Asymmetric Side-Group Engineering of Nonfused Ring Electron Acceptors for High-Efficiency Thick-Film Organic Solar Cells
Corresponding Author: Zhishan Bo
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 81
Abstract
A nonfused ring electron acceptor (NFREA), designated as TT-Ph-C6, has been synthesized with the aim of enhancing the power conversion efficiency (PCE) of organic solar cells (OSCs). By integrating asymmetric phenylalkylamino side groups, TT-Ph-C6 demonstrates excellent solubility and its crystal structure exhibits compact packing structures with a three-dimensional molecular stacking network. These structural attributes markedly promote exciton diffusion and charge carrier mobility, particularly advantageous for the fabrication of thick-film devices. TT-Ph-C6-based devices have attained a PCE of 18.01% at a film thickness of 100 nm, and even at a film thickness of 300 nm, the PCE remains at 14.64%, surpassing that of devices based on 2BTh-2F. These remarkable properties position TT-Ph-C6 as a highly promising NFREA material for boosting the efficiency of OSCs.
Highlights:
1 The asymmetric side-group strategy was employed to develop a nonfused ring electron acceptor, designated as TT-Ph-C6, exhibiting enhanced solubility and three-dimensional molecular stacking.
2 Strong π–π interactions optimized blend film morphology, enabling TT-Ph-C6-based devices to achieve a power conversion efficiency (PCE) of 18.01% and FF of 80.10%, surpassing the 16.78% PCE of symmetric-chain 2BTh-2F.
3 Extended exciton diffusion lengths and accelerated dissociation further endowed TT-Ph-C6 with exceptional thick-film tolerance, delivering 15.18% PCE at 200 nm and 14.64% at 300 nm—among the highest efficiencies reported for non-fused acceptors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Liu, B. Liu, C.-Q. Ma, F. Huang, G. Feng et al., Recent progress in organic solar cells (part I material science). Sci. China Chem. 65(2), 224–268 (2022). https://doi.org/10.1007/s11426-021-1180-6
- R. Ma, C. Yan, J. Yu, T. Liu, H. Liu et al., High-efficiency ternary organic solar cells with a good figure-of-merit enabled by two low-cost donor polymers. ACS Energy Lett. 7(8), 2547–2556 (2022). https://doi.org/10.1021/acsenergylett.2c01364
- Y. Wang, H. Yu, X. Wu, D. Zhao, S. Zhang et al., Boosting the fill factor through sequential deposition and homo hydrocarbon solvent toward efficient and stable all-polymer solar cells. Adv. Energy Mater. 12(48), 2202729 (2022). https://doi.org/10.1002/aenm.202202729
- D. Wang, Y. Li, G. Zhou, E. Gu, R. Xia et al., High-performance see-through power windows. Energy Environ. Sci. 15(6), 2629–2637 (2022). https://doi.org/10.1039/D2EE00977C
- H. Zhou, Y. Zhang, C.-K. Mai, S.D. Collins, T.-Q. Nguyen et al., Conductive conjugated polyelectrolyte as hole-transporting layer for organic bulk heterojunction solar cells. Adv. Mater. 26(5), 780–785 (2014). https://doi.org/10.1002/adma.201302845
- H. Wang, H. Lu, Y.-N. Chen, G. Ran, A. Zhang et al., Chlorination enabling a low-cost benzodithiophene-based wide-bandgap donor polymer with an efficiency of over 17%. Adv. Mater. 34(4), e2105483 (2022). https://doi.org/10.1002/adma.202105483
- H. Wang, H. Lu, Y.-N. Chen, A. Zhang, Y. Liu et al., A versatile planar building block with C2V symmetry for high-performance non-halogenated solvent processable polymer donors. Adv. Energy Mater. 12(16), 2104028 (2022). https://doi.org/10.1002/aenm.202104028
