Multi-Energy Conversion and Electromagnetic Shielding Enabled by Carbonized Polyimide/Kevlar/Graphene Oxide@ZIF-67 Bidirectional Complex Aerogel-Encapsulated Phase-Change Materials
Corresponding Author: Xiaodong Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 236
Abstract
To address the limitations of conventional energy systems and optimize the energy conversion pathways and efficiency, a type of “five-in-one” multifunctional phase-change composite with magnetothermal, electrothermal, solar-thermal, and thermoelectric energy conversion and electromagnetic shielding functions is developed for multipurpose applications. Such a novel phase-change composite is fabricated by an innovative combination of paraffin wax (PW) as a phase-change material and a carbonized polyimide/Kevlar/graphene oxide@ZIF-67 complex aerogel as a supporting material. The carbonized complex aerogel exhibits a unique bidirectional porous structure with high porosity and robust skeleton to support the loading of PW. The reduced graphene oxide and CoNC resulting from high-temperature carbonization are anchored on the aerogel skeleton to generate high thermal conduction and magnetic effect, enhancing the phonon and electron transfer of the aerogel and improving its energy conversion efficiency. The phase-change composite not only exhibits excellent solar-thermal, thermoelectric, electrothermal, and magnetothermal energy conversion performance, but also achieves high electromagnetic interference shielding effectiveness of 66.2 dB in the X-band. The introduction of PW significantly improves the thermal energy-storage capacity during multi-energy conversion. The developed composite exhibits great application potential for efficient solar energy utilization, sustainable power generation, outdoor deicing, human thermal therapy, and electronic device protection.
Highlights:
1 A “five-in-one” multifunctional phase-change composite is developed for magnetothermal, electrothermal, solar-thermal, and thermoelectric energy conversion and electromagnetic shielding applications.
2 The developed composite is based on an innovative combination of carbonized polyimide/Kevlar/graphene oxide@ZIF-67 complex aerogel as a supporting material and paraffin wax as a phase-change material.
3 The developed composite exhibits excellent solar-thermal, thermoelectric, electrothermal, and magnetothermal energy conversion performance along with high electromagnetic interference shielding effectiveness.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Saher, S. Johnston, R. Esther-Kelvin, J.M. Pringle, D.R. MacFarlane et al., Trimodal thermal energy storage material for renewable energy applications. Nature 636(8043), 622–626 (2024). https://doi.org/10.1038/s41586-024-08214-1
- W. Aftab, A. Usman, J. Shi, K. Yuan, M. Qin et al., Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy Environ. Sci. 14(8), 4268–4291 (2021). https://doi.org/10.1039/D1EE00527H
- Y. Peng, Y. Cui, Thermal management with innovative fibers and textiles: manipulating heat transport, storage and conversion. Natl. Sci. Rev. 11(10), nwae95 (2024). https://doi.org/10.1093/nsr/nwae295
- M. Liu, R. Qian, Y. Yang, X. Lu, L. Huang et al., Modification of phase change materials for electric-thermal, photo-thermal, and magnetic-thermal conversions: a comprehensive review. Adv. Funct. Mater. 34(33), 2400038 (2024). https://doi.org/10.1002/adfm.202400038
- S.S. Hoseini, A. Seyedkanani, G. Najafi, A.P. Sasmito, A. Akbarzadeh, Multiscale architected porous materials for renewable energy conversion and storage. Energy Storage Mater. 59, 102768 (2023). https://doi.org/10.1016/j.ensm.2023.102768
- S. Li, P. Xiao, T. Chen, Superhydrophobic solar-to-thermal materials toward cutting-edge applications. Adv. Mater. 36(37), e2311453 (2024). https://doi.org/10.1002/adma.202311453
- B. Yang, C. Li, Z. Wang, Q. Dai, Thermoplasmonics in solar energy conversion: materials, nanostructured designs, and applications. Adv. Mater. 34(26), 2107351 (2022). https://doi.org/10.1002/adma.202107351
