Self-Assembly Control of Y-Series Non-fullerene Acceptors for Sustainable and Scalable Organic Photovoltaics
Corresponding Author: Hsien‑Yi Hsu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 182
Abstract
Sustainability and scalability remain critical hurdles for the commercialization of organic solar cells (OSCs). However, addressing both poses challenge. Herein, we introduce a simple yet effective strategy utilizing 3,5-dichloropyridine (PDCC) as a solid additive to fine-tune the self-assembly behavior of Y-series non-fullerene acceptors (NFAs) to tackle the upscaling limitations in green-solvent-processed OSCs. PDCC predominantly interacts with Y-series NFAs, facilitating molecular crystallization and thereby driving the self-assembly of Y-series NFAs during film-forming dynamics, leading to more uniform active layers with improved molecular packing and reduced charge recombination. As a result, PDCC-driven self-assembly strategy enables high-performance OSCs with a power conversion efficiency (PCE) of 20.47%. When translated to sustainable fabrication, this strategy significantly boosts the PCE of large-area green-solvent-processed OSC modules (19.3 cm2) from 13.87% to 15.79%, ranking it among the best-performing green-solvent-processed large-area OSC modules (> 18 cm2). Beyond its impact on PCE enhancement, PDCC serves as a multifunctional additive to improve long-term stability and exhibits strong universality across multiple material systems. This work establishes a promising approach for advancing sustainable and scalable OSCs, paving the way for their commercialization.
Highlights:
1 The self-assembly behavior of Y-series non-fullerene acceptors and film formation dynamics are elucidated via in situ characterization, providing critical insights for sustainable and scalable organic solar cells (OSCs).
2 A 3,5-dichloropyridine-assisted self-assembly strategy enables 20.47% efficiency for small-area OSCs and 15.79% for sustainable organic photovoltaic modules (19.3 cm2).
3 This versatile self-assembly control approach is broadly applicable to various material systems, paving the way toward the commercialization of OSC.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip et al., Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3(4), 1140–1151 (2019). https://doi.org/10.1016/j.joule.2019.01.004
- J. Yi, G. Zhang, H. Yu, H. Yan, Advantages, challenges and molecular design of different material types used in organic solar cells. Nat. Rev. Mater. 9(1), 46–62 (2024). https://doi.org/10.1038/s41578-023-00618-1
- D. Hu, H. Tang, C. Chen, D.-J. Lee, S. Lu et al., Solid additive engineering for next-generation organic photovoltaics. Adv. Mater. 36(51), 2406949 (2024). https://doi.org/10.1002/adma.202406949
- Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang et al., Tandem organic solar cell with 20.2% efficiency. Joule 6(1), 171–184 (2022). https://doi.org/10.1016/j.joule.2021.12.017
- C. Li, J. Zhou, J. Song, J. Xu, H. Zhang et al., Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6(6), 605–613 (2021). https://doi.org/10.1038/s41560-021-00820-x
- L. Zhu, M. Zhang, G. Zhou, Z. Wang, W. Zhong et al., Achieving 20.8% organic solar cells via additive-assisted layer-by-layer fabrication with bulk p-i-n structure and improved optical management. Joule 8(11), 3153–3168 (2024). https://doi.org/10.1016/j.joule.2024.08.001
- H. Chen, Y. Huang, R. Zhang, H. Mou, J. Ding et al., Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation. Nat. Mater. 24(3), 444–453 (2025). https://doi.org/10.1038/s41563-024-02062-0
- Y. Li, Z. Jia, P. Huang, C. Gao, Y. Wang et al., Simultaneously improving the efficiencies of organic photovoltaic devices and modules by finely manipulating the aggregation behaviors of Y-series molecules. Energy Environ. Sci. 18(1), 256–263 (2025). https://doi.org/10.1039/D4EE04378B
- H. Tang, Z. Liao, S. Karuthedath, S. Chen, H. Liu et al., Rationale for highly efficient and outdoor-stable terpolymer solar cells. Energy Environ. Sci. 16(5), 2056–2067 (2023). https://doi.org/10.1039/d3ee00350g
