Vertical Interfacial Engineering in Two-Step-Processed Perovskite Films Enabled by Dual-Interface Modification for High-Efficiency p-i-n Solar Cells
Corresponding Author: Hsing‑Lin Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 157
Abstract
Two-step-processed (TSP) inverted p-i-n perovskite solar cells (PSCs) have demonstrated significant promise in tandem applications. However, the power conversion efficiency (PCE) of TSP p-i-n PSCs rarely exceeds 24%. Here, we demonstrate that TSP perovskite films exhibit a vertically gradient distribution of residual PbI2 clusters, which form Schottky heterojunctions with the perovskite, leading to substantial interfacial energy-level mismatches within NiOx-based TSP p-i-n PSCs. These limitations were effectively addressed via a vertical interfacial engineering enabled by dual-interface modification incorporating tin trifluoromethanesulfonate (Sn(OTF)2) and 4-Fluorophenylethylamine chloride (F-PEA) at the NiOx/perovskite and perovskite/C60 interfaces, respectively. The functional Sn(OTF)2 not only enhances the conductivity of NiOx films but also suppresses ion migration, while inducing the formation of a Pb-Sn mixed perovskite interlayer that precisely regulates the energy level at the NiOx/perovskite interface. Complementally, F-PEA post-treatment effectively converts surface residual PbI2 clusters into a 2D perovskite capping layer, which simultaneously passivates surface defects and enhances energy-level alignment at the perovskite/C60 interface. Consequently, the optimized NiOx-based TSP p-i-n PSCs achieve a notable PCE of 25.6% with superior operational stability. This study elucidates the underlying mechanisms limiting the efficiency of TSP p-i-n PSCs, while establishing design principles for these devices targeting 26% efficiency.
Highlights:
1 A vertical interfacial engineering strategy via dual-interface modification (Sn(OTF)2 at NiOx/perovskite, 4-Fluorophenylethylamine chloride (F-PEA) at perovskite/C60) solves energy-level mismatches in two-step-processed (TSP) p-i-n PSCs, boosting PCE to 25.6%.
2 Sn(OTF)2 enhances NiOx conductivity, suppresses ion migration, and forms a Pb-Sn perovskite interlayer; F-PEA eliminates PbI2, forming a 2D capping layer for defect passivation.
3 Optimized NiOx-based TSP p-i-n PSCs retain 84% initial power conversion efficiency after 720-h light illumination, providing design principles for 26%-efficiency devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate et al., Promises and challenges of perovskite solar cells. Science 358(6364), 739–744 (2017). https://doi.org/10.1126/science.aam6323
- R. He, X. Huang, M. Chee, F. Hao, P. Dong, Carbon-based perovskite solar cells: from single-junction to modules. Carbon Energy 1(1), 109–123 (2019). https://doi.org/10.1002/cey2.11
- National Renewable Energy Laboratory (NREL), Research Cell Efficiency Records, https://www.nrel.gov/pv/cell-efficiency.html (accessed: February 2025).