- C. Zhu, Y. Hao, H. Wu, M. Chen, B. Quan et al., Self-assembly of binderless MXene aerogel for multiple-scenario and responsive phase change composites with ultrahigh thermal energy storage density and exceptional electromagnetic interference shielding. Nano-Micro Lett. 16(1), 57 (2023). https://doi.org/10.1007/s40820-023-01288-y
- X. Zhou, X. Xu, J. Huang, Adaptive multi-temperature control for transport and storage containers enabled by phase-change materials. Nat. Commun. 14, 5449 (2023). https://doi.org/10.1038/s41467-023-40988-2
- G.-Z. Yin, J. Hobson, Y. Duan, D.-Y. Wang, Polyrotaxane: New generation of sustainable, ultra-flexible, form-stable and smart phase change materials. Energy Storage Mater. 40, 347–357 (2021). https://doi.org/10.1016/j.ensm.2021.05.023
- Y. Liu, Z. Lv, J. Zhou, Z. Cui, W. Li et al., Muscle-inspired formable wood-based phase change materials. Adv. Mater. 36(39), e2406915 (2024). https://doi.org/10.1002/adma.202406915
- M. Qin, K. Jia, A. Usman, S. Han, F. Xiong et al., High-efficiency thermal-shock resistance enabled by radiative cooling and latent heat storage. Adv. Mater. 36(25), 2314130 (2024). https://doi.org/10.1002/adma.202314130
- S. Wang, M. Wu, H. Han, R. Du, Z. Zhao et al., Regulating cold energy from the universe by bifunctional phase change materials for sustainable cooling. Adv. Energy Mater. 14(45), 2402667 (2024). https://doi.org/10.1002/aenm.202402667
- C. Deng, H. Dong, K. Sun, Y. Kou, H. Liu et al., Synchronous visual/infrared stealth using an intrinsically flexible self-healing phase change film. Adv. Funct. Mater. 33(13), 2212259 (2023). https://doi.org/10.1002/adfm.202212259
- A. Usman, F. Xiong, W. Aftab, M. Qin, R. Zou, Emerging solid-to-solid phase-change materials for thermal-energy harvesting, storage, and utilization. Adv. Mater. 34(41), e2202457 (2022). https://doi.org/10.1002/adma.202202457
- G.-Z. Yin, A. Marta López, X.-M. Yang, X. Ao, J. Hobson et al., Polyrotaxane based leakage-proof and injectable phase change materials with high melting enthalpy and adjustable transition temperature. Chem. Eng. J. 444, 136421 (2022). https://doi.org/10.1016/j.cej.2022.136421
- Y. Wu, M. Chen, G. Zhao, D. Qi, X. Zhang et al., Recyclable solid–solid phase change materials with superior latent heat via reversible anhydride-alcohol crosslinking for efficient thermal storage. Adv. Mater. 36(16), 2311717 (2024). https://doi.org/10.1002/adma.202311717
- X. Zhang, J. Shi, Q. Wang, W. Li, Q. Wei et al., The spider web of modified wheat bran captured PEG to form stabilized phase change composites for temperature regulation and waste heat storage. J. Energy Storage 77, 109877 (2024). https://doi.org/10.1016/j.est.2023.109877
- J. Jing, H. Liu, X. Wang, Long-term infrared stealth by sandwich-like phase-change composites at elevated temperatures via synergistic emissivity and thermal regulation. Adv. Funct. Mater. 34(2), 2309269 (2024). https://doi.org/10.1002/adfm.202309269
- P. Liu, X. Chen, Y. Li, P. Cheng, Z. Tang et al., Aerogels meet phase change materials: fundamentals, advances, and beyond. ACS Nano 16(10), 15586–15626 (2022). https://doi.org/10.1021/acsnano.2c05067
- H.-Y. Zhao, C. Shu, X. Wang, P. Min, C. Li et al., Bioinspired intelligent solar-responsive thermally conductive pyramidal phase change composites with radially oriented layered structures toward efficient solar–thermal–electric energy conversion. Adv. Funct. Mater. 33(33), 2302527 (2023). https://doi.org/10.1002/adfm.202302527
- T. Luo, L. Kong, J. Lu, M. Xie, B. Lin et al., Neuron-inspired flexible phase change materials for ambient energy harvesting and respiration monitoring. Adv. Mater. 36(50), 2411820 (2024). https://doi.org/10.1002/adma.202411820
- X. Li, J. Zhang, Y. Liu, Y. Xu, Y. Xie et al., Fish-inspired dynamic charging for ultrafast self-protective solar-thermal energy storage. Sci. Adv. 10(49), 8445 (2024). https://doi.org/10.1126/sciadv.adr8445
- D. Wei, M. Weng, M.H.H. Mahmoud, A.Y. Elnaggar, I.H. El Azab et al., Development of novel biomass hybrid aerogel supported composite phase change materials with improved light-thermal conversion and thermal energy storage capacity. Adv. Compos. Hybrid Mater. 5(3), 1910–1921 (2022). https://doi.org/10.1007/s42114-022-00519-x