- J. Yan, X. Rodríguez-Martínez, D. Pearce, H. Douglas, D. Bili et al., Identifying structure–absorption relationships and predicting absorption strength of non-fullerene acceptors for organic photovoltaics. Energy Environ. Sci. 15(7), 2958–2973 (2022). https://doi.org/10.1039/D2EE00887D
- D. Hu, Q. Yang, H. Chen, F. Wobben, V.M. Le Corre et al., 15.34% efficiency all-small-molecule organic solar cells with an improved fill factor enabled by a fullerene additive. Energy Environ. Sci. 13(7), 2134–2141 (2020). https://doi.org/10.1039/D0EE00714E
- D. Li, H. Lu, Y.-N. Chen, X. Ma, H. Zhang et al., High-efficiency As-cast organic solar cells based on an asymmetric acceptor. Chem. Mater. 34(19), 8840–8848 (2022). https://doi.org/10.1021/acs.chemmater.2c02146
- Y. Sun, L. Wang, C. Guo, J. Xiao, C. Liu et al., π-extended nonfullerene acceptor for compressed molecular packing in organic solar cells to achieve over 20% efficiency. J. Am. Chem. Soc. 146(17), 12011–12019 (2024). https://doi.org/10.1021/jacs.4c01503
- H. Lu, D. Li, W. Liu, G. Ran, H. Wu et al., Designing A–D–A type fused-ring electron acceptors with a bulky 3D substituent at the central donor core to minimize non-radiative losses and enhance organic solar cell efficiency. Angew. Chem. Int. Ed. 63(33), e202407007 (2024). https://doi.org/10.1002/anie.202407007
- J. Song, C. Zhang, C. Li, J. Qiao, J. Yu et al., Non-halogenated solvent-processed organic solar cells with approaching 20% efficiency and improved photostability. Angew. Chem. Int. Ed. 63(22), e202404297 (2024). https://doi.org/10.1002/anie.202404297
- J. Fu, Q. Yang, P. Huang, S. Chung, K. Cho et al., Rational molecular and device design enables organic solar cells approaching 20% efficiency. Nat. Commun. 15, 1830 (2024). https://doi.org/10.1038/s41467-024-46022-3
- C. Chen, L. Wang, W. Xia, K. Qiu, C. Guo et al., Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20. Nat. Commun. 15(1), 6865 (2024). https://doi.org/10.1038/s41467-024-51359-w
- Z. Chen, J. Ge, W. Song, X. Tong, H. Liu et al., 20.2% efficiency organic photovoltaics employing a π-extension quinoxaline-based acceptor with ordered arrangement. Adv. Mater. 36(33), 240, 2406690 (2024). https://doi.org/10.1002/adma.202406690
- C. Guo, Y. Sun, L. Wang, C. Liu, C. Chen et al., Light-induced quinone conformation of polymer donors toward 19.9% efficiency organic solar cells. Energy Environ. Sci. 17(7), 2492–2499 (2024). https://doi.org/10.1039/D4EE00605D
- N. Wei, J. Chen, Y. Cheng, Z. Bian, W. Liu et al., Constructing multiscale fibrous morphology to achieve 20% efficiency organic solar cells by mixing high and low molecular weight D18. Adv. Mater. 36(41), e2408934 (2024). https://doi.org/10.1002/adma.202408934
- R. Zeng, M. Zhang, X. Wang, L. Zhu, B. Hao et al., Achieving 19% efficiency in non-fused ring electron acceptor solar cells via solubility control of donor and acceptor crystallization. Nat. Energy 9(9), 1117–1128 (2024). https://doi.org/10.1038/s41560-024-01564-0
- K. Liu, Y. Jiang, F. Liu, G. Ran, F. Huang et al., Organic solar cells with over 19% efficiency enabled by a 2D-conjugated non-fullerene acceptor featuring favorable electronic and aggregation structures. Adv. Mater. 35(32), e2300363 (2023). https://doi.org/10.1002/adma.202300363
- J. Ren, S. Zhang, Z. Chen, T. Zhang, J. Qiao et al., Optimizing molecular packing via steric hindrance for reducing non-radiative recombination in organic solar cells. Angew. Chem. Int. Ed. 63(30), e202406153 (2024). https://doi.org/10.1002/anie.202406153