- X. Wu, B. Xiao, R. Sun, X. Yang, M. Zhang et al., 19.46%-efficiency all-polymer organic solar cells with excellent outdoor operating stability enabled by active layer reconstruction. Energy Environ. Sci. 18(4), 1812–1823 (2025). https://doi.org/10.1039/d4ee05083e
- H. Tang, Z. Liao, Q. Chen, H. Xu, J. Huang et al., Elucidating the optimal material combinations of organic photovoltaics for maximum industrial viability. Joule 8(8), 2208–2219 (2024). https://doi.org/10.1016/j.joule.2024.06.022
- R. Sun, Y. Wu, X. Yang, Y. Gao, Z. Chen et al., Single-junction organic solar cells with 19.17% efficiency enabled by introducing one asymmetric guest acceptor. Adv. Mater. 34(26), 2110147 (2022). https://doi.org/10.1002/adma.202110147
- J. Lv, X. Sun, H. Tang, F. Wang, G. Zhang et al., Phase separation and domain crystallinity control enable open-air-printable highly efficient and sustainable organic photovoltaics. InfoMat 6(3), e12530 (2024). https://doi.org/10.1002/inf2.12530
- R. Sun, T. Wang, X. Yang, Y. Wu, Y. Wang et al., High-speed sequential deposition of photoactive layers for organic solar cell manufacturing. Nat. Energy 7(11), 1087–1099 (2022). https://doi.org/10.1038/s41560-022-01140-4
- Y. Sun, L. Wang, C. Guo, J. Xiao, C. Liu et al., π-extended nonfullerene acceptor for compressed molecular packing in organic solar cells to achieve over 20% efficiency. J. Am. Chem. Soc. 146(17), 12011–12019 (2024). https://doi.org/10.1021/jacs.4c01503
- C. Li, J. Song, H. Lai, H. Zhang, R. Zhou et al., Non-fullerene acceptors with high crystallinity and photoluminescence quantum yield enable >20% efficiency organic solar cells. Nat. Mater. 24(3), 433–443 (2025). https://doi.org/10.1038/s41563-024-02087-5
- C. Xu, J. Yang, S. Gámez-Valenzuela, J.-W. Lee, J. Che et al., A bithiophene imide-based polymer donor for alloy-like ternary organic solar cells with over 20.5% efficiency and enhanced stability. Energy Environ. Sci. 18(12), 5913–5925 (2025). https://doi.org/10.1039/D5EE00812C
- Z. Zhong, S. Gámez-Valenzuela, J.-W. Lee, Y. Wang, B. Li et al., Three-dimensional bowl-shaped solid additive achieves 20.52% efficiency organic solar cells with enhanced thermal stability via curvature-mediated morphology regulation. Energy Environ. Sci. 18(15), 7635–7647 (2025). https://doi.org/10.1039/D5EE01977J
- C. Li, Y. Cai, P. Hu, T. Liu, L. Zhu et al., Organic solar cells with 21% efficiency enabled by a hybrid interfacial layer with dual-component synergy. Nat. Mater. 24(10), 1626–1634 (2025). https://doi.org/10.1038/s41563-025-02305-8
- L. Liu, F. Yu, D. Hu, X. Jiang, P. Huang et al., Breaking the symmetry of interfacial molecules with push–pull substituents enables 19.67% efficiency organic solar cells featuring enhanced charge extraction. Energy Environ. Sci. 18(4), 1722–1731 (2025). https://doi.org/10.1039/D4EE04515G
- Y. Jiang, K. Liu, F. Liu, G. Ran, M. Wang et al., 20.6% efficiency organic solar cells enabled by incorporating a lower bandgap guest nonfullerene acceptor without open-circuit voltage loss. Adv. Mater. 37(17), 2500282 (2025). https://doi.org/10.1002/adma.202500282
- J. Wang, Z. Zheng, Y. Ke, Y. Wang, X. Liu et al., Fluid control of dip coating for efficient large-area organic solar cells. Adv. Mater. 37(10), 2417160 (2025). https://doi.org/10.1002/adma.202417160
- Z. Xia, C. Gao, Z. Xie, M. Wu, H. Chen et al., Isomerization-controlled aggregation in photoactive layer: an additive strategy for organic solar cells with over 19.5 % efficiency. Angew. Chem. Int. Ed. 64(12), e202421953 (2025). https://doi.org/10.1002/anie.202421953
- R. Yu, R. Shi, Z. He, T. Zhang, S. Li et al., Thermodynamic phase transition of three-dimensional solid additives guiding molecular assembly for efficient organic solar cells. Angew. Chem. Int. Ed. 62(40), e202308367 (2023). https://doi.org/10.1002/anie.202308367
- K. Weng, L. Ye, L. Zhu, J. Xu, J. Zhou et al., Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells. Nat. Commun. 11, 2855 (2020). https://doi.org/10.1038/s41467-020-16621-x