- Y. Zhang, L. Gong, X. Xu, L. Zhao, K. Li et al., Synthesis of carbon aerogels with controlled morphology and pore structure to modulate their bulk density and thermal conductivity via a quick one-pot preparation strategy. Carbon 216, 118487 (2024). https://doi.org/10.1016/j.carbon.2023.118487
- H. Guan, R. Lian, R. Li, J. Zhu, Z. Zhao et al., A low-temperature carbonization strategy for efficient viscous crude oil spill disposal without hydrophobic coating: CoFe-PBA-catalyzed carbonization of superhydrophobic flame retardant melamine sponge. Adv. Funct. Mater. 34(14), 2313224 (2024). https://doi.org/10.1002/adfm.202313224
- J. Jang, D. Kim, J. Park, H. Lim, H. Choi et al., Strategically designed uniform MOF-derived nanoporous carbon aerogel for efficient solar-driven desalination by control of hydrophilicity and thermal conductivity. Small 21(2), 2409014 (2025). https://doi.org/10.1002/smll.202409014
- J. Song, H. He, Y. Wang, L. Shao, Q. Wang et al., Shape-stabilized phase change composites supported by biomass loofah sponge-derived microtubular carbon scaffold toward thermal energy storage and electric-to-thermal conversion. J. Energy Storage 56, 105891 (2022). https://doi.org/10.1016/j.est.2022.105891
- C. Shu, H.-Y. Zhao, X.-H. Lu, P. Min, Y. Zhang et al., High-quality anisotropic graphene aerogels and their thermally conductive phase change composites for efficient solar–thermal–electrical energy conversion. ACS Sustainable Chem. Eng. 11(32), 11991–12003 (2023). https://doi.org/10.1021/acssuschemeng.3c02154
- Z. Sun, H. Zhang, Q. Zhang, R. Jing, B. Wu et al., Shape-stabilized phase change composites enabled by lightweight and bio-inspired interconnecting carbon aerogels for efficient energy storage and photo-thermal conversion. J. Mater. Chem. A 10(25), 13556–13569 (2022). https://doi.org/10.1039/D2TA02024F
- J. Gao, B. Zhou, C. Liu, C. He, Y. Feng et al., Carbonization welding graphene architecture for thermally conductive phase change composites with solar/electric-to-heat conversion ability. Chem. Eng. J. 475, 146087 (2023). https://doi.org/10.1016/j.cej.2023.146087
- Y. Chen, Y. Meng, J. Zhang, Y. Xie, H. Guo et al., Leakage proof, flame-retardant, and electromagnetic shield wood morphology genetic composite phase change materials for solar thermal energy harvesting. Nano-Micro Lett. 16(1), 196 (2024). https://doi.org/10.1007/s40820-024-01414-4
- Y. Li, H. Yu, P. Liu, X. Diao, Y. Feng et al., Photoelectromagnetic multimode triggered phase change materials for thermotherapy. SusMat 4(4), e214 (2024). https://doi.org/10.1002/sus2.214
- S. Liu, B. Quan, M. Sheng, Y. Yang, X. Hu et al., A novel in situ growth ZIF-67 on biological porous carbon encapsulated phase change composites with electromagnetic interference shielding and multifunctional energy conversion. Nano Energy 114, 108669 (2023). https://doi.org/10.1016/j.nanoen.2023.108669
- H. He, M. Dong, Q. Wang, J. Zhang, Q. Feng et al., A multifunctional carbon-base phase change composite inspired by “fruit growth.” Carbon 205, 499–509 (2023). https://doi.org/10.1016/j.carbon.2023.01.038
- X. Zhu, J. Liu, K. Yang, L. Zhang, S. Wang et al., Structurally engineered 3D porous graphene based phase change composite with highly efficient multi-energy conversion and versatile applications. Compos. Part B Eng. 272, 111233 (2024). https://doi.org/10.1016/j.compositesb.2024.111233
- J. Lee, H. Han, D. Noh, J. Lee, D.D. Lim et al., Multiscale porous architecture consisting of graphene aerogels and metastructures enabling robust thermal and mechanical functionalities of phase change materials. Adv. Funct. Mater. 34(42), 2405625 (2024). https://doi.org/10.1002/adfm.202405625
- A. Ghaffarkhah, S.A. Hashemi, S. Rostami, M. Amini, F. Ahmadijokani et al., Ultra-flyweight cryogels of MXene/graphene oxide for electromagnetic interference shielding. Adv. Funct. Mater. 33(50), 2304748 (2023). https://doi.org/10.1002/adfm.202304748
