycling all-solid-state lithium metal batteries. Energy Storage Mater. 59, 102773 (2023). https://doi.org/10.1016/j.ensm.2023.102773
- O. Sheng, C. Jin, J. Luo, H. Yuan, H. Huang et al., Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Lett. 18(5), 3104–3112 (2018). https://doi.org/10.1021/acs.nanolett.8b00659
- M. Ma, F. Shao, P. Wen, K. Chen, J. Li et al., Designing weakly solvating solid main-chain fluoropolymer electrolytes: synergistically enhancing stability toward Li anodes and high-voltage cathodes. ACS Energy Lett. 6(12), 4255–4264 (2021). https://doi.org/10.1021/acsenergylett.1c02036
- H.-Y. Zhou, Y. Ou, S.-S. Yan, J. Xie, P. Zhou et al., Supramolecular polymer ion conductor with weakened Li ion solvation enables room temperature all-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 62(35), e202306948 (2023). https://doi.org/10.1002/anie.202306948
- T. Wang, X. Zhang, N. Yuan, C. Sun, Molecular design of a metal–organic framework material rich in fluorine as an interface layer for high-performance solid-state Li metal batteries. Chem. Eng. J. 451, 138819 (2023). https://doi.org/10.1016/j.cej.2022.138819
- J. Li, Y. Ji, H. Song, S. Chen, S. Ding et al., Insights into the interfacial degradation of high-voltage all-solid-state lithium batteries. Nano-Micro Lett. 14(1), 191 (2022). https://doi.org/10.1007/s40820-022-00936-z
- N. Yao, S.-Y. Sun, X. Chen, X.-Q. Zhang, X. Shen et al., The anionic chemistry in regulating the reductive stability of electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 61(52), e202210859 (2022). https://doi.org/10.1002/anie.202210859
References
X. Xiong, T. Lin, C. Tian, G. Jiang, R. Xu et al., Creep-type all-solid-state cathode achieving long life. Nat. Commun. 15(1), 3706 (2024). https://doi.org/10.1038/s41467-024-48174-8
B. Hu, J. Xu, Z. Fan, C. Xu, S. Han et al., Covalent organic framework based lithium–sulfur batteries: materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 13(10), 2203540 (2023). https://doi.org/10.1002/aenm.202203540
M. Yang, F. Feng, Y. Ren, S. Chen, F. Chen et al., Coupling anion-capturer with polymer chains in fireproof gel polymer electrolyte enables dendrite-free sodium metal batteries. Adv. Funct. Mater. 33(46), 2305383 (2023). https://doi.org/10.1002/adfm.202305383
X. Wu, M. Wang, H. Pan, X. Sun, S. Tang et al., Developing high-energy, stable all-solid-state lithium batteries using aluminum-based anodes and high-nickel cathodes. Nano-Micro Lett. 17(1), 239 (2025). https://doi.org/10.1007/s40820-025-01751-y
H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15(1), 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
Y. Lu, L. Li, Q. Zhang, Z. Niu, J. Chen, Electrolyte and interface engineering for solid-state sodium batteries. Joule 2(9), 1747–1770 (2018). https://doi.org/10.1016/j.joule.2018.07.028
L. Xiang, X. Li, J. Xiao, L. Zhu, X. Zhan, Interface issues and challenges for NASICON-based solid-state sodium-metal batteries. Advanced Powder Materials 3(3), 100181 (2024). https://doi.org/10.1016/j.apmate.2024.100181
A. Hayashi, N. Masuzawa, S. Yubuchi, F. Tsuji, C. Hotehama et al., A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature. Nat. Commun. 10(1), 5266 (2019). https://doi.org/10.1038/s41467-019-13178-2
L. Xiang, D. Jiang, Y. Gao, C. Zhang, X. Ren et al., Self-formed fluorinated interphase with Fe valence gradient for dendrite-free solid-state sodium-metal batteries. Adv. Funct. Mater. 34(5), 2301670 (2024). https://doi.org/10.1002/adfm.202301670
F. Gebert, J. Knott, R. Gorkin, S.-L. Chou, S.-X. Dou, Polymer electrolytes for sodium-ion batteries. Energy Storage Mater. 36, 10–30 (2021). https://doi.org/10.1016/j.ensm.2020.11.030
J. Guo, F. Feng, S. Zhao, Z. Shi, R. Wang et al., High FeLS(C) electrochemical activity of an iron hexacyanoferrate cathode boosts superior sodium ion storage. Carbon Energy 5(5), e314 (2023). https://doi.org/10.1002/cey2.314