- Z. Liu, R. Lin, M. Wei, M. Yin, P. Wu et al., All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites. Nat. Mater. 24(2), 252–259 (2025). https://doi.org/10.1038/s41563-024-02073-x
- Q. Li, Y. Zheng, H. Wang, X. Liu, M. Lin et al., Graphene-polymer reinforcement of perovskite lattices for durable solar cells. Science 387(6738), 1069–1077 (2025). https://doi.org/10.1126/science.adu5563
- Q. Tai, F. Yan, Emerging semitransparent solar cells: materials and device design. Adv. Mater. 29(34), 1700192 (2017). https://doi.org/10.1002/adma.201700192
- J. Chen, J. Du, J. Cai, B. Ouyang, Z. Li et al., Lewis base strategy for crystallization control and buried interface passivation on hydrophobic PTAA substrate for efficient tin–lead perovskite and all-perovskite tandem solar cells. ACS Energy Lett. 10(3), 1117–1128 (2025). https://doi.org/10.1021/acsenergylett.4c03370
- H. Hyuck, H. Young, P. Kyoung, L. Joon, F. Zhang et al., Chemical oxidization of PTAA enables stable slot-die-coated perovskite solar modules. Joule 9(4), 101850 (2025). https://doi.org/10.1016/j.joule.2025.101850
- M.D. Irwin, D.B. Buchholz, A.W. Hains, R.P.H. Chang, T.J. Marks, P-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl. Acad. Sci. U. S. A. 105(8), 2783–2787 (2008). https://doi.org/10.1073/pnas.0711990105
- Z. Liu, A. Zhu, F. Cai, L. Tao, Y. Zhou et al., Nickel oxide nanops for efficient hole transport in p-i-n and n-i-p perovskite solar cells. J. Mater. Chem. A 5(14), 6597–6605 (2017). https://doi.org/10.1039/C7TA01593C
- H. Zhang, C. Zhao, J. Yao, W.C.H. Choy, Dopant-free NiOx nanocrystals: a low-cost and stable hole transport material for commercializing perovskite optoelectronics. Angew. Chem. Int. Ed. 62(24), e202219307 (2023). https://doi.org/10.1002/anie.202219307
- S. Yu, Z. Xiong, H. Zhou, Q. Zhang, Z. Wang et al., Homogenized NiOx nanops for improved hole transport in inverted perovskite solar cells. Science 382(6677), 1399–1404 (2023). https://doi.org/10.1126/science.adj8858
- S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun et al., Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632(8025), 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3
- J. Fang, D. Lin, G. Xie, S. Li, H. Li et al., Anion exchange promoting non-impurities enables conformable and efficient inverted perovskite solar cells. Energy Environ. Sci. 17(20), 7829–7837 (2024). https://doi.org/10.1039/D4EE02718C
- P. Chen, Y. Xiao, L. Li, L. Zhao, M. Yu, S. Li, J. Hu, B. Liu, Y. Yang, D. Luo, C.-H. Hou, X. Guo, J.-J. Shyue, Z.-H. Lu, Q. Gong, H.J. Snaith, R. Zhu, Efficient inverted perovskite solar cells via improved sequential deposition. Adv. Mater. 35(5), 2206345 (2023). https://doi.org/10.1002/adma.202206345
- H. Bao, S. Wang, H. Liu, X. Li, Columnar liquid crystal enables in situ dispersing of excess PbI2 crystals for efficient and stable perovskite solar cells. Adv. Energy Mater. 14(8), 2303166 (2024). https://doi.org/10.1002/aenm.202303166
- J. Holovský, A.P. Amalathas, L. Landová, B. Dzurňák, B. Conrad et al., Lead halide residue as a source of light-induced reversible defects in hybrid perovskite layers and solar cells. ACS Energy Lett. 4(12), 3011–3017 (2019). https://doi.org/10.1021/acsenergylett.9b02080
- H. Liu, J. Wang, Y. Qu, H. Zhou, Y. Xia et al., Defect management and ion infiltration barrier enable high-performance perovskite solar cells. ACS Energy Lett. 9(6), 2790–2799 (2024). https://doi.org/10.1021/acsenergylett.4c00059