- X. Zhang, X. Li, X. Kong, J. Zhang, J. Li et al., Fine-tuning of molecular self-assembly morphology via synergistic ternary copolymerization and side chain optimization of low-cost polymer donors toward efficient organic solar cells. Adv. Mater. 37(37), 2503325 (2025). https://doi.org/10.1002/adma.202503325
- Y. Liu, C. Zhang, D. Hao, Z. Zhang, L. Wu et al., Enhancing the performance of organic solar cells by hierarchically supramolecular self-assembly of fused-ring electron acceptors. Chem. Mater. 30(13), 4307–4312 (2018). https://doi.org/10.1021/acs.chemmater.8b01319
- J. Wang, Q. Sun, J. Xiao, M. Zhu, L. Chen et al., Subtly adjusted active layer self-assembly process for efficient organic solar cells. Polym. Int. 68(10), 1698–1703 (2019). https://doi.org/10.1002/pi.5873
- S. Gao, S. Xu, C. Sun, L. Yu, J. Li et al., Rational regulation of layer-by-layer processed active layer via trimer-induced pre-swelling strategy for efficient and robust thick-film organic solar cells. Adv. Mater. 37(28), 2420631 (2025). https://doi.org/10.1002/adma.202420631
- M. Deng, L. Tan, H. Tang, Q. Peng, Recent progress in Y-series small molecule acceptors in polymer solar cells. Chem. Commun. 61(53), 9569–9583 (2025). https://doi.org/10.1039/D5CC02352A
- D. Hu, H. Tang, C. Chen, P. Huang, Z. Shen et al., Insights into preaggregation control of Y-series nonfullerene acceptors in liquid state for highly efficient binary organic solar cells. Adv. Mater. 36(30), 2402833 (2024). https://doi.org/10.1002/adma.202402833
- J.-H. Dou, Y.-Q. Zheng, Z.-F. Yao, Z.-A. Yu, T. Lei et al., Fine-tuning of crystal packing and charge transport properties of BDOPV derivatives through fluorine substitution. J. Am. Chem. Soc. 137(50), 15947–15956 (2015). https://doi.org/10.1021/jacs.5b11114
- Y. Wang, Z. Liang, X. Liang, X. Wen, Z. Cai et al., Easy isomerization strategy for additives enables high-efficiency organic solar cells. Adv. Energy Mater. 13(22), 2300524 (2023). https://doi.org/10.1002/aenm.202300524
- Z. Zhao, S. Chung, Y.Y. Kim, M. Jeong, X. Li et al., Room-temperature-modulated polymorphism of nonfullerene acceptors enables efficient bilayer organic solar cells. Energy Environ. Sci. 17(15), 5666–5678 (2024). https://doi.org/10.1039/D4EE02330G
- G. Zhang, X.-K. Chen, J. Xiao, P.C.Y. Chow, M. Ren et al., Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nat. Commun. 11(1), 3943 (2020). https://doi.org/10.1038/s41467-020-17867-1
- F.C. Spano, The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43(3), 429–439 (2010). https://doi.org/10.1021/ar900233v
- F.S.U. Fischer, D. Trefz, J. Back, N. Kayunkid, B. Tornow et al., Highly crystalline films of PCPDTBT with branched side chains by solvent vapor crystallization: influence on opto-electronic properties. Adv. Mater. 27(7), 1223–1228 (2015). https://doi.org/10.1002/adma.201403475
- Y. Li, J. Wu, X. Yi, Z. Liu, H. Liu et al., Layer-by-layer blade-coated organic solar cells with non-halogenated solvents and non-halogenated additive via adjusting morphology and crystallization. J. Mater. Chem. C 11(39), 13263–13273 (2023). https://doi.org/10.1039/D3TC02562D
- B. Ma, Y. Yan, M. Wu, S. Li, M. Ru et al., Sustainable solution processing toward high-efficiency organic solar cells: a comprehensive review of materials, strategies, and applications. Adv. Funct. Mater. 35(3), 2413814 (2025). https://doi.org/10.1002/adfm.202413814
- J. Wang, P. Wang, T. Chen, W. Zhao, J. Wang et al., Isomerism effect of 3D dimeric acceptors for non-halogenated solvent-processed organic solar cells with 20% efficiency. Angew. Chem. Int. Ed. 64(12), e202423562 (2025). https://doi.org/10.1002/anie.202423562
- H. Jung, J. Kim, J. Park, M. Jahankhan, Y. Hwang et al., Achieving an excellent efficiency of 11.57% in a polymer solar cell submodule with a 55 cm2 active area using 1D/2A terpolymers and environmentally friendly nonhalogenated solvents. EcoMat 6(1), e12421 (2024). https://doi.org/10.1002/eom2.12421
- S. Dong, T. Jia, K. Zhang, J. Jing, F. Huang, Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%. Joule 4(9), 2004–2016 (2020). https://doi.org/10.1016/j.joule.2020.07.028