- S. Chen, S. Zhu, L. Hong, W. Deng, Y. Zhang et al., Binary organic solar cells with over 19 % efficiency and enhanced morphology stability enabled by asymmetric acceptors. Angew. Chem. Int. Ed. 63(12), e202318756 (2024). https://doi.org/10.1002/anie.202318756
- W. Gao, R. Ma, L. Zhu, L. Li, F.R. Lin et al., 3D crystal framework regulation enables Se-functionalized small molecule acceptors achieve over 19% efficiency. Adv. Energy Mater. 14(19), 2304477 (2024). https://doi.org/10.1002/aenm.202304477
- C.-Z. Sun, X. Lai, T. Rehman, H. Lai, C. Ke et al., Benzonitrile-functionalized non-fullerene acceptors for organic solar cells with low non-radiative loss. J. Mater. Chem. C 10(45), 17174–17181 (2022). https://doi.org/10.1039/D2TC03701G
- X. Zhao, Q. An, H. Zhang, C. Yang, A. Mahmood et al., Double asymmetric core optimizes crystal packing to enable selenophene-based acceptor with over 18% efficiency in binary organic solar cells. Angew. Chem. Int. Ed. 62(10), e202216340 (2023). https://doi.org/10.1002/anie.202216340
- H. Liang, H. Chen, Y. Zou, Y. Zhang, Y. Guo et al., Central unit hetero-di-halogenation of acceptors enables organic solar cells with 19% efficiency. Chem. Commun. 59(89), 13367–13370 (2023). https://doi.org/10.1039/D3CC04570F
- P. Bi, S. Zhang, Z. Chen, Y. Xu, Y. Cui et al., Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 5(9), 2408–2419 (2021). https://doi.org/10.1016/j.joule.2021.06.020
- H. Zhang, Y. Liu, G. Ran, H. Li, W. Zhang et al., Sequentially processed bulk-heterojunction-buried structure for efficient organic solar cells with 500 nm thickness. Adv. Mater. 36(25), 2400521 (2024). https://doi.org/10.1002/adma.202400521
- X. Wang, H. Lu, Y. Liu, A. Zhang, N. Yu et al., Simple nonfused ring electron acceptors with 3D network packing structure boosting the efficiency of organic solar cells to 15.44%. Adv. Energy Mater. 11(45), 2102591 (2021). https://doi.org/10.1002/aenm.202102591
- Y. Liu, Z. Zhang, S. Feng, M. Li, L. Wu et al., Exploiting noncovalently conformational locking as a design strategy for high performance fused-ring electron acceptor used in polymer solar cells. J. Am. Chem. Soc. 139(9), 3356–3359 (2017). https://doi.org/10.1021/jacs.7b00566
- Y. Wang, Z. Liu, X. Cui, C. Wang, H. Lu et al., Small molecule acceptors with a ladder-like core for high-performance organic solar cells with low non-radiative energy losses. J. Mater. Chem. A 8(25), 12495–12501 (2020). https://doi.org/10.1039/D0TA03683H
- Z. Han, C.-E. Zhang, T. He, J. Gao, Y. Hou et al., Precisely manipulating molecular packing via tuning alkyl side-chain topology enabling high-performance nonfused-ring electron acceptors. Angew. Chem. Int. Ed. 63(10), e202318143 (2024). https://doi.org/10.1002/anie.202318143
- X. Liu, Y. Wei, X. Zhang, L. Qin, Z. Wei et al., An A–D–A′–D–A type unfused nonfullerene acceptor for organic solar cells with approaching 14% efficiency. Sci. China Chem. 64(2), 228–231 (2021). https://doi.org/10.1007/s11426-020-9868-8
- Z.-P. Yu, Z.-X. Liu, F.-X. Chen, R. Qin, T.-K. Lau et al., Simple non-fused electron acceptors for efficient and stable organic solar cells. Nat. Commun. 10(1), 2152 (2019). https://doi.org/10.1038/s41467-019-10098-z