- T. Shi, H. Liu, X. Wang, Unidirectionally structured magnetic phase-change composite based on carbonized polyimide/kevlar nanofiber complex aerogel for boosting solar-thermo-electric energy conversion. ACS Appl. Mater. Interfaces 16(8), 10180–10195 (2024). https://doi.org/10.1021/acsami.3c18523
- J. Tong, Z. Liu, Y. Liu, X. Huang, G. Wang, “Back-to-back” radial layered skeleton converging heat flow to assist in thermal conduction of aramid nanofibers/graphene phase change composite materials. Adv. Funct. Mater. 35(1), 2411744 (2025). https://doi.org/10.1002/adfm.202411744
- W. Yao, J. Chen, Y. Wang, R. Fang, Z. Qin et al., Nitrogen-doped carbon composites with ordered macropores and hollow walls. Angew. Chem. Int. Ed. 133(44), 23922–23927 (2021). https://doi.org/10.1002/ange.202108396
- J. Li, Y. Ding, N. Yu, Q. Gao, X. Fan et al., Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon 158, 45–54 (2020). https://doi.org/10.1016/j.carbon.2019.11.075
- L. Huang, G. Xiao, Y. Wang, H. Li, Y. Zhou et al., Self-exfoliation of flake graphite for bioinspired compositing with aramid nanofiber toward integration of mechanical and thermoconductive properties. Nano-Micro Lett. 14(1), 168 (2022). https://doi.org/10.1007/s40820-022-00919-0
- C. Yu, B. Xie, X. Yao, N. Hu, J. Guo et al., Cabbage-like flexible fluororubber/carbon aerogel hybrids with negative Poisson’s ratios and excellent microwave absorption. Matter 6(12), 4321–4338 (2023). https://doi.org/10.1016/j.matt.2023.10.010
- F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Materials for solar-powered water evaporation. Nat. Rev. Mater. 5(5), 388–401 (2020). https://doi.org/10.1038/s41578-020-0182-4
- J.S. Lee, J.W. Kim, J.H. Lee, Y.K. Son, Y.B. Kim et al., Flash-induced high-throughput porous graphene via synergistic photo-effects for electromagnetic interference shielding. Nano-Micro Lett. 15(1), 191 (2023). https://doi.org/10.1007/s40820-023-01157-8
- G. Wang, Z. Tang, Y. Gao, P. Liu, Y. Li et al., Phase change thermal storage materials for interdisciplinary applications. Chem. Rev. 123(11), 6953–7024 (2023). https://doi.org/10.1021/acs.chemrev.2c00572
- H. Yang, Z. Hu, S. Wu, J. Yan, K. Cen et al., Directional-thermal-conductive phase change composites enabling efficient and durable water-electricity co-generation beyond daytime. Adv. Energy Mater. 14(43), 2470191 (2024). https://doi.org/10.1002/aenm.202470191
- D. Zhang, S. Zhang, Q. Liang, J. Song, M. Guan et al., One-step synthesis of multifunctional bacterial cellulose film-based phase change materials with cross-linked network structure for solar–thermal energy conversion, storage, and utilization. Small 20(12), 2307259 (2024). https://doi.org/10.1002/smll.202307259
- Y. Cai, N. Zhang, X. Cao, Y. Yuan, Z. Zhang et al., Ultra-light and flexible graphene aerogel-based form-stable phase change materials for energy conversion and energy storage. Sol. Energy Mater. Sol. Cells 252, 112176 (2023). https://doi.org/10.1016/j.solmat.2022.112176
- C. Wang, Z. Huang, T. Wang, X. Liu, P. Zhu, Light-thermal-electric energy conversion based on polyethylene glycol infiltrated carboxymethylcellulose sodium-derived carbon aerogel. Energy Convers. Manag. 267, 115948 (2022). https://doi.org/10.1016/j.enconman.2022.115948
- L. Zhang, R. Li, B. Tang, P. Wang, Solar-thermal conversion and thermal energy storage of graphene foam-based composites. Nanoscale 8(30), 14600–14607 (2016). https://doi.org/10.1039/C6NR03921A
- Z. Shen, S. Kwon, H.L. Lee, M. Toivakka, K. Oh, Cellulose nanofibril/carbon nanotube composite foam-stabilized paraffin phase change material for thermal energy storage and conversion. Carbohydr. Polym. 273, 118585 (2021). https://doi.org/10.1016/j.carbpol.2021.118585
- X. Zhao, L.-Y. Wang, C.-Y. Tang, X.-J. Zha, Y. Liu et al., Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano 14(7), 8793–8805 (2020). https://doi.org/10.1021/acsnano.0c03391
- M. Mao, J. Wei, B. Li, L. Li, X. Huang et al., Scalable robust photothermal superhydrophobic coatings for efficient anti-icing and de-icing in simulated/real environments. Nat. Commun. 15(1), 9610 (2024). https://doi.org/10.1038/s41467-024-54058-8