- G. Tong, D.-Y. Son, L.K. Ono, Y. Liu, Y. Hu et al., Scalable fabrication of >90 Cm2 perovskite solar modules with >1000 h operational stability based on the intermediate phase strategy. Adv. Energy Mater. 11(10), 2003712 (2021). https://doi.org/10.1002/aenm.202003712
- C. Deng, J. Wu, Y. Yang, Y. Du, R. Li et al., Modulating residual lead iodide via functionalized buried interface for efficient and stable perovskite solar cells. ACS Energy Lett. 8(1), 666–676 (2023). https://doi.org/10.1021/acsenergylett.2c02378
- C. Wang, D. Qu, R. Han, X. Zhang, C. Shang et al., Dipole molecule-mediated modulating residual PbI2 clusters in two-step-processing inverted perovskite photovoltaics. Nano Lett. 24(49), 15912–15920 (2024). https://doi.org/10.1021/acs.nanolett.4c05022
- J. Zhang, X. Ji, X. Wang, L. Zhang, L. Bi et al., Efficient and stable inverted perovskite solar modules enabled by solid-liquid two-step film formation. Nano-Micro Lett. 16(1), 190 (2024). https://doi.org/10.1007/s40820-024-01408-2
- Y. Gao, F. Ren, D. Sun, S. Li, G. Zheng et al., Elimination of unstable residual lead iodide near the buried interface for the stability improvement of perovskite solar cells. Energy Environ. Sci. 16(5), 2295–2303 (2023). https://doi.org/10.1039/D3EE00293D
- D. Qu, C. Shang, X. Yang, C. Wang, B. Zhou et al., Phase homogeneity mediated charge-carrier balance in two-step-method halide perovskite photovoltaics. Energy Environ. Sci. 18(3), 1310–1319 (2025). https://doi.org/10.1039/D4EE04419C
- Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377(6605), 531–534 (2022). https://doi.org/10.1126/science.abp8873
- M. Tao, Y. Wang, K. Zhang, Z. Song, Y. Lan et al., Molecule-triggered strain regulation and interfacial passivation for efficient inverted perovskite solar cells. Joule 8(11), 3142–3152 (2024). https://doi.org/10.1016/j.joule.2024.08.003
- J. He, W. Sheng, J. Yang, Y. Zhong, Y. Su et al., Omnidirectional diffusion of organic amine salts assisted by ordered arrays in porous lead iodide for two-step deposited large-area perovskite solar cells. Energy Environ. Sci. 16(2), 629–640 (2023). https://doi.org/10.1039/D2EE03418B
- H. Chen, H. Yan, Y. Cai, Effects of defect on work function and energy alignment of PbI2: implications for solar cell applications. Chem. Mater. 34(3), 1020–1029 (2022). https://doi.org/10.1021/acs.chemmater.1c03238
- K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T.P. Russell, R. Zhu, Q. Gong, Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells. Adv. Mater. 28(48), 10718–10724 (2016). https://doi.org/10.1002/adma.201604048
- W. Zhang, H. Liu, T. Huang, L. Kang, J. Ge, H. Li, X. Zhou, T. Shi, H.-L. Wang, Oriented molecular dipole-enabled modulation of NiOx/perovskite interface for Pb-Sn mixed inorganic perovskite solar cells. Adv. Mater. 37(8), 2414125 (2025). https://doi.org/10.1002/adma.202414125
- F. Wang, T. Wang, Y. Sun, X. Liang, G. Yang et al., Two-step perovskite solar cells with > 25% efficiency: unveiling the hidden bottom surface of perovskite layer. Adv. Mater. 36(31), 2401476 (2024). https://doi.org/10.1002/adma.202401476
- R. Chen, Y. Wang, S. Nie, H. Shen, Y. Hui et al., Sulfonate-assisted surface iodide management for high-performance perovskite solar cells and modules. J. Am. Chem. Soc. 143(28), 10624–10632 (2021). https://doi.org/10.1021/jacs.1c03419
- Y. Wang, R. Lin, C. Liu, X. Wang, C. Chosy et al., Homogenized contact in all-perovskite tandems using tailored 2D perovskite. Nature 635(8040), 867–873 (2024). https://doi.org/10.1038/s41586-024-08158-6