- D. Li, H. Zhang, X. Cui, Y.-N. Chen, N. Wei et al., Halogenated nonfused ring electron acceptor for organic solar cells with a record efficiency of over 17. Adv. Mater. 36(4), e2310362 (2024). https://doi.org/10.1002/adma.202310362
- Z. Li, X. Wang, N. Zheng, A. Saparbaev, J. Zhang et al., Over 17% efficiency all-small-molecule organic solar cells based on an organic molecular donor employing a 2D side chain symmetry breaking strategy. Energy Environ. Sci. 15(10), 4338–4348 (2022). https://doi.org/10.1039/D2EE02107B
- X. Wang, Z. Li, X. Zheng, C. Xiao, T. Hu et al., High-efficiency all-small-molecule organic solar cells based on new molecule donors with conjugated symmetric/asymmetric hybrid cyclopentyl-hexyl side chains. Adv. Funct. Mater. 33(24), 2300323 (2023). https://doi.org/10.1002/adfm.202300323
- H. Lu, X. Wang, S. Li, D. Li, N. Yu et al., Diphenylamine substituted high-performance fully nonfused ring electron acceptors: the effect of isomerism. Chem. Eng. J. 435, 134987 (2022). https://doi.org/10.1016/j.cej.2022.134987
- W. Liu, X. Zheng, G. Ran, H. Lu, X. Xu et al., Impact of π–bridge unit in fully nonfused ring electron acceptor on the photovoltaic performance of organic solar cells. Chem. Eng. J. 473, 145131 (2023). https://doi.org/10.1016/j.cej.2023.145131
- X. Wang, R. Zeng, H. Lu, G. Ran, A. Zhang et al., A simple nonfused ring electron acceptor with a power conversion efficiency over 16%. Chin. J. Chem. 41(6), 665–671 (2023). https://doi.org/10.1002/cjoc.202200673
- D.-L. Ma, Q.-Q. Zhang, C.-Z. Li, Unsymmetrically chlorinated non-fused electron acceptor leads to high-efficiency and stable organic solar cells. Angew. Chem. Int. Ed. 62(5), e202214931 (2023). https://doi.org/10.1002/anie.202214931
- Y. Zhang, C. Zhang, A. Zhang, H. Wu, G. Ran et al., Designing high-performance nonfused ring electron acceptors via synergistically adjusting side chains and electron-withdrawing end-groups. ACS Appl. Mater. Interfaces 14(18), 21287–21294 (2022). https://doi.org/10.1021/acsami.2c01190
- Z.-X. Xue, J. Fang, J. Li, D. Zhang, Z.-W. Xu et al., Non-fused molecular photovoltaic acceptor with a planar core structure enabled by bulky and embracing-type side chains. J. Mater. Chem. C 10(8), 2945–2949 (2022). https://doi.org/10.1039/D1TC05550J
- S. Feng, C.-E. Zhang, Y. Liu, Z. Bi, Z. Zhang et al., Fused-ring acceptors with asymmetric side chains for high-performance thick-film organic solar cells. Adv. Mater. 29(42), 1703527 (2017). https://doi.org/10.1002/adma.201703527
- Z. Zhang, D. Li, H. Zhang, X. Ma, Y.-N. Chen et al., An asymmetric A–DA′D–π–A type non-fullerene acceptor for high-performance organic solar cells. J. Mater. Chem. C 10(7), 2792–2799 (2022). https://doi.org/10.1039/D1TC04425G
- Y. Wang, C. Gao, W. Lei, T. Yang, Z. Liang et al., Achieving 20% toluene-processed binary organic solar cells via secondary regulation of donor aggregation in sequential processing. Nano-Micro Lett. 17(1), 206 (2025). https://doi.org/10.1007/s40820-025-01715-2
- A. Liang, Y. Sun, S. Chung, J. Shin, K. Sun et al., Dual-donor-induced crystallinity modulation enables 19.23% efficiency organic solar cells. Nano-Micro Lett. 17(1), 72 (2024). https://doi.org/10.1007/s40820-024-01576-1
- H. Lu, G. Ran, Y. Liu, Z. Pei, W. Liu et al., Green-solvent-processed high-performance ternary organic solar cells comprising a highly soluble and fluorescent third component. Adv. Funct. Mater. 33(40), 2301866 (2023). https://doi.org/10.1002/adfm.202301866