- H. Zhang, K. Kuang, Y. Zhang, C. Sun, T. Yuan et al., Multifunctional carbon foam with nanoscale chiral magnetic heterostructures for broadband microwave absorption in low frequency. Nano-Micro Lett. 17(1), 133 (2025). https://doi.org/10.1007/s40820-025-01658-8
- M. Liu, Z. Wang, Z. Song, F. Wang, G. Zhao et al., A popcorn-inspired strategy for compounding graphene@NiFe2O4 flexible films for strong electromagnetic interference shielding and absorption. Nat. Commun. 15(1), 5486 (2024). https://doi.org/10.1038/s41467-024-49498-1
- Z. He, L. Shi, R. Sun, L. Ding, M. He et al., Low-temperature oxidation induced phase evolution with gradient magnetic heterointerfaces for superior electromagnetic wave absorption. Nano-Micro Lett. 17(1), 7 (2024). https://doi.org/10.1007/s40820-024-01516-z
- T. Mai, L. Chen, Q. Liu, Z.-H. Guo, M.-G. Ma, Zeolitic imidazolate frameworks derived magnetic nanocage/MXene/nanocellulose bilayer aerogels for low reflection electromagnetic interference shielding and light-to-heat conversion. Adv. Funct. Mater. 35(13), 2417947 (2025). https://doi.org/10.1002/adfm.202417947
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon Aerogel@Reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13(1), 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
References
S. Saher, S. Johnston, R. Esther-Kelvin, J.M. Pringle, D.R. MacFarlane et al., Trimodal thermal energy storage material for renewable energy applications. Nature 636(8043), 622–626 (2024). https://doi.org/10.1038/s41586-024-08214-1
W. Aftab, A. Usman, J. Shi, K. Yuan, M. Qin et al., Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy Environ. Sci. 14(8), 4268–4291 (2021). https://doi.org/10.1039/D1EE00527H
Y. Peng, Y. Cui, Thermal management with innovative fibers and textiles: manipulating heat transport, storage and conversion. Natl. Sci. Rev. 11(10), nwae95 (2024). https://doi.org/10.1093/nsr/nwae295
M. Liu, R. Qian, Y. Yang, X. Lu, L. Huang et al., Modification of phase change materials for electric-thermal, photo-thermal, and magnetic-thermal conversions: a comprehensive review. Adv. Funct. Mater. 34(33), 2400038 (2024). https://doi.org/10.1002/adfm.202400038
S.S. Hoseini, A. Seyedkanani, G. Najafi, A.P. Sasmito, A. Akbarzadeh, Multiscale architected porous materials for renewable energy conversion and storage. Energy Storage Mater. 59, 102768 (2023). https://doi.org/10.1016/j.ensm.2023.102768
S. Li, P. Xiao, T. Chen, Superhydrophobic solar-to-thermal materials toward cutting-edge applications. Adv. Mater. 36(37), e2311453 (2024). https://doi.org/10.1002/adma.202311453
B. Yang, C. Li, Z. Wang, Q. Dai, Thermoplasmonics in solar energy conversion: materials, nanostructured designs, and applications. Adv. Mater. 34(26), 2107351 (2022). https://doi.org/10.1002/adma.202107351
C. Zhu, Y. Hao, H. Wu, M. Chen, B. Quan et al., Self-assembly of binderless MXene aerogel for multiple-scenario and responsive phase change composites with ultrahigh thermal energy storage density and exceptional electromagnetic interference shielding. Nano-Micro Lett. 16(1), 57 (2023). https://doi.org/10.1007/s40820-023-01288-y
X. Zhou, X. Xu, J. Huang, Adaptive multi-temperature control for transport and storage containers enabled by phase-change materials. Nat. Commun. 14, 5449 (2023). https://doi.org/10.1038/s41467-023-40988-2
G.-Z. Yin, J. Hobson, Y. Duan, D.-Y. Wang, Polyrotaxane: New generation of sustainable, ultra-flexible, form-stable and smart phase change materials. Energy Storage Mater. 40, 347–357 (2021). https://doi.org/10.1016/j.ensm.2021.05.023
Y. Liu, Z. Lv, J. Zhou, Z. Cui, W. Li et al., Muscle-inspired formable wood-based phase change materials. Adv. Mater. 36(39), e2406915 (2024). https://doi.org/10.1002/adma.202406915
M. Qin, K. Jia, A. Usman, S. Han, F. Xiong et al., High-efficiency thermal-shock resistance enabled by radiative cooling and latent heat storage. Adv. Mater. 36(25), 2314130 (2024). https://doi.org/10.1002/adma.202314130