- B. Zou, W. Wu, T.A. Dela Peña, R. Ma, Y. Luo et al., Step-by-step modulation of crystalline features and exciton kinetics for 19.2% efficiency ortho-xylene processed organic solar cells. Nano-Micro Lett. 16(1), 30 (2023). https://doi.org/10.1007/s40820-023-01241-z
- S. Zhang, H. Chen, P. Wang, S. Li, Z. Li et al., A large area organic solar module with non-halogen solvent treatment, high efficiency, and decent stability. Solar RRL 7(7), 2300029 (2023). https://doi.org/10.1002/solr.202300029
- H. Wang, S. Liu, H. Li, M. Li, X. Wu et al., Green printing for scalable organic photovoltaic modules by controlling the gradient Marangoni flow. Adv. Mater. 36(21), e2313098 (2024). https://doi.org/10.1002/adma.202313098
- M. Xiao, C. Wang, Y. Xu, W. Zhang, Z. Fu et al., Enhance photo-stability of up-scalable organic solar cells: suppressing radical generation in polymer donors. Adv. Mater. 37(5), e2412746 (2025). https://doi.org/10.1002/adma.202412746
- T. Le Huyen Mai, Z. Sun, S. Kim, S. Jeong, S. Lee et al., Open-air, green-solvent processed organic solar cells with efficiency approaching 18% and exceptional stability. Energy Environ. Sci. 17(19), 7435–7444 (2024). https://doi.org/10.1039/d4ee01944j
- J. Song, C. Zhang, C. Li, J. Qiao, J. Yu et al., Non-halogenated solvent-processed organic solar cells with approaching 20% efficiency and improved photostability. Angew. Chem. Int. Ed. 63(22), e202404297 (2024). https://doi.org/10.1002/anie.202404297
- C. Wang, X. Ma, Y.-F. Shen, D. Deng, H. Zhang et al., Unique assembly of giant star-shaped trimer enables non-halogen solvent-fabricated, thermal stable, and efficient organic solar cells. Joule 7(10), 2386–2401 (2023). https://doi.org/10.1016/j.joule.2023.09.001
- B. Liu, H. Sun, J.-W. Lee, J. Yang, J. Wang et al., Achieving highly efficient all-polymer solar cells by green-solvent-processing under ambient atmosphere. Energy Environ. Sci. 14(8), 4499–4507 (2021). https://doi.org/10.1039/D1EE01310F
- L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang et al., Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency. Adv. Mater. 31(39), e1903441 (2019). https://doi.org/10.1002/adma.201903441
- C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng et al., Processing strategies for an organic photovoltaic module with over 10% efficiency. Joule 4(1), 189–206 (2020). https://doi.org/10.1016/j.joule.2019.11.006
- B. Zhang, W. Chen, H. Chen, G. Zeng, R. Zhang et al., Rapid solidification for green-solvent-processed large-area organic solar modules with >16% efficiency. Energy Environ. Sci. 17(8), 2935–2944 (2024). https://doi.org/10.1039/D4EE00680A
- H. He, X. Li, J. Zhang, Z. Chen, Y. Gong et al., Dynamic hydrogen-bonding enables high-performance and mechanically robust organic solar cells processed with non-halogenated solvent. Nat. Commun. 16(1), 787 (2025). https://doi.org/10.1038/s41467-024-55375-8
- H. Chen, W. Sun, R. Zhang, Y. Huang, B. Zhang et al., Heterogeneous nucleating agent for high-boiling-point nonhalogenated solvent-processed organic solar cells and modules. Adv. Mater. 36(27), 2402350 (2024). https://doi.org/10.1002/adma.202402350
- R. Basu, F. Gumpert, J. Lohbreier, P.-O. Morin, V. Vohra et al., Large-area organic photovoltaic modules with 14.5% certified world record efficiency. Joule 8(4), 970–978 (2024). https://doi.org/10.1016/j.joule.2024.02.016
- J.-Y. Fan, Z.-X. Liu, J. Rao, K. Yan, Z. Chen et al., High-performance organic solar modules via bilayer-merged-annealing assisted blade coating. Adv. Mater. 34(28), e2110569 (2022). https://doi.org/10.1002/adma.202110569
- T. Xu, J. Lv, K. Yang, Y. He, Q. Yang et al., 15.8% efficiency binary all-small-molecule organic solar cells enabled by a selenophene substituted sematic liquid crystalline donor. Energy Environ. Sci. 14(10), 5366–5376 (2021). https://doi.org/10.1039/D1EE01193F
- D. Hu, H. Tang, S. Karuthedath, Q. Chen, S. Chen et al., A volatile solid additive enables oligothiophene all-small-molecule organic solar cells with excellent commercial viability. Adv. Funct. Mater. 33(6), 2211873 (2023). https://doi.org/10.1002/adfm.202211873