- Y. Jiang, Y. Li, F. Liu, W. Wang, W. Su et al., Suppressing electron–phonon coupling in organic photovoltaics for high-efficiency power conversion. Nat. Commun. 14, 5079 (2023). https://doi.org/10.1038/s41467-023-40806-9
- R. Wang, C. Zhang, Q. Li, Z. Zhang, X. Wang et al., Charge separation from an intra-moiety intermediate state in the high-performance PM6: Y6 organic photovoltaic blend. J. Am. Chem. Soc. 142(29), 12751–12759 (2020). https://doi.org/10.1021/jacs.0c04890
- G. Zhou, M. Zhang, J. Xu, Y. Yang, T. Hao et al., Spontaneous carrier generation and low recombination in high-efficiency non-fullerene solar cells. Energy Environ. Sci. 15(8), 3483–3493 (2022). https://doi.org/10.1039/D2EE01327D
- H. Cha, S. Wheeler, S. Holliday, S.D. Dimitrov, A. Wadsworth et al., Influence of blend morphology and energetics on charge separation and recombination dynamics in organic solar cells incorporating a nonfullerene acceptor. Adv. Funct. Mater. 28(3), 1704389 (2018). https://doi.org/10.1002/adfm.201704389
References
Y. Liu, B. Liu, C.-Q. Ma, F. Huang, G. Feng et al., Recent progress in organic solar cells (part I material science). Sci. China Chem. 65(2), 224–268 (2022). https://doi.org/10.1007/s11426-021-1180-6
R. Ma, C. Yan, J. Yu, T. Liu, H. Liu et al., High-efficiency ternary organic solar cells with a good figure-of-merit enabled by two low-cost donor polymers. ACS Energy Lett. 7(8), 2547–2556 (2022). https://doi.org/10.1021/acsenergylett.2c01364
Y. Wang, H. Yu, X. Wu, D. Zhao, S. Zhang et al., Boosting the fill factor through sequential deposition and homo hydrocarbon solvent toward efficient and stable all-polymer solar cells. Adv. Energy Mater. 12(48), 2202729 (2022). https://doi.org/10.1002/aenm.202202729
D. Wang, Y. Li, G. Zhou, E. Gu, R. Xia et al., High-performance see-through power windows. Energy Environ. Sci. 15(6), 2629–2637 (2022). https://doi.org/10.1039/D2EE00977C
H. Zhou, Y. Zhang, C.-K. Mai, S.D. Collins, T.-Q. Nguyen et al., Conductive conjugated polyelectrolyte as hole-transporting layer for organic bulk heterojunction solar cells. Adv. Mater. 26(5), 780–785 (2014). https://doi.org/10.1002/adma.201302845
H. Wang, H. Lu, Y.-N. Chen, G. Ran, A. Zhang et al., Chlorination enabling a low-cost benzodithiophene-based wide-bandgap donor polymer with an efficiency of over 17%. Adv. Mater. 34(4), e2105483 (2022). https://doi.org/10.1002/adma.202105483
H. Wang, H. Lu, Y.-N. Chen, A. Zhang, Y. Liu et al., A versatile planar building block with C2V symmetry for high-performance non-halogenated solvent processable polymer donors. Adv. Energy Mater. 12(16), 2104028 (2022). https://doi.org/10.1002/aenm.202104028
J. Yan, X. Rodríguez-Martínez, D. Pearce, H. Douglas, D. Bili et al., Identifying structure–absorption relationships and predicting absorption strength of non-fullerene acceptors for organic photovoltaics. Energy Environ. Sci. 15(7), 2958–2973 (2022). https://doi.org/10.1039/D2EE00887D
D. Hu, Q. Yang, H. Chen, F. Wobben, V.M. Le Corre et al., 15.34% efficiency all-small-molecule organic solar cells with an improved fill factor enabled by a fullerene additive. Energy Environ. Sci. 13(7), 2134–2141 (2020). https://doi.org/10.1039/D0EE00714E
D. Li, H. Lu, Y.-N. Chen, X. Ma, H. Zhang et al., High-efficiency As-cast organic solar cells based on an asymmetric acceptor. Chem. Mater. 34(19), 8840–8848 (2022). https://doi.org/10.1021/acs.chemmater.2c02146