- X. Ren, J. Wang, Y. Lin, Y. Wang, H. Xie et al., Mobile iodides capture for highly photolysis- and reverse-bias-stable perovskite solar cells. Nat. Mater. 23(6), 810–817 (2024). https://doi.org/10.1038/s41563-024-01876-2
- X. Feng, B. Liu, Y. Peng, C. Gu, X. Bai et al., Restricting the formation of Pb–Pb dimer via surface Pb site passivation for enhancing the light stability of perovskite. Small 18(23), 2201831 (2022). https://doi.org/10.1002/smll.202201831
- L. Zhao, Z. Shi, Y. Zhou, X. Wang, Y. Xian et al., Surface-defect-passivation-enabled near-unity charge collection efficiency in bromide-based perovskite gamma-ray spectrum devices. Nat. Photon. 18(3), 250–257 (2024). https://doi.org/10.1038/s41566-023-01356-0
- J. Zhang, J. Yang, R. Dai, W. Sheng, Y. Su, Y. Zhong, X. Li, L. Tan, Y. Chen, Elimination of interfacial lattice mismatch and detrimental reaction by self-assembled layer dual-passivation for efficient and stable inverted perovskite solar cells. Adv. Energy Mater. 12(18), 2103674 (2022). https://doi.org/10.1002/aenm.202103674
- D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu et al., High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 9(1), 3239 (2018). https://doi.org/10.1038/s41467-018-05760-x
- P.A. Fernández Garrillo, B. Grévin, N. Chevalier, Ł Borowik, Calibrated work function mapping by Kelvin probe force microscopy. Rev. Sci. Instrum. 89(4), 043702 (2018). https://doi.org/10.1063/1.5007619
- W. Melitz, J. Shen, A.C. Kummel, S. Lee, Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66(1), 1–27 (2011). https://doi.org/10.1016/j.surfrep.2010.10.001
- Q. Wang, J. Zhu, Y. Zhao, Y. Chang, N. Hao, Z. Xin, Q. Zhang, C. Chen, H. Huang, Q. Tang, Cross-layer all-interface defect passivation with pre-buried additive toward efficient all-inorganic perovskite solar cells. Carbon Energy 6(9), e566 (2024). https://doi.org/10.1002/cey2.566
- Y. Zhou, T. Guo, J. Jin, Z. Zhu, Y. Li et al., Defect-less formamidinium Sn–Pb perovskite grown on a fluorinated substrate with top-down crystallization control for efficient and stable photovoltaics. Energy Environ. Sci. 17(8), 2845–2855 (2024). https://doi.org/10.1039/D3EE04343F
- W. Zhang, J. Xiong, J. Li, W.A. Daoud, Seed-assisted growth for low-temperature-processed all-inorganic CsPbIBr2 solar cells with efficiency over 10%. Small 16(24), 2001535 (2020). https://doi.org/10.1002/smll.202001535
- A. Goyal, S. McKechnie, D. Pashov, W. Tumas, M. van Schilfgaarde et al., Origin of pronounced nonlinear band gap behavior in lead–tin hybrid perovskite alloys. Chem. Mater. 30(11), 3920–3928 (2018). https://doi.org/10.1021/acs.chemmater.8b01695
- W. Zhang, H. Liu, X. Qi, Y. Yu, Y. Zhou et al., Oxalate pushes efficiency of CsPb0.7Sn0.3IBr2 based all-inorganic perovskite solar cells to over 14%. Adv. Sci. 9(11), 2106054 (2022). https://doi.org/10.1002/advs.202106054
- X. Zhang, Y. Luo, X. Wang, K. Zhao, P. Shi, Y. Tian, J. Xu, L. Yao, J. Sun, Q. Liu, W. Fan, R. Wang, J. Xue, Locking surface dimensionality for endurable interface in perovskite photovoltaics. Carbon Energy 7(4), e718 (2025). https://doi.org/10.1002/cey2.718
- W. Zhang, Y. Cai, H. Liu, Y. Xia, J. Cui, Y. Shi, R. Chen, T. Shi, H.-L. Wang, Organic-free and lead-free perovskite solar cells with efficiency over 11%. Adv. Energy Mater. 12(42), 2202491 (2022). https://doi.org/10.1002/aenm.202202491
- W. Zhang, H. Liu, Y. Qu, J. Cui, W. Zhang, T. Shi, H.L. Wang, B-site co-doping coupled with additive passivation pushes the efficiency of Pb–Sn mixed inorganic perovskite solar cells to over 17%. Adv. Mater. 36(14), 2309193 (2024). https://doi.org/10.1002/adma.202309193