S. Wang, M. Wu, H. Han, R. Du, Z. Zhao et al., Regulating cold energy from the universe by bifunctional phase change materials for sustainable cooling. Adv. Energy Mater. 14(45), 2402667 (2024). https://doi.org/10.1002/aenm.202402667
C. Deng, H. Dong, K. Sun, Y. Kou, H. Liu et al., Synchronous visual/infrared stealth using an intrinsically flexible self-healing phase change film. Adv. Funct. Mater. 33(13), 2212259 (2023). https://doi.org/10.1002/adfm.202212259
A. Usman, F. Xiong, W. Aftab, M. Qin, R. Zou, Emerging solid-to-solid phase-change materials for thermal-energy harvesting, storage, and utilization. Adv. Mater. 34(41), e2202457 (2022). https://doi.org/10.1002/adma.202202457
G.-Z. Yin, A. Marta López, X.-M. Yang, X. Ao, J. Hobson et al., Polyrotaxane based leakage-proof and injectable phase change materials with high melting enthalpy and adjustable transition temperature. Chem. Eng. J. 444, 136421 (2022). https://doi.org/10.1016/j.cej.2022.136421
Y. Wu, M. Chen, G. Zhao, D. Qi, X. Zhang et al., Recyclable solid–solid phase change materials with superior latent heat via reversible anhydride-alcohol crosslinking for efficient thermal storage. Adv. Mater. 36(16), 2311717 (2024). https://doi.org/10.1002/adma.202311717
X. Zhang, J. Shi, Q. Wang, W. Li, Q. Wei et al., The spider web of modified wheat bran captured PEG to form stabilized phase change composites for temperature regulation and waste heat storage. J. Energy Storage 77, 109877 (2024). https://doi.org/10.1016/j.est.2023.109877
J. Jing, H. Liu, X. Wang, Long-term infrared stealth by sandwich-like phase-change composites at elevated temperatures via synergistic emissivity and thermal regulation. Adv. Funct. Mater. 34(2), 2309269 (2024). https://doi.org/10.1002/adfm.202309269
P. Liu, X. Chen, Y. Li, P. Cheng, Z. Tang et al., Aerogels meet phase change materials: fundamentals, advances, and beyond. ACS Nano 16(10), 15586–15626 (2022). https://doi.org/10.1021/acsnano.2c05067
H.-Y. Zhao, C. Shu, X. Wang, P. Min, C. Li et al., Bioinspired intelligent solar-responsive thermally conductive pyramidal phase change composites with radially oriented layered structures toward efficient solar–thermal–electric energy conversion. Adv. Funct. Mater. 33(33), 2302527 (2023). https://doi.org/10.1002/adfm.202302527
T. Luo, L. Kong, J. Lu, M. Xie, B. Lin et al., Neuron-inspired flexible phase change materials for ambient energy harvesting and respiration monitoring. Adv. Mater. 36(50), 2411820 (2024). https://doi.org/10.1002/adma.202411820
X. Li, J. Zhang, Y. Liu, Y. Xu, Y. Xie et al., Fish-inspired dynamic charging for ultrafast self-protective solar-thermal energy storage. Sci. Adv. 10(49), 8445 (2024). https://doi.org/10.1126/sciadv.adr8445
D. Wei, M. Weng, M.H.H. Mahmoud, A.Y. Elnaggar, I.H. El Azab et al., Development of novel biomass hybrid aerogel supported composite phase change materials with improved light-thermal conversion and thermal energy storage capacity. Adv. Compos. Hybrid Mater. 5(3), 1910–1921 (2022). https://doi.org/10.1007/s42114-022-00519-x
Y. Zhang, L. Gong, X. Xu, L. Zhao, K. Li et al., Synthesis of carbon aerogels with controlled morphology and pore structure to modulate their bulk density and thermal conductivity via a quick one-pot preparation strategy. Carbon 216, 118487 (2024). https://doi.org/10.1016/j.carbon.2023.118487
H. Guan, R. Lian, R. Li, J. Zhu, Z. Zhao et al., A low-temperature carbonization strategy for efficient viscous crude oil spill disposal without hydrophobic coating: CoFe-PBA-catalyzed carbonization of superhydrophobic flame retardant melamine sponge. Adv. Funct. Mater. 34(14), 2313224 (2024). https://doi.org/10.1002/adfm.202313224
J. Jang, D. Kim, J. Park, H. Lim, H. Choi et al., Strategically designed uniform MOF-derived nanoporous carbon aerogel for efficient solar-driven desalination by control of hydrophilicity and thermal conductivity. Small 21(2), 2409014 (2025). https://doi.org/10.1002/smll.202409014
J. Song, H. He, Y. Wang, L. Shao, Q. Wang et al., Shape-stabilized phase change composites supported by biomass loofah sponge-derived microtubular carbon scaffold toward thermal energy storage and electric-to-thermal conversion. J. Energy Storage 56, 105891 (2022). https://doi.org/10.1016/j.est.2022.105891