- J. Ren, J. Wang, J. Qiao, Z. Chen, X. Hao et al., Manipulating aggregation kinetics toward efficient all-printed organic solar cells. Adv. Mater. 37(11), e2418353 (2025). https://doi.org/10.1002/adma.202418353
- W. Su, X. Zhou, Q. Wu, Y. Wu, H. Qin et al., Halogenation engineering of solid additives enables 19.39% efficiency and stable binary organic solar cells via manipulating molecular stacking and aggregation of both donor and acceptor components. Adv. Funct. Mater. 35(6), 2415090 (2025). https://doi.org/10.1002/adfm.202415090
- X. Song, B. Zhang, X. Liu, L. Mei, H. Li et al., Low-volatility fused-ring solid additive engineering for synergistically elongating exciton lifetime and mitigating trap density toward organic solar cells of 20.5% efficiency. Adv. Mater. 37(12), e2418393 (2025). https://doi.org/10.1002/adma.202418393
- Z. Luo, W. Wei, R. Ma, G. Ran, M.H. Jee et al., Approaching 20% efficiency in ortho-xylene processed organic solar cells by a benzo [a] phenazine-core-based 3D network acceptor with large electronic coupling and long exciton diffusion length. Adv. Mater. 36(41), 2407517 (2024). https://doi.org/10.1002/adma.202407517
References
J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip et al., Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3(4), 1140–1151 (2019). https://doi.org/10.1016/j.joule.2019.01.004
J. Yi, G. Zhang, H. Yu, H. Yan, Advantages, challenges and molecular design of different material types used in organic solar cells. Nat. Rev. Mater. 9(1), 46–62 (2024). https://doi.org/10.1038/s41578-023-00618-1
D. Hu, H. Tang, C. Chen, D.-J. Lee, S. Lu et al., Solid additive engineering for next-generation organic photovoltaics. Adv. Mater. 36(51), 2406949 (2024). https://doi.org/10.1002/adma.202406949
Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang et al., Tandem organic solar cell with 20.2% efficiency. Joule 6(1), 171–184 (2022). https://doi.org/10.1016/j.joule.2021.12.017
C. Li, J. Zhou, J. Song, J. Xu, H. Zhang et al., Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6(6), 605–613 (2021). https://doi.org/10.1038/s41560-021-00820-x
L. Zhu, M. Zhang, G. Zhou, Z. Wang, W. Zhong et al., Achieving 20.8% organic solar cells via additive-assisted layer-by-layer fabrication with bulk p-i-n structure and improved optical management. Joule 8(11), 3153–3168 (2024). https://doi.org/10.1016/j.joule.2024.08.001
H. Chen, Y. Huang, R. Zhang, H. Mou, J. Ding et al., Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation. Nat. Mater. 24(3), 444–453 (2025). https://doi.org/10.1038/s41563-024-02062-0
Y. Li, Z. Jia, P. Huang, C. Gao, Y. Wang et al., Simultaneously improving the efficiencies of organic photovoltaic devices and modules by finely manipulating the aggregation behaviors of Y-series molecules. Energy Environ. Sci. 18(1), 256–263 (2025). https://doi.org/10.1039/D4EE04378B
H. Tang, Z. Liao, S. Karuthedath, S. Chen, H. Liu et al., Rationale for highly efficient and outdoor-stable terpolymer solar cells. Energy Environ. Sci. 16(5), 2056–2067 (2023). https://doi.org/10.1039/d3ee00350g
X. Wu, B. Xiao, R. Sun, X. Yang, M. Zhang et al., 19.46%-efficiency all-polymer organic solar cells with excellent outdoor operating stability enabled by active layer reconstruction. Energy Environ. Sci. 18(4), 1812–1823 (2025). https://doi.org/10.1039/d4ee05083e
H. Tang, Z. Liao, Q. Chen, H. Xu, J. Huang et al., Elucidating the optimal material combinations of organic photovoltaics for maximum industrial viability. Joule 8(8), 2208–2219 (2024). https://doi.org/10.1016/j.joule.2024.06.022
R. Sun, Y. Wu, X. Yang, Y. Gao, Z. Chen et al., Single-junction organic solar cells with 19.17% efficiency enabled by introducing one asymmetric guest acceptor. Adv. Mater. 34(26), 2110147 (2022). https://doi.org/10.1002/adma.202110147
J. Lv, X. Sun, H. Tang, F. Wang, G. Zhang et al., Phase separation and domain crystallinity control enable open-air-printable highly efficient and sustainable organic photovoltaics. InfoMat 6(3), e12530 (2024). https://doi.org/10.1002/inf2.12530