Y. Sun, L. Wang, C. Guo, J. Xiao, C. Liu et al., π-extended nonfullerene acceptor for compressed molecular packing in organic solar cells to achieve over 20% efficiency. J. Am. Chem. Soc. 146(17), 12011–12019 (2024). https://doi.org/10.1021/jacs.4c01503
H. Lu, D. Li, W. Liu, G. Ran, H. Wu et al., Designing A–D–A type fused-ring electron acceptors with a bulky 3D substituent at the central donor core to minimize non-radiative losses and enhance organic solar cell efficiency. Angew. Chem. Int. Ed. 63(33), e202407007 (2024). https://doi.org/10.1002/anie.202407007
J. Song, C. Zhang, C. Li, J. Qiao, J. Yu et al., Non-halogenated solvent-processed organic solar cells with approaching 20% efficiency and improved photostability. Angew. Chem. Int. Ed. 63(22), e202404297 (2024). https://doi.org/10.1002/anie.202404297
J. Fu, Q. Yang, P. Huang, S. Chung, K. Cho et al., Rational molecular and device design enables organic solar cells approaching 20% efficiency. Nat. Commun. 15, 1830 (2024). https://doi.org/10.1038/s41467-024-46022-3
C. Chen, L. Wang, W. Xia, K. Qiu, C. Guo et al., Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20. Nat. Commun. 15(1), 6865 (2024). https://doi.org/10.1038/s41467-024-51359-w
Z. Chen, J. Ge, W. Song, X. Tong, H. Liu et al., 20.2% efficiency organic photovoltaics employing a π-extension quinoxaline-based acceptor with ordered arrangement. Adv. Mater. 36(33), 240, 2406690 (2024). https://doi.org/10.1002/adma.202406690
C. Guo, Y. Sun, L. Wang, C. Liu, C. Chen et al., Light-induced quinone conformation of polymer donors toward 19.9% efficiency organic solar cells. Energy Environ. Sci. 17(7), 2492–2499 (2024). https://doi.org/10.1039/D4EE00605D
N. Wei, J. Chen, Y. Cheng, Z. Bian, W. Liu et al., Constructing multiscale fibrous morphology to achieve 20% efficiency organic solar cells by mixing high and low molecular weight D18. Adv. Mater. 36(41), e2408934 (2024). https://doi.org/10.1002/adma.202408934
R. Zeng, M. Zhang, X. Wang, L. Zhu, B. Hao et al., Achieving 19% efficiency in non-fused ring electron acceptor solar cells via solubility control of donor and acceptor crystallization. Nat. Energy 9(9), 1117–1128 (2024). https://doi.org/10.1038/s41560-024-01564-0
K. Liu, Y. Jiang, F. Liu, G. Ran, F. Huang et al., Organic solar cells with over 19% efficiency enabled by a 2D-conjugated non-fullerene acceptor featuring favorable electronic and aggregation structures. Adv. Mater. 35(32), e2300363 (2023). https://doi.org/10.1002/adma.202300363
J. Ren, S. Zhang, Z. Chen, T. Zhang, J. Qiao et al., Optimizing molecular packing via steric hindrance for reducing non-radiative recombination in organic solar cells. Angew. Chem. Int. Ed. 63(30), e202406153 (2024). https://doi.org/10.1002/anie.202406153
S. Chen, S. Zhu, L. Hong, W. Deng, Y. Zhang et al., Binary organic solar cells with over 19 % efficiency and enhanced morphology stability enabled by asymmetric acceptors. Angew. Chem. Int. Ed. 63(12), e202318756 (2024). https://doi.org/10.1002/anie.202318756
W. Gao, R. Ma, L. Zhu, L. Li, F.R. Lin et al., 3D crystal framework regulation enables Se-functionalized small molecule acceptors achieve over 19% efficiency. Adv. Energy Mater. 14(19), 2304477 (2024). https://doi.org/10.1002/aenm.202304477
C.-Z. Sun, X. Lai, T. Rehman, H. Lai, C. Ke et al., Benzonitrile-functionalized non-fullerene acceptors for organic solar cells with low non-radiative loss. J. Mater. Chem. C 10(45), 17174–17181 (2022). https://doi.org/10.1039/D2TC03701G