- V.M. Le Corre, E.A. Duijnstee, O. El Tambouli, J.M. Ball, H.J. Snaith et al., Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett. 6(3), 1087–1094 (2021). https://doi.org/10.1021/acsenergylett.0c02599
- C. Liu, L. Ma, P. Zhao, L. Yuan, F. Li, Z. Fang, Q. Chang, N. Jia, P. Guo, F. Guo, Z. Liu, R. Chen, H. Wang, Peptide-based ammonium halide with inhibited deprotonation enabling effective interfacial engineering for highly efficient and stable FAPbI3 perovskite solar cells. Adv. Funct. Mater. 34(40), 2405735 (2024). https://doi.org/10.1002/adfm.202405735
- O. Almora, C. Aranda, E. Mas-Marzá, G. Garcia-Belmonte, On mott-schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells. Appl. Phys. Lett. 109(17), 173903 (2016). https://doi.org/10.1063/1.4966127
- E.L. Lim, A. Hagfeldt, D. Bi, Toward highly efficient and stable Sn2+ and mixed Pb2+/Sn2+ based halide perovskite solar cells through device engineering. Energy Environ. Sci. 14(6), 3256–3300 (2021). https://doi.org/10.1039/D0EE03368E
- K. Zhao, Q. Liu, L. Yao, C. Değer, J. Shen et al., Peri-fused polyaromatic molecular contacts for perovskite solar cells. Nature 632(8024), 301–306 (2024). https://doi.org/10.1038/s41586-024-07712-6
- Y. Gao, H. Raza, Z. Zhang, W. Chen, Z. Liu, Rethinking the role of excess/residual lead iodide in perovskite solar cells. Adv. Funct. Mater. 33(26), 2215171 (2023). https://doi.org/10.1002/adfm.202215171
References
J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate et al., Promises and challenges of perovskite solar cells. Science 358(6364), 739–744 (2017). https://doi.org/10.1126/science.aam6323
R. He, X. Huang, M. Chee, F. Hao, P. Dong, Carbon-based perovskite solar cells: from single-junction to modules. Carbon Energy 1(1), 109–123 (2019). https://doi.org/10.1002/cey2.11
National Renewable Energy Laboratory (NREL), Research Cell Efficiency Records, https://www.nrel.gov/pv/cell-efficiency.html (accessed: February 2025).
Z. Liu, R. Lin, M. Wei, M. Yin, P. Wu et al., All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites. Nat. Mater. 24(2), 252–259 (2025). https://doi.org/10.1038/s41563-024-02073-x
Q. Li, Y. Zheng, H. Wang, X. Liu, M. Lin et al., Graphene-polymer reinforcement of perovskite lattices for durable solar cells. Science 387(6738), 1069–1077 (2025). https://doi.org/10.1126/science.adu5563
Q. Tai, F. Yan, Emerging semitransparent solar cells: materials and device design. Adv. Mater. 29(34), 1700192 (2017). https://doi.org/10.1002/adma.201700192
J. Chen, J. Du, J. Cai, B. Ouyang, Z. Li et al., Lewis base strategy for crystallization control and buried interface passivation on hydrophobic PTAA substrate for efficient tin–lead perovskite and all-perovskite tandem solar cells. ACS Energy Lett. 10(3), 1117–1128 (2025). https://doi.org/10.1021/acsenergylett.4c03370
H. Hyuck, H. Young, P. Kyoung, L. Joon, F. Zhang et al., Chemical oxidization of PTAA enables stable slot-die-coated perovskite solar modules. Joule 9(4), 101850 (2025). https://doi.org/10.1016/j.joule.2025.101850
M.D. Irwin, D.B. Buchholz, A.W. Hains, R.P.H. Chang, T.J. Marks, P-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl. Acad. Sci. U. S. A. 105(8), 2783–2787 (2008). https://doi.org/10.1073/pnas.0711990105
Z. Liu, A. Zhu, F. Cai, L. Tao, Y. Zhou et al., Nickel oxide nanops for efficient hole transport in p-i-n and n-i-p perovskite solar cells. J. Mater. Chem. A 5(14), 6597–6605 (2017). https://doi.org/10.1039/C7TA01593C