R. Sun, T. Wang, X. Yang, Y. Wu, Y. Wang et al., High-speed sequential deposition of photoactive layers for organic solar cell manufacturing. Nat. Energy 7(11), 1087–1099 (2022). https://doi.org/10.1038/s41560-022-01140-4
Y. Sun, L. Wang, C. Guo, J. Xiao, C. Liu et al., π-extended nonfullerene acceptor for compressed molecular packing in organic solar cells to achieve over 20% efficiency. J. Am. Chem. Soc. 146(17), 12011–12019 (2024). https://doi.org/10.1021/jacs.4c01503
C. Li, J. Song, H. Lai, H. Zhang, R. Zhou et al., Non-fullerene acceptors with high crystallinity and photoluminescence quantum yield enable >20% efficiency organic solar cells. Nat. Mater. 24(3), 433–443 (2025). https://doi.org/10.1038/s41563-024-02087-5
C. Xu, J. Yang, S. Gámez-Valenzuela, J.-W. Lee, J. Che et al., A bithiophene imide-based polymer donor for alloy-like ternary organic solar cells with over 20.5% efficiency and enhanced stability. Energy Environ. Sci. 18(12), 5913–5925 (2025). https://doi.org/10.1039/D5EE00812C
Z. Zhong, S. Gámez-Valenzuela, J.-W. Lee, Y. Wang, B. Li et al., Three-dimensional bowl-shaped solid additive achieves 20.52% efficiency organic solar cells with enhanced thermal stability via curvature-mediated morphology regulation. Energy Environ. Sci. 18(15), 7635–7647 (2025). https://doi.org/10.1039/D5EE01977J
C. Li, Y. Cai, P. Hu, T. Liu, L. Zhu et al., Organic solar cells with 21% efficiency enabled by a hybrid interfacial layer with dual-component synergy. Nat. Mater. 24(10), 1626–1634 (2025). https://doi.org/10.1038/s41563-025-02305-8
L. Liu, F. Yu, D. Hu, X. Jiang, P. Huang et al., Breaking the symmetry of interfacial molecules with push–pull substituents enables 19.67% efficiency organic solar cells featuring enhanced charge extraction. Energy Environ. Sci. 18(4), 1722–1731 (2025). https://doi.org/10.1039/D4EE04515G
Y. Jiang, K. Liu, F. Liu, G. Ran, M. Wang et al., 20.6% efficiency organic solar cells enabled by incorporating a lower bandgap guest nonfullerene acceptor without open-circuit voltage loss. Adv. Mater. 37(17), 2500282 (2025). https://doi.org/10.1002/adma.202500282
J. Wang, Z. Zheng, Y. Ke, Y. Wang, X. Liu et al., Fluid control of dip coating for efficient large-area organic solar cells. Adv. Mater. 37(10), 2417160 (2025). https://doi.org/10.1002/adma.202417160
Z. Xia, C. Gao, Z. Xie, M. Wu, H. Chen et al., Isomerization-controlled aggregation in photoactive layer: an additive strategy for organic solar cells with over 19.5 % efficiency. Angew. Chem. Int. Ed. 64(12), e202421953 (2025). https://doi.org/10.1002/anie.202421953
R. Yu, R. Shi, Z. He, T. Zhang, S. Li et al., Thermodynamic phase transition of three-dimensional solid additives guiding molecular assembly for efficient organic solar cells. Angew. Chem. Int. Ed. 62(40), e202308367 (2023). https://doi.org/10.1002/anie.202308367
K. Weng, L. Ye, L. Zhu, J. Xu, J. Zhou et al., Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells. Nat. Commun. 11, 2855 (2020). https://doi.org/10.1038/s41467-020-16621-x
X. Zhang, X. Li, X. Kong, J. Zhang, J. Li et al., Fine-tuning of molecular self-assembly morphology via synergistic ternary copolymerization and side chain optimization of low-cost polymer donors toward efficient organic solar cells. Adv. Mater. 37(37), 2503325 (2025). https://doi.org/10.1002/adma.202503325
Y. Liu, C. Zhang, D. Hao, Z. Zhang, L. Wu et al., Enhancing the performance of organic solar cells by hierarchically supramolecular self-assembly of fused-ring electron acceptors. Chem. Mater. 30(13), 4307–4312 (2018). https://doi.org/10.1021/acs.chemmater.8b01319
J. Wang, Q. Sun, J. Xiao, M. Zhu, L. Chen et al., Subtly adjusted active layer self-assembly process for efficient organic solar cells. Polym. Int. 68(10), 1698–1703 (2019). https://doi.org/10.1002/pi.5873
S. Gao, S. Xu, C. Sun, L. Yu, J. Li et al., Rational regulation of layer-by-layer processed active layer via trimer-induced pre-swelling strategy for efficient and robust thick-film organic solar cells. Adv. Mater. 37(28), 2420631 (2025). https://doi.org/10.1002/adma.202420631