Y. Mu, Z. Liao, Y. Chu, Q. Zhang, L. Zou et al., Electron acceptor-driven solid electrolyte interphases with elevated LiF content for 4.7 V lithium metal batteries. Nano-Micro Lett. 17(1), 163 (2025). https://doi.org/10.1007/s40820-025-01663-x
J. Zhu, Z. Zhang, S. Zhao, A.S. Westover, I. Belharouak, P.-F. Cao, Single-ion conducting polymer electrolytes for solid-state lithium–metal batteries: design, performance, and challenges. Adv. Energy Mater. 11(14), 2003836 (2021). https://doi.org/10.1002/aenm.202003836
S. Han, P. Wen, H. Wang, Y. Zhou, Y. Gu et al., Sequencing polymers to enable solid-state lithium batteries. Nat. Mater. 22(12), 1515–1522 (2023). https://doi.org/10.1038/s41563-023-01693-z
D.M. Reinoso, M.A. Frechero, Strategies for rational design of polymer-based solid electrolytes for advanced lithium energy storage applications. Energy Storage Mater. 52, 430–464 (2022). https://doi.org/10.1016/j.ensm.2022.08.019
J. Guo, F. Feng, S. Zhao, R. Wang, M. Yang et al., Achieving ultra-stable all-solid-state sodium metal batteries with anion-trapping 3D fiber network enhanced polymer electrolyte. Small 19(16), 2206740 (2023). https://doi.org/10.1002/smll.202206740
J. Guo, F. Feng, X. Jiang, R. Wang, D. Chu et al., Boosting selective Na+ migration kinetics in structuring composite polymer electrolyte realizes ultrastable all-solid-state sodium batteries. Adv. Funct. Mater. 34(26), 2313496 (2024). https://doi.org/10.1002/adfm.202313496
X. Miao, S. Guan, C. Ma, L. Li, C.-W. Nan, Role of interfaces in solid-state batteries. Adv. Mater. 35(50), 2206402 (2023). https://doi.org/10.1002/adma.202206402
M. Yang, F. Feng, J. Guo, R. Wang, J. Yu et al., Anion trapping-coupling strategy driven asymmetric nonflammable gel electrolyte for high performance sodium batteries. Energy Storage Mater. 70, 103492 (2024). https://doi.org/10.1016/j.ensm.2024.103492
Y.-X. Yao, X. Chen, C. Yan, X.-Q. Zhang, W.-L. Cai et al., Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. 133(8), 4136–4143 (2021). https://doi.org/10.1002/ange.202011482
W. Zhang, T. Yang, X. Liao, Y. Song, Y. Zhao, All-fluorinated electrolyte directly tuned Li+ solvation sheath enabling high-quality passivated interfaces for robust Li metal battery under high voltage operation. Energy Storage Mater. 57, 249–259 (2023). https://doi.org/10.1016/j.ensm.2023.02.027
X. Xie, Z. Wang, S. He, K. Chen, Q. Huang et al., Influencing factors on Li-ion conductivity and interfacial stability of solid polymer electrolytes, exampled by polycarbonates, polyoxalates and polymalonates. Angew. Chem. Int. Ed. 62(13), e202218229 (2023). https://doi.org/10.1002/anie.202218229
X. Song, K. Ma, H. Wang, J. Wang, J. Chen et al., Enhancing Li+ transfer efficiency and strength of PEO-based composite solid electrolyte for long stable cycling of all-solid-state lithium metal batteries. Compos. Commun. 50, 102013 (2024). https://doi.org/10.1016/j.coco.2024.102013
Q. Zhao, X. Liu, S. Stalin, K. Khan, L.A. Archer, Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4(5), 365–373 (2019). https://doi.org/10.1038/s41560-019-0349-7
Y. Ren, S. Chen, M. Odziomek, J. Guo, P. Xu et al., Mixing functionality in polymer electrolytes: a new horizon for achieving high-performance all-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 64(18), e202422169 (2025). https://doi.org/10.1002/anie.202422169
Y. Wang, T. Pan, G. Yuan, Q. Li, H. Pang, MOF and MOF-derived composites for flexible energy storage devices. Compos. Commun. 52, 102144 (2024). https://doi.org/10.1016/j.coco.2024.102144
X.X. Liu, L. Pan, H. Zhang, P. Yuan, M. Cao et al., Host-guest inversion engineering induced superionic composite solid electrolytes for high-rate solid-state alkali metal batteries. Nano-Micro Lett. 17(1), 190 (2025). https://doi.org/10.1007/s40820-025-01691-7
Y. Liu, Z. Jin, Z. Liu, H. Xu, F. Sun et al., Regulating the solvation structure in polymer electrolytes for high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 63(34), e202405802 (2024). https://doi.org/10.1002/anie.202405802