X. Zhao, Q. An, H. Zhang, C. Yang, A. Mahmood et al., Double asymmetric core optimizes crystal packing to enable selenophene-based acceptor with over 18% efficiency in binary organic solar cells. Angew. Chem. Int. Ed. 62(10), e202216340 (2023). https://doi.org/10.1002/anie.202216340
H. Liang, H. Chen, Y. Zou, Y. Zhang, Y. Guo et al., Central unit hetero-di-halogenation of acceptors enables organic solar cells with 19% efficiency. Chem. Commun. 59(89), 13367–13370 (2023). https://doi.org/10.1039/D3CC04570F
P. Bi, S. Zhang, Z. Chen, Y. Xu, Y. Cui et al., Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 5(9), 2408–2419 (2021). https://doi.org/10.1016/j.joule.2021.06.020
H. Zhang, Y. Liu, G. Ran, H. Li, W. Zhang et al., Sequentially processed bulk-heterojunction-buried structure for efficient organic solar cells with 500 nm thickness. Adv. Mater. 36(25), 2400521 (2024). https://doi.org/10.1002/adma.202400521
X. Wang, H. Lu, Y. Liu, A. Zhang, N. Yu et al., Simple nonfused ring electron acceptors with 3D network packing structure boosting the efficiency of organic solar cells to 15.44%. Adv. Energy Mater. 11(45), 2102591 (2021). https://doi.org/10.1002/aenm.202102591
Y. Liu, Z. Zhang, S. Feng, M. Li, L. Wu et al., Exploiting noncovalently conformational locking as a design strategy for high performance fused-ring electron acceptor used in polymer solar cells. J. Am. Chem. Soc. 139(9), 3356–3359 (2017). https://doi.org/10.1021/jacs.7b00566
Y. Wang, Z. Liu, X. Cui, C. Wang, H. Lu et al., Small molecule acceptors with a ladder-like core for high-performance organic solar cells with low non-radiative energy losses. J. Mater. Chem. A 8(25), 12495–12501 (2020). https://doi.org/10.1039/D0TA03683H
Z. Han, C.-E. Zhang, T. He, J. Gao, Y. Hou et al., Precisely manipulating molecular packing via tuning alkyl side-chain topology enabling high-performance nonfused-ring electron acceptors. Angew. Chem. Int. Ed. 63(10), e202318143 (2024). https://doi.org/10.1002/anie.202318143
X. Liu, Y. Wei, X. Zhang, L. Qin, Z. Wei et al., An A–D–A′–D–A type unfused nonfullerene acceptor for organic solar cells with approaching 14% efficiency. Sci. China Chem. 64(2), 228–231 (2021). https://doi.org/10.1007/s11426-020-9868-8
Z.-P. Yu, Z.-X. Liu, F.-X. Chen, R. Qin, T.-K. Lau et al., Simple non-fused electron acceptors for efficient and stable organic solar cells. Nat. Commun. 10(1), 2152 (2019). https://doi.org/10.1038/s41467-019-10098-z
D. Li, H. Zhang, X. Cui, Y.-N. Chen, N. Wei et al., Halogenated nonfused ring electron acceptor for organic solar cells with a record efficiency of over 17. Adv. Mater. 36(4), e2310362 (2024). https://doi.org/10.1002/adma.202310362
Z. Li, X. Wang, N. Zheng, A. Saparbaev, J. Zhang et al., Over 17% efficiency all-small-molecule organic solar cells based on an organic molecular donor employing a 2D side chain symmetry breaking strategy. Energy Environ. Sci. 15(10), 4338–4348 (2022). https://doi.org/10.1039/D2EE02107B
X. Wang, Z. Li, X. Zheng, C. Xiao, T. Hu et al., High-efficiency all-small-molecule organic solar cells based on new molecule donors with conjugated symmetric/asymmetric hybrid cyclopentyl-hexyl side chains. Adv. Funct. Mater. 33(24), 2300323 (2023). https://doi.org/10.1002/adfm.202300323
H. Lu, X. Wang, S. Li, D. Li, N. Yu et al., Diphenylamine substituted high-performance fully nonfused ring electron acceptors: the effect of isomerism. Chem. Eng. J. 435, 134987 (2022). https://doi.org/10.1016/j.cej.2022.134987