M. Deng, L. Tan, H. Tang, Q. Peng, Recent progress in Y-series small molecule acceptors in polymer solar cells. Chem. Commun. 61(53), 9569–9583 (2025). https://doi.org/10.1039/D5CC02352A
D. Hu, H. Tang, C. Chen, P. Huang, Z. Shen et al., Insights into preaggregation control of Y-series nonfullerene acceptors in liquid state for highly efficient binary organic solar cells. Adv. Mater. 36(30), 2402833 (2024). https://doi.org/10.1002/adma.202402833
J.-H. Dou, Y.-Q. Zheng, Z.-F. Yao, Z.-A. Yu, T. Lei et al., Fine-tuning of crystal packing and charge transport properties of BDOPV derivatives through fluorine substitution. J. Am. Chem. Soc. 137(50), 15947–15956 (2015). https://doi.org/10.1021/jacs.5b11114
Y. Wang, Z. Liang, X. Liang, X. Wen, Z. Cai et al., Easy isomerization strategy for additives enables high-efficiency organic solar cells. Adv. Energy Mater. 13(22), 2300524 (2023). https://doi.org/10.1002/aenm.202300524
Z. Zhao, S. Chung, Y.Y. Kim, M. Jeong, X. Li et al., Room-temperature-modulated polymorphism of nonfullerene acceptors enables efficient bilayer organic solar cells. Energy Environ. Sci. 17(15), 5666–5678 (2024). https://doi.org/10.1039/D4EE02330G
G. Zhang, X.-K. Chen, J. Xiao, P.C.Y. Chow, M. Ren et al., Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nat. Commun. 11(1), 3943 (2020). https://doi.org/10.1038/s41467-020-17867-1
F.C. Spano, The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43(3), 429–439 (2010). https://doi.org/10.1021/ar900233v
F.S.U. Fischer, D. Trefz, J. Back, N. Kayunkid, B. Tornow et al., Highly crystalline films of PCPDTBT with branched side chains by solvent vapor crystallization: influence on opto-electronic properties. Adv. Mater. 27(7), 1223–1228 (2015). https://doi.org/10.1002/adma.201403475
Y. Li, J. Wu, X. Yi, Z. Liu, H. Liu et al., Layer-by-layer blade-coated organic solar cells with non-halogenated solvents and non-halogenated additive via adjusting morphology and crystallization. J. Mater. Chem. C 11(39), 13263–13273 (2023). https://doi.org/10.1039/D3TC02562D
B. Ma, Y. Yan, M. Wu, S. Li, M. Ru et al., Sustainable solution processing toward high-efficiency organic solar cells: a comprehensive review of materials, strategies, and applications. Adv. Funct. Mater. 35(3), 2413814 (2025). https://doi.org/10.1002/adfm.202413814
J. Wang, P. Wang, T. Chen, W. Zhao, J. Wang et al., Isomerism effect of 3D dimeric acceptors for non-halogenated solvent-processed organic solar cells with 20% efficiency. Angew. Chem. Int. Ed. 64(12), e202423562 (2025). https://doi.org/10.1002/anie.202423562
H. Jung, J. Kim, J. Park, M. Jahankhan, Y. Hwang et al., Achieving an excellent efficiency of 11.57% in a polymer solar cell submodule with a 55 cm2 active area using 1D/2A terpolymers and environmentally friendly nonhalogenated solvents. EcoMat 6(1), e12421 (2024). https://doi.org/10.1002/eom2.12421
S. Dong, T. Jia, K. Zhang, J. Jing, F. Huang, Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%. Joule 4(9), 2004–2016 (2020). https://doi.org/10.1016/j.joule.2020.07.028
B. Zou, W. Wu, T.A. Dela Peña, R. Ma, Y. Luo et al., Step-by-step modulation of crystalline features and exciton kinetics for 19.2% efficiency ortho-xylene processed organic solar cells. Nano-Micro Lett. 16(1), 30 (2023). https://doi.org/10.1007/s40820-023-01241-z
S. Zhang, H. Chen, P. Wang, S. Li, Z. Li et al., A large area organic solar module with non-halogen solvent treatment, high efficiency, and decent stability. Solar RRL 7(7), 2300029 (2023). https://doi.org/10.1002/solr.202300029
H. Wang, S. Liu, H. Li, M. Li, X. Wu et al., Green printing for scalable organic photovoltaic modules by controlling the gradient Marangoni flow. Adv. Mater. 36(21), e2313098 (2024). https://doi.org/10.1002/adma.202313098
M. Xiao, C. Wang, Y. Xu, W. Zhang, Z. Fu et al., Enhance photo-stability of up-scalable organic solar cells: suppressing radical generation in polymer donors. Adv. Mater. 37(5), e2412746 (2025). https://doi.org/10.1002/adma.202412746
T. Le Huyen Mai, Z. Sun, S. Kim, S. Jeong, S. Lee et al., Open-air, green-solvent processed organic solar cells with efficiency approaching 18% and exceptional stability. Energy Environ. Sci. 17(19), 7435–7444 (2024). https://doi.org/10.1039/d4ee01944j