C. Shu, H.-Y. Zhao, X.-H. Lu, P. Min, Y. Zhang et al., High-quality anisotropic graphene aerogels and their thermally conductive phase change composites for efficient solar–thermal–electrical energy conversion. ACS Sustainable Chem. Eng. 11(32), 11991–12003 (2023). https://doi.org/10.1021/acssuschemeng.3c02154
Z. Sun, H. Zhang, Q. Zhang, R. Jing, B. Wu et al., Shape-stabilized phase change composites enabled by lightweight and bio-inspired interconnecting carbon aerogels for efficient energy storage and photo-thermal conversion. J. Mater. Chem. A 10(25), 13556–13569 (2022). https://doi.org/10.1039/D2TA02024F
J. Gao, B. Zhou, C. Liu, C. He, Y. Feng et al., Carbonization welding graphene architecture for thermally conductive phase change composites with solar/electric-to-heat conversion ability. Chem. Eng. J. 475, 146087 (2023). https://doi.org/10.1016/j.cej.2023.146087
Y. Chen, Y. Meng, J. Zhang, Y. Xie, H. Guo et al., Leakage proof, flame-retardant, and electromagnetic shield wood morphology genetic composite phase change materials for solar thermal energy harvesting. Nano-Micro Lett. 16(1), 196 (2024). https://doi.org/10.1007/s40820-024-01414-4
Y. Li, H. Yu, P. Liu, X. Diao, Y. Feng et al., Photoelectromagnetic multimode triggered phase change materials for thermotherapy. SusMat 4(4), e214 (2024). https://doi.org/10.1002/sus2.214
S. Liu, B. Quan, M. Sheng, Y. Yang, X. Hu et al., A novel in situ growth ZIF-67 on biological porous carbon encapsulated phase change composites with electromagnetic interference shielding and multifunctional energy conversion. Nano Energy 114, 108669 (2023). https://doi.org/10.1016/j.nanoen.2023.108669
H. He, M. Dong, Q. Wang, J. Zhang, Q. Feng et al., A multifunctional carbon-base phase change composite inspired by “fruit growth.” Carbon 205, 499–509 (2023). https://doi.org/10.1016/j.carbon.2023.01.038
X. Zhu, J. Liu, K. Yang, L. Zhang, S. Wang et al., Structurally engineered 3D porous graphene based phase change composite with highly efficient multi-energy conversion and versatile applications. Compos. Part B Eng. 272, 111233 (2024). https://doi.org/10.1016/j.compositesb.2024.111233
J. Lee, H. Han, D. Noh, J. Lee, D.D. Lim et al., Multiscale porous architecture consisting of graphene aerogels and metastructures enabling robust thermal and mechanical functionalities of phase change materials. Adv. Funct. Mater. 34(42), 2405625 (2024). https://doi.org/10.1002/adfm.202405625
A. Ghaffarkhah, S.A. Hashemi, S. Rostami, M. Amini, F. Ahmadijokani et al., Ultra-flyweight cryogels of MXene/graphene oxide for electromagnetic interference shielding. Adv. Funct. Mater. 33(50), 2304748 (2023). https://doi.org/10.1002/adfm.202304748
T. Shi, H. Liu, X. Wang, Unidirectionally structured magnetic phase-change composite based on carbonized polyimide/kevlar nanofiber complex aerogel for boosting solar-thermo-electric energy conversion. ACS Appl. Mater. Interfaces 16(8), 10180–10195 (2024). https://doi.org/10.1021/acsami.3c18523
J. Tong, Z. Liu, Y. Liu, X. Huang, G. Wang, “Back-to-back” radial layered skeleton converging heat flow to assist in thermal conduction of aramid nanofibers/graphene phase change composite materials. Adv. Funct. Mater. 35(1), 2411744 (2025). https://doi.org/10.1002/adfm.202411744
W. Yao, J. Chen, Y. Wang, R. Fang, Z. Qin et al., Nitrogen-doped carbon composites with ordered macropores and hollow walls. Angew. Chem. Int. Ed. 133(44), 23922–23927 (2021). https://doi.org/10.1002/ange.202108396
J. Li, Y. Ding, N. Yu, Q. Gao, X. Fan et al., Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon 158, 45–54 (2020). https://doi.org/10.1016/j.carbon.2019.11.075
L. Huang, G. Xiao, Y. Wang, H. Li, Y. Zhou et al., Self-exfoliation of flake graphite for bioinspired compositing with aramid nanofiber toward integration of mechanical and thermoconductive properties. Nano-Micro Lett. 14(1), 168 (2022). https://doi.org/10.1007/s40820-022-00919-0