W. Liu, X. Zheng, G. Ran, H. Lu, X. Xu et al., Impact of π–bridge unit in fully nonfused ring electron acceptor on the photovoltaic performance of organic solar cells. Chem. Eng. J. 473, 145131 (2023). https://doi.org/10.1016/j.cej.2023.145131
X. Wang, R. Zeng, H. Lu, G. Ran, A. Zhang et al., A simple nonfused ring electron acceptor with a power conversion efficiency over 16%. Chin. J. Chem. 41(6), 665–671 (2023). https://doi.org/10.1002/cjoc.202200673
D.-L. Ma, Q.-Q. Zhang, C.-Z. Li, Unsymmetrically chlorinated non-fused electron acceptor leads to high-efficiency and stable organic solar cells. Angew. Chem. Int. Ed. 62(5), e202214931 (2023). https://doi.org/10.1002/anie.202214931
Y. Zhang, C. Zhang, A. Zhang, H. Wu, G. Ran et al., Designing high-performance nonfused ring electron acceptors via synergistically adjusting side chains and electron-withdrawing end-groups. ACS Appl. Mater. Interfaces 14(18), 21287–21294 (2022). https://doi.org/10.1021/acsami.2c01190
Z.-X. Xue, J. Fang, J. Li, D. Zhang, Z.-W. Xu et al., Non-fused molecular photovoltaic acceptor with a planar core structure enabled by bulky and embracing-type side chains. J. Mater. Chem. C 10(8), 2945–2949 (2022). https://doi.org/10.1039/D1TC05550J
S. Feng, C.-E. Zhang, Y. Liu, Z. Bi, Z. Zhang et al., Fused-ring acceptors with asymmetric side chains for high-performance thick-film organic solar cells. Adv. Mater. 29(42), 1703527 (2017). https://doi.org/10.1002/adma.201703527
Z. Zhang, D. Li, H. Zhang, X. Ma, Y.-N. Chen et al., An asymmetric A–DA′D–π–A type non-fullerene acceptor for high-performance organic solar cells. J. Mater. Chem. C 10(7), 2792–2799 (2022). https://doi.org/10.1039/D1TC04425G
Y. Wang, C. Gao, W. Lei, T. Yang, Z. Liang et al., Achieving 20% toluene-processed binary organic solar cells via secondary regulation of donor aggregation in sequential processing. Nano-Micro Lett. 17(1), 206 (2025). https://doi.org/10.1007/s40820-025-01715-2
A. Liang, Y. Sun, S. Chung, J. Shin, K. Sun et al., Dual-donor-induced crystallinity modulation enables 19.23% efficiency organic solar cells. Nano-Micro Lett. 17(1), 72 (2024). https://doi.org/10.1007/s40820-024-01576-1
H. Lu, G. Ran, Y. Liu, Z. Pei, W. Liu et al., Green-solvent-processed high-performance ternary organic solar cells comprising a highly soluble and fluorescent third component. Adv. Funct. Mater. 33(40), 2301866 (2023). https://doi.org/10.1002/adfm.202301866
Y. Jiang, Y. Li, F. Liu, W. Wang, W. Su et al., Suppressing electron–phonon coupling in organic photovoltaics for high-efficiency power conversion. Nat. Commun. 14, 5079 (2023). https://doi.org/10.1038/s41467-023-40806-9
R. Wang, C. Zhang, Q. Li, Z. Zhang, X. Wang et al., Charge separation from an intra-moiety intermediate state in the high-performance PM6: Y6 organic photovoltaic blend. J. Am. Chem. Soc. 142(29), 12751–12759 (2020). https://doi.org/10.1021/jacs.0c04890
G. Zhou, M. Zhang, J. Xu, Y. Yang, T. Hao et al., Spontaneous carrier generation and low recombination in high-efficiency non-fullerene solar cells. Energy Environ. Sci. 15(8), 3483–3493 (2022). https://doi.org/10.1039/D2EE01327D
H. Cha, S. Wheeler, S. Holliday, S.D. Dimitrov, A. Wadsworth et al., Influence of blend morphology and energetics on charge separation and recombination dynamics in organic solar cells incorporating a nonfullerene acceptor. Adv. Funct. Mater. 28(3), 1704389 (2018). https://doi.org/10.1002/adfm.201704389