J. Song, C. Zhang, C. Li, J. Qiao, J. Yu et al., Non-halogenated solvent-processed organic solar cells with approaching 20% efficiency and improved photostability. Angew. Chem. Int. Ed. 63(22), e202404297 (2024). https://doi.org/10.1002/anie.202404297
C. Wang, X. Ma, Y.-F. Shen, D. Deng, H. Zhang et al., Unique assembly of giant star-shaped trimer enables non-halogen solvent-fabricated, thermal stable, and efficient organic solar cells. Joule 7(10), 2386–2401 (2023). https://doi.org/10.1016/j.joule.2023.09.001
B. Liu, H. Sun, J.-W. Lee, J. Yang, J. Wang et al., Achieving highly efficient all-polymer solar cells by green-solvent-processing under ambient atmosphere. Energy Environ. Sci. 14(8), 4499–4507 (2021). https://doi.org/10.1039/D1EE01310F
L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang et al., Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency. Adv. Mater. 31(39), e1903441 (2019). https://doi.org/10.1002/adma.201903441
C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng et al., Processing strategies for an organic photovoltaic module with over 10% efficiency. Joule 4(1), 189–206 (2020). https://doi.org/10.1016/j.joule.2019.11.006
B. Zhang, W. Chen, H. Chen, G. Zeng, R. Zhang et al., Rapid solidification for green-solvent-processed large-area organic solar modules with >16% efficiency. Energy Environ. Sci. 17(8), 2935–2944 (2024). https://doi.org/10.1039/D4EE00680A
H. He, X. Li, J. Zhang, Z. Chen, Y. Gong et al., Dynamic hydrogen-bonding enables high-performance and mechanically robust organic solar cells processed with non-halogenated solvent. Nat. Commun. 16(1), 787 (2025). https://doi.org/10.1038/s41467-024-55375-8
H. Chen, W. Sun, R. Zhang, Y. Huang, B. Zhang et al., Heterogeneous nucleating agent for high-boiling-point nonhalogenated solvent-processed organic solar cells and modules. Adv. Mater. 36(27), 2402350 (2024). https://doi.org/10.1002/adma.202402350
R. Basu, F. Gumpert, J. Lohbreier, P.-O. Morin, V. Vohra et al., Large-area organic photovoltaic modules with 14.5% certified world record efficiency. Joule 8(4), 970–978 (2024). https://doi.org/10.1016/j.joule.2024.02.016
J.-Y. Fan, Z.-X. Liu, J. Rao, K. Yan, Z. Chen et al., High-performance organic solar modules via bilayer-merged-annealing assisted blade coating. Adv. Mater. 34(28), e2110569 (2022). https://doi.org/10.1002/adma.202110569
T. Xu, J. Lv, K. Yang, Y. He, Q. Yang et al., 15.8% efficiency binary all-small-molecule organic solar cells enabled by a selenophene substituted sematic liquid crystalline donor. Energy Environ. Sci. 14(10), 5366–5376 (2021). https://doi.org/10.1039/D1EE01193F
D. Hu, H. Tang, S. Karuthedath, Q. Chen, S. Chen et al., A volatile solid additive enables oligothiophene all-small-molecule organic solar cells with excellent commercial viability. Adv. Funct. Mater. 33(6), 2211873 (2023). https://doi.org/10.1002/adfm.202211873
J. Ren, J. Wang, J. Qiao, Z. Chen, X. Hao et al., Manipulating aggregation kinetics toward efficient all-printed organic solar cells. Adv. Mater. 37(11), e2418353 (2025). https://doi.org/10.1002/adma.202418353
W. Su, X. Zhou, Q. Wu, Y. Wu, H. Qin et al., Halogenation engineering of solid additives enables 19.39% efficiency and stable binary organic solar cells via manipulating molecular stacking and aggregation of both donor and acceptor components. Adv. Funct. Mater. 35(6), 2415090 (2025). https://doi.org/10.1002/adfm.202415090
X. Song, B. Zhang, X. Liu, L. Mei, H. Li et al., Low-volatility fused-ring solid additive engineering for synergistically elongating exciton lifetime and mitigating trap density toward organic solar cells of 20.5% efficiency. Adv. Mater. 37(12), e2418393 (2025). https://doi.org/10.1002/adma.202418393
Z. Luo, W. Wei, R. Ma, G. Ran, M.H. Jee et al., Approaching 20% efficiency in ortho-xylene processed organic solar cells by a benzo [a] phenazine-core-based 3D network acceptor with large electronic coupling and long exciton diffusion length. Adv. Mater. 36(41), 2407517 (2024). https://doi.org/10.1002/adma.202407517