H. Zhang, C. Zhao, J. Yao, W.C.H. Choy, Dopant-free NiOx nanocrystals: a low-cost and stable hole transport material for commercializing perovskite optoelectronics. Angew. Chem. Int. Ed. 62(24), e202219307 (2023). https://doi.org/10.1002/anie.202219307
S. Yu, Z. Xiong, H. Zhou, Q. Zhang, Z. Wang et al., Homogenized NiOx nanops for improved hole transport in inverted perovskite solar cells. Science 382(6677), 1399–1404 (2023). https://doi.org/10.1126/science.adj8858
S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun et al., Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632(8025), 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3
J. Fang, D. Lin, G. Xie, S. Li, H. Li et al., Anion exchange promoting non-impurities enables conformable and efficient inverted perovskite solar cells. Energy Environ. Sci. 17(20), 7829–7837 (2024). https://doi.org/10.1039/D4EE02718C
P. Chen, Y. Xiao, L. Li, L. Zhao, M. Yu, S. Li, J. Hu, B. Liu, Y. Yang, D. Luo, C.-H. Hou, X. Guo, J.-J. Shyue, Z.-H. Lu, Q. Gong, H.J. Snaith, R. Zhu, Efficient inverted perovskite solar cells via improved sequential deposition. Adv. Mater. 35(5), 2206345 (2023). https://doi.org/10.1002/adma.202206345
H. Bao, S. Wang, H. Liu, X. Li, Columnar liquid crystal enables in situ dispersing of excess PbI2 crystals for efficient and stable perovskite solar cells. Adv. Energy Mater. 14(8), 2303166 (2024). https://doi.org/10.1002/aenm.202303166
J. Holovský, A.P. Amalathas, L. Landová, B. Dzurňák, B. Conrad et al., Lead halide residue as a source of light-induced reversible defects in hybrid perovskite layers and solar cells. ACS Energy Lett. 4(12), 3011–3017 (2019). https://doi.org/10.1021/acsenergylett.9b02080
H. Liu, J. Wang, Y. Qu, H. Zhou, Y. Xia et al., Defect management and ion infiltration barrier enable high-performance perovskite solar cells. ACS Energy Lett. 9(6), 2790–2799 (2024). https://doi.org/10.1021/acsenergylett.4c00059
G. Tong, D.-Y. Son, L.K. Ono, Y. Liu, Y. Hu et al., Scalable fabrication of >90 Cm2 perovskite solar modules with >1000 h operational stability based on the intermediate phase strategy. Adv. Energy Mater. 11(10), 2003712 (2021). https://doi.org/10.1002/aenm.202003712
C. Deng, J. Wu, Y. Yang, Y. Du, R. Li et al., Modulating residual lead iodide via functionalized buried interface for efficient and stable perovskite solar cells. ACS Energy Lett. 8(1), 666–676 (2023). https://doi.org/10.1021/acsenergylett.2c02378
C. Wang, D. Qu, R. Han, X. Zhang, C. Shang et al., Dipole molecule-mediated modulating residual PbI2 clusters in two-step-processing inverted perovskite photovoltaics. Nano Lett. 24(49), 15912–15920 (2024). https://doi.org/10.1021/acs.nanolett.4c05022
J. Zhang, X. Ji, X. Wang, L. Zhang, L. Bi et al., Efficient and stable inverted perovskite solar modules enabled by solid-liquid two-step film formation. Nano-Micro Lett. 16(1), 190 (2024). https://doi.org/10.1007/s40820-024-01408-2
Y. Gao, F. Ren, D. Sun, S. Li, G. Zheng et al., Elimination of unstable residual lead iodide near the buried interface for the stability improvement of perovskite solar cells. Energy Environ. Sci. 16(5), 2295–2303 (2023). https://doi.org/10.1039/D3EE00293D
D. Qu, C. Shang, X. Yang, C. Wang, B. Zhou et al., Phase homogeneity mediated charge-carrier balance in two-step-method halide perovskite photovoltaics. Energy Environ. Sci. 18(3), 1310–1319 (2025). https://doi.org/10.1039/D4EE04419C
Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377(6605), 531–534 (2022). https://doi.org/10.1126/science.abp8873
M. Tao, Y. Wang, K. Zhang, Z. Song, Y. Lan et al., Molecule-triggered strain regulation and interfacial passivation for efficient inverted perovskite solar cells. Joule 8(11), 3142–3152 (2024). https://doi.org/10.1016/j.joule.2024.08.003
J. He, W. Sheng, J. Yang, Y. Zhong, Y. Su et al., Omnidirectional diffusion of organic amine salts assisted by ordered arrays in porous lead iodide for two-step deposited large-area perovskite solar cells. Energy Environ. Sci. 16(2), 629–640 (2023). https://doi.org/10.1039/D2EE03418B
H. Chen, H. Yan, Y. Cai, Effects of defect on work function and energy alignment of PbI2: implications for solar cell applications. Chem. Mater. 34(3), 1020–1029 (2022). https://doi.org/10.1021/acs.chemmater.1c03238
K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T.P. Russell, R. Zhu, Q. Gong, Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells. Adv. Mater. 28(48), 10718–10724 (2016). https://doi.org/10.1002/adma.201604048
W. Zhang, H. Liu, T. Huang, L. Kang, J. Ge, H. Li, X. Zhou, T. Shi, H.-L. Wang, Oriented molecular dipole-enabled modulation of NiOx/perovskite interface for Pb-Sn mixed inorganic perovskite solar cells. Adv. Mater. 37(8), 2414125 (2025). https://doi.org/10.1002/adma.202414125
F. Wang, T. Wang, Y. Sun, X. Liang, G. Yang et al., Two-step perovskite solar cells with > 25% efficiency: unveiling the hidden bottom surface of perovskite layer. Adv. Mater. 36(31), 2401476 (2024). https://doi.org/10.1002/adma.202401476
R. Chen, Y. Wang, S. Nie, H. Shen, Y. Hui et al., Sulfonate-assisted surface iodide management for high-performance perovskite solar cells and modules. J. Am. Chem. Soc. 143(28), 10624–10632 (2021). https://doi.org/10.1021/jacs.1c03419
Y. Wang, R. Lin, C. Liu, X. Wang, C. Chosy et al., Homogenized contact in all-perovskite tandems using tailored 2D perovskite. Nature 635(8040), 867–873 (2024). https://doi.org/10.1038/s41586-024-08158-6
X. Ren, J. Wang, Y. Lin, Y. Wang, H. Xie et al., Mobile iodides capture for highly photolysis- and reverse-bias-stable perovskite solar cells. Nat. Mater. 23(6), 810–817 (2024). https://doi.org/10.1038/s41563-024-01876-2
X. Feng, B. Liu, Y. Peng, C. Gu, X. Bai et al., Restricting the formation of Pb–Pb dimer via surface Pb site passivation for enhancing the light stability of perovskite. Small 18(23), 2201831 (2022). https://doi.org/10.1002/smll.202201831
L. Zhao, Z. Shi, Y. Zhou, X. Wang, Y. Xian et al., Surface-defect-passivation-enabled near-unity charge collection efficiency in bromide-based perovskite gamma-ray spectrum devices. Nat. Photon. 18(3), 250–257 (2024). https://doi.org/10.1038/s41566-023-01356-0
J. Zhang, J. Yang, R. Dai, W. Sheng, Y. Su, Y. Zhong, X. Li, L. Tan, Y. Chen, Elimination of interfacial lattice mismatch and detrimental reaction by self-assembled layer dual-passivation for efficient and stable inverted perovskite solar cells. Adv. Energy Mater. 12(18), 2103674 (2022). https://doi.org/10.1002/aenm.202103674
D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu et al., High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 9(1), 3239 (2018). https://doi.org/10.1038/s41467-018-05760-x
P.A. Fernández Garrillo, B. Grévin, N. Chevalier, Ł Borowik, Calibrated work function mapping by Kelvin probe force microscopy. Rev. Sci. Instrum. 89(4), 043702 (2018). https://doi.org/10.1063/1.5007619