C. Yu, B. Xie, X. Yao, N. Hu, J. Guo et al., Cabbage-like flexible fluororubber/carbon aerogel hybrids with negative Poisson’s ratios and excellent microwave absorption. Matter 6(12), 4321–4338 (2023). https://doi.org/10.1016/j.matt.2023.10.010
F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Materials for solar-powered water evaporation. Nat. Rev. Mater. 5(5), 388–401 (2020). https://doi.org/10.1038/s41578-020-0182-4
J.S. Lee, J.W. Kim, J.H. Lee, Y.K. Son, Y.B. Kim et al., Flash-induced high-throughput porous graphene via synergistic photo-effects for electromagnetic interference shielding. Nano-Micro Lett. 15(1), 191 (2023). https://doi.org/10.1007/s40820-023-01157-8
G. Wang, Z. Tang, Y. Gao, P. Liu, Y. Li et al., Phase change thermal storage materials for interdisciplinary applications. Chem. Rev. 123(11), 6953–7024 (2023). https://doi.org/10.1021/acs.chemrev.2c00572
H. Yang, Z. Hu, S. Wu, J. Yan, K. Cen et al., Directional-thermal-conductive phase change composites enabling efficient and durable water-electricity co-generation beyond daytime. Adv. Energy Mater. 14(43), 2470191 (2024). https://doi.org/10.1002/aenm.202470191
D. Zhang, S. Zhang, Q. Liang, J. Song, M. Guan et al., One-step synthesis of multifunctional bacterial cellulose film-based phase change materials with cross-linked network structure for solar–thermal energy conversion, storage, and utilization. Small 20(12), 2307259 (2024). https://doi.org/10.1002/smll.202307259
Y. Cai, N. Zhang, X. Cao, Y. Yuan, Z. Zhang et al., Ultra-light and flexible graphene aerogel-based form-stable phase change materials for energy conversion and energy storage. Sol. Energy Mater. Sol. Cells 252, 112176 (2023). https://doi.org/10.1016/j.solmat.2022.112176
C. Wang, Z. Huang, T. Wang, X. Liu, P. Zhu, Light-thermal-electric energy conversion based on polyethylene glycol infiltrated carboxymethylcellulose sodium-derived carbon aerogel. Energy Convers. Manag. 267, 115948 (2022). https://doi.org/10.1016/j.enconman.2022.115948
L. Zhang, R. Li, B. Tang, P. Wang, Solar-thermal conversion and thermal energy storage of graphene foam-based composites. Nanoscale 8(30), 14600–14607 (2016). https://doi.org/10.1039/C6NR03921A
Z. Shen, S. Kwon, H.L. Lee, M. Toivakka, K. Oh, Cellulose nanofibril/carbon nanotube composite foam-stabilized paraffin phase change material for thermal energy storage and conversion. Carbohydr. Polym. 273, 118585 (2021). https://doi.org/10.1016/j.carbpol.2021.118585
X. Zhao, L.-Y. Wang, C.-Y. Tang, X.-J. Zha, Y. Liu et al., Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano 14(7), 8793–8805 (2020). https://doi.org/10.1021/acsnano.0c03391
M. Mao, J. Wei, B. Li, L. Li, X. Huang et al., Scalable robust photothermal superhydrophobic coatings for efficient anti-icing and de-icing in simulated/real environments. Nat. Commun. 15(1), 9610 (2024). https://doi.org/10.1038/s41467-024-54058-8
H. Zhang, K. Kuang, Y. Zhang, C. Sun, T. Yuan et al., Multifunctional carbon foam with nanoscale chiral magnetic heterostructures for broadband microwave absorption in low frequency. Nano-Micro Lett. 17(1), 133 (2025). https://doi.org/10.1007/s40820-025-01658-8
M. Liu, Z. Wang, Z. Song, F. Wang, G. Zhao et al., A popcorn-inspired strategy for compounding graphene@NiFe2O4 flexible films for strong electromagnetic interference shielding and absorption. Nat. Commun. 15(1), 5486 (2024). https://doi.org/10.1038/s41467-024-49498-1
Z. He, L. Shi, R. Sun, L. Ding, M. He et al., Low-temperature oxidation induced phase evolution with gradient magnetic heterointerfaces for superior electromagnetic wave absorption. Nano-Micro Lett. 17(1), 7 (2024). https://doi.org/10.1007/s40820-024-01516-z
T. Mai, L. Chen, Q. Liu, Z.-H. Guo, M.-G. Ma, Zeolitic imidazolate frameworks derived magnetic nanocage/MXene/nanocellulose bilayer aerogels for low reflection electromagnetic interference shielding and light-to-heat conversion. Adv. Funct. Mater. 35(13), 2417947 (2025). https://doi.org/10.1002/adfm.202417947
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon Aerogel@Reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13(1), 91 (2021). https://doi.org/10.1007/s40820-021-00624-4