Z. Fan, X. Chen, J. Shi, H. Nie, X. Zhang et al., Functionalized separators boosting electrochemical performances for lithium batteries. Nano-Micro Lett. 17(1), 128 (2025). https://doi.org/10.1007/s40820-024-01596-x
Z. Hu, Y. Peng, Z. Kang, Y. Qian, D. Zhao, A modulated hydrothermal (MHT) approach for the facile synthesis of UiO-66-type MOFs. Inorg. Chem. 54(10), 4862–4868 (2015). https://doi.org/10.1021/acs.inorgchem.5b00435
S. Wang, S. Xiao, S. Li, C. Liu, H. Cai et al., Organic cationic-coordinated perfluoropolymer electrolytes with strong Li+-solvent interaction for solid state Li-metal batteries. Angew. Chem. Int. Ed. 63(52), e202412434 (2024). https://doi.org/10.1002/anie.202412434
Y. Liu, X. Xu, O.O. Kapitanova, P.V. Evdokimov, Z. Song et al., Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv. Energy Mater. 12(9), 2103589 (2022). https://doi.org/10.1002/aenm.202103589
W. Wen, Q. Zeng, P. Chen, X. Wen, Z. Li et al., Enhancing Li-ion conduction and mechanical properties via addition of fluorine-containing metal: organic frameworks in all-solid-state cross-linked hyperbranched polymer electrolytes. Nano Res. 15(10), 8946–8954 (2022). https://doi.org/10.1007/s12274-022-4523-z
M.C. Nguyen, H.L. Nguyen, T.P.M. Duong, S.-H. Kim, J.-Y. Kim et al., Highly safe, ultra-thin MOF-based solid polymer electrolytes for superior all-solid-state lithium-metal battery performance. Adv. Funct. Mater. 34(42), 2406987 (2024). https://doi.org/10.1002/adfm.202406987
M. Yao, H. Zhang, C. Xing, Q. Li, Y. Tang et al., Rational design of biomimetic ant-nest solid polymer electrolyte for high-voltage Li-metal battery with robust mechanical and electrochemical performance. Energy Storage Mater. 41, 51–60 (2021). https://doi.org/10.1016/j.ensm.2021.05.049
Y. Ren, M. Yang, Z. Shi, J. Guo, D. Chu et al., A metalophilic, anion-trapped composite gel electrolyte enables highly stable electrode/electrolyte interfaces in sodium metal batteries. Energy Storage Mater. 61, 102909 (2023). https://doi.org/10.1016/j.ensm.2023.102909
X. Zhou, C. Li, B. Zhang, F. Huang, P. Zhou et al., Difunctional NH2-modified MOF supporting plentiful ion channels and stable LiF-rich SEI construction via organocatalysis for all-solid-state lithium metal batteries. J. Mater. Sci. Technol. 136, 140–148 (2023). https://doi.org/10.1016/j.jmst.2022.07.017
S. Liu, X. Shen, L. Wei, R. Wang, B. Ding et al., Molecular coordination induced high ionic conductivity of composite electrolytes and stable LiF/Li3N interface in long-term cycling all-solid-state lithium metal batteries. Energy Storage Mater. 59, 102773 (2023). https://doi.org/10.1016/j.ensm.2023.102773
O. Sheng, C. Jin, J. Luo, H. Yuan, H. Huang et al., Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Lett. 18(5), 3104–3112 (2018). https://doi.org/10.1021/acs.nanolett.8b00659
M. Ma, F. Shao, P. Wen, K. Chen, J. Li et al., Designing weakly solvating solid main-chain fluoropolymer electrolytes: synergistically enhancing stability toward Li anodes and high-voltage cathodes. ACS Energy Lett. 6(12), 4255–4264 (2021). https://doi.org/10.1021/acsenergylett.1c02036
H.-Y. Zhou, Y. Ou, S.-S. Yan, J. Xie, P. Zhou et al., Supramolecular polymer ion conductor with weakened Li ion solvation enables room temperature all-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 62(35), e202306948 (2023). https://doi.org/10.1002/anie.202306948
T. Wang, X. Zhang, N. Yuan, C. Sun, Molecular design of a metal–organic framework material rich in fluorine as an interface layer for high-performance solid-state Li metal batteries. Chem. Eng. J. 451, 138819 (2023). https://doi.org/10.1016/j.cej.2022.138819
J. Li, Y. Ji, H. Song, S. Chen, S. Ding et al., Insights into the interfacial degradation of high-voltage all-solid-state lithium batteries. Nano-Micro Lett. 14(1), 191 (2022). https://doi.org/10.1007/s40820-022-00936-z
N. Yao, S.-Y. Sun, X. Chen, X.-Q. Zhang, X. Shen et al., The anionic chemistry in regulating the reductive stability of electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 61(52), e202210859 (2022). https://doi.org/10.1002/anie.202210859