W. Melitz, J. Shen, A.C. Kummel, S. Lee, Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66(1), 1–27 (2011). https://doi.org/10.1016/j.surfrep.2010.10.001
Q. Wang, J. Zhu, Y. Zhao, Y. Chang, N. Hao, Z. Xin, Q. Zhang, C. Chen, H. Huang, Q. Tang, Cross-layer all-interface defect passivation with pre-buried additive toward efficient all-inorganic perovskite solar cells. Carbon Energy 6(9), e566 (2024). https://doi.org/10.1002/cey2.566
Y. Zhou, T. Guo, J. Jin, Z. Zhu, Y. Li et al., Defect-less formamidinium Sn–Pb perovskite grown on a fluorinated substrate with top-down crystallization control for efficient and stable photovoltaics. Energy Environ. Sci. 17(8), 2845–2855 (2024). https://doi.org/10.1039/D3EE04343F
W. Zhang, J. Xiong, J. Li, W.A. Daoud, Seed-assisted growth for low-temperature-processed all-inorganic CsPbIBr2 solar cells with efficiency over 10%. Small 16(24), 2001535 (2020). https://doi.org/10.1002/smll.202001535
A. Goyal, S. McKechnie, D. Pashov, W. Tumas, M. van Schilfgaarde et al., Origin of pronounced nonlinear band gap behavior in lead–tin hybrid perovskite alloys. Chem. Mater. 30(11), 3920–3928 (2018). https://doi.org/10.1021/acs.chemmater.8b01695
W. Zhang, H. Liu, X. Qi, Y. Yu, Y. Zhou et al., Oxalate pushes efficiency of CsPb0.7Sn0.3IBr2 based all-inorganic perovskite solar cells to over 14%. Adv. Sci. 9(11), 2106054 (2022). https://doi.org/10.1002/advs.202106054
X. Zhang, Y. Luo, X. Wang, K. Zhao, P. Shi, Y. Tian, J. Xu, L. Yao, J. Sun, Q. Liu, W. Fan, R. Wang, J. Xue, Locking surface dimensionality for endurable interface in perovskite photovoltaics. Carbon Energy 7(4), e718 (2025). https://doi.org/10.1002/cey2.718
W. Zhang, Y. Cai, H. Liu, Y. Xia, J. Cui, Y. Shi, R. Chen, T. Shi, H.-L. Wang, Organic-free and lead-free perovskite solar cells with efficiency over 11%. Adv. Energy Mater. 12(42), 2202491 (2022). https://doi.org/10.1002/aenm.202202491
W. Zhang, H. Liu, Y. Qu, J. Cui, W. Zhang, T. Shi, H.L. Wang, B-site co-doping coupled with additive passivation pushes the efficiency of Pb–Sn mixed inorganic perovskite solar cells to over 17%. Adv. Mater. 36(14), 2309193 (2024). https://doi.org/10.1002/adma.202309193
V.M. Le Corre, E.A. Duijnstee, O. El Tambouli, J.M. Ball, H.J. Snaith et al., Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett. 6(3), 1087–1094 (2021). https://doi.org/10.1021/acsenergylett.0c02599
C. Liu, L. Ma, P. Zhao, L. Yuan, F. Li, Z. Fang, Q. Chang, N. Jia, P. Guo, F. Guo, Z. Liu, R. Chen, H. Wang, Peptide-based ammonium halide with inhibited deprotonation enabling effective interfacial engineering for highly efficient and stable FAPbI3 perovskite solar cells. Adv. Funct. Mater. 34(40), 2405735 (2024). https://doi.org/10.1002/adfm.202405735
O. Almora, C. Aranda, E. Mas-Marzá, G. Garcia-Belmonte, On mott-schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells. Appl. Phys. Lett. 109(17), 173903 (2016). https://doi.org/10.1063/1.4966127
E.L. Lim, A. Hagfeldt, D. Bi, Toward highly efficient and stable Sn2+ and mixed Pb2+/Sn2+ based halide perovskite solar cells through device engineering. Energy Environ. Sci. 14(6), 3256–3300 (2021). https://doi.org/10.1039/D0EE03368E
K. Zhao, Q. Liu, L. Yao, C. Değer, J. Shen et al., Peri-fused polyaromatic molecular contacts for perovskite solar cells. Nature 632(8024), 301–306 (2024). https://doi.org/10.1038/s41586-024-07712-6
Y. Gao, H. Raza, Z. Zhang, W. Chen, Z. Liu, Rethinking the role of excess/residual lead iodide in perovskite solar cells. Adv. Funct. Mater. 33(26), 2215171 (2023). https://doi.org/10.1002/adfm